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Abstract

Global warming is projected to have major implications on global health. It is

however not yet clear how this will translate to impacts on the healthcare sys-

tem. By linking changes in temperature with changes in required bed days at a

hospital level, through the use of a simple bed model, we quantify the pro-

jected impacts UK hospitals will need to adapt to. We show that there is

already a local peak of bed days required in the main summer months due to

hot temperatures. The results further show that there will be a significant

increase during the main summer in both the mean and maximum number of

beds needed, but a non-significant decrease during the peak winter months.

These changes lead to a more constant need of care of the year and shift the

seasonal cycle of lowest hospital needs.
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1 | INTRODUCTION

The healthcare systems in many parts of the world are
under significant pressure due to ageing populations
with complex healthcare needs, growing population size
and increasingly expensive treatments (World Economic
Forum's Global Future Council on Health and
Healthcare, 2019). The unequal need for emergency
healthcare in the United Kingdom over the season, with
much more resources required during the winter period
due to the seasonal influenza and other respiratory dis-
eases, complicates staff and bed planning (M. Claridge,
personal communication, 17 February 2022). In addition
to these existing issues, the health impact of global warm-
ing is quickly becoming an area of high importance
around the world. This is especially highlighted by the
joint office set up by World Meteorological Organization
and World Health Organization (WHO, 2020), the growing

number of publications linking warmer weather with
health impacts (e.g., Åström et al., 2013; Ebi et al., 2021;
UK Health Security Agency, 2021; Watson et al., 2020),
and some very recent UK specific publications analysing
both past exposures (Lo et al., 2022) and future projections
(Kennedy-Asser et al., 2022). The COVID-19 pandemic
has clearly demonstrated the vulnerability in many health-
care systems to sudden, large shocks, and the issues with a
backlog of non-urgent health care once a threshold is
crossed (Imperial College Healthcare NHS Trust, 2022).
Hospitals and health systems therefore need to start plan-
ning now for the near future impact due to projected
global warming, currently without knowing what those
impacts are. The lack of awareness around the impact of
heat, and therefore the very limited planning for it, at hos-
pitals in England has been highlighted in the evaluation
report of the Heatwave Plan for England (Williams
et al., 2019).
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A large number of papers have been published in recent
years on the changes in the mortality rate due to high tem-
peratures (e.g., Gasparrini et al., 2015; Green et al., 2019)
because of its devastating implications for individuals. How-
ever, from a healthcare system point of view, a high mortal-
ity rate does not necessarily translate to a high impact on
hospital capacity because many people who die due to non-
optimal temperature will not use additional hospital
resources (Kovats et al., 2004; Ye et al., 2012). A further lim-
itation on the currently available information is that it is
often presented as a change at a national or on a regional
scale (Åström et al., 2013; Huang et al., 2022), but very
rarely at the local level where resources are provisioned and
allocated. This makes it very difficult for hospitals to design
adaptation strategies because in the best case there is infor-
mation about, for example, what all of South East England
should prepare for.

In this article, we aim to describe the near-term
(2050s, 2050-2059) projected impact on hospital opera-
tions for a representative hospital, expressed in changes
of required bed days, only due to climate change. That is,
we are not considering any other factors such as changes
in population size, demographics or the population
health but only changes in daily temperature. Another
way to describe this experiment is that we are taking
today's population and modelling what their hospital
needs would be in the 2050s. The Royal Berkshire Hospi-
tal (RBH) in Reading, UK is chosen as our representative
hospital for this study. The population of Reading has a
very similar distribution to the South East as a whole,
with just a slightly lower proportion of elderly people and
higher proportion of young adults (Profile of
Reading, 2022). Despite being one of the most affluent
areas of the United Kingdom, it also has some of the most
deprived areas, making it comparable to the rest of South
East England in terms of household composition and
average salary (Fenton, 2021).

