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A B S T R A C T   

We present a comprehensive global sensitivity analysis of two single-objective and two multi-objective state-of- 
the-art global optimization evolutionary algorithms as an algorithm configuration problem. That is, we investigate 
the quality of influence hyperparameters have on the performance of algorithms in terms of their direct effect and 
interaction effect with other hyperparameters. Using three sensitivity analysis methods, Morris LHS, Morris, and 
Sobol, to systematically analyze tunable hyperparameters of covariance matrix adaptation evolutionary strategy, 
differential evolution, non-dominated sorting genetic algorithm III, and multi-objective evolutionary algorithm 
based on decomposition, the framework reveals the behaviors of hyperparameters to sampling methods and 
performance metrics. That is, it answers questions like what are hyperparameters influence patterns, how they 
interact, how much they interact, and how much their direct influence is. Consequently, the ranking of hyper-
parameters suggests their order of tuning, and the pattern of influence reveals the stability of the algorithms.   

1. Introduction 

Optimization is at the core of advancement in machine learning and 
problem-solving. Effective optimization plays a vital role in solving 
problems, whether single-objective or multi-objective problems. For 
example, be it a simple neural network or deep learning, or a simple 
linear or nonlinear function, optimizing the coefficients (e.g., weights of 
neural networks) is the most crucial aspect, which requires effective 
optimization algorithms. Evolutionary algorithms (EAs) are global 
optimization algorithms that iteratively guide a population towards a 
final population, solving various problems. EAs are widely used because 
of their agnostic nature to problems being solved [1]. However, their 
effectiveness relies on hyperparameters like population size and genetic 
operators [2]. Understanding the sensitivity of hyperparameters to an 
algorithm’s performance can be formulated as an algorithm configuration 
problem (ACP) [3,4], where informing optimal hyperparameter selection 
is essential for solving various tasks such as the optimization of neural 
networks [5], deep learning [6], and bio-inspired algorithms [7,8]. More 
specifically, ACP can be described as a process or a framework that aims 
to find a particular configuration of parameters for a target algorithm. 
And it minimizes a cost metric incurred by the algorithm on a given 

problem [9]. 
Since hyperparameters tuning is crucial in achieving high-quality 

performance in solving optimization problems, methods such as 
manual tuning, grid search, and Bayesian search optimization are used. 
Bergstra and Bengio [10] have shown the importance of random search 
instead of a grid search in sampling hyperparameter values. In addition, 
manual tuning without proper knowledge of hyperparameters can lead to 
too many trial-and-errors, and grid search and Bayesian search optimi-
zation are computationally expensive approaches that are often infea-
sible for such population-based optimization algorithms. Thus, Bergstra 
and Bengio [10] suggest that tuning some hyperparameters is more 
necessary than the others. Hence, our objective in this research is to 
assess the ranking and effectiveness of hyperparameters of four 
well-known EAs: covariance matrix adaptation evolutionary strategy 
(CMA-ES) [11], differential evolution (DE) [12], non-dominated sorting 
genetic algorithm III (NSGA-III) [13], and multi-objective evolutionary 
algorithm based on decomposition (MOEA/D) [14]. 

We select these algorithms as they are state of the art algorithms in 
single-objective and multi-objective optimization. They are the highly 
cited algorithms not only within the scientific community of bio- 
inspired computation but also in other scientific disciplinary areas 
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such as operations research, applied mathematics, electrical engineer-
ing, civil engineering and many other research areas [15]. These algo-
rithms are widely used in multiple multidisciplinary/interdisciplinary 
problems and are widely used to address real-world problems and open 
problems in a wide variety of research areas. 

Moreover, researchers have massively investigated these algorithms 
to improve their performance. For example, a number of improvements 
to DE have been provided, including success-history based adaptive DE 
versions [16,17], mutation operator improvement [7,18–22] and 
scaling factor in mutation for accelerating convergence [23]. Similarly, 
an improved step size (mutation) strategy for the CMA-ES algorithm is 
investigated by Voß et al. [24], improved decomposition strategy like 
normal boundary intersection-style Tchebycheff approach, adaptive 
replacement strategies to assign a new solution to a sub-problem, and 
adaptive weight vector adjustment strategy for sub-problems, respec-
tively proposed by Zhang et al. [25], Wang et al. [26], Qi et al. [27] for 
MOEA/D algorithm. Similarly, for NSGA-III performance enhancement, 
Cui et al. [28] designed an operator to balance the convergence and 
diversity of the population. 

