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Abstract— The Chinese Ocean Color and Temperature Scanner 
(COCTS) on board HY-1 series satellites has two thermal infrared 
channels with the spectrum range of 10.30-11.40 μm and 11.40-
12.50 μm for sea surface temperature (SST) observations. To 
reprocess the Haiyang-1B (HY-1B) COCTS SST, the Bayesian 
cloud detection and optimal estimation (OE) SST retrieval were 
applied to COCTS data in this study. The Bayesian cloud detection 
algorithm that has been developed is based on the Bayes’ theorem 
and uses simulation of COCTS observations. The MODerate 
resolution atmospheric TRANsmission (MODTRAN) model was 
used for simulation of COCTS brightness temperatures. SSTs 
were retrieved from COCTS by OE from 2009 to 2011 in the 
northwest Pacific. Comparison of COCTS OE SST with in situ 
SST showed that the COCTS SSTs are cooler than buoy 
measurements by −0.23 ºC on average, and the standard deviation 
(SD) of differences was 0.51 ºC. A large component of the mean 
difference is attributable to the cool skin effect at the ocean surface 
(typically −0.15 to −0.2 ºC), the remainder being attributable to 
simulation and calibration biases. The mean difference of COCTS 
OE SST with matched skin temperatures from the Advanced 
Along Track Scanning Radiometer (AATSR) is closer to zero, 
being −0.09 ºC, with a SD of 0.49 ºC. These validation results of 
COCTS OE SST demonstrate that Bayesian cloud detection and 
OE SST retrieval algorithm work well for improving COCTS SST 
accuracy, and show the potential of these methods to help develop 
SST products for operational HY-1 satellites, HY-1C and HY-1D.  

Index Terms— Bayesian cloud detection, Chinese Ocean Color 
and Temperature Scanner (COCTS), Haiyang-1B (HY-1B), sea 
surface temperature (SST), optimal estimation (OE) 

I. INTRODUCTION 

EA Surface Temperature (SST) is a geophysical parameter 
crucial to ocean processes and climate change. Satellite 

observations of SST include infrared and microwave 
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measurements. The accuracy requirement for SST observations 
is relatively stringent. For numerical weather prediction (NWP), 
fishery studies, etc., the requirement for SST accuracy is around 
0.5 K with high spatial resolution (0.5-10 km) [1]. For climate 
applications, SST accuracy in the 0.1-0.3 K range is required 
[1]. 

Since observations from the second generation Advanced 
Very High Resolution Radiometer (AVHRR/2) on board 
NOAA-7 became available, infrared SST retrieval methods 
have been developed for nearly 40 years and sensor design has 
improved, bringing better accuracy of SST retrieved from 
infrared sensors. We list some SST validation results observed 
from polar infrared radiometers shown in Table I. The 
comparisons of AVHRR Pathfinder SST version 5.3 dataset 
with in situ SST from 1998 to 2011 indicated that there was a 
cold bias for AVHRR Pathfinder SST in the range of −0.31 K 
to −0.17 K, and a standard deviation (SD) of 0.39 K to 0.49 K 
[2]. The MODerate Resolution Imaging Spectroradiometers 
(MODIS) on the Terra and Aqua satellites have been providing 
high quality global SST data since 1999 and 2002, respectively. 
The Collection 5 SST products provided by NASA Ocean 
Biology Processing Group (OBPG) were compared with buoy 
SST [3]. For Terra MODIS, the median value of SST difference 
was −0.145 K, with a corresponding SD of 0.510 K and robust 
standard deviation (RSD) of 0.380 K. For Aqua MODIS, there 
was a median value of SST difference of −0.205 K, a SD of 
0.509 K, and a RSD of 0.388 K [3]. The comparison results of 
VIIRS SST provided by NOAA Advanced Clear-Sky Processor 
for Ocean (ACSPO) with in situ SST indicated the mean 
difference was 0.0 K with the corresponding SD of 0.466 K and 
0.359 K for daytime and nighttime, respectively [4]. European 
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TABLE I 
SST VALIDATION RESULTS OBSERVED FROM POLAR INFRARED RADIOMETER 

Space Agency (ESA) Climate Change Initiative (CCI) project 
provided long-term series SST measured from Along Track 
Scanning Radiometers (ATSRs) [5]. The comparison of ATSRs 
with buoy SST showed the biases are 0.07 K and 0.06 K for 
daytime and nighttime, respectively, with the same 
corresponding RSDs of 0.23 K [6]. The current generation of 
dual view radiometers, the Sea and Land Surface Temperature 
Radiometer (SLSTR), also measure SST with high accuracy. 
The bias was −0.098 K and the RSD was 0.296 K compared 
with in situ skin temperature [7]. The SST products of Visible 
and Infrared Radiometer (VIRR) on board Fengyun-3C (FY-3C) 
satellite were compared with in situ SST and the biases were 
−0.21 K and −0.23 K with the corresponding RSDs of 0.58 K 
and 0.59 K for daytime and nighttime, respectively [8].  

