University of
< Reading

Understanding 3D vision as a policy
network

Article
Published Version
Creative Commons: Attribution 4.0 (CC-BY)

Open Access

Glennerster, A. ORCID: https://orcid.org/0000-0002-8674-2763
(2023) Understanding 3D vision as a policy network.
Philosophical Transactions of the Royal Society B-Biological
Sciences, 378 (1869). ISSN 1471-2970 doi:
https://doi.org/10.1098/rstb.2021.0448 Available at
https://centaur.reading.ac.uk/106600/

It is advisable to refer to the publisher’s version if you intend to cite from the

work. See Guidance on citing.
Published version at: https://doi.org/10.1098/rstb.2021.0448

To link to this article DOI: http://dx.doi.org/10.1098/rstb.2021.0448

Publisher: The Royal Society

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement.

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading


http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

University of
< Reading

Reading’s research outputs online



Downloaded from https:.//royal societypublishing.org/ on 04 January 2023

royalsocietypublishing.org/journal/rsth

N 2
Opinion piece Gheck for

updates

Cite this article: Glennerster A. 2022
Understanding 3D vision as a policy network.
Phil. Trans. R. Soc. B 378: 20210448.
https://doi.org/10.1098/rsth.2021.0448

Received: 26 April 2022
Accepted: 2 August 2022

One contribution of 18 to a discussion meeting
issue ‘New approaches to 3D vision’.

Subject Areas:
neuroscience

Keywords:
3D vision, coordinate transformations,
hierarchical spatial representation, navigation

Author for correspondence:
Andrew Glennerster
e-mail: a.glennerster@reading.ac.uk

THE ROYAL SOCIETY

PUBLISHING

Andrew Glennerster

School of Psychology and Clinical Language Sciences, University of Reading, RG6 6AL Reading, UK
AG, 0000-0002-8674-2763

It is often assumed that the brain builds 3D coordinate frames, in retinal
coordinates (with binocular disparity giving the third dimension), head-
centred, body-centred and world-centred coordinates. This paper questions
that assumption and begins to sketch an alternative based on, essentially, a
set of reflexes. A ‘policy network’ is a term used in reinforcement learning to
describe the set of actions that are generated by an agent depending on its
current state. This is an untypical starting point for describing 3D vision,
but a policy network can serve as a useful representation both for the 3D
layout of a scene and the location of the observer within it. It avoids 3D
reconstruction of the type used in computer vision but is similar to recent
representations for navigation generated through reinforcement learning.
A policy network for saccades (pure rotations of the camera/eye) is a logical
starting point for understanding (i) an ego-centric representation of space
(e.g. Marr’s (Marr 1982 Vision: a computational investigation into the human
representation and processing of visual information) 23-D sketch) and (ii) a hier-
archical, compositional representation for navigation. The potential neural
implementation of policy networks is straightforward; a network with a
large range of sensory and task-related inputs such as the cerebellum
would be capable of implementing this input/output function. This is not
the case for 3D coordinate transformations in the brain: no neurally imple-
mentable proposals have yet been put forward that could carry out a
transformation of a visual scene from retinal to world-based coordinates.
Hence, if the representation underlying 3D vision can be described as a
policy network (in which the actions are either saccades or head trans-
lations), this would be a significant step towards a neurally plausible
model of 3D vision.
This article is part of the theme issue ‘New approaches to 3D vision’.

Open your eyes and look around. It is natural to assume that your perception
must depend on a 3D representation of the scene and that this is what allows
you to interact with objects and move around. However, there is a growing
body of evidence from machine learning demonstrating that 3D representations
are not necessary for navigation, scene rendering from novel viewpoints or
other tasks that have, hitherto, been assumed to require a reconstruction of
the scene. In the biological literature, there is a long history of proposals
suggesting that the brain uses non-3D, non-map-like representations that still
allow us to operate in a 3D world [1-8].

