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ARTICLE INFO ABSTRACT

Early warning systems (EWS) for river flooding are strategic tools for effective disaster risk management in many
world regions. When driven by ensemble Numerical Weather Predictions (NWP), flood EWS can provide skillful
streamflow forecasts beyond the monthly time scale in large river basins. Yet, effective flood detection is
challenged by accurate estimation of warning thresholds that identify specific hazard levels along the entire river
network and forecast horizon. This research describes a novel approach to estimate warning thresholds which
retain statistical consistency with the operational forecasts at all lead times. The procedure is developed in the
context of the Global Flood Awareness System (GloFAS). A 21-year forecast-consistent dataset is used to derive
thresholds with global coverage and forecast range up to six weeks. These are compared with thresholds derived
from ERADS, a state of the art atmospheric reanalysis used to run the baseline simulation for the years 1986-2017
and to give a best guess of the present hydrological states. Findings show that the use of constant thresholds for
30-day flood forecasting, as in the current operational GloFAS setup, is consistent throughout the entire forecast
range in only 30% to 40% of the river network, depending on the flood return period. Findings show that range-
dependent thresholds, of weekly duration, are a more suitable alternative to time-invariant thresholds, as they
improve the model consistency as well as the skills in flood monitoring and early warning, particularly over
longer forecasting range.
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1. Introduction Fan et al., 2014; Pagano et al., 2014; Siddique and Mejia, 2017; Thielen
et al., 2009; Thiemig et al., 2010). In addition, thanks to continuous
improvements in weather prediction and to the long travel time of flood

waves in the largest world’s rivers, large scale ensemble flood fore-

Flooding is among the costliest disasters worldwide, with reported
population affected of 80-110 million people per year (Jonkman, 2005;

UNISDR and CRED, 2015) and flood losses estimated at 30-100 billion
USD per year (Munich Re, 2015; UNISDR, 2015; UNISDR and CRED,
2015). These figures are projected to rise even further in the coming
decades due to socio-economic growth and the consequent increase in
flood exposure and to ongoing global warming, which is linked to an
intensification of weather-related disasters in most world regions
(Dottori et al., 2018; Winsemius et al., 2016). Flood forecasting and
early warning systems are cost-effective measures to reduce the impacts
of floods by providing timely information on where and when floods
will occur in the near future (Pappenberger et al., 2015a). A common
approach to forecast floods in the medium range, i.e., 3-15 days ahead
of their occurrence, is by forcing a hydrological model with an en-
semble of numerical weather predictions (NWP) to estimate the prob-
able future hydrological conditions (Cloke and Pappenberger, 2009;

casting is pushing forward the limits of predictability by enabling
skillful quantitative forecasts over longer forecast horizons.

The Global Flood Awareness System (GloFAS), is a global hydro-
logical modeling and forecasting system jointly developed by the
European Commission (EC) and the European Centre for Medium-
Range Weather Forecasts (ECMWEF), and is an operational system of the
Copernicus Emergency Management Service since 2018. GloFAS is de-
signed to forecast large scale river flooding worldwide by detecting
river reaches where predicted streamflow has significant probability to
exceed model-consistent warning thresholds in a 30-day forecasting
horizon (Alfieri et al., 2013). The estimation of suitable exceedance
thresholds is a key task in flood early warning, where alerts are de-
termined by the ratio between streamflow estimates and reference
thresholds. Hence, model consistency is achieved through the use of the
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same hydrological model and meteorological product to derive both
streamflow forecasts and the reanalysis dataset used to derive the
thresholds. Accurate representation of the true river conditions along
the river network is a long standing challenge in the global hydrological
community (Bierkens et al., 2015; Nijssen et al., 2001). Yet, several
examples have shown that skillful early warning systems based on
threshold exceedance analysis favor the concept of model consistency
rather than a mere pursuit of the true absolute hydrological states
(Pappenberger et al., 2015b; Raynaud et al., 2015; Reed et al., 2007).

