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Article

Can Decision Theory Help End-Users Take the 
Appropriate Action in an Emergency?
Natalie J. Harvey, Luke M. Western, Helen F. Dacre, and Antonio Capponi

ABSTRACT: Making decisions about the appropriate action to take when presented with uncertain 
information is difficult, particularly in an emergency response situation. Decision-makers can be 
influenced by factors such as how information is framed, their risk sensitivity, and the impact of 
false alarms. Uncertainty arising from limited knowledge of the current state or future outcome of 
an event is unavoidable when making decisions. However, there is no universally agreed method 
on the design and presentation of uncertainty information. The aim of this article is to demonstrate 
that decision theory can be applied to an ensemble of plausible realizations of a situation to build a 
transparent framework that can then be used to determine the optimal action by assigning losses 
to different decision outcomes. The optimal action is then visualized, enabling the uncertainty 
information to be presented in a condensed manner suitable for decision-makers. The losses are 
adaptable depending on the hazard and the individual operational model of the decision-maker. To 
illustrate this approach, decision theory will be applied to an ensemble of volcanic ash simulations 
used for the purpose of airline flight planning, focusing on the 2019 eruption of Russian volcano 
Raikoke. Three idealized scenarios are constructed to show the impact of different loss models on 
the optimal action. In all cases, applying decision theory can significantly alter the regions, and 
therefore potential flight tracks, identified as potentially hazardous. Thus, we show that different 
end-users would and should make different decisions when presented with the same probabilistic 
information based on their individual user requirements.
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M aking rational decisions in the face of uncertainty poses a challenge to all decision-
makers from those involved in emergency hazard management to global climate 
change policy. Decision-makers can be influenced by how the information is framed 

(e.g., Taylor et al. 1997; Wernstedt et al. 2019), presented (e.g., Cox et al. 2013; Mulder et al. 
2017; Miran et al. 2020), and anchored (e.g., Whyte and Sebenius 1997; Englich et al. 2006). 
The decision-maker’s risk sensitivity can be informed by political challenges, such as the impact 
of false alarms and blame in the event of poor forecasts (Demeritt et al. 2010). There can also be 
issues with end-users understanding, or ignoring, complex forecast output (e.g., Demeritt et al. 
2010, 2016). To address these issues this paper will demonstrate how bespoke frameworks, 
designed in advance by decision-makers, can help to optimize the actions taken, thus minimizing 
potential losses associated with the subjective risk sensitivities of individual users.

Uncertainty is an unavoidable part of making decisions in a complex and often fast-
moving environment. Research has shown that providing uncertainty information can 
encourage more economically rational decisions (e.g., Nadav-Greenberg et al. 2008; Riveiro 
et al. 2014), promote user confidence, and reflects the current state-of-the-art science for 
many environmental situations (World Meteorological Organization 2008). However, the 
end-users of the uncertainty information do not always interpret it in the way the producers  
of the information think they should (e.g., Demeritt et al. 2007; Morss et al. 2010). Plus, 
in many areas, there is no universally agreed method on the design and presentation 
of uncertain information (Hogan Carr et al. 2018), and this can influence how it is used 
(Hogan Carr et al. 2016a,b).

One way to quantify uncertainty is to perform several plausible realizations of a situation 
(known as an ensemble). These realizations are constructed by sampling parameters that 
are used as input to a simulation or within the simulator itself. Depending on the complex-
ity of the simulator, the number of realizations (or ensemble members) could range from 
 approximately 20 for a global numerical weather prediction model [e.g., the Met Office global 
weather forecast ensemble (MOGREPS-G) has 18 members; Bowler et al. 2008] to billions for 
the hydrochemical model of Iorgulescu et al. (2005). Once completed, the output from the 
ensemble of simulations needs to be condensed in some way so that a decision-maker can use 
the information. It is possible for many graphics to be produced for different times, locations, 
and environmental hazard specific thresholds. This would be overwhelming, plus the inter-
pretation of the ensemble relies on the decision-maker’s experience and risk sensitivity (e.g., 
Mulder et al. 2017; Hogan Carr et al. 2021). This risk sensitivity is generally not transparent, 
i.e., it depends on the undisclosed judgment of the individual decision-maker, which can lead 
to issues surrounding defensibility and culpability. In many situations the ensemble mean is 
the metric of choice used by decision-makers. However, there are many other metrics, such as 
ensemble spread, ensemble agreement (i.e., how many ensemble members agree that there 
is going to be an impact in a particular location), and a reasonable best/worst case scenario, 
which may be more informative.