Rather than reconstruction, the key claim in this paper is that 3D vision is
best understood as being made up of something like a series of reflexes, i.e. a
set of outputs (often actions) that are triggered in different situations, where
these situations consist of a sensory component and a task or goal. In deep
reinforcement learning, this set of contingencies is called a “policy network’.
If an agent does not have a 3D representation of the scene then it must never-
theless compare the current state to some kind of stored representation and, as a
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result of comparing the two, it must generate an output. This
seems very far from the idea of a 3D reconstruction of a scene.
The purpose of this paper is to provide an outline of how
a policy network could support the same behaviour as a
system that uses a 3D reconstruction of the scene.

(a) The implementation of policy networks in machine
learning and the cerebellum

For reinforcement learning in machines, the goal of the agent
is to learn a policy, 7, that maximizes the expected value
or return. At time f, the agent takes an action, a,, given its
current state, x;. This action in the world leads to new input
and a new state, x..;. The optimal policy relating these is
labelled, 7*, and the corresponding maximum reward func-
tion V* [9]. 3D behaviours learned in this way include
flying a quadcopter, navigating in a city or finding novel
routes in a maze [10-12]. Usually, the subscript t is dropped
and a “policy’ refers to the whole set of actions, a, in the con-
text of a whole set of states, x, i.e. z(a|x). In this paper, I have
replaced the state vector, x, with two separate elements: s
which derives from the stimulus (retinal or otherwise) and
g which carries a signal about the current task or goal.

In biology, similar ideas about the implementation of
reinforcement learning have been described for many decades
(e.g. [13,14]) although not using the language of policy net-
works. The cerebellum stores sensori-motor contingencies
such that a certain sensory input will lead to a particular
action and does so on the basis of the similarity between the
synaptic weight vector of each Purkinje cell with the incoming
firing rate vector. Figure 1a illustrates the close parallels
between a policy network implemented by the cerebellum
(according to Marr [13] and Albus [14]) and a policy network
implemented by an artificial neural network.

Section 3 contains the main discussion of how a policy
network could be a useful representation for navigation
(§3(b)) and 3D scene structure (§3(c). Before that, §2 describes
the difficulty of finding a neural mechanism for transforming
retinotopic signals (wholesale) into an ego- or allocentric
reference frame (and raises the question of whether this is a
desirable thing to do). Finally, in §4, I discuss some of the
questions that might arise from the policy network proposal.

2. 3D coordinate transformations in a moving
observer

The main purpose of this paper is to consider how a policy
network could be used to represent a 3D scene. First, it is
worth reviewing the alternative. It is commonly suggested
that the cortex is able to carry out a chain of coordinate trans-
formations from retinal coordinates (e.g. in V1) to a variety of
ego-centric coordinate frames, particularly in posterior parie-
tal cortex [16] and then to a world-based coordinate frame
in the hippocampus and surrounding cortex [17,18]. In this
section, we briefly consider some of the difficulties associated
with this proposal before considering an alternative in §3(a).
Figure 1b illustrates one of the many complexities. Firing rates
of neurons in retinotopic coordinates must be copied or trans-
ferred in some way to neurons in another cortical area where
the receptive fields are stable in head-centred coordinates.
Then, firing rates from that area must be copied or transferred
in some way to a different brain region where receptive fields

are stable in world-centred coordinates. Byrne ef al. [19] show [ 2 |

in detail how complex this process must be, with an input
representation duplicated many times (20 in their example)
so that one can be chosen on the basis of a head-direction
cell input. Then these firing rates, and only these, are trans-
ferred to the output representation. But the problem
becomes much more complicated when the animal not only
rotates their head or eyes but also moves (translates).
Figure 1b shows this. There must be a different rule for trans-
ferring firing rates for objects at different depths because the
relationship between retinotopic coordinates and egocentric
coordinates as the observer moves depends on object dis-
tance. It is not sufficient simply to have a separate mapping
for each retinotopic location and each preferred disparity of
V1 neurons: there also needs to be a different mapping for
each direction of movement the observer could make.
While there is evidence that this updating is achieved in the
absence of visual feedback [20], at least to some extent [21],
there are no detailed proposals for transferring firing rates
wholesale to an area with a different coordinate frame as
illustrated in figure 1b and as described for the case of head
rotation by Byrne et al. [19].