To derive SST from satellite observed brightness 
temperature (BT), the cloud detection and clear-sky 
atmospheric correction are the main steps [9]. The traditional 
approach for cloud detection is the binary test in a decision tree 
based on the BT measurements and uniformity test, that was 
applied in AVHRR, MODIS [3] [10], etc. To address the error 
detection in cirrus clouds, cloud edges, high-latitude ocean, and 
SST fronts, the alternative decision tree algorithm based on 
machine learning is developed, that has been applied in MODIS 
and VIIRS [11]. Another approach for cloud detection is based 
on Bayes’ theorem, that can determine a probability of clear-
sky condition given the satellite observations and prior 
background information [12]. The Bayesian cloud detection has 
been used in AATSR series [13], AVHRR [14], the NOAA 
Geostationary Operational Environmental Satellite (GOES) 
[15], and Himawari-8 satellite of the Japan Meteorological 
Agency (JMA) [16]. After the clear-sky observations have been 
identified, the next step is to retrieve SST. Based on the 

characteristics of atmospheric radiation transmission in the 
infrared window, McMillin (1975) proposed that, since the 
absorption of water vapor in different bands is different, multi-
channel observation can be used to remove the influence of 
water vapor absorption, so as to derive SST [17]. McClain et al. 
(1985) proposed the Multi-Channel SST (MCSST) algorithm 
[18] and Walton et al. (1998) improved the retrieval algorithm 
considering the effect of atmospheric path lengths and the 
regional dependence of split window BT difference on water 
vapor, called Non-Linear SST (NLSST) algorithm [1]. The 
coefficients in MCSST and NLSST algorithm can be derived 
using two methods. One is based on the atmospheric radiation 
transfer simulation [19-22], and another one is based on the 
matchups of in situ SST with measured BTs [4, 18, 23]. 
Furthermore, Merchant et al. (2008, 2009, 2013) proposed the 
optimal estimation (OE) SST algorithm, that is the adjustment 
of the prior SST in the light of the difference between the 
observed BTs and the simulated BTs assuming the prior SST to 
be correct [24-26]. 

Haiyang-1 (HY-1) series satellite is the first-generation of 
marine-observing satellites of China. HY-1A was launched in 
May 2002. HY-1B satellite followed in April 2007. HY-1C, 
launched in September 2018 and HY-1D, launched in June 
2020 are the operational satellites of HY-1 series. One of the 
main payloads on board HY-1 satellites is the Chinese Ocean 
Color and Temperature Scanner (COCTS). The COCTS is a 
ten-channel whiskbroom scanner, including eight visible and 
near infrared channels for ocean color measurements and two 
thermal infrared channels for observing SST. The spatial 
resolution of COCTS is 1.1 km at nadir. To reprocess the HY-
1B COCTS SST data, inter-calibration of HY-1B COCTS 
thermal infrared channels with Infrared Atmospheric Sounding 

Sensor Source      Time period Validation results Reference 

AVHRR 
NOAA 

Pathfinder 
From 1998 to 2011 

AVHRR minus in situ SST 
Bias: −0.31~−0.17 K 

SD: 0.39~0.49 K 
[2] 

MODIS NASA OBPG 

From 2000 to 2014 
 (Terra) 

From 2002 to 2014  
(Aqua) 

MODIS minus in situ SST 
Terra MODIS: median: −0.145 K; SD: 0.510 K; RSD: 0.380 K 
Aqua MODIS: median: −0.205 K; SD: 0.509 K; RSD: 0.388 K    

[3] 

VIIRS NOAA ACSPO From 2012 to 2013 
VIIRS minus buoy SST  

Bias: 0.0 K; SD: 0.466 K (Daytime) 
Bias: 0.0 K; SD: 0.359 K (Nighttime) 

[4] 

ATSRs ESA CCI From 1992 to 2012 
ATSRs minus buoy SST 

Bias: 0.07 K; RSD: 0.23 K (Daytime) 
Bias: 0.06 K RSD: 0.23 K (Nighttime) 

[6]  

SLSTR EUMETSAT From 2016 to 2018 

SLSTR minus in situ SST 
Bias: −0.098 K; 
RSD: 0.296 K 
SD: 0.565 K 

[7] 

VIRR CMA From 2015 to 2019 
VIRR minus in situ SST 

Bias: −0.21 K; SD: 0.65 K; RSD: 0.58 K (Daytime) 
Bias: −0.13 K; SD: 0.67 K; RSD: 0.59 K (Nighttime) 

[8] 
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Interferometer (IASI) on board MetOp-A satellite was carried 
out in our previous study [27]. HY-1B COCTS original Level 
1B data were provided by the National Satellite Ocean 
Application Service (NSOAS). After the correction of HY-1B 
COCTS infrared radiances, the accuracy of BTs from these two 
channels was improved significantly, and striped noise across 
scan lines (due to inconsistency between four detectors) was 
reduced [27].  

Based on the re-calibrated BTs, cloud detection and SST 
retrieval for HY-1B COCTS are investigated in this study. 
Because of the geographical distribution of the data received 
from HY-1B at the satellite ground station, we choose the 
northeast Pacific as the research region in this study. Since 
striping was not removed completely by inter-calibration, 
further de-striping of COCTS radiance at the level of image 
processing is carried out before cloud detection and SST 
retrieval.  
    This paper is organized as follows. Section 2 is the de-
striping of HY-1B COCTS re-calibrated radiance image. In 
section 3, we describe the cloud detection of de-striped BT. In 
Section 4, the OE retrieval algorithm of HY-1B COCTS SST is 
introduced. Section 5 reports the validation of COCTS OE SST. 
Conclusions are presented in Section 6. 