In GloFAS, the estimation of warning thresholds is determined by
the global meteorological datasets used to reproduce a long term
streamflow simulation, and in turn derive threshold values for selected
occurrence probabilities. The current operational setup stems from the
outcomes of the work by Hirpa et al. (2016). The key question in Hirpa
et al. (2016) is whether flood thresholds derived from a reforecast cli-
matology, hence favoring the consistence between thresholds and daily
operational forecasts, yield more skillful prediction of severe flood
events compared to using thresholds derived from a reanalysis product,
hence more focused on reproducing the true state of the atmosphere. To
this end, the authors produced a continuous atmospheric forcing by
concatenating data from the first days of a weather reforecasts dataset
issued twice per week over 20 years, and found a marginal improve-
ment in flood detection skills. The debate around the best choice of
flood thresholds has been recently reopened, the main reasons being
summarized as follow:

- ERAS5, the latest generation global atmospheric reanalysis product
by ECMWF, has become available in 2018 (Hersbach et al., 2018).
Key features compared to the previous version ERA-Interim (Dee
et al., 2011) include 10years’ worth of advances in NWP, higher
spatial resolution, improvements in the ingested observations, and a
near-real time updating service (2-5 days latency) known as ERAS5T,
which makes it particularly appealing for the daily updating of the
global hydrological conditions used to initialize GloFAS streamflow
forecasts. Also, ERAST is used for the initialization of the current
operational GloFAS forecasts since November 2018.

The approach currently used to produce a continuous meteor-
ological climatology based on reforecasts generates streamflow
statistics which are not fully consistent with those of the operational
forecasts, hence possibly originating a bias in the resulting flood
warning thresholds.

The extension in 2018 of GloFAS products to a 30-day forecast
horizon urged the need to investigate whether thresholds derived
from short-term forecasts (i.e., with lead time up to 4 days, see Hirpa
et al., 2018) are suitable over a longer forecasting range.

Hence, this research effort was conducted to address the above is-
sues with the following objectives:

1. Improving the methodology to estimate GloFAS warning thresholds,
to make them statistically consistent with real-time streamflow
forecasts along the entire forecast range.

2. Assessing the variability of flood thresholds through the forecast
range.

3. Assessing whether the approach based on time-invariant flood
thresholds is fit for purpose or whether range-dependent thresholds
should be adopted instead through the forecast horizon.

In this article we present a new approach for deriving GloFAS flood
thresholds over different weekly forecast horizons, based on an atmo-
spheric reforecasts dataset, and we compare them with thresholds
based on a global hydrological reanalysis forced by ERAS5, hence con-
sistent with the initial hydrological conditions.
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2. Material and methods
2.1. Meteorological data

2.1.1. ERAS

ERAS (Hersbach et al., 2018) is the latest climate reanalysis dataset
produced by ECMWF through the Copernicus Climate Change Service
(C3S). ERAS data extending from 1979 to the present became available
at the end of 2018, while the second phase, extending back to 1950, is
planned for release by autumn 2019. ERAS5 is based on the Integrated
Forecasting System (IFS) Cycle 41r2 which was operational in 2016.
Therefore, ERA5 benefits from a decade of developments in model
physics, numerics and data assimilation, compared to the ERA-Interim
IFS Cycle 31r2, operational in 2006. In addition to a significantly en-
hanced horizontal resolution of 31 km, compared to 80 km for ERA-
Interim, ERAS has a number of innovative features, including hourly
output, and an uncertainty estimate. ECMWF forecasts from ERA5
analysis show a gain of up to one day in skill with respect to ERA-
Interim (Haiden et al., 2018), which is reflected not only in average
weather variables but also with regard to large-scale weather patterns
such as tropical cyclones.

In this work we used daily maps of precipitation, minimum, mean
and maximum surface air temperature, mean sea level pressure, in-
coming solar radiation, wind speed and relative humidity extracted
from ERAS5 for 32 complete years between 1986 and 2017. Some
variables were then processed to produce estimates of potential eva-
potranspiration using the Penman-Monteith equation. This represents
one of the main dynamic input variables of the hydrological model
Lisflood, together with mean surface air temperature and precipitation.
ERA5 data was used to model the daily hydrological states over
1986-2017.