One possible simplification is to update only a few objects
(discussed by [20,22-24]) rather than carrying out a wholesale
transformation of all the firing rates that describe the visual
scene in retinotopic coordinates. There are neural network
implementations to show how a single object could be
encoded in head-centred coordinates for different eye pos-
itions (e.g. [25]) but, in essence, this involves the same
duplication of firing rates that Byrne et al. [19] proposed (see
fig. 2 in [25]) and there are no equivalent proposals that deal
with observer translation. Another simplification of the pro-
blem is to only update a single vector, such as a reach vector,
in response to a head movement and there are neural network
models that achieve this [26].

It has been pointed out that transforming all the spatial
information about the scene from one coordinate frame to
another may not be the goal that the brain is trying to achieve.
Pouget et al. [25] say that: ‘The question now arises about
whether the notion of a Euclidean frame of reference -- - is
the best way to characterise these neural representations’.
Even in the 1980s, Zipser & Andersen [27] commented ‘But
it is also possible that the final spatial output could only
exist in the behaviour of the animal’. In summary, photogram-
metry (the process of computing a reconstruction of the scene
from images) is highly complex [28], and it is hardly surprising
that there are, currently, no suggested neural implementations
to recreate it.

Despite the emphasis in the literature on putative visual
coordinate transformations in the parietal cortex, it is impor-
tant to bear in mind that the primary neurophysiological
evidence for a world-centred representation (place and grid
cells [17,18]) does not support allocentric representation of
the visible scene since, by definition, the current location is
not visible. Figure 1c illustrates the two outputs from photo-
grammetry, i.e. the process of recovering the 3D structure of
the scene and the location and orientation of the camera
given only a set of images that the camera takes as it moves
through the scene [29]. Place cell, head-orientation and
grid cell responses carry information about the location
and orientation of the camera but they do not deliver a 3D rep-
resentation of the scene as photogrammetry does. Thinking
about the operations in parietal cortex and the hippocampus
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Figure 1. Policy networks and coordinate transformations in biology and machine vision. This figure illustrates the main hypotheses discussed in the paper. (a) The
penultimate layer of a neural network provides a feature vector (current state vector) which is compared to a number of stored vectors (e.g. using Euclidean distance
[15]) to determine the output. For ease of illustration, current and stored vectors are shown as unit vectors, so this comparison rule defines a set of Voronoi cells on
a unit sphere with the stored feature vectors (red circles) as seeds. If a neural network has 4096 units in the penultimate layer (four shown above), then the current
vector and stored features are [R*™. Purkinje cells in the cerebellum can be described in a similar way: they act as stored vectors (synaptic weights) that are
compared to a current vector of incoming firing rates in parallel fibres. Current and stored vectors are in the same high-dimensional space and an action/
output is chosen on the basis of similarity between them. For Purkinje cells, the dimensionality of the policy network (sphere) is approximately FR2%%.
(b) See text for a discussion of wholesale coordinate transformations of visual information. The top row indicates firing rates of neurons in a retinotopic
area (e.g. primary visual cortex), where each square shows one output neuron and the grey level indicates its firing rate. Neurons with different retinal
locations and different disparity tuning are shown. These firing rates would need to be transferred to neurons in other areas (e.g. posterior partietal cortex
for a head-centred coordinate representation and hippocampus or entorhinal cortex for a world-centred coordinate frame). The mapping cannot be not fixed:
it must depend on eye position with respect to the head and head orientation with respect to the world. (c) In computer vision, the goal of photogrammetry
is to take a set of images captured by a moving camera and compute both the 3D structure of the scene and the path of the camera within it. For the computation
involved in photogrammetry, there is no intermediate ‘body-centred’ coordinate frame corresponding to the putative posterior parietal cortex representations. (Online
version in colour.)
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as something analogous to the computation involved in
photogrammetry may be the wrong approach. An alternative
is outlined in the following section.