AFFILIATIONS: Harvey and Dacre—Department of Meteorology, University of Reading, Reading, 

United Kingdom; Western—School of Chemistry, University of Bristol, Bristol, United Kingdom; 

Capponi—Lancaster Environment Centre, University of Lancaster, Lancaster, United Kingdom
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Bayesian decision theory is a branch of statistics that provides a transparent framework 
that explicitly discloses the losses associated with each possible action in the decision-making 
process and leads to optimum decision-making under uncertainty. The losses are adaptable 
depending on the hazard and the operational priorities of the decision-maker, meaning that 
the framework can be applied to many different circumstances. This approach has previously 
been applied to warnings of daily severe precipitation over the United Kingdom by Economou 
et al. (2016) and by Western et al. (2018), who applied it to the detection of volcanic ash 
during the 2010 eruption of Icelandic volcano Eyjafjallajökull and the 2011 eruption of 
 Puyehue-Cordón Caulle in Chile.

To address the applicability of the technique presented in Western et al. (2018) to other 
natural hazards, a decision theoretical approach is applied to an ensemble of  Volcanic 
Ash Transport and Dispersion Model (VATDM) simulations used for the purpose of airline 
flight planning, focusing on the 2019 eruption of the Russian volcano Raikoke. The atmo-
sphere is categorized into regions of High, Medium, and Low hazard based on volcanic  
ash concentrations and three idealized sets of losses to show the impact of different  
operational losses on the optimal action. Finally, to better visualize the potential disruption 
to aviation operations, the optimal hazard action is projected on the representative flight 
tracks across the Pacific Basin. By providing this information in this form, it is possible to 
provide decision-makers with information relevant for their applications and consistent 
with their risk sensitivity.

What is decision theory?
Bayesian decision theory provides a transparent and coherent framework for making optimal 
decisions under uncertainty. A decision-maker’s goal is to choose the action, within some finite 
set of actions, A∈a , which is optimal for the state of the hazard x, given the data provided y. 
The action may be to issue a landslide warning, order an evacuation of a particular area due 
to a potential wildfire, or, as in the focused example in this study, the cancellation or rerout-
ing of airline flights following a volcanic eruption. In the volcanic case, the potential action 
taken by the airline would be informed by the concentration of ash at a particular flight level 
which is determined by an ensemble of simulations from a VATDM. Decision theory bases the 
optimal decision on the risk of taking a course of action, rather than basing the decision on 
most probable state, taken from the fraction of ensemble members with ash concentrations 
within specified concentration ranges. Each action will have a loss associated with a particu-
lar state (x) and action (a), termed a loss function L(a, x). There are many different forms of 
loss such as reduced profits, impact on reputation, and loss of life. These can be combined 
by a decision-maker to form the loss function or using a parameterization (e.g., Economou 
et al. 2016). The actions must be exhaustive and exclusive. For discrete actions and states, 
the values of the loss function can be presented in a loss table. This can be generalized to 
accommodate continuous values.

The construction of a loss table, 
such as the one shown in Table 1, 
displays the loss associated with 
taking each action given the true 
state of the hazard. Note that losses 
can be positive or negative (i.e., a 
gain), but this study only considers 
non-negative losses, which assumes 
it is satisfactory that there is no loss 
in making a correct decision.

Table 1. An example loss table, where am are the potential 
actions to be taken and xn are the potential states of the 
hazard. L(am, xn) are the loss functions for each potential 
action taken given the actual state of the hazard.

Action

State

x1 x2
. . . xn

a1 L(a1, x1) L(a1, x2)
. . . L(a1, xn)

a2 L(a2, x1) L(a2, x2)
. . . L(a2, xn)

...
...