II. DE-STRIPING OF HY-1B COCTS INFRARED RADIANCE 

COCTS is a whiskbroom scanner, with four parallel detectors 
along-track. The different spectral responses of these four 
parallel detectors caused the sharp striped noise across the scan 
lines, leading to significant radiometric errors in radiances, 
which further propagate into retrieved SSTs. Thus, de-striping 
is one of main steps for improving the SST accuracy of HY-1B 
COCTS, and better SST gradient estimates. In the inter-
calibration study, the COCTS radiance correction coefficients 
were obtained separately for four detectors. The striped noise in 
HY-1B COCTS corrected radiance were reduced significantly, 
but not fully be eliminated, presumably because of the residual 
error or temporal evolution of the calibration differing between 
detectors. Therefore, in this study, the further de-striping for 
HY-1B COCTS corrected radiance is carried out before cloud 
detection and SST retrieval.  

The de-striping method is based on the unidirectional 
variational model, which has been successfully utilized in 
MODIS de-striping [28]. We will introduce this de-striping 
algorithm briefly here. The striping can be assumed to be 
unidirectional noise as it does not affect the image horizontal 

gradient. In Bouali and Ignatov (2013), the authors proposed 
the de-striping can be viewed as an optimization problem based 
on the minimization of a unidirectional variational model [28]. 
Fig. 1 and Fig. 2 are regional radiance images of COCTS 11 
and 12 µm channel on 11 February 2009, respectively, with Fig. 
1 (a) and 2 (a) being the re-calibrated radiance and Fig. 1 (b) 
and 2 (b) being the de-striped radiance. The line plots indicate 
radiance variations along track at the location of black lines 
drawn in each radiance image. The radiance images before de-
striping, as well as the fluctuations of the re-calibrated radiance 
variations, display the residual striping in COCTS re-calibrated 
radiance data. After de-striping, the striped noise is effectively 
removed. To demonstrate the high-frequency signal is 
preserved before and after de-striping, an analysis of the 
frequency spectrum is carried out. Because the striped noise 
only exists in the along-track direction, the de-striping should 
not change the variations in across-track direction. We 
demonstrate this choosing a region of ocean fronts and compare 
the spectrum in along-track and across-track directions before 
and after de-striping. Fig. 3 and 4 are regional radiance images 
corresponding with power spectrums of HY-1B COCTS 11 and 
12 µm channel BT before and after de-striping. The subfigures 
(a) and (b) are regional radiances before and after de-striping. 
The subfigures (c) and (d) show the power spectra of the 
selected scenes, along track and across track respectively, as a 
function of normalized wavenumber, before and after de-
striping. The normalized wavenumber denotes the spatial 
frequency of stripes. For example, the normalized wavenumber 
0.125 means that there exists a stripe per eight scans. To 
improve visibility, the spectral magnitudes are plotted with a 
logarithmic scale. There is a broad reduction in power between 
around 0.125 and 0.5 in normalized wavenumber, suggesting 
the removal of variability corresponding to cycles between per 
two scans and per eight scans. For 11 COCTS 11 µm channel, 
the more marked reductions in power is at wavenumber of 0.5, 
exactly corresponding to a cycle per two scan line. For COCTS 
12 µm channel, the most significant change of spectrum 
variations along track after de-striping is at wavenumber of 0.5 
and 0.25, that is consistent with removing a striping pattern over 
a cycle per two scan lines and a cycle per four scan lines. In the 
along scan direction, the spectrum variations almost coincide at 
all wavenumbers. This indicates that the striping is removed 
after de-striping, while other non-noise signals are preserved. 
The following cloud detection and SST retrieval are based on 
the de-striped radiance. 

                       
                                                                        (a)                                                                                                                            (b) 
Fig. 1.  Regional radiance images of HY-1B COCTS 11 µm channel on 11 February 2009: (a) before de-striping, (b) after de-striping.  
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Fig. 3.  Regional radiance images of HY-1B COCTS 11 µm channel on 11 February 2009: (a) before de-striping, (b) after de-striping, (c) power spectra along 
track, and (d) along scan. 

 

                       
                                                                        (a)                                                                                                                            (b) 
Fig. 2.  Regional radiance images of HY-1B COCTS 12 µm channel on 11 February 2009: (a) before de-striping, (b) after de-striping. 
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III. BAYESIAN CLOUD DETECTION 

    The cloud detection of infrared instruments is a pre-
processing step for SST retrieval. In this paper, a Bayesian 
approach is utilized for cloud detection of COCTS infrared BTs. 
Bayesian cloud detection is based on Bayes’ theorem, 
determining a clear-sky probability given the satellite 
observations and prior background information. Merchant et al. 
(2008) described a methodology of Bayesian cloud detection in 
detail [12]. In this paper, we focus on the application to COCTS. 
Thus, the general concept is introduced briefly here, with a 
detailed description of specific application to COCTS.  