3. Policy networks for 3D vision

(a) A policy network for pure rotation of the eye

or camera
The simplest policy network to consider for vision is one for pure
rotation of the eye or camera. Camera rotation provides no infor-
mation about the 3D structure of the scene but, nevertheless,
I will argue that it forms a fundamental basis for describing
scene structure and for navigation. Babies spend many weeks
looking around a scene with no opportunity to move to a new
location of their own accord, but they can move (i.e. rotate)
their eyes. They learn to relate the images they receive before
and after a saccade. If there are five objects that the baby might
want to look at then there are 5 x 4 = 20 saccades between
them (in general, n(n — 1) saccades for n points). This can be
described as a policy network, 7(a | s, g), where ais a set of actions
(in this example, the set of 20 saccades), s is a set of sensory states
(in this case the five retinal images of the five objects the baby fix-
ates) and g is a set of goals (signalling the desire to look at one of
the other four objects). The form of this vector, g, does not have to
be the same as the retinal images, s, it just has to ensure that the
same action does not occur every time the baby looks at a par-
ticular object, i.e. (s, gy is a richer signal than (sy). For example,
if one tried to set up a system that performed a complex sequence
of actions, like making a cup of tea [30], where each action was
triggered by the retinal stimulus, this would run into trouble if,
at two stages in the activity, the same retinal stimulus occurred
but a different action was required (e.g. before and after the
kettle boiled). A minimal vector, even a scalar, g;, could be sulffi-
cient to distinguish these two situations and hence lead to
different outputs (e.g. ‘look for teapot’ or ‘pick up the kettle’).

In the case of eye movements, this set of stimulus+goal
contingencies (or policy network) together form a represen-
tation of the relative visual direction of the n objects: i.e.
this is a type of egocentric representation of visual direction
[31,32]. It differs from more traditional ways of thinking
about egocentric representations [33], and it leads to an inter-
esting way to consider the relationship between egocentric
and world-based representations. We will see in §3(b) and
3(c) that this representation of visual direction (in which the
camera/eye only rotates) is the most appropriate starting
point for considering (a) a representation of the location of
objects and (b) a representation of the location of the obser-
ver. This may seem odd, given that pure rotation of the
camera about its optic centre provides no information about
the 3D structure of the scene but in both cases it provides a
world-based foundation for the representation.

(b) A hierarchical address for the location of the
camera/eye

Having considered a policy network for pure rotations of the
camera/eye, we can now look at the changes that occur when
the eye translates. These provide information about both the
spatial structure of the scene and how the camera/eye is
moving relative to the scene.

Figure 2 shows a hiker looking out at mountains with
nothing in their view that is close to them. Visually, this situ-
ation is equivalent to the pure rotation of the camera in §3(a):
even though the hiker can move (translate), this makes no
difference to the retinal images because the mountains are
so distant. Only rotations of the camera/eye affect the image.

Another way to describe this is that the policy network for
saccades between distant points in the scene remains valid over
a wide range of locations. The region of space over which this
set of saccades is (approximately) correct, covers a large area.
This is shown in the upper row of figure 2 which shows, for a
set of distant scene points, how slowly the set of angles at the
camera/eye changes with changes in location of the camera/
eye. These plots are made by listing all the angles between n
points in a 2D scene as a R""~Vvector, £, and plotting the Eucli-
dean distance between that and the reference vector, g4,
measured when the camera/eye is at point A.

Thelower panel in figure 2 shows what happens when three
near points are added into the scene. The angles between these
and other points now change much more rapidly as the
camera/eye translates (i.e. as the person moves or views the
scene with two eyes); in other words, there is now a significant
parallax signal. As a consequence, it is much easier to tell
whether the observer is at A or B (i.e. the blue and red surfaces
showing the negative log likelihood of being at A or B are now
much steeper than they were in the upper panel of figure 2).
Taken together, these examples demonstrate the principle of a
hierarchical method to provide the address of a location.
Instead of using a Cartesian coordinate system, with an
origin, fixed axes and no hierarchy, the ‘address’ of A is the
same as the ‘address” of B at the coarsest level but differs at
the finest level (just like the postal address of two houses in
the same street). The policy network comprising the saccades
between distant features defines this coarse scale address and,
as nearer features are added, the information about the location
of the camera/eye becomes more tightly defined.