Such usefulness makes these algorithms suitable candidates to be the 
example of algorithms that can be used as test-beds for the sensitivity 
analysis methodology presented in our research work. Obviously, our 
methodology applies to all optimization algorithms with parameters (e. 
g., evolutionary, randomized, hybrid, constrained [29], dynamic [15], 
etc.). The algorithms used in the paper are only a good sample of single- 
and multi-objective optimization algorithms. We think the optimization 
research community and interdisciplinary research community 
mentioned above will benefit as many more optimization algorithms, 
including many-objective optimization algorithms [30–32], that can be 
studied using the methodology proposed in this paper. 

In this work, we develop a framework for comprehensive sensitivity 
analysis of hyperparameters of these algorithms using global sensitivity 
analysis methodologies: elementary effects [33] and variance-based 
sensitivity analysis [34]. Using these methodologies, we assess the 
effectiveness of EA hyperparameters. Such an analysis investigates a 
model’s parameters (or an algorithm’s hyperparameters) influence on 
its output [35,36], leading to the minimization of the number of critical 
tunable hyperparameters to improve a model’s performance [37,38]. 

In our ACP framework, the performance of single-objective EAs was 
assessed as per the best solution, while the performance of multi- 
objective EAs was assessed using three metrics: generational distance 
[39,40], inverse generational distance [13], and hyper-volume indicator 
index [41]. To evaluate EAs, we use state-of-the-art optimization prob-
lems belonging to diverse families: for single-objective optimization, we 
use a set of 33 problems [42–44], and for multi-objective optimization, 
we use a set of 10 problems [13]. 

Our ACP framework assesses each algorithm on three sensitivity 
analysis methods: Morris Latin Hypercube sampling [33], Morris sam-
pling [33], and Sobol [34]. For each sample drawn from a hyper-
parameter search space, we ran each algorithm on 30 independent runs 
(for some, it was 10 times) and presented results using elementary ef-
fects and Sobol indices. These indices inform about (i) the direct effect 
and (ii) the interaction effect of a hyperparameter with other hyper-
parameters. Moreover, these two effects form a comparative matrix of 
low effect to high effect, where the diagonal from low direct and low 
interaction effects to high direct and high interaction effects shows the 
order and ranking of the hyperparameters. We ran algorithms on a suf-
ficiently large sample set. These experiments were computationally 
expensive as they, in total, had 19 014 600 000 function evaluations. 
Computation of these sensitivity analysis indices is expensive, but they 
are a one-time effort, and once the ranking is determined, results are 
informative to researchers for further analysis and solving optimization 
problems. The source code and results are available at https://github. 
com/vojha-code/SAofEAs. 

Our results reveal the pattern and behavior of hyperparameters to 
different sampling methods and matrices used to evaluate the 

performance of the algorithm. These patterns show how hyper-
parameters interact with one another or how the influence of one 
hyperparameter overwhelms the other. Moreover, results reveal how an 
algorithm is susceptible to its various hyperparameters and sampling 
methods, highlighting the stability of an algorithm. Consequently, these 
experiments rank the hyperparameter importance for an algorithm. For 
example, mutation type was found to have the strongest influence on the 
performance of DE, and results suggest the high importance of popula-
tion size followed by the initial step size, crossover probability, and 
mode of decomposition, respectively, in CMA-ES, NSGA-III, and MOEA/ 
D. 

Later in Section 2, we present related work. Then, Sections 3–5 
respectively describe algorithms, methodology, and experiments. The 
results are discussed in Section 6, followed by conclusions in Section 7. 
Supplementary A and B offer statistical tests and clustering analysis. 

2. Related work 

Hyperparameter tuning is a crucial subject that has continuously 
been reported in the literature over the past decades [2]. This is because 
an appropriate hyperparameter setting is challenging since EA hyper-
parameters exhibit linear and nonlinear effects [45], meaning that they 
show various interactions among them [2,46,47]. Abundant literature is 
available on EA hyperparameters tuning [45,46,48]. The majority of 
which focus on the static or dynamic setting of the hyperparameters 
[49–51]. However, a systematic study of the EA hyperparameters in-
fluence is rare [52], and it is largely attributed to the computationally 
expansive nature of EAs and the empirical evaluation requirement for 
the tuning of their hyperparameters [53]. For example, a package Irace 
experimentally evaluates optimal hyperparameters for an optimization 
algorithm [3]. Therefore, De Jong [2] posed questions like (i) what EA 
hyperparameters are useful for improving performance, and (ii) how do 
changes in a hyperparameter affect the performance of an EA? 