The probability of clear sky is calculated using Bayes’ 
theorem, given the satellite observations and the background 
information. The length scale of clear-sky probability variation 
(~1 km) is much finer than the length scale of variation in the 
atmospheric terms in the background state (~100 km). Thus, on 
pixel-to-pixel scales, the background state is independent of 
clear-sky probability. Based on this assumption, the expression 
for probability of clear sky can be shown as: 
 

�(�|��, ��) = �1 +
�(�̅)����

���, �̅�

�(�)����
���, ��

�

��

                (1) 

where � represents a probability or probability density function 
(PDF), � indicates clear sky, � is the satellite observation, � is 
the state vector, superscript o represents ‘observed’, and 
superscript b represents ‘background’ [12]. The equation (1) 

shows that in order to estimate the �(�|��, ��), we need to 
calculate the prior estimate of the clear sky �(�) , and the 
probabilities of the satellite observations given the background 

state under clear and cloudy conditions, �(��|��, �)  and 

�(��|��, �̅)  , respectively. For COCTS cloud detection, the 
observation vector �� includes the observed BTs of COCTS 11 
µm and 12 µm channels and the local SD (LSD) of the BTs in 
a 3 by 3 box (LSD33) centered on the current pixel. Because of 
the unstable calibration of COCTS reflectance channels, the 
reflectance channels are not utilized for the cloud detection here. 

The background state vector �� consists of the background SST 
and total column water vapor (TCWV) from ECMWF ERA-
Interim NWP data [29-30], which has a spatial resolution 

 
Fig. 4.  Regional radiance images of HY-1B COCTS 12 µm channel on 11 February 2009: (a) before de-striping, (b) after de-striping, (c) power spectra along 
track, and (d) along scan. 
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around 0.7º0.7º in the northwest Pacific. The background 

observation vector �� indicates the expected observation vector 

given the background state �� . This is simulated using 
MODerate resolution atmospheric TRANsmission 
(MODTRAN) 5.3.3 to compute top-of-atmospheric BT, given 
the atmospheric profiles, surface parameters, and the spectral 
response functions (SRFs) of COCTS. The cloud detection of 
COCTS is processed pixel by pixel. For COCTS pixels, the flag 
mask is set to ‘invalid’ under the conditions of land, being 
outside the study area, or having satellite zenith angle larger 
than 50º. In addition, the pixel is considered obviously cloudy 
if the 11 µm BT is less than 260 K.   

The observation vector, �� , consists of spectral (BT) and 
textural (LSD) components denoted as ��

� and ��
� respectively, 

and these two parts are independent, thus the �(��|��) can be 
written as [12]:   

�(��|��) = �(��
�|��) × �(��

�|��)             (2) 
It is assumed that BTs in the case of clear-sky has a Gaussian 

distribution, therefore the �(��
�|��, �) can be calculated using 

the joint PDF of Gaussian distribution [12]. However, for 
cloudy sky, the BT distribution is not the Gaussian, thus the 

�(��
�|��, �̅) must be determined using empirical cloudy PDF 

look-up tables (LUTs) [12]. For the texture component, both 

�(��
�|��, �)  and �(��

�|��, �̅)  need to be determined using 
empirical PDF LUTs. ESA CCI provided PDFs using the entire 
ATSR time series of observations [31]. It’s not feasible to 
generate the PDF LUT using COCTS observations here 
because the COCTS data volume is not enough. Because the 
channel characteristics of COCTS is different compared with 
ATSRs, such as the SRFs and noise levels for 11 and 12 µm 
channels, the PDF LUTs based on ATSRs observations need to 
be adjusted for COCTS cloud detection.  

    For texture part, the ATSRs PDF LUT provided the PDF 
under different 11 µm LSD33 values and satellite zenith angles 
on day/night. Because the noise of COCTS is larger than 
ATSRs, thus using ATSRs texture LUT directly for COCTS 
texture PDF calculation is not reasonable. We convolved the 
PDF distribution of COCTS noise with AATSR clear/cloudy 
texture PDF to obtain texture PDF applicable to COCTS cloud 
detection, shown as Fig. 5 (a) and (b) where blue curve 
indicating as AATSR clear/cloudy PDF and black curve 
representing as COCTS clear/cloudy PDF at nadir direction. 
The computational details for the texture PDF for COCTS cloud 
detection are introduced in the appendix. 

For spectral part, the two channel AATSR cloudy PDF LUT 
has five dimensions, including “11 µm BT minus NWP SST”, 
“11 µm BT minus 12 µm BT”, “NWP SST”, “path length” and 
“day/night”. Given the different SRFs of COCTS and AATSR, 
BT adjustments are required to use AATSR PDF with COCTS. 
We choose IASI as the “shift bridge” owing to its hyperspectral 
nature and high-quality measurements. The SRFs of COCTS 
and AATSR are convolved with IASI spectral radiance to 
obtain the IASI-convolved BTs corresponding to COCTS and 
AATSR channel specification, respectively. The COCTS BT 
shift is generated by the linear regression based on the IASI-
convolved BTs. 