Our aim with the study is to estimate the current
seasonal cycle of temperature-related occupied beds
and projected changes in these to highlight shifts in
low- and high-pressure periods, which is important for
staff planning, and quantify any changes in the
required number of beds at the hospital. To relate
changes in admissions with changes in hospital capac-
ity needed, we co-designed the study with staff at the
RBH through multiple workshops (Section 2) to gain
real-world insights to our modelled numbers and
ensure actionable conclusions. This lead to a co-
developed bed model (Section 3), with which we con-
ducted our analysis to understand differential bed use
between different patient groups and to quantify
thresholds for significant resource demands
(Section 4).

2 | CO-DESIGN WORKSHOPS

The co-design workshops with staff from the RBH were
held throughout the project to discuss the different stages
of the work. The first two 1h-long workshops were run
with managers from the urgent care departments, clinical
staff, people working with the future hospital design and
data management staff. The aim of these workshops was
to understand the major factors impacting hospital opera-
tions and the type of projection information they would
like to have access to. Further two 1h-long workshops
were run with the same staff to co-develop the bed model
to ensure its validity, and to define the bed metrics used
and confirm their usefulness. During these workshops,
information about the main age groups to consider, their
typical length of stays (LoS) and how LoS varies over the
year were discussed, which informed the lag structure of
the model (more details in Section 3.2). Three final
results workshops were held with the previously involved
staff plus the Net Zero and demographic modelling group
to discuss the results and how they might be used in the
different departmental work.

3 | DATA AND METHODOLOGY

From the workshops run with the RBH, we learned that
long periods of high occupancy, which currently mostly
are experienced from December to February, put the
most strain on the trust and when occupancy levels
become so high that scheduled operations need to be
moved and this builds up a ‘health debt’. The health debt
refers to the accumulation of non-urgent care due to
delaying it in favour of delivering urgent care, resulting
in a larger amount of healthcare needing to be delivered
within the usual time frame (Imperial College Healthcare
NHS Trust, 2022). The method developed here is there-
fore based on two parts: estimating admissions attribut-
able to non-optimal temperatures (AANOT), and in the
next step how these admissions affect the number of
occupied beds. There is not a one-to-one relation between
increases in admissions and occupied beds because some
patients stay for more than one night, hence an accumu-
lation effect will occur, depending also on the time his-
tory of non-optimal temperature exposure.

3.1 | Future admissions

The total daily future admissions are assumed to be a
combination of the seasonally varying average admis-
sions and the AANOT (temperature-dependent admis-
sions), that is, for day t
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admt ¼ seasonal:admtþ temp:admt, ð1Þ

where seasonal:admt is the long-term daily average given
the weekday, day of the year and if it is a public holiday,
and temp:admt is the AANOT. To model the link
between temperature and admissions, we will follow the
method developed in Gasparrini (2014) and applied in a
climate-health setting in Vicedo-Cabrera et al. (2019).
The exposure–admissions component is modelled
through a distributed lag non-linear model, which uses
non-linear models to simultaneously model the
exposure–admission relation and its associated lag struc-
ture, which forms a cross-basis dependent on tempera-
ture and days since the exposure (lag). The full model is
estimated through a generalized linear model (GLM),
with admissions modelled by a quasi-Poisson model. The
GLM uses as input, temperature, time (modelled by a
natural cubic spline to account for any trends during the
year or over multiple years), day of the week, if the day is
a public holiday or not and emergency admission data
(see Supplementary material Section 1). From this model,
the temperature associated with the lowest number of
admissions and the increase in risk of admissions for
higher and lower temperatures can be estimated (the rel-
ative risk [RR]) for the 2weeks following exposure to a
non-optimal temperature. By splitting up the admissions
into age groups, we can additionally gain insights into
how this risk varies among the population. The model is
fitted for people over 75 years (elderly), under 75 years,
children (up to 18 years) in addition to the full
population.

To estimate the fixed seasonal background admis-
sions, we take the average of the splines time component
of the fitted GLM for the last 5 years, to isolate the impact
of climate change from other factors such as population
increase, the day of the week and holiday factors.