Sensitivity analysis answers questions like how uncertainty in each of 
the hyperparameters influences the uncertainty in the output of a model [54]. 
Hence, sensitivity analysis is useful in answering the questions of De 
Jong [2]. However, sensitivity analysis is a computationally expansive 
method since hyperparameters are sampled from a vast hyperparameter 
search space. Therefore, the sensitivity analysis of EAs has very high 
computational (time) as well as memory (space) overhead. This has 
resulted in very few reported works available in the literature, despite its 
advantages in suggesting a ranking of hyperparameter importance. 

The dynamic tuning of hyperparameters requires hyperparameters 
to adapt during an EA run [55], while static tuning informs which 
hyperparameters to tune before an EA run [50]. A systematic approach, 
like sensitivity analysis, is a static hyperparameter tuning approach. 
Paul et al. [56] offered an introductory work on the usage of local and 
global sensitivity analysis. However, they used a simple test case, and 
they mainly performed a sensitivity analysis of EAs from a theoretical 
perspective. Pinel et al. [52] performed a comprehensive sensitivity 
analysis of a parallel asynchronous cellular genetic algorithm on a 
scheduling problem. They comprehensively evaluated EAs population 
size, mutation probability, crossover probability, and other cellular ge-
netic algorithm-related hyperparameters using the Fourier amplitude 
sensitivity test (Fast99) [57]. Pinel et al. [52] reported a ranking of 
hyperparameters on scheduling problem instances. On this scheduling 
problem instance, the crossover probability was ranked first, and in 
another instance, it was ranked third. 

Our work takes an experimental approach to systematically analyze 
the importance of hyperparameters of state-of-the-art EAs on a testbench 
of state-of-the-art problems by applying Morris [33] and Sobol [34] 
sensitivity analysis methodologies. Our methodology comprises both 
single-objective and multi-objective EAs. Our framework offers a 
ranking of hyperparameters and insights into their effectiveness on EA 
performance. Our methodology is an Algorithm Configuration Problem 
(ACP) framework as defined by Iommazzo et al. [4]. This approach is 
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contextually similar to the AutoML approaches [58], where the effort is 
to find the optimal configuration of algorithms and hyperparameters to 
solve machine learning tasks through automatic data preparation, 
feature engineering, hyperparameter optimization, and neural archi-
tecture search or even optimization of neural network components such 
as activation functions [59]. Table 1 is a summary of hyperparameter 
methods compared to sensitivity analysis methods. 

In fact, the ACP scope covers a wider range of methodologies and 
frameworks that seek to automate the design of algorithm configuration, 
such as AutoMOEA [60], Auto Weka [61], Auto-sklearn [62], irace [3], 
and others for machine learning hyperparameter optimization [63]. The 
goal of these methodologies is to perform hyperparameter optimization 
and automatic design of new algorithms by assessing components and 
parameters that offer the best performance on a set of problem instances 
[4,61]. The critical issue in such categorization is whether one would 
consider, for instance, a new evolutionary operator design in an EA 
framework as a new algorithms design or hyperparameter optimization? 
In our work, we consider such a scenario as hyperparameter optimiza-
tion. However, we considered the ACP framework for the analysis of the 
sensitivity and influence of the hyperparameters on the performance of 
an algorithm rather than the optimization (or tuning) of the hyper-
parameters. For this, the framework systematically searches hyper-
parameters and assesses the performance of an algorithm, which is 
contrary to finding specific optimal values for a hyperparameter as other 
hyperparameter tuning methods would do. Hence, the goal of our ACP 
framework is to inform the ranking of the effectiveness of hyper-
parameters for a set of EAs. 

3. Evolutionary algorithms 

EAs are population-based evolution-inspired algorithms. EAs itera-
tively find solutions to a problem by applying evolutionary operators to 
candidate solutions. Selection, recombination, and mutation are among 
evolutionary operators applied to candidate solutions that generate new 
solutions in each generation. Such a process guides a sequence of gen-
erations from an initial population of candidate solutions to a final 
population. Four different EAs are investigated in this research: two 
single-objective and two multi-objective algorithms. Each of these EAs 
has its own version of evolutionary operators. This Section briefly de-
scribes each of these EAs and their performance measure metrics. 

3.1. Single-objective evolutionary algorithms 

A single-objective optimization (SOO) algorithm (single solution- 
based or population-based) minimizes an objective function (a cost func-
tion or a problem) as 

f : Rn→R

x↦f (x), (1)  