In this paper, we designate pixels with �(�|��, ��)  larger 
than 0.9 as clear sky [12]. Fig. 6 (a) and (b) are the COCTS 
11μm BTs on 7 May 2011 before and after cloud detection 
respectively, where gray indicates invalid regions (such as land, 
beyond the study area, or satellite zenith angle larger than 50º) 
and white represents cloudy sky. The figures show that the 
cloudy detection is giving plausible results, and we will also 
validate the cloud mask performance using the retrieved SST 
evaluation results in the following part. 

IV. OPTIMAL ESTIMATION SST RETRIEVAL 

A. Introduction to the OE SST retrieval algorithm 

  In this paper, the COCTS SSTs were retrieved by OE 
algorithm from 2009 to 2011 in the northwest Pacific. OE is the 
adjustment of the prior SST in the light of the difference 
between the observed BTs and the BTs that are simulated 
assuming the prior SST to be correct [24-26]. For OE SST 
retrieval, SST is estimated through a weighted combination of 
the prior SST and TCWV, and the difference between the 
observations and the simulated BTs given the prior field. The 
covariance matrix of prior and satellite observation, as well as 
the prior information are also necessary for SST estimation. The 

 

                                                              (a) 

(b) 
Fig. 5.  The texture PDF of COCTS (black curve) and AATSR (blue curve) in 
(a) clear and (b) cloudy sky. 
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OE SST can be obtained through the following equation (3) 
[24-26], 

�� = �� + (����
��� + ��

��)������
����� − �(��)�     (3) 

where �� indicating the prior state, including the prior SST and 
TCWV from ECMWF ERA-Interim NWP data [29-30], and �� 
representing the observed BTs from 11 µm and 12 µm channels. 
�(��)  is the MODTRAN simulated BTs from 11 µm and 12 
µm channels given the prior state. � is the Jacobian matrix, 
expressing the partial derivatives of the BT variation with 
respect to prior state vector. �� is the error covariance of the 
observations relative to the forward model, including the 
uncertainty of the atmospheric radiative model and the sensor 
noise. The model uncertainty is set as 0.2 K according to the 
comparison of MODTRAN simulated BT with line-by-line 
model [32]. The sensor noise we set is 0.2 K, that is the NEDT 
of COCTS infrared channels 
(https://directory.eoportal.org/web/eoportal/satellite-missions 
/h/hy-1b). The ��  is the prior error covariance, including the 
uncertainty of prior TCWV (���) and the uncertainty of prior 
SST (�����). The uncertainty of TCWV is determined using the 
proposed parameterization in Merchant et al. (2013), that is 
expressed as the following equation (4) [26], 

e�� = 0.5 × TCWV × �0.1 +
75 − TCWV

150
� [TCWV in kg/m�]  (4) 

The determination of �����  affect the OE SST accuracy and 
spatial precision, thus playing the important role on OE SST 
retrieval. In the following part, we mainly focus on the ����� 
determination of COCTS OE SST retrieval case. 

B. The determination of prior SST uncertainty 

    The ����� affects the OE SST accuracy and spatial precision 

directly. The spatial resolution of prior SST is around 70 km. If 
����� is underestimated, this means that the OE SST relies more 
on the large-scale prior SST, leading to the decreased spatial 
fidelity of the observed SST fields at the full satellite resolution. 
Another way to express this is that the SST sensitivity in this 
case is low, which leads to underestimation of features such as 
the change in SST over an ocean front [33]. On the other hand, 
overestimated �����  means a sub-optimal amount of 
conditioning of the retrieval by the prior information, causing 
larger OE SST uncertainty from greater propagation of errors 
in the satellite observations and simulated BTs. This increased 
uncertainty is present on a range of spatial scales, including 
higher pixel-to-pixel ‘noise’ in the retrieved SST. The choice of 
����� needs to be determined considering both SST uncertainty 
and spatial fidelity. We compare the prior SST with iQuam 
buoy SST based on the matchups between COCTS and iQuam 
buoy SST. For matching, the temporal window is set as 1 hour 
and the spatial window is 0.01º×0.01º. The comparison results 
show that the mean difference of prior SST minus buoy SST is 
−0.12 ºC, with the corresponding standard deviation of 0.50 ºC. 
Minimizing the overall error variance is not the only choice for 
how to optimise the retrieval result [26], and locally (near fronts 
or when there is strong diurnal warming) such a general value 
may underestimate the prior SST uncertainty. Thus, we try to 
set ����� equal to 0.1 K, 0.5 K, 1.2 K, 2.0 K, 3.0 K, and 5.0 K, 
to explore the OE SST uncertainty and spatial fidelity obtained.  

The accuracy of COCTS OE SST using different ����� 
values is explored by comparing COCTS OE SST with matched 
iQuam buoy SST. For matching, the temporal window is set as 
1 hour and the spatial window is 0.01º×0.01º. Table II shows 
the comparison results of COCTS OE SST minus buoy SST 
difference. When the �����  is set as 0.1 K, meaning that the 
COCTS retrieved SST almost entirely rely on the prior state, 
the mean difference between COCTS OE SST and buoy is 
−0.12 ºC, with the corresponding SD of 0.49 ºC. With the 
increasing of ����� , the absolute value of the negative bias 
becomes larger, and the SD increase. When the ����� is set as 
5.0 K, the COCTS OE SST almost entirely rely on the satellite 
observations under this situation, with the bias being −0.53 ºC 
and the SD being 1.32 ºC.  