For fitting the temperature admissions model, daily
mean temperature data from the HadUK-Grid and emer-
gency (non-elective) admissions from the Office of
National Statistic are used. The HadUK-Grid data are
available as regional averages of the 1-km resolution
gridded dataset from 1960 to 2020, and is used as this is
the currently best available estimate of daily temperature
on the scale of UK regions, incorporating extensive qual-
ity control and validation (Hollis et al., 2019). The admis-
sions data cover the period 1991–2018 and are split into
six age groups. For both data sets, observations from
South East England, as defined by the Nomenclature of
Territorial Units for Statistics level 1 (NUTS 1), are used.
To downscale the estimated admissions to hospital-level
numbers, admissions and discharge data from 2016 to
2021 and occupied beds data from December 2018 to
2021 are provided by the RBH. Only data up until

January 2020 are included to exclude any COVID-19
effects.

The reason for fitting the model with the admissions
data collected in South East England instead of the RBH
data is the much longer time period it covers, resulting in
more robust model estimates. Extensive exploratory anal-
ysis was first performed to establish that RBH and South
East England data had a similar distribution in terms of
fraction of admissions from the different age groups and
that RBH admissions constituted a near-constant propor-
tion of the South East England total admissions and are
well correlated.

By combining the estimated RR curves with the pro-
jected daily mean temperature data, we can estimate the
fraction of AANOT for each day. Multiplying this fraction
by the average/seasonal admission estimated in the previ-
ous step, one obtains the number of daily AANOT (tem-
perature admissions). To estimate this, the 12 ensemble
members from the Met Office Hadley Centre climate
model available at a regional level in the 2018 UK Cli-
mate Projections (UKCP18) for the emissions scenario
RCP8.5 are used (Met Office Hadley Centre, 2018), again
only for the South East England administrative region.
The UKCP18 models use a 360-day calendar with 30 days
in each month. Following Huang et al. (2022), the
UKCP18 climate data are bias-corrected against the
HadUK data before being used in the analysis.

Figure 1 illustrates the two admissions components,
their dependencies and individual contributions, to the total
daily admissions. The admissions are for the full popula-
tion, based on the downscaled South East England data. As
this is mainly for illustrative purposes to demonstrate the
constant seasonal pattern for the seasonal admissions (blue)
and the slowly increasing temperature admissions (orange),
the time windows are different (8, 3, 20 years) to better dis-
play the main features of each graph.

3.2 | Bed model

To estimate the impact of admissions due to non-optimal
temperature on hospital occupancy, a simple bed model
has been constructed to estimate the number of extra bed
days needed due to the temperature-dependent admis-
sions (see Figure S1 in Supplementary material for visual
description). The significantly different LoS for healthy
adults and elderly motivated the splitting of the two pop-
ulation groups. Difference in the LoS for different times
of the year, due to the conditions mainly admitted with
or other social factors guided the choice to include an
additional winter peak factor. The final parameter is the
general occupancy level, which is needed to obtain when
more hospital beds are needed than what is available.
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The model uses as input daily emergency admissions
and day of the year to reflect the seasonal pattern of LoS,
and outputs for each day the number of overnight
patients and their associated length of stays. The
hospital-dependent parameters are listed below, with the
numbers used in this article given in brackets.

• The total number of beds (630).
• The general occupancy level (0.85, 535 beds).
• Mean LoS (4 days).
• Healthy adults typical range of LoS (1–4 days).
• Elderly patients typical range of LoS (7–10 days).
• Optional, extra long LoS during peak winter

(November–February, 2% of the patients stay 11–
14 days).

The algorithm for generating length of stay for each
patient is based on sampling from the different specified
probability distributions, in this case Phealthy = {1,2,3,4},
Pelderly = {7,8,9,10}, Pextralong = {11,12,13,14}. These three
sets of LoS are determined based on workshop discussions
and data on LoS for each patient from January 2016 pro-
vided by the RBH. The probability of sampling the different
LoS is determined by assigning equal probability for each
LoS in Pelderly and Pextralong in the first step, and then finding
the correct probabilities (P) for Phealthy. For this, we set
P 3ð Þ¼ P 4ð Þ andP 1ð Þ¼P 2ð Þ, and determine each proba-
bility such that the expected value (mean) E[LoS] = 4.