This system for defining location is also compositional in
the sense that a crude estimate of location can be refined. In
many places, observers do not need a very fine gradation of
location about where they are (i.e. a large number of slightly
different hypotheses). Instead, a rough one will do, e.g. Tam
in the middle of the garden’. In other situations, when
slightly different locations need to be distinguished for the
task, it is easy to add new hypotheses and hence ‘split’ cat-
egories. This process of adding location hypotheses can be
extended to both finer and coarser scales, almost without
limit, widening the spatial range of the representation or
providing finer granularity where required by the task.

Currently, this type of hierarchical organization is not pre-
sent in spatial representations that are developed through
reinforcement learning. For example, Muryy et al. [34] have ana-
lysed the representation built up by an agent that learns to
navigate from a current image to a goal image [35]. The rep-
resentation contains very little information about the agent’s
location. Future adaptations of reinforcement learning for
navigation could be improved by incorporating a hierarchical,
compositional scheme of the kind described above (figure 2).

(c) Structure of the world: a reference frame
for parallax

In computer vision (photogrammetry, e.g. figure 1c), recon-
structing the scene and recovering the location and pose of
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Figure 2. A hierarchical system for defining location. In the upper photo, all the visible objects (mountains) are very distant. This means that any visual information
will change very slowly as the observer moves (translates). In [34], this visual information is a vector that lists the angle between all possible pairs of objects, £. The
difference between this signal measured at location A (i.e. £), and at other locations changes very gradually (shown in blue) and so it is hard to distinguish location
A from location B using visual information (the red surface shows the difference between 5 and £ measured at other locations). These functions become very much
more spatially restricted when three closer objects are introduced into the scene (black crosses), as shown in the bottom row. Coarse and fine estimates of location
are shown together for comparison. For details, see Muryy et al. [34]. (Images of mountains are licensed under Creative Commons CCO - Public Domain). (Online

version in colour.)

the camera are complementary components of the same cal-
culation. We considered recovery of camera/eye location in
the previous section. In this section, we concentrate on the
description of scene structure. Just as we saw for observer
location, the idea of using a coarse-to-fine set of hypotheses
removes the need for a coordinate frame.

At the coarsest scale, the saccades between distant points
in the scene (saccades that do not change despite observer
head movements) not only define the crudest ‘address’ of
the observer (§3(b) and [34]), but also carry information
about the location of these points: points joined by these
unchanging saccades must be distant (figure 3 and [36]).
This policy network, the one relating all the distant points
in the scene, is unaffected by rotation of the camera/eye
and (to a first approximation) unaffected by translations of
the camera/eye. In this sense, it is world-based (i.e. indepen-
dent of camera/eye movements). One might, therefore,
call it an allocentric representation. It is, of course, also an
ego-centric representation as it refers to angles subtended at
the optic centre of the camera/eye. This sounds contradictory,
but only if one is trying to think about a Cartesian frame of
reference. The idea introduced in §3(b) of a distribution in
space that corresponds to the estimated location of the optic
centre is helpful: when that region expands to a very large
range (as happens if the observer is viewing distant points
figure 2), then this type of representation is, in practice,
both ego- and allocentric.

Nearer objects change their visual direction relative to the
set of distant objects as the observer moves. We saw how this
provides a more precise estimate of the observer’s location

(figure 2). The parallax of near objects relative to distant
points also signals that they are close without necessarily
using a Cartesian coordinate frame [37]. A baby might try
to reach out and touch objects in this category, before they
had learned a more sophisticated representation of space. In
this sense, learning about the sensory contexts that corre-
spond to near and far distances can be gradually refined, in
a compositional manner, just as we discussed in §3(b) for
refining a description of the observer’s location.