...
... ...

am L(am, x1) L(am, x2) . . . L(am, xn)
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The optimal action a y( )*  is the action that minimizes the mean loss associated with the 
risk of all states (i.e., the loss multiplied by its probability), defined as (Lindley 1971)

A
∑ ( )=

∈

a y L a x P y x P x
a x

( ) argmin ( , ) ( ),*  (1)

where P(y|x) is the likelihood of the state (e.g., concentration range based on the ensemble 
simulation) and P(x) is the prior probability of the state. If x is continuous, the summation in 
Eq. (1) is replaced by an integral.

Application of a decision theoretical approach to ensemble volcanic ash forecasts of 
Raikoke 2019
One area where decisions need to be made using uncertain information is in airline operations 
following a volcanic eruption, where decisions need to be made about which flight routes 
are safe and economical to fly before there is complete information about the exact nature 
of the eruption or dispersion of the volcanic ash particles. If a plane encounters high levels 
of ash, it can cause temporary engine failure and lead to permanent engine damage, but if it 
encounters moderate or low levels of ash, this can lead to a need for increased maintenance 
(Casadevall 1994; Guffanti et al. 2010). Currently these decisions are aided by advisories 
issued by Volcanic Ash Advisory Centers (VAACs). These advisories are a combination of 
observations of the ash cloud (ground based and from satellites), output from a VATDM, and 
forecaster judgment. They indicate the expected geographical position of the ash cloud but 
contain no quantitative information about ash concentration or any indication of uncertainty. 
However, the guidelines for the production of these advisories are periodically under review 
and the Roadmap for International Airways Volcano Watch in Support of International Air 
Navigation states that from 2025 not only will quantitative ash forecasts need to be provided 
but also uncertainty information, potentially through the use of an ensemble (Meteorology 
Panel 2019).

Prata et al. (2019) present a methodology that uses a risk matrix approach to condense the 
multiple streams of data from a VATDM ensemble into a graphic that can be used to make fast 
and robust decisions in an emergency response situation. The approach identifies the geo-
graphical regions that are considered potentially hazardous to aircraft based on the probability 
of exceeding low, medium, and high concentrations as defined in Civil Aviation Authority 
(2017). This approach considers potential impact of encountering high ash concentrations but 
does not incorporate any losses that would be incurred if wrong action was taken. Examples 
of losses include the costs associated for scheduling a flight and then encountering a region 
of high ash concentration and reputational damage caused by cancelling flights along route 
that a competitor operates.

Case study description. Raikoke is a small volcanic island located at 48.2°N, 153.3°E in the 
northwest Pacific Ocean. The eruption that is the focus of this study started at approximately 
1800 UTC 21 June 2019, when a series of nine explosive events occurred until  approximately 
0600 UTC 22 June 2019. The initial height of the eruption plume was estimated to be  
10–14 km above mean sea level (Global Volcanism Program 2019a). Both sulfur dioxide 
and ash were dispersed throughout the troposphere and lower stratosphere, including 
 being caught up in a nearby cyclone. Over 40 airplanes were diverted following the eruption 
 (Global Volcanism Program 2019b).

Ensemble VATDM simulations.  The VATDM simulations analyzed in this study were per-
formed using the Numerical Atmospheric-Dispersion Modelling Environment (NAME; Jones 
et  al. 2007) driven by weather forecast data from the Met Office global weather forecast 
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 ensemble (MOGREPS-G; Bowler et al. 2008). This VATDM has been developed at the Met 
Office and is used by the London VAAC for producing the ICAO defined ash advisories and 
graphics following an eruption in the North Atlantic.

A 1,000-member ensemble of NAME simulations was produced by perturbing nine param-
eters, similar to those perturbed in Prata et al. (2019), within plausible ranges for this eruption 
informed by Harvey et al. (2018). The parameters include the height of the eruption plume, 
ash density, distal fine ash fraction (the fraction of ash is available for long-range transport), 
duration of the eruption, parameters within the NAME turbulence parameterization, and driv-
ing meteorology. The parameter values are selected using Latin Hypercube sampling. In this 
study the start time of the eruption is not perturbed. The simulations output ash concentration 
(g m−3) every 6 h on a global grid with a resolution of 0.45° × 0.3° (approximately 40 km in 
the midlatitudes). Full details of the ensemble creation can be found in Capponi et al. (2022).