Using the following notation, i¼ 1,…,T is the time
step, ni is the total number of patients admitted on day i,
f i is the fraction of elderly patients on day i, j¼ 1,…,ri is
the index of elderly patients admitted on day i, with
ri ¼ ni� f i, k¼ 1, ::,si is the index of extra long staying
patients on day i with si ¼ 0:02�ni if winter and 0 else,
l¼ 1, ::, ti is the index of healthy patients with
ti ¼ni� ri� si and pi,q the length of stay for patient

q¼ 1,…,ni on day i. The winter proportion 0.02 was cho-
sen to match the observed slightly longer LoS.

For the winter time, the expression for the LoS for all
patients is

Pi,w ¼EiþHiþLiþPi�1, ð2Þ

with the four factors Ei,Hi,Li,Pi�1 given by
1. The set of elderly patients: Ei ¼ ej �Pelderly

� �
j¼1,::,ri

:

2. The set of long staying
patients: Li ¼ lok �Pextralong

� �
k¼1,::,si

:

3. The set of healthy
patients: Hi ¼ hl �Phealthy

� �
l¼1,::,ti

:.
4. Staying patients from the previous

day: Pi�1 ¼ pi�1,q ≥ 2
n o

:

and for the summer

Pi,s ¼EiþHiþPi�1, ð3Þ

FIGURE 1 Infographic

describing the dependence and

magnitude of the two components

producing the total daily admissions.

The x-axis is time and the y-axis is

daily admissions for the full

population based on downscaled SE
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with the three factors given by the same expressions, with
si ¼ 0:

When the total daily admissions are used (seasonal
admissions + temperature dependent), the proportion of
elderly admissions, for which we sample from Pelderly, is
determined by the historical ‘day-of-the-year’ proportion
(Figure 2). When only the AANOT are considered, the
proportion of vulnerable population sampled from Pelderly
is instead set to 0.67 (roughly twice as large compared
with all admissions). This is because we assume that
patients admitted due to non-optimal temperatures are
on average more vulnerable than the general population,
since it is mostly patients with underlying health condi-
tions, or vulnerable for other reasons, who are admitted
(Public Health England, 2015). Hence the temperature-
dependent admissions group should on average have lon-
ger LoS than when considering the regular, seasonal
admissions.

To evaluate the bed model, a test simulation with
observed admissions was compared with observed bed
occupancy, both at a daily scale and on a monthly aver-
aged scale (see Figure S2 in Supplementary material for
monthly averaged difference). Mean difference per
month, week, and daily for weekdays and weekends were
all calculated to find any systematic errors. The model
evaluation results were discussed during one of the work-
shops to confirm its usefulness and realistic design.

3.3 | Changes in bed occupancy

For each of the 12 UKCP18 RCP8.5 regional daily tem-
perature series, the daily AANOT is estimated from the
fractions obtained using the ‘backward’ setting of the
attribution function described in Gasparrini and Leone
(2014) and multiplied by the seasonal admissions
obtained from the stationary GLM. The ‘backward’ set-
ting means that the admissions assigned each day is the
accumulated number of admissions based on the temper-
ature from the previous 2 weeks. Hence, the ‘backward’
attribution takes into account both the temperature
admission due to day 0 temperature but also the lag-
effect from the previous 14 days. Each of these AANOT
time series are then combined with the bed model to gen-
erate 12 bed occupancy time series. From these daily
occupancy time series, five different metrics are consid-
ered to evaluate the change in average and peak
admissions:

1. The total number of additional bed days required
per month in 2050–2059 compared with 2010–2019, that
is, the total number of bed days required in a given
month in the 2050s minus the total number of bed days
required in the 2010s.

2. The daily mean number of temperature-dependent
beds in 2010–2019 and 2050–2059.

3. Number of days with the same number of
temperature-dependent beds as today's highest occu-
pancy days (top 5% days). With 30 days in a month,
5% � 30 days = 1.5 days in 2010–2019.