Next, the spatial precision of COCTS OE SST image is 
analyzed. We choose a region in SST fronts for the spatial 
precision analysis. Fig. 7 (a) and (b) are the regional prior SST 
and the COCTS 11 µm BT, respectively. The left panels of Fig. 
8 (a)-(f) are the regional COCTS OE SSTs when ����� is set as 
0.1 K, 0.5 K, 1.2 K, 2.0 K, 3.0 K, and 5.0 K, respectively. The 
patterns in Fig. 8 (a) and Fig. 7 (a) are similar at large scales, 
while the satellite image shows details of finer-scale feature. 
With the increasing ����� , the details of the SST features 
become clear, indicating the improvement of spatial fidelity. 
The appearance of finer detail in OE SST is comparable to that 
in the 11 µm BTs when ����� ≥ 1.2 K. To compare the spatial 
precision quantitatively, the histograms of the LSD in 11×11 
boxes (LSD11×11) in different regional images are plotted, 
shown as the right panels in Fig. 8 (a)-(f). The blue curves, red 
curves and black curves represent LSD11×11 histograms of prior 
SST, COCTS OE SST and 11 µm BT, respectively in Fig. 8, 

                         
                             (a)                                                          (b) 
Fig. 6.  COCTS 11 µm scene BT on 7 May, 2011: (a) before and (b) after cloud 
detection 
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where (a)-(f) indicate that ����� is set as 0.1 K, 0.5 K, 1.2 K, 2.0 
K, 3.0 K, and 5.0K, respectively. For prior SST, the LSD11×11 is 
distributed over the range from 0 K to 0.15 K, indicating that 
the spatial precision is relatively low. The histogram of OE SST 
is almost superposed with that of the prior SST when ����� is 
set as 0.1 K. With the increasing �����, the peak of the LSD11×11 

histogram for OE SST moves right, in response to a 
combination of increased sensitivity to surface variability and 
increasing noise propagation. When the ����� increases to 1.2 
K, the LSD11×11 histograms for OE SST coincide with that for 
11 µm BT, indicating that the feature detail for OE SST has 
been reached to close level compared to 11 µm BT. When ����� 
is set as 2 K, 3K, or 5 K, the histogram for OE SST moves right 
relative to that for 11 µm BT. In addition, we also calculated 
the SST sensitivities by choosing the 112 clearest scenes. The 
mean SST sensitivity increases with the increasing �����. When 
�����  is set as 1.2 K, the mean SST sensitivity is 41%. It’s 
necessary to find the trade-off among the expected retrieval 
accuracy, the SST sensitivity and retaining spatial fidelity. 
There is a trade-off between retaining spatial detail and 
suppressing SST noise. In conclusion, considering both the SST 
accuracy and spatial fidelity, we set ����� as 1.2 K for COCTS 
OE SST retrieval in this research.    

 

 

 
 

TABLE II 
THE COMPARISON RESULTS OF COCTS OE SST MINUS BUOY SST 

DIFFERENCE WITH DIFFERENT �����  VALUES 

����� (K) 

COCTS OE SST minus buoy SST 
difference 

bias (°C) SD (°C) 

0.1 −0.12 0.49 
0.5 −0.18 0.48 
1.2 −0.31 0.58 
2.0 −0.42 0.87 
3.0 −0.48 1.10 
5.0 −0.53 1.32 

 

                    
                       (a)                                                                   (b) 
Fig. 7.  Regional (a) prior SST and (b) COCTS 11 µm BT on 22 January 2009.

 

 

 

 

 
Fig. 8. Regional OE SST and the corresponding LSD11×11 histogram 
distributions for regional OE SST, prior SST and 11 µm BT in different �����

cases: (a) �����=0.1 K; (b) �����=0.5 K; (c) �����=1.2 K; (d) �����=2.0 K; (e) 
�����=3.0 K; (f) �����=5.0 K. 
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C. Quality control for OE SST 

Quality flags attached to SST products provide necessary 
auxiliary information for users. It is convenient for SST users 
to select data with different quality levels according to different 
needs. For OE SST retrieval algorithm, the consistency between 
satellite observations and simulations can be used as an 
effective criterion to evaluate the SST confidence index [24]. A 
suitable consistency metric is the chi-squared ( χ�� ), that is 
readily available in the context of OE [34]. χ��evaluates whether 
the differences between prior and retrieval are consistent with 
their expected gaussian distribution, whose covariance S�  is 
given by the following equation (5) [34]: 

                      �� = ��(����� + ��)����                    (5) 
For every retrieved OE SST pixel, there is a corresponding χ�� 
value, calculated using the equation (6) [34]: 

χ�� = ��(�� − ��) − ��� − �(��)��
�

(��)�� ��(x� − ��) − ��� − �(��)��(6) 

Fig. 9 is the variations of SST difference between COCTS OE 
SST and buoy SST against χ�� , where the background color 
indicating the collocation numbers in the χ��  bin of 0.04 and 
SST difference bin of 0.02 C. The purple curve represents the 
SST difference variation, and the black bars indicate the 
corresponding SDs. With the increasing χ��, the absolute value 
of the negative biases as well as the SDs become larger, 
demonstrating that the χ�� is an effective indicator to express the 
quality level of OE SST. Table III shows the statistics of 
comparison results between COCTS OE SST and buoy SST. 
According to the validation results, we set the SST with the χ�� 
values ranging from 0 to 2 as the high-quality data, and 
2 < χ�� < 5 is the moderate-quality level. If χ�� > 5, the SST 
data are considered as low-quality, since the degree of 
inconsistency indicated by the high χ�� value indicates that the 
retrieval assumptions are less valid for these data. 