Before applying the decision theoretical approach to the ensemble of VATDM simulations, 
it is useful to understand the evolution of the ash plume following the eruption. Initially, the 
plume travels zonally to the east (Fig. 1a) before being transported around a cyclone (Fig. 1b). 
There is a small branch that travels toward the west. This is ash that is dispersed near the 
surface. The main part of the plume wraps around the cyclone transporting ash back toward 
the west and into Russia. By 0000 UTC 24 July, the plume extends across large parts of the 
North Pacific, almost reaching Alaska (Fig. 1c). As the plume is transported away from the site 
of the eruption the mean column loading values reduce from peak values of approximately 
200 g m−2 along the plume axis at 0000 UTC 22 June to 2.2 g m−2 by 0000 UTC 24 June as 
the plume dispersed. Although this quantity shows the mean evolution of the plume and is 
broadly consistent with satellite retrievals of ash column loading (not shown), it does not 
show any information about the range of column loading values predicted by the ensemble 
or any information about the height of the ash and so is not suitable for making an informed 
decision about airline operations.

Another way to view the ensemble output is to calculate the fraction of ensemble members 
that agree on a specific threshold being exceeded in each NAME grid box. Figure 2 shows the 
evolution of the fraction of ensemble members that have ash column loading values greater 
than 0.2 g m−2. This is qualitatively similar to the evolution of ash column loading. As with the 
column loading, the agreement values are the highest along the axis of the plume, with peak 
agreement values dropping from 0.993 to 0.77 by 0000 UTC 24 June. This graphic illustrates 
the variability within the ensemble, but judgments would need to be made regarding the level 
agreement and column loading values that are needed to impact flight planning decisions. 
Thus, decisions made using such graphics can be subject to the specific risk sensitivity of 
the individual decision-maker.

Fig. 1. Ensemble-mean ash column loading at 0000 UTC (a) 22, (b) 23, and (c) 24 Jun 2019. The red triangle indicates the 
 location of Raikoke.
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A further way to view the ensemble information is to determine the fraction of ensemble 
members that have peak ash concentrations within the thresholds in the Civil Aviation 
 Authority (2017) guidelines at each of the flight levels (FLs; measured in hundreds of feet) 
that are required for the VAAC advisories and graphics. Currently the concentration thresholds 
are: 200–2000 μg m–3 (Low), 2000–4000 μg m−3 (Medium), and >4000 μg m−3 (High) (Civil 
Aviation Authority 2017). An example of this is shown in Fig. 3, which shows these fractions 
for FL350–550 at 0000 UTC 24 June. For the majority of the plume, the highest fractions are 

Fig. 2. Fraction of ensemble members that agree on the presence of ash greater than 0.2 g m−2 at 0000 UTC (a) 22, (b) 23, 
and (c) 24 Jun 2019. The red triangle indicates the location of Raikoke.

Fig. 3. The fraction of ensemble members that have FL350–550 peak ash concentrations (a) <200, 
(b) 200–2000, (c) 2000–4000, and (d) >4000 μg m−3 at 0000 UTC 24 Jun 2019. The red triangle indi-
cates the location of Raikoke. The gray line indicates 180° longitude. The black cross indicates the 
location of the example grid point used in Fig. 4.
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less than the 200 μg m−3 threshold, but at 52°N, 175°W the highest fraction (approximately 
0.35) is greater than 4000 μg m−3. This suggests that this region should potentially be avoided 
by aircraft. Analyzing these figures takes time and experience. Furthermore, in an emergency 
response situation there would also be figures for FL0–200 and FL200–350 for several dif-
ferent times. This could lead to information overload in an emergency response situation and 
hinder decision-making.