4. Maximum number of daily temperature dependent
beds in 2010–2019 and 2050–2059.

5. Average number of daily occupied beds in 2010–
2019 and 2050–2059.

These five metrics were chosen because they reflect
changes in the mean and peak behaviour for temperature
admissions. By considering both of these aspects, one can
estimate both changes in the daily and peak require-
ments, corresponding to bed requirements for the differ-
ent months, and compare these to the peak annual
requirements, which is the total number of beds required.
The different bed metrics are calculated as a decadal
average for all the temperature models. Hence, the
monthly estimates are the average value from 120 esti-
mates (12 models, 10 years) and the daily 3600 estimates
(30 days in each month). The uncertainty bands in the
graphs are given by the spread from the 12 decadal aver-
ages. There are a number of other factors of uncertainty
to these estimates, especially from the bed model and the
exposure–admissions curves (Figure 3). Uncertainty esti-
mates of the exposure–admissions model can be obtained
from the model (Figure 3) through Monte Carlo simula-
tions as no analytic expressions exist. It is however not
obvious how to combine these with the climate model
uncertainty, because a simple addition of the two uncer-
tainty estimates would probably lead to an unrealistically
large spread. As it has been shown in the study by Huang
et al. (2022) that the exposure–admission uncertainty is
much smaller compared with the climate model uncer-
tainty and we want to be able to clearly communicate
where the uncertainties come from to long-term planners
at hospitals, we decided to only focus on the climate
model uncertainty.

Uncertainty in the bed model could be investigated
by running a Monte Carlo simulation to find the variabil-
ity due to the random sampling of LoS at each time step,
but will most likely be of lower magnitude than the cli-
mate model uncertainty given the large number of sam-
ples drawn. There is also uncertainty in the bed model
itself, because we only had 1 year of data to evaluate it
against due to COVID impacting all data after January
2020. Reliable uncertainty estimates of the bed model
could therefore not be obtained and are not further con-
sidered. A development of this work would be to combine
these different sources of uncertainty in a sensible way.

To check the sensitivity to the admissions model, the
total number of daily admissions is also estimated using
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the much shorter RBH data to fit the seasonal GLM and
estimate the AANOT. As only 4 years of daily admissions
data are available from the RBH, a very small number of
sample points are used to estimate each covariate in the
GLM model, leading to a less reliable model. As the RBH
admissions behave like scaled South East England data,

the RBH GLM model will be estimated by similar, but
different, admissions numbers. By combining our bed
model with both admissions models, we can evaluate
how sensitive it is to the exact admissions numbers. The
mean estimate from this method is also included, but not
the confidence interval to ease readability of the graphs.

FIGURE 3 Exposure–admission relative risk curves for (top) full population, (upper middle) over 75 years, (lower middle) under

75 years and (bottom) children. The different curves show (left) 15-day accumulated RR as a function of daily mean temperature, (middle)

15-day lag structure for cold events (5�C) and (right) 15-day lag structure for hot days (22�C). The colour dashed lines mark the maximum

and minimum mean temperature observed and the black dotted the temperature associated with the lowest risk of admissions.
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4 | RESULTS

4.1 | Exposure–admissions model for
different age groups

Similar to results obtained in earlier mortality and admis-
sions studies following exposure to non-optimal tempera-
tures, there is a decrease in the RR for the first 2 days for
cold temperatures (Figure 3, middle column) followed by
a large increase for those aged above 75 (Figure 3e). This
is because medical conditions related to cold temperature
are not triggered until a couple of days after the extreme
cold day (RBH workshops). Also, similar to previous
studies, the increase in risk for hot temperatures occurs
on the hot day and the next following day (lag = 1). The
following decrease in risk (RR < 1) is due to the so-called
‘harvesting principle’ (Toulemon & Barbieri, 2008),
which means that the population is temporarily less sus-
ceptible to heat because vulnerable people have already
been admitted to hospital in the first 1–3 days, resulting
in a lower proportion of vulnerable people out in the gen-
eral population.

The major difference between the admissions curves
obtained here and the previously modelled mortality
curves is the absolute RR values. For hot temperatures
(daily mean above 23�C for northern Europe), the RR
values for mortality have been estimated to be around
15%–25% (Gasparrini et al., 2015), whereas we here esti-
mate it to be only around 4% for admissions in all age
groups. This is partly due to the fact that many more peo-
ple are admitted to hospitals on a daily basis than those
who die, hence the AANOT is a much smaller proportion
of the total number of admitted patients, even on hot
days, compared with the proportion of mortality attrib-
uted to non-optimal temperature (MANOT) on hot days.