 

 

V. COCTS OE SST VALIDATION 

    In this research, in situ SST and AATSR CCI SST are used 
to validate COCTS OE retrieved SST. Here we select the 
COCTS OE SSTs that are assigned high-quality level for 
detailed validation. 

The in situ SST data used for SST validation is from the in 
situ SST Quality Monitor System (iQuam), developed by the 
NOAA Center for Satellite Application and Research (STAR) 
(https://www.star.nesdis.noaa.gov/socd/sst/iquam/index.html). 
iQuam SST data are quality-controlled in situ data from the 
original Global Telecommunication System (GTS) datasets. 
Considering the reliability and accuracy of the in situ data, 
only buoy data in best quality level are selected for validation 
in this paper. The uncertainties using three-way analysis were 
estimated to be ~0.21 K for drifters and ~0.17 K for tropical 
moorings, respectively [35]. COCTS OE SSTs are collocated 
with iQuam buoy measurements. The temporal window of 
matchups is set as 1 hour and the spatial window is 0.01º×0.01º. 
The total matchup number is 2433. The mean difference of 
COCTS OE SST minus buoy SST is −0.23 C and the SD is 
0.51C. Fig. 10 shows the variation of SST difference against 
buoy SST. The background color represents the collocation 
numbers located in buoy SST bin of 0.1C and SST difference 
bin of 0.02 C. The purple line is the variation of mean SST 
difference in every 2 C SST bin and the black bars represent 
the two times uncertainty in the mean. The orange horizontal 
line at −0.17 C SST difference represent the cool skin effect 
[36]. The results of Donlon et al. (2002) showed that in a calm 
sea with a wind speed of about 6 m/s, the skin temperature was 
about 0.17C lower than bulk temperature observed by buoys 
[36]. Most collocations are located in warm water. In the SST 
range from 24 C to 30 C, the biases are stable around −0.17 
C with the lower uncertainties. In the SST range lower than 20 
C, the mean difference of COCTS minus buoy SST is around 
−0.35 C with relatively larger uncertainties. Fig. 11 is the 
variation of SST difference against TCWV. SST differences are 
stable in the whole TCWV range within their uncertainties, also 
not representing dependence on TCWV, indicating that the OE 
algorithm can effectively eliminate the influence of water vapor. 
The difference between satellite observation and MODTRAN 
simulation is one reason causing the cold bias between OE SST 
and buoy measurements. In addition, the depth difference of 
infrared sensor measurement with buoy also lead to the SST 
difference, usually representing that the skin temperature 
measured by infrared instrument is colder than bulk 
temperature measured by buoy. The observation depth 
difference between COCTS and buoy can therefore explain a 
significant fraction of the −0.23C discrepancy, suggesting the 

Fig. 9.  The variation of COCTS OE SST minus buoy SST difference against 
Chi-square. The background color indicates the collocation numbers in the χ��

bin of 0.04 and SST difference bin of 0.02 C. The purple curve represents the 
SST difference variation, and the black bars indicate the corresponding SDs. 

TABLE III 
THE COMPARISON RESULTS OF COCTS OE SST WITH BUOY SST IN 

DIFFERENT Χ̂� RANGES 

χ� 

COCTS OE SST minus buoy SST difference 

bias（°C） SD（°C） 
collocation 

percentage（%） 

0<χ� < 1 −0.22 0.48 60.62 
1<χ� < 2 −0.28 0.61 16.40 
2<χ� < 5 −0.50 0.78 16.05 

χ� > 5 −0.86 1.02 6.93 
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actual retrieval bias in the COCTS OE SST is less than 0.1C 
in magnitude. Systematic errors with buoy data, prior SST and 
prior WV also contribute to the difference between COCTS OE 
SST and buoy SST. 

AATSR SST is also selected as a reference to validate 
COCTS OE SST. AATSR L2P SST products are obtained from 
the SST CCI project of ESA [5]. These AATSR SSTs use a 
dual-view two-channel retrieval method and have uncertainty 
around 0.23 ºC [6]. The descending node of AATSR is 10:30 
am, that is very close to the descending time of COCTS around 
10:30 am±30 min. In addition, SSTs observed by COCTS and 
AATSR are both skin temperatures with the same measurement 
depth. We choose 112 scenes of COCTS OE SST to compare 
with AATSR SSTs. COCTS OE SST and AATSR SST are 
projected on equal grid map with the spatial resolution of 
0.01º×0.01º. The total matchup number is 7264012. The 
comparison results show that the mean difference of COCTS 
OE SST minus AATSR SST is −0.09 ºC and the SD is 0.49 ºC. 
Fig. 12 shows the histograms of COCTS OE SST minus buoy 
SST difference and COCTS OE SST minus AATSR SST 
difference. Compared with the statistic results between COCTS 
and buoy SST difference, the mean difference between COCTS 
OE SST and AATSR is smaller, and the histogram distribution 
move right, demonstrating that the main reason of the −0.23 ºC 
bias between COCTS and buoy is due to the measurement depth 
difference. And the bias difference between two validation 
results is 0.14 ºC, that is close to the accepted typical value 
around −0.17 ºC. In addition, the cold tail is modest in these two 
histograms, indicating that cloud missing detection is not 
affecting a large fraction of data.   