Application of the decision theoretical approach.  In this section, decision theory is ap-
plied to the ensemble of volcanic ash simulations of Raikoke. Here we assume the prior 
probability of all ash states, P(x), are equally likely and this term is proportional to a value 
of one in our determination of a*. P(y|x) is given by the fraction of the ensemble members 
that fall in each of the following states based on concentration ranges (None: <200 μg m−3; 
Low: 200–2000 μg m−3; Medium: 2000–4000 μg m−3; High: >4000 μg m−3). These concen-
tration thresholds are the same as those given in Civil Aviation Authority (2017) and also 
used in Prata et al. (2019). To illustrate the application of decision theory, we also follow 
Prata et al. (2019) to define a set of actions of varying disruption. Some examples of precau-
tions associated with each action are None: business as usual (no rerouting); Low: load more 
fuel and perform additional engine checks on arrival; Medium: reroute flight and perform 
additional engine checks on arrival; and High: flight cancellation.

To illustrate the impact of decision-makers with different operational loss models, three 
different hypothetical loss tables are used. L0(a, x) (Table 2) defines the loss table when there 
is no information about losses. In this situation, all of the off-diagonal losses are uniform, i.e., 
L0(am, xn) = 1, where m ≠ n, and the optimal action a*  reflects the most likely state. L1(a, x) 
(Table 2) defines the loss table for a decision-maker who has equal costs for flight cancellation/
rerouting and engine maintenance. This table is symmetrical with the same level of loss for 
both false positives and false negatives [e.g., L2(a1, x4) = L2(a4, x1)]. L2(a, x) (Table 2) defines 
the loss table for a decision-
maker whose business has 
large costs associated with 
engine maintenance if ash 
is encountered compared to 
small costs associated with 
flight cancellation and re-
routing. The table is skewed 
with larger losses associated 
with false negatives than 
false positives. The loss as-
sociated with encountering 
ash concentrations in the 
High state when taking no 
rerouting action, L1(a1, x4), 
is 10 times that of the con-
verse situation i.e., when 
cancelling the flight (High 
action) but encountering 
ash below 200 μg, L1(a4, x1).  
Practically, these loss func-
tions would need to be  
defined by the decision-
makers, are likely to be 

Table 2. L0(a, x): uniform loss table with no information about losses. 
L1(a, x): symmetrical loss table used to represent decision-maker 
with equal costs associated with flight cancellation/rerouting and 
engine maintenance. L2(a, x): skewed loss table used to represent a 
decision-maker with high costs associated with engine maintenance 
compared to flight cancellation or rerouting.

Action

State

x1 = None x2 = Low x3 = Medium x4 = High

L0(a, x)

 a1 = None 0 1 1 1

 a2 = Low 1 0 1 1

 a3 = Medium 1 1 0 1

 a4 = High 1 1 1 0

L1(a, x)

 None 0 5 10 20

 Low 5 0 5 10

 Medium 10 5 0 5

 High 20 10 5 0

L2(a, x)

 None 0 5 10 20

 Low 0.5 0 5 10

 Medium 1 0.5 0 5

 High 2 1 0.5 0
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much more complicated, and could even change during flight. The key is that these losses are 
transparent and can be inspected and improved upon, even in the case where heuristics are used.

Figure 4 illustrates the calculation of the optimal action for a single grid point at FL350–550 
for three different loss tables. The grid point is in the North Pacific at 50.30°N, 185.4°E and 
is shown in Fig. 3 as a black cross. The most likely ash concentration at this location is less 
than 200 μg m−3 (Fig. 4a), with 48% of the members having ash concentrations below this 
threshold. Figure 4b shows the likelihoods from Fig. 4a multiplied by loss values constructed 
to have uniform losses for all situations apart from where the optimal action matches the state 
[i.e., L0(am, xn) = 1, where m ≠ n]. These cells (on the diagonal of the table) are set to zero. Also 
shown in the last column is the sum of the losses for each action. The optimal action is the 
action that results in the minimum loss. As expected, the optimal action given a uniform loss 
table is the same as using the most likely concentration range. In this case the optimal action 
is no flight rerouting (no action, highlighted in gray). Figure 4c shows the same variables 
as Fig. 4b but for loss table L1(a, x). In this case, the optimal action is to load more fuel for 
potential flight rerouting (Low action, highlighted in yellow), despite there being only 14.2% 
of the ensemble members that have ash concentrations in this range. Figure 4d shows the 
same variables again as Fig. 4b but for loss table L2(a, x). In this case, the optimal action is 
cancelling the flight (High action, highlighted in red), despite there being only 32% of the 
ensemble members having ash concentrations in this range.