Only considering the modelled admissions curves, we
can see that the optimal temperature (black dotted line)
is nearly the same for all age groups. The increase in RR
for hot events has the same shape and magnitude for all
age groups, but is vastly different for cold events. For the
over 75 years age group (Figure 3d), there is an increase
in admissions for all temperatures below the optimal
temperature, whereas there is no accumulated increased
risk for the below 75 years age group (Figure 3g).

The uncertainty around the lag response for the hot
temperature for the below 75 years age group (Figure 3i)
is larger compared with the above 75 years age group
(Figure 3f), despite being the larger group. This could be
due to the many different behaviour patterns in the larger
group compared with the more uniform behaviour for
the smaller 75+ group. This is highlighted by the signifi-
cantly different behaviour for children (Figure 3j–l), com-
pared with the full under 75 years age group. This is not

further explored because we here only model the behav-
iour for the full population, but would be a natural exten-
sion to this work.

4.2 | Changes in bed days

Figures 4 and 5 displays the five bed day indicators for the
2010s and 2050s. The blue line and uncertainty band are
estimated using scaled South East England data and the
orange line RBH data. These uncertainty bands are most
likely smaller than the true uncertainty of the estimates
because only the mean value of the exposure–admissions
curve is used. Therefore, based on only considering the
future temperature uncertainty, if the current population
of Berkshire served by the RBH were exposed to the 2050s
climate, the main impacts found are as follows:

• There would be a significant increase in both the
mean and peak for the summer months of July and
August.

• The mean number of temperature-dependent bed
days would be of equal magnitude in July and August as
currently seen in January and February.

• Winter bed occupancy would remain mostly
unchanged, with the change for all the metrics being
insignificant.

• The winter months would remain the most
resource-intensive period. This is because most of the sea-
sonal admissions are from infectious diseases (such as
the seasonal flu), and we assume that the number of
admissions from these factors will be unchanged.

A general pattern is the small decrease in all indica-
tors, except the daily maximum (Figure 5d), in the winter
but a significant increase in the summer. A second
important thing to notice is the peak in July/August for
the daily mean and max bed use (Figure 5c,d), which is
currently not being noticed (personal communications
RBH workshop, 10 November 2021) because it is smaller
and shorter than the winter peak, but would become
much more prominent in a climate like that projected for
the 2050s.

When considering the total daily admissions in
Figure 4, and specifically the mean number of occupied
beds, we can see that there is a significant increase in the
main summer months June, July and August, and a very
small decrease in the winter months. This suggests that
the winter period will not be much less resource-
intensive compared with today, but summer will have
more patients admitted both on average and on the high-
est occupancy days under the 2050s climate. Similar pat-
terns can be seen for the 2030s and 2040s climate, and
the summer peak is significantly different for the 2040s
climate (not shown here).
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compared with 2010s (black line). Uncertainty envelope is the spread from the 12 climate model ensemble estimates. The four metrics are

(a) mean number of additional bed days, (b) number of days with 2010s highest occupancy level, (c) daily mean number of temperature beds

and (d) maximum daily number of temperature beds.
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5 | DISCUSSION AND
CONCLUSIONS

In order for hospitals to start adapting their operations to
a warming climate, they need to be able to assess how
their resource use might change in the future. In this arti-
cle, we have presented a methodology for translating
regional temperature projections to the number of extra
bed days needed at a specific hospital, the Royal Berk-
shire Hospital, under two different climate scenarios. The
method has been developed in collaboration with staff
from various departments at the RBH to ensure that the
model is realistic and the results are useful from an oper-
ational and planning perspective.

The number of bed days is projected to increase the
most in July and August, correlating with the projected
increase in peak summer temperatures. The winter
decrease is in contrast non-significant, leading to a more
equal distribution of patients over the year. This can be
beneficial from a staff planning perspective, because it
will lead to a similar number of staff being required year
around. It can however lead to issues for maintenance
work, which often is done during the quietest periods
because it usually requires hospitals to close down the
affected wards. With July projected to be significantly
more resource-intensive, current work patterns might
need to be adjusted to meet this new peak in demand.