2.1.2. Atmospheric reforecasts

ECMWEF reforecasts are global scale forecast runs that use the same
Integrated Forecasting System (IFS) model version as the real-time
ensemble forecasts (ECMWE-ENS), for the past 20 years. Similar to the
operational forecasts, reforecasts have horizontal resolutions of 18 km
for up to 15-day lead time and 36 km for longer forecast lead times up
to 46-day. In this work we used the unperturbed ensemble member
(i.e., the control run) of 6-week reforecasts with daily resolution, in-
itialized once per week in the entire period of availability, coupled with
the last year of operational forecasts. The collected dataset thus in-
cludes 1218 sets of reforecasts with global coverage, spanning 21 years
between 21/11/1996 and 25/12/2017. More in details, each of the
21 years of data is composed by 58 weekly reforecasts starting in mid-
November of the previous year, so that each day of each year is ulti-
mately simulated in 6 different reforecasts with lead time between 1
and 6 weeks. As for ERA5, we extracted the same set of atmospheric
variables and pre-processed them to obtain daily estimates of evapo-
transpiration, which were used as input of the hydrological model to-
gether with mean surface air temperature and precipitation.

2.2. Hydrological modeling

Hydrological simulations are performed with Lisflood (van der
Knijff et al., 2010), a distributed semi-physically based model devel-
oped at the Joint Research Centre of the European Commission. Pro-
cesses simulated by Lisflood include soil freezing, snowmelt, surface
runoff, infiltration, preferential flow, redistribution of soil moisture
within the soil profile, drainage to the groundwater system, ground-
water storage, and base flow. Runoff is produced at every grid cell and
routed through the river network using a kinematic wave approach.
Lisflood underpins a number of large scale applications ranging from
climate change studies (Alfieri et al., 2015; Dankers and Feyen, 2009;
Rojas et al., 2012), flood risk assessments (Alfieri et al., 2016), opera-
tional flood early warning systems (Thielen et al., 2009) and flood
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Fig. 1. 30-day GloFAS ensemble forecasts issued on 21/7/2018 for the Ganges at Hardinge Bridge (Bangladesh) and flood warning thresholds (color stripes) for

return periods of 1.5, 2, 5 and 20 years (from http://www.globalfloods.eu).
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Fig. 2. Mean annual maxima of daily precipitation (Pmax, left) and mean annual precipitation (MAP, right) from ERA5 (1986-2017) in mm.

hazard mapping (Alfieri et al., 2014; Dottori et al., 2016). In this work,
we used a global setup at 0.1 degree and daily resolutions, covering the
Earth’s land areas except Iceland, Greenland and Antarctica. The global
setup of the model was calibrated against observed daily streamflow for
24 large river basins (84,000-4,680,000 km? in area) across the globe
using the WFDEI (Weedon et al., 2014) atmospheric forcing and a
multi-objective function incorporating bias, Nash-Sutcliffe efficiency
(NSE), and log-transformed NSE (Beck et al., 2017). The calibrated river
basins cover 17% of the entire simulation area, while for the un-
calibrated area we used a common parameter set derived by expert
judgement. We expect the model calibration to have a relatively minor
impact on the outcomes of this work, as all simulations are run with the
same model setup and their differences mostly depend on differences in
the weather forcing and in their statistics, rather than on skills versus
measured discharges. It is worth noting that the hydrological model
used in this work is different from the setup used in the operational
GloFAS, which is based on a combination of two models for the land
surface and for the river routing component, respectively (see Hirpa
et al., 2018).

2.3. Methods

We investigated differences in the statistics between ERAS5 and the
reforecasts dataset at all lead times, and their resulting hydrological
simulations. The analysis is split in two steps, first focusing on the
precipitation statistics and then on the flood warning thresholds. With
regard to precipitation, we analyzed the mean annual maxima of daily
precipitation (Pmax) and the mean annual precipitation (MAP), in-
cluding spatial patterns of the differences between the two datasets.
Due to their non-parametric nature, precipitation statistics are key di-
agnostic indicators that anticipate and explain possible differences be-
tween the corresponding hydrological model outputs. In this regard,
Pmax is representative of extreme precipitation and is generally well
correlated to floods (e.g., Guillot and Duband, 1967), while MAP is an
indicator of long term bias between the considered datasets.

The second part of the analysis is performed on flood thresholds
based on ERAS5 versus those based on reforecasts. To this end, we first
ran a 32-year global hydrological simulation forced with ERA5 and
extracted discharge time series at all points of the river network. Then,
1,218 sets of 6-week reforecasts, initialized once per week between 21/
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Fig. 3. Maps of difference (in mm) in Pmax (left) and MAP (right) between reforecasts and ERAS, for forecast ranges of 2, 4 and 6 weeks.
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Fig. 4. Map of peak discharges (in m®s™"') with average return period of
20 years, using ERA5 as forcing. Circles indicate the outlet of the rivers Mobile
(Mob), Itapicuru (Ita), Congo (Con), Dniepr (Dni), Cauvery (Cau), and Murray-
Darling (Mur). Only river sections with upstream area larger than 10,000 km?
are shown, for easier interpretation of the plot.

11/1996 and 25/12/2017, were used as input to run as many hydro-
logical simulations, taking initial conditions from the corresponding
date in the ERA5-based run. Such model runs forced by reforecasts
include 58 different 6-week simulations per year, starting on the 21
November of the previous year, so that each day of each year is ulti-
mately modeled in six different simulations, with forecast range span-
ning between 1 and 6 weeks. We applied Extreme Value Distribution
(EVD) fitting to the annual maximum discharges extracted from the
ERA5-based dataset as well as from the six datasets stemming from
reforecasts, after reordering the data by weekly lead time. The first two
years of the ERA5-based dataset were discarded to guarantee sufficient
model warm-up, leaving 30 years of data for the EVD fitting, while in
the case of reforecasts all 21years of data were used, given that
meaningful initial conditions were provided by the ERA5-based run.
Such 9-year difference (i.e., 30 versus 21 years) in the length of the two
datasets may produce discontinuities in the related flood thresholds, in
case of substantial differences in the statistics of the extremes in those
9years when reforecasts are not available. In view of the direct im-
plications of this research with the operational runs of GloFAS we have
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Fig. 5. Maps of relative difference (in percent) in the 20-year threshold maps between reforecasts and ERAS, for forecast range between 1 and 6 weeks. Only river
sections with upstream area larger than 10,000 km? are shown, for easier interpretation of the plots.

opted to accept this potential discontinuities, for the following reasons:

e While the ERAS dataset is continuously extended in near-real time
and therefore keeps growing in size, ECMWF reforecasts are re-
generated every week using the latest IFS model version (which is
updated more than once per year), yet only for the most recent
20 years. It follows that this 9-year gap will not be closed in the
future unless a longer reference period is chosen at ECMWF for is-
suing reforecasts.

® 30 years are a commonly accepted duration for a reference climate,
as defined by the World Meteorological Organization, as well as a
recommended standard for extreme value analysis (e.g., Burroughs,
2003), hence it should be a preferred duration for use whenever
available.

The chosen EVD fitting is based on the Gumbel distribution with the
method of L-Moments (Hosking, 1990), an effective and parsimonious
choice which shows best performance for relatively small sample sizes

(Cunnane, 1989) as in this case. Significance of the analytical curves
was assessed by bootstrapping, using 1000 repetitions for each fit. 90%
confidence bands between the 5th and 95th percentile around the
central estimates were extracted and used to assess the fitting un-
certainty.

In the remainder, we refer to flood thresholds as all discharge values
estimated from analytical extreme value distributions, corresponding to
return periods equal or larger than 2 years. In reality, the occurrence of
actual flooding depends on the flood protection standards along the
river network, which are known to vary considerably from around 2 to
several thousand years, depending on the exposure and on the country’s
investment capacity (Scussolini et al., 2016). In the operational version
of GloFAS, reference warning thresholds correspond to return periods
of discharge peaks of 1.5, 2, 5 and 20 years (see Fig. 1), following the
recommendations of the European Flood Awareness System (EFAS, see
Bartholmes et al., 2009). The 20-year threshold values are considered
the most representative for detecting flood alerts in GloFAS, hence a
number of figures in the remainder show results for such return periods,
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Fig. 6. Relative difference (in percent) in the 20-year threshold values between
reforecasts and ERAS, for forecast range between 1 and 6 weeks. Dots con-
nected by lines show median values for each class of upstream area.

while results for return periods of 2, 5, 10, 20, 50, 100, 200 and
500 years are shown in the Supplementary material for completeness.
One should note that results for return periods larger than the number
of years of the time series (i.e., 50, 100, 200 and 500 years) are likely to
be affected by large uncertainty bounds, and by possible discrepancies
in the behavior of the tail of the hypothesized distribution. Yet, it is
valuable to analyze them as they could impact a number of ensuing
applications focused on flood hazard mapping and impact assessment
(Alfieri et al., 2017; Dottori et al., 2016).

3. Results

Statistics of precipitation were calculated over the world’s land area
using ERA5 (Fig. 2) and reforecasts with weekly lead time between 1
and 6 weeks. Maps of difference in Pmax and MAP between reforecasts
and ERAS5 are shown in Fig. 3, for forecast lead times of 2, 4, and
6 weeks. More in details, results for week 1 include all days with
forecast lead time between 1 and 7 days, week 2 includes days with lead
time between 8 and 14 days, and so forth up to week 6. Extreme daily
precipitation simulated by reforecasts are smaller than those of ERA5 in
most tropical and equatorial regions. Conversely, reforecasts simulate
more extreme precipitation in the Sahel region, West India, parts of
Canada and Eastern Asia. Mean annual precipitation shows a less
homogeneous pattern, with reforecasts being above ERAS5 in India,
Central Africa and parts of South America, and below ERAS in South-
East Asia, Europe and parts of South America. No clear trends in the
precipitation statistics appear along the forecast range, though the ne-
gative bias of reforecasts (both Pmax and MAP) tends to increase with
the lead time for the majority of the land points. At the global scale,
mean reforecasts-based MAP is smaller than the ERA5-based MAP by
between 2.5 mm year ! at week 1, and 5 mm year ! at week 4, 5, and
6.

The map in Fig. 4 shows central estimates of maximum peak dis-
charges with average recurrence interval of 20 years, based on the
ERA5-driven simulation. Percent relative differences between refor-
ecasts-based and ERA5-based maps are shown in Fig. 5 for lead-times
between 1 and 6 weeks, together with a representation per upstream
area classes in Fig. 6. Relative differences between reforecasts and
ERAS flood thresholds tend to increase in drier regions as well as with
increasing forecast lead time. In larger rivers, differences are smaller
and vary more gradually due to the larger influence of the initial hy-
drological conditions. Looking at changes across the range of con-
sidered flood magnitudes (see Supplement material, Figs. S4-S11), one
can note a progressive reduction of flood thresholds derived from

Journal of Hydrology X 4 (2019) 100034

reforecasts compared to ERA5 from a return period of 2 years, moving
towards 500 years. With regard to differences versus upstream area, the
median change of each upstream class ranges within — 4% and + 1% at
week 1, up to within — 7% and + 2% at week 6 (Fig. 6). When different
quantiles of the distribution of the changes per upstream area classes
are considered, we found an increasing spread of the empirical dis-
tribution of data for increasing values of forecast horizon and return
period, and for decreasing values of upstream area (see Supplement
material, Figs. S13-520). At 20-year return period, the interquartile
range (i.e., the central 50%) of the distribution of differences, ranges
between — 10% and + 10% at week 1, up to — 21% and + 16% at
week 6 (see Fig. S16).

Differences in the thresholds described above, based on different
hydrological simulations, cause bias and hence inappropriate inter-
pretation of ERAS flood thresholds when they are used in the prediction
of threshold exceedances along the forecast range. Such bias can be
evaluated by inverting the EVD of reforecasts at each weekly lead-time,
using discharge values corresponding to flood thresholds based on the
ERA5 EVD fitting. An example for a return period of 20 years is shown
in Fig. 7, for lead times between 1 and 6 weeks. Light yellow pixels in
the figure represent river points where a 20-year flood peak magnitude
in the ERA5 simulation corresponds to the same return period magni-
tude ( = 10%) also in the reforecasts-based run. Conversely, shades of
red (blue) indicate that 20-year discharges from ERA5 actually corre-
spond to smaller (larger) return periods when used in predictive mode.
90% confidence intervals around central estimates of flood thresholds
are used to assess statistically significant differences between flood
thresholds stemming from different input datasets, and at different lead
times. Hence, assuming a confidence interval of 90%, we show in Fig. 8
the number of subsequent weeks over which ERAS5-based 20-year
thresholds fall within the distribution of range specific thresholds de-
rived from reforecasts. We found that only in 27% of grid points, are
ERAS5-based 20-year thresholds statistically consistent with the entire 6-
week streamflow forecasts. On the other hand, in 44% of grid points
ERA5-based 20-year thresholds are not consistent with those derived
from reforecasts already from a forecast range of 1 week. The remaining
29% of grid points take on intermediate values between 1 and 5 weeks
of consistency of the two sets of thresholds. Similar figures were found
across the considered flood return periods (see Supplement material,
Fig. S30). For instance, taking the current GloFAS configuration of ~ 4-
week forecasts, ERA5-based thresholds could be consistently used
through the entire forecasting range only in 39-31% of GloFAS grid
points, for return periods between 2 and 500 years respectively. A
closer look is given in Fig. 9, which shows six examples of the proposed
range-dependent flood thresholds evaluated at the outlet of six rivers,
together with their 90% confidence intervals. The six cases were chosen
to represent different continents, climate regions, basin size, as well as
different trends in the threshold values along the 6-week forecast range.
Among these six stations, 2 cases (Dniepr and Murray-Darling) retain
low variability of flood thresholds over the entire 6-week range. Two
cases (Cauvery and Mobile River) show a significantly rising trend,
while two cases (Itapicuru and Congo River) a decreasing trend. An
interesting example is that of the Congo River, where thresholds are
almost constant through the entire forecast range, though they are
significantly smaller than those derived from ERAS5. Such differences
are due to a number of extreme events simulated by ERA5 in
1986-1996, which are therefore not included in the shorter series de-
rived from the reforecasts dataset, (i.e., 1997-2017), hence causing the
type of discontinuity described in Section 2.3.

4. Discussion

Results of our analyses show a complex spatial pattern of sign and
magnitude of the differences between thresholds derived from a re-
analysis dataset (i.e., ERA5) and those derived from a forecast-con-
sistent dataset (i.e., the reforecasts). Differences do not appear to have
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Week 2 - 20 year return period

Fig. 7. Return period (in years) of the ERA5 20-year discharge threshold map, obtained using the extreme value distributions of reforecasts-driven simulations, for
forecast range between 1 and 6 weeks. Only river sections with upstream area larger than 10,000 km? are shown, for easier interpretation of the plots.
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Fig. 8. Number of weeks during which ERA5-based thresholds with 20-year
return period are consistent with reforecast-based thresholds (i.e. within the
90% confidence bands).

clear linear dependence with a number of considered variables, such as
return period of the flood thresholds, weekly forecast range, latitude,
basin upstream area and mean discharge. Instead the pattern of such
differences follows more that of the differences in precipitation statis-
tics (see Fig. 3 and 5), hence it is specific of the chosen atmospheric
datasets. However, we found a tendency for larger discrepancies be-
tween ERAS5- and reforecasts-based flood thresholds in smaller and
drier river basins, over longer forecast ranges. Conversely, flood
thresholds in large rivers over short forecast ranges often follow closely
those based on ERAS5, from which they take the initial conditions de-
termining a large proportion of the river streamflow.