Marr’s 2%—D sketch [38,39] assumed that observers had an
approximate representation of the layout of a scene, independent
of the observer’s eye movements. Although Marr only described
this fora restricted field of view, the idea can be applied to an ego-
centric representation of the scene all around the observer
including information about the visual direction of objects,
their relative distance, the slant of surfaces and the relief of
points on a surface. ‘Information about” does not necessarily
imply internal consistency between all aspects of the stored infor-
mation unlike a Cartesian representation of the scene, where
consistency is a defining characteristic. Veridicality is a quite sep-
arate issue: a Cartesian representation may be a distorted model
of the world but it must be consistent across tasks to count as
Cartesian [4,21,40,41]. Consider, for example, a person who
views a scene binocularly and moves a few centimetres in differ-
ent directions, enough to gain useful parallax but not far enough
to change the visual directions of objects substantially. The refer-
ence frame for visual direction is a relative one (the saccades
linking pairs of points) and the precision for programming
these saccades and judging relative visual direction corresponds
to, say, a Weber fraction of 3-5%. The point is that information (in
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Figure 3. Visual direction and optic flow. (a) Retinal location provides information about the visual angle of points relative to the fixated point which are readily
described in a polar coordinate frame (retinal eccentricity, pp, and meridional angle, pp). If a camera/eye only rotates about its optic centre, these polar angles are
the only sensible way to describe the relative visual direction of objects in the scene, because they form a coordinate frame that is independent of the direction the
eye is looking (i.e. independent of the fixated point). (b) When the camera/eye translates (or, equivalently for binocular vision, going from the left to the right eye)
there are changes in these angles (change retinal eccentricity, App, and change in meridional angle, ABpy). Thus, the 2D coordinates of optic flow and binocular
disparity are derived from the natural coordinate system (perhaps the only logical coordinate system) used for defining visual direction in a freely rotating camera/
eye. (Reproduced from [36] with permission from Elsevier.). (Online version in colour.)

this case relative visual direction) is stored in a way that is appro-
priate for the action that might depend on it (in this case a
saccade) but without the necessity for consistency checks.

Distinguishing near from far objects using simple heuris-
tics, as described above, does not require a coordinate frame.
Equally, many judgements about surface slant can be made
without using either an ego-centric or a world-based coordi-
nate frame. The simplest slant to define (and hence to be the
origin of the slant metric) is one where the surface is orthog-
onal to the line of sight (because expansion or contraction
of the image is the only possible local flow, at least for
small translations of the camera/eye). Other slants can be
measured relative to this baseline [42,43].

Finally, to measure the depth relief of points, the sensible
reference frame is the surface on which these points lie rather
than, as is often assumed, the ‘fixation plane’ (a plane
through the fixation point that is parallel to the inter-ocular
axis). It is sensible because, unlike the fixation plane, the
local surface provides a world-based reference frame against
which to measure depth relief and, unlike the fixation plane,
this is independent of observer head and eye movements.
There is psychophysical evidence that this reference frame
determines (i) judgements of stereo correspondence, (ii) per-
ceived depth and (iii) the plane with maximum sensitivity
to depth changes [44-48]. So, the depth of points can be
measured relative to a local surface; local surface slant can
be measured relative to a plane that is orthogonal to the
line of sight; the line of sight (i.e. the visual direction of a sur-
face) can be measured relative to other points in the optic
array; and optic arrays themselves can be organized in a hier-
archical manner, as described in §3(b). This hierarchical set of
relationships takes us from local relative depth through ego-
centric spatial layout to allocentric representation without
any resort to 3D coordinate frames [36,49]. Although this

description may sound radical, it need not be so different in
practice from a reconstruction-based representation. In fact,
the psychophysical predictions of the two hypotheses are
often very similar, so carefully designed experiments are
required to tease the two apart [4,21,41,50].

One issue that we have not considered is how a policy
network for 3D vision might be learned. Most learning by
animals involves a compositional representation, ie. we
learn a response to a broad category of stimuli and then, as
we learn more, we divide that category up, refine our rep-
resentation and respond in different ways to different
sub-categories. Section 3(b) gave an example of this hierarch-
ical learning of location that can be tailored to task demands.
This is quite different from a Cartesian system, where the res-
olution and coordinate frame are predetermined and are not
necessarily related to learning.