Even though peak summer demand is projected to
increase the most, it is from a significantly lower level
compared with the main winter levels, resulting in the
projected number of beds required in the summer still
being lower than what is currently needed during the
winter, hence not leading to an increase in the physical
number of beds needed. This indicates that the main
adaptation is on a staff planning level, rather than mate-
rial level, as enough beds exist to meet the future demand
for the current population under a changing climate, but
a higher number of staff would be required in the sum-
mer time to meet the increased number of patients. How-
ever, due to the above-mentioned practice of closing
down wards over the summer, the total number of beds
that can be used over a year changes. In our analysis, the
number of beds occupied in the summer never exceeded
630 on any given day, but in reality, this is not the actual
maximum number of available beds during the summer.
As the number of wards being closed down varies, this
was not a threshold we could include in this analysis.

A development of this work could be to set realistic
season-dependent capacity thresholds and thereby be
able to determine during which decade these are likely to
be crossed, only considering the climate change impact.
The usefulness of this estimate would however require a
lot of discussion. Considering the potentially very long

timescales, the changes in technology, policy and society
heat awareness that could happen during that time
period could substantially change this estimate. Never-
theless, it could be interesting to derive such as estimate
as a ‘worst-case scenario’ to aid in policy work.

Our study only focuses on one hospital in one region
of England, but given the similar climate projections for
the rest of the United Kingdom, it provides an indication
of the kind of impacts to prepare for. However, given the
difference in mortality RR for the different regions of the
United Kingdom related to differing health and socio-
economic backgrounds (Huang et al., 2020; Kennedy-
Asser et al., 2022), one can expect there to be differences
for admissions as well. Hence, the next natural step
would be to repeat this work for the rest of the regions to
find differences and similarities.

There are a number of limitations to the methodology
used here. The largest limitation is that we have only
focused on the impact from climate change and not any
other society or population changes. As different age
groups are impacted differently (Figure 3), changes in
demographics will naturally have an impact. An ageing
population will further require more regular, non-temper-
ature-dependent healthcare, hence having an amplifying
effect on the care need. We are also not taking into
account any adaptation measures. Given that many heat-
related admissions are due to overheating homes and
dehydration (RBH workshops, Josseran et al., 2009), cor-
rect implemented adaptations such as the ones outlined in
the Heatwave Plan for England (Public Health
England, 2015) could significantly change our projections.

For future work, one could use the recently developed
shared socio-economic pathways, UK-SSP (Pedde
et al., 2021), to investigate different future scenarios.
These could either be coupled with UKCP18 data to look
at changes in healthcare demand with climate change, or
use the various trends identified in socio-economic fac-
tors to further develop the admissions and bed models
presented here.

Another thing that could be interesting to look at is
the types of conditions being admitted and how this
changes with the magnitude of the temperature, to better
understand the expertise and types of wards needed. It is
known that heat mainly triggers cardiovascular and
respiratory conditions (Ebi et al., 2021), but we could not
model this due to the much too small sample sizes. There
have been a few studies in the United States looking at
the admissions patterns for certain conditions, but no
consensus has been reached so far (Sun et al., 2021). A
connection between high temperature and pollen has
also been identified, but the exposure–admissions rela-
tion is still to be determined (Vardoulakis &
Heaviside, 2012).
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A final interesting extension would be to consider
other environmental variables in combination with tem-
perature, such as humidity, using one of numerous ‘heat
indices' available. Urban et al. (2021) concluded at a
Northern European level that using the ‘Universal Ther-
mal Climate Index’, which incorporates humidity, wind
speed and other parameters, did not make a significant
difference compared with just using temperature for
warm temperatures. This could however be interesting to
investigate at a local level.

Nevertheless, the results presented here demonstrate
the potential impact from climate change on hospital
operations, which currently is very poorly understood. It
also demonstrates the possible benefits of better heat
adaptation and education of the population, which could
significantly lower the number of beds required in future
summers.
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