 
 
 
 
 
 
 

 

 

VI. CONCLUSION 

In this research, the HY-1B COCTS SST is retrieved using 
the OE SST algorithm. Based on the unidirectional variational 
model, the de-striping of COCTS radiance is conducted. After 
de-striping, the striped noise in COCTS re-calibrated radiance 
is reduced significantly. Bayesian cloud detection algorithm is 
applied, and both the COCTS BT images and the retrieved SST 
validation distributions show that the cloud detection is 
effective for SST retrieval. The OE algorithm is used for 
COCTS SST retrieval, based on COCTS simulated BT and 
ERA Interim SST as the prior SST. The COCTS OE SSTs are 
compared with buoy SSTs and AATSR SSTs. The mean 
difference of COCTS minus buoy SST and COCTS minus 
AATSR SST are −0.23 ºC and −0.09 ºC, respectively, and the 
corresponding SDs are 0.51ºC and 0.49 ºC. Because of the 
series of sophisticated algorithms applied (cross-calibration, 
de-striping, Bayesian cloud detection and optimal estimation 

Fig. 10.  The variations of COCTS minus buoy SST difference against buoy 
SST. The background color represents the collocation numbers located in buoy 
SST bin of 0.1C and SST difference bin of 0.02 C. The purple line is the 
variation of mean SST difference in every 2 C SST bin and the black bars 
represent the two times uncertainty in the mean. The orange horizontal line at 
−0.17 C SST difference represent the cool skin effect. 

Fig. 11. The variations of COCTS minus buoy SST difference against TCWV.
The background color represents the collocation numbers located in TCWV 
bin of 0.4 kg/m2 and SST difference bin of 0.02 C. The purple line is the 
variation of mean SST difference in every 5 kg/m2 TCWV bin and the black 
bars represent the two times uncertainty in the mean. The orange horizontal 
line at −0.17 C SST difference represent the cool skin effect. 

Fig. 12. The histograms of COCTS OE SST minus buoy SST difference (in 
blue bar) and COCTS OE SST minus AATSR SST difference (in yellow bar).
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retrieval), accuracy of COCTS OE SST is able to be equivalent 
to that of international high-quality SST products, with bias (as 
a skin SST) less than 0.1ºC and SD less than 0.5 ºC. The HY-1 
series satellites are Chinese important marine satellites for 
ocean color and SST observations. The HY-1A and HY-1B 
satellites are experimental satellites, launched in 2004 and 2007, 
respectively. The HY-1C and HY-1D satellites are the 
operational satellites, launched in 2018 and 2020, respectively. 
In this paper, the de-striping, Bayesian cloud detection and 
optimal estimation SST retrieval algorithms worked well for 
HY-1B COCTS SST re-processing, therefor the SST accuracy 
of HY-1B COCTS improved a lot. This research also benefits 
development of cloud detection and SST retrieval of 
operational HY-1 series satellites, HY-1C and HY-1D satellites, 
since the algorithms used are suitable for operational 
implementation. It is also of great significance for the 
subsequent establishment of climate data record from HY-1 
series satellites.  

APPENDIX 

This appendix provides computational details for the texture 
PDF applicable to COCTS cloud detection. Firstly, we estimate 
a PDF for the noise LSD of HY-1B COCTS according to its 
NEDT. Secondly, we derive the approximation relationship for 
the LSD of HY-1B COCTS, which we denote as ���� . For 
simplicity, we drop the subscript ��� . Specifically, �  is 
estimated from the COCTS noise LSD, � ,and AATSR LSD, �, 
with negligible errors. It is formulated as the following equation 
(7), 

 � = ��� + ��  (7) 

where �, �, � are all positive real numbers. Thirdly, the 
distribution function of y can be formulated as the equation 
(8), 

 
��(�) = �(� ≤ �) = � �(�, �)����

√��� ����

= � � �(�, �)
������

��

�

��

���� 

 
(8) 

We set � = √�� − ��, where � > � since � > 0, and then the 
integral can be reformulated as equation (9): 

� �(�, �)
������

��

�� = �
�

√�� − ��
� ���� − ��, ��

�

��

�� 

 .  (9) 
Afterwards, we could obtain the distribution function ��(�) 

as equation (10): 

��(�) = � ��
�

√�� − ��
�� ���� − ��� ��(�)

���

�

���
�

��

�� 

   (10) 
where � is a small value to avoid numerical instability. Note 
that � and � are independent, and thus we can use their product 
to represent the joint PDF. We refer the integral item in square 
brackets [ ] as the convolution. It is worth noting that it follows 
a similar form of convolution, since the conventional 

convolution is ∫ ��(� − �)��(�)
�

��
��. 
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