In summary, we have considered in this paper the idea that
a policy network describes the way that a set of stored actions
can move a state vector across a manifold of potential states. In
§3(b), we saw how the current state could be described using a
hierarchical address on that manifold. Now, in §3(c), we have
re-described knowledge about the 3D structure of the scene as
knowledge about the image that will be received as the
camera/eye moves through the world or, in other words, stor-
ing a policy network and knowledge about the location on the
manifold to which that action moves the current sensory state.
Instead of a reconstruction of the scene and camera/eye
location, we store information about the manifold of potential
states and the rules (or policy network) for traversing it.

Binocular vision, which we have rarely mentioned so far,
provides a prediction of where the current state would move
to on the manifold if the left eye moved in space to the
location of the right eye. We have been considering the gen-
eral case of a state, x, moving across a manifold of states,
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but binocular vision in a static observer amounts to only two
points on that manifold. As such, binocular vision is probably
best understood once the properties of the manifold are well
established.

An attraction of the policy network idea as a hypothesis for
3D vision (or other aspects of perception) is that it is remark-
ably difficult to disprove (which is presumably preferable to
being easy to disprove). But it is not impossible. Every com-
puting/Turing machine produces an output on the basis of
a current state but the proposal here is that that state does
not need to be an elaborated one as, for example, when
photogrammetry generates a set of 3D coordinates before a
decision is made. Instead, the sensory data can be left in a
much more raw form and used in different ways according
to the task at hand. Disproof would come from showing
that that is not the case. We will see one example below in
relation to grid cells [51] where a rigorous demonstration of
grid-like consistency across two rooms would disprove (or
at least be highly problematic for) the policy network hypoth-
esis. The same goes for the neurophysiological mechanisms
proposed by Byrne et al. [19] (§2) for wholesale 3D coordinate
transformations between ego- and allocentric reference
frames. If that were really shown to occur in the brain, it
would be wholly counter to the policy network idea.

The ideas set out here raise a variety of questions. I discuss
two of these below (see also [7]). One is the claim that grid
cells [18] are known to provide a Cartesian map and so
there is no need to propose a non-Cartesian alternative.
Another is that there are tasks that must require a 3D recon-
struction and could not be done using only a set of reflexes
(a policy network). The first is readily dismissed, at least in
its crudest form. The second less so, because it is always poss-
ible to think up more and more complex tasks, but I discuss
one example of the way in which latent representations
can take the place of a 3D reconstruction in explaining
human performance.

It is often said that grid cells provide a map [51,52] to tell the
animal where it is whereas, in many ways, the opposite is
true. A regular grid-like pattern of firing does appear similar
to the grid on an Ordnance Survey map, or to lines of latitude
and longitude, but the point about gridlines on a map is that
they are uniquely labelled and can be used to define a
location. By contrast, the firing of a grid cell is entirely ambig-
uous so it cannot be used on its own (or even in combination
with the other two grid cells at this scale (and, at a given
scale, there are effectively only three grid cells)) to determine
the animal’s location in the way that a grid reference does on
a map. This problem is discussed and potential solutions pro-
posed [52] but, despite this, there remains a strong tendency
for authors to assume that the regular pattern of firing of grid
cells is indicative of a map with a grid-like coordinate system.

There have been simulations showing that grid-like pattern
of spatial responses can emerge in networks, e.g. using as
input the translational and rotational velocity of the agent (pro-
prioceptive signals). Banino ef al. [12] showed this and

demonstrated that a trained network of this sort could be

used to achieve a variety of navigational tasks using the ‘grid
cell’ signal. But the current state vector used in this training
was a high-dimensional vector (R°'?) with only 129 of these
elements showing grid-like behaviour and their periodicity is,
if anything, a hindrance rather than a help in defining location
unambiguously. The authors describe what has been learned as
a policy network; it is not a Cartesian map.