The impact of using the decision theory framework on the whole ash plume can be seen 
in Fig. 5. At 0000 UTC 24 June 2019, using the uniform loss table to inform optimal hazard 
action (Figs. 5a–d), the majority of the hazard comes from FL0–200 with a band of the high-
est hazard action extending south east from Raikoke before wrapping round the cyclone. 
There is no hazard action identified at FL350–550. The total combined hazard action area 
(maximum hazard action over all flight levels) is 1.71 × 106 km2 with 38% of it at the highest 
hazard action level.

Fig. 4. (a) The fraction of ensemble members that have concentration values within each of  
the concentration states (None, Low, Medium, High) for a grid point at 50.30°N, 185.4°E. Tables 
show the determination of the optimal hazard action *a  at the same grid point for (b) P(y − x)L0(a, x), 
the uniform loss approach; (c) P(y − x)L1(a, x), the symmetrical loss approach; and (d) P(y − x)L2(a, x), 
the skewed loss approach. The optimal hazard action is indicated by the colored shading, deter-
mined using Eq. (1).
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Using the symmetrical loss table L1(a, x) with large costs associated with both rerouting 
and engine maintenance, the pattern of hazard action identified (Figs. 5e–h) is similar to 
that using the uniform loss approach, with the addition of a region of Low hazard action at 
FL350–550 and with the region of High hazard action greatly reduced compared to the uni-
form loss approach. The total combined hazard action area (where the action has been taken 
to classify the hazard action above the level of “None”) is 2.85 × 106 km2 with only 1% at the 
highest hazard action level. This is a reduction in the area of the highest hazard action by a 
factor of approximately 25. Using this loss table also instructs the action to classify areas of 
Medium hazard action, which are not identified using the uniform loss approach. Thus, using 
the symmetrical loss table would likely result in fewer cancelled flights (High hazard action 
decision routes) but more rerouted flights (Medium hazard action decision routes) and more 
flights requiring additional engine checks on arrival (Low hazard action decision routes) 
compared to the uniform loss table.

When using the skewed loss table L2(a, x) that has high engine maintenance costs 
compared to the cost of cancellation/rerouting, the overall pattern of optimal decisions 
(Figs. 5i–l) is similar to the symmetrical loss table. However, there are areas where the 
optimal action is high, i.e., cancellation of flights at all three FLs considered here. The area 
identified requiring an action greater than none is much more extensive than the uniform 
loss approach, with the total combined action area—of Low, Medium, or High hazard—of  
5.60 × 106 km2 with 43% at the highest action level. This is an increase of the High hazard 
action area of a factor of 3.65 compared to the uniform loss approach, and a factor of 90 
compared to using the symmetric hazard approach. Thus, using L2(a, x) has the potential 

Fig. 5. The spatial distribution of optimal hazard action based on the uniform loss approach L0(a, x) for (a) FL0–200, (b) 
FL200–350, (c) FL350–500, and (d) maximum risk level at each point at 0000 UTC 24 Jun 2019. (e)–(h) The optimal hazard 
action determined using the symmetrical loss approach L1(a, x). (i)–(l) Optimal hazard action determined using the skewed 
loss approach with high maintenance costs compared to cancellation and rerouting L2(a, x). Yellow shading indicates re-
gions of Low hazard action, orange shading indicates Medium hazard action, and red regions indicate the High level of 
hazard action. The black triangle indicates the location of Raikoke. The gray line indicates 180° longitude. The black cross 
indicates the location of the example grid point used in Fig. 4.
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to have a much greater impact on 
aviation operations than when 
using L1(a, x) or the uniform loss 
approach.