The findings of this research indicate that range-dependent thresh-
olds should be used and replace time-invariant thresholds to improve
the consistency in flood monitoring and early warning, especially over
longer forecast ranges. Unlike the constant-thresholds setup, the pro-
posed approach would retain consistency along the entire forecast
range with the operational streamflow simulations, which integrate the
effect of three IFS model configurations with different spatial
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Fig. 9. 2, 5 and 20-year threshold values based on ERA5 and reforecasts (1-6 weeks lead time), at the outlet of six rivers (see location in Fig. 4). Central estimates
(black horizontal lines) are shown together with the 90% confidence bands (yellow: 2 years, orange: 5 years, purple: 20 years). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

resolution. First, the ERA5 atmospheric reanalysis with grid resolution
of 31km, used in the baseline run from which hydrological initial
conditions are taken. Second, medium-range forecasts up to 15 days
with grid resolution of 18 km, which are primarily governed by atmo-
spheric initial values. Third, extended-range forecasts with ocea-
n-atmosphere coupling from 16 to 46 days with grid resolution of
36 km, where the sea-surface temperature and associated heat and
moisture start having non-negligible influence on the atmospheric
evolution (Owens and Hewson, 2018).

Traditionally, flood thresholds used in short-term forecasting and

early warning are based on observations or reconstructed extreme value
distributions based on long term simulations (Pappenberger et al.,
2015b). On the other hand long term (e.g., seasonal) forecasts use less
extreme thresholds based on anomalies or percentiles from the
streamflow distributions, to compensate for the smoothing effect of
coarser resolution modeling, forecast uncertainty, temporal aggregation
of results and variability of the precipitation statistics in the long-range
forecasting (Arnal et al., 2018; Emerton et al., 2018). In this context, we
see our approach as a step in the right direction for a smooth transition
between quantitative thresholds of discharge or water level, to long
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range forecasts which are tailored more on the identification of wetter-
or drier-than-normal periods. In an ideal seamless forecasting system,
seasonal forecasts would anticipate wetter than normal periods, which
could potentially become large-scale river flooding and be detected as
severe events as early as a few weeks before, leaving enough time for
low-cost preparatory actions. As the event approaches, short-term
forecasts enable improved quantitative estimation of river discharges
and corresponding water levels, hence transitioning to impact-based
assessments including the exposure and vulnerability of the potentially
affected areas, so to prioritize actions for an efficient emergency man-
agement.

To the authors’ knowledge, no operational system for medium-range
flood early warning uses range-dependent thresholds to detect up-
coming severe events. The concept of range-dependent thresholds may
initially be difficult to accept for users, as it eliminates the univocal link
between discharge thresholds and their probability of occurrences. In
other words, any given discharge peak would correspond to a different
probability of occurrence depending on when it is forecast in the future.
Yet, the proposed approach is more correct and consistent with the
data, hence it is likely to improve the estimation of the magnitude of
upcoming extreme events over longer forecast ranges.

5. Conclusions

In this research we have tested a new method to estimate discharge
thresholds for medium-range flood forecasting, for potential use in the
Global Flood Awareness System. We have provided evidence that flood
thresholds for medium-range forecasting can take on significantly dif-
ferent values from thresholds derived from the reference baseline run
forced by ERA5 data, used to initialize the forecasts. In addition,
thresholds often vary throughout consecutive weekly forecast ranges
with a complex pattern of change, mostly driven by differences in the
atmospheric datasets used as forcing to the hydrological model.
Therefore, we propose a modified framework for the early detection of
floods, based on range-dependent flood thresholds, which are able to
compensate for forecast drifts in the extreme values, particularly useful
over long ranges. Upcoming work, ahead of the operational im-
plementation, will involve extensive testing and skill evaluation of the
operational ensemble forecasts, to assess the limits of predictability of
the system and compare the system skills to the current operational
version. This represents a key step in the evolution of GloFAS which
may ultimately lead to the extension from the current 30-day to a 6-
week forecasting range. It is worth noting that flood thresholds based
on reforecasts must be updated regularly as new IFS cycles are released,
to retain consistency between streamflow predictions and warning
thresholds and improve the detection of severe floods along the entire
forecast horizon.
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