Another example helps to highlight the difference between
policy networks and a Cartesian reconstruction. Carpenter
et al. [51] describe an experiment in which two rooms are con-
nected by a corridor and, initially, the pattern of grid cell firing
in both rooms is very similar. As the rat becomes more familiar
with the second room, the grid cell firing there changes and this
change ‘could reflect” a globally consistent grid pattern cover-
ing the two rooms, the authors say. A strong version of this
claim is that if the orientation and length of the corridor were
suitably arranged, the grid cell firing should return to being
the same in the two rooms again for some suitable corridor
length (or, as a milder prediction, there should be some period-
icity in the cross-correlation with the grid-cell firing in the
original room as the corridor length is varied). This would be
truly remarkable evidence and would be strongly counter to
the claim made in this paper that the sensory signals to
which the grid cells respond should just be considered as one
among a long list of sensory inputs (s) that help to define a
location. It would show, instead, that some kind of ‘top
down’ imposition of a regular structure (like latitude and
longitude) was influencing the pattern of grid cell firing. This
is what is implied by the notion of a globally consistent grid
cell firing pattern and, if it were shown to be correct, it
would disprove the type of argument advanced here based
on policy networks.

Another possible objection is that it is possible to think of an
activity, such as moving a piano through a doorway, where it
is (at least in the mind of the questioner) hard to imagine that
anything so simple as a policy network could solve it. It is
only fair, when considering an issue like this, to examine
two proposed solutions side-by-side, where each is specified
from the algorithmic level down to the proposed neural level.
The latter is important because, as we have discussed in §2,
the neural implementation of Cartesian-based solutions is
currently unclear (and perhaps its Achilles’ heel) while that
for a policy network is potentially straightforward. In our vir-
tual reality laboratory, we investigated a task that has some
similarities to the piano-mover’s question in that it requires
a mental manipulation of a 3D structure in order to solve
it. Participants viewed a scene, then walked through a corri-
dor to a location where they had to point (without visual
feedback) to several objects that they had originally viewed
[21]. We found that although participants could point in
roughly the correct direction, they showed large, systematic
biases in this spatial updating task and their responses
were difficult to explain on the basis of a distorted internal
model of the scene. We repeated this finding in the real
world. Many have assumed that a 3D model is required in
order to do this type of spatial updating task, but that is
not the case. Recent findings in reinforcement learning [53]
have shown that it is possible for an agent to generate an
image (and hence point to an object) from a novel location
in a novel room if the agent is given only one or two ‘seed’
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images of the room from a quite different vantage point (as
was true for the participant in our experiment). This demon-
stration is important because it shows how tasks that seem as
if they must require the brain to use a 3D representation,
in fact do not. Building a latent representation through
many previous experiences, and being able to generalize in
appropriate ways, allows remarkable performance without
involving any 3D geometry.

Clearly, the examples I have considered in this paper are
very simple (such as making a saccade from one object to
another or moving the head), whereas humans engage in
tasks that have many levels of complexity, including naviga-
tional tasks. One possible area of speculation is about how
motivational input (here, g) could contribute to the hierarch-
ical organization of complex tasks, including ‘chunking’ [54],
but that is beyond the scope of this paper.

At the broadest level, there are two types of idea about the
representation that might underlie 3D vision. According to
one, all the complexity of the problem is concentrated on
the neural mechanics of building an internally consistent
replica of the world that correlates with perception and
then using this reconstruction to generate a motor response.
An advantage of this approach is that it is easy to imagine,

at least at a superficial level. However, as we have explored [ 8 |

in §2, there are severe problems when it comes to specifying
the details of a neural mechanism. The argument is turned on
its head when it comes to a policy network which is, in
essence, a long list of reflexes. There is little doubt that this
is something the brain can store. A disadvantage is that it is
much more difficult to imagine how this could be the basis
of our perception of a 3D world (or, indeed, smells, sounds,
colour, anguish). But, neuroscientists can be prone to Philoso-
phers’” Syndrome: ‘mistaking a failure of the imagination
for an insight into necessity’ [55]. The speculations in this
paper will, I hope, stimulate this process of imagination.
They point out how a whole range of judgements that we
tend to think of as involving scene reconstruction can,
instead, be described in terms of a changing image: the
visual direction of objects, their depth, the slant and relief
of surfaces, the spatial layout of a visible scene (§3(c)) and,
beyond that, navigation (§3(b)). The argument advanced
here is that it is worth that effort of imagination because, if
the ideas hold up to scrutiny, we would be closer than
we might have thought to a neurally plausible account of
3D vision.
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