Figure 6 shows the impact of us-
ing the decision theory approach 
on flight tracks across the Pacific 
Basin at 0000 UTC 24 June 2019. 
Representative eastbound and 
westbound time–optimal routes 
from Sapporo (CTS) to  Honolulu 
(HNL) and San Francisco (SFO) 
to Shanghai (PVG) international 
airports were calculated by solv-
ing a time–optimal control prob-
lem as described in Wells et al. 
(2021). Using the uniform loss 
approach L0(a, x) (Fig. 6a) shows 
that although there is a large area 
of the highest hazard action, only 
a small fraction of the flight track 
between PVG and SFO is impacted 
by this. There are regions of the 
tracks between SFO and PVG 
and CTS and HNL that encounter  
regions of the lowest hazard  
action. The route between CTS and 
HNL is not impacted by the ash at 
this time.

Using the symmetrical risk table 
L1(a, x) shows a very similar im-
pact on the flight tracks as when 
the uniform loss approach is used 
but with the High hazard action 
region replaced by Medium hazard 
action. However, when the skewed 
loss table L2(a, x) is applied there 
are numerous regions along the flight tracks which are impacted by the High optimal hazard 
action. This could potentially lead to severe disruption to aviation operations.

Clarkson et al. (2016) advocate that the assessment of the risk to an aircraft from volcanic 
ash should be performed using dosage (how much ash is encountered in total) over the whole 
flight trajectory rather than only avoiding regions of high ash concentration. In this case, the 
potential actions taken by the decision-maker could be in the form of a set of flight paths, 
where the state x is the dosage encountered along each flight path.

Conclusions
Decision theory provides a robust framework to identify regions of potential risk to aviation 
from volcanic ash using a large ensemble of VATDM simulations. This framework has been 
applied to the case study of the 2019 Raikoke eruption. It demonstrates the impact of moving 
from a most probable (uniform loss) approach to one where uncertainty is treated explicitly 

Fig. 6. The optimal hazard action projected onto rep-
resentative flight tracks between San Francisco (SFO) 
and Shanghai (PVG) and between Honolulu (HNL) and 
 Sapporo (CTS) International airports at 0000 UTC 24 Jun 
2019 for (a) the uniform loss approach using L0(a, x), (b) 
the symmetrical decision theory approach using L1(a, x), 
and (c) the skewed decision theory approach using L2(a, x). 
Light gray shading indicates the flight track with action  
necessary. Yellow shading indicates regions of Low 
hazard action, orange shading indicates Medium haz-
ard action, and red regions indicate the High level of 
hazard action. The black triangle indicates the location of 
Raikoke. The gray line indicates 180° longitude. The black 
 airplane icons indicate the direction of travel between the 
 international airports.
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by associating a loss with each possible action. The construction of a representative loss 
table is nontrivial and may require intimate knowledge of the business model and costs of 
the individual decision-makers. However, as shown in the example, application of different 
loss tables can greatly impact the optimal action to be taken.

Using a decision theoretical approach operationally would allow the determination 
of risk to be shared between scientists, forecasters, and decision-makers, where the loss 
table can be constructed for, or even by, the end-user. The losses used in the table could 
be subjective or parameterized by a loss function. There is also the possibility to define a 
reasonable best and worst case scenario loss table to give a range of plausible scenarios. 
The collaboration between scientists and end-users would also help to build trust and 
understanding in the products that are produced, and therefore also contribute to robust 
and transparent decision-making. It is important to note that the use of a decision theo-
retical framework does not remove the need to perform an appropriately designed set of 
ensemble simulations. The construction of ensemble simulations for operational use is not 
the focus of this study, but it is crucial to ensure that each member sampled is representa-
tive of the real world.

The current approach is limited as the “best” decision is determined on a pixel-by-pixel 
basis, whereas real-world natural hazards tend to have a level of spatial coherence. This could 
be extended by using multivariate spatial analysis similar to those used in satellite detection 
of ash clouds (e.g., Pavolonis et al. 2015). Further extensions could focus on the formulation 
of more complex, parameterized loss functions (e.g., Economou et al. 2016). We are unaware of 
any operational applications of decision theory within meteorological decision-making but 
the approach used in this study could easily be applied to any decision-making process using 
probabilistic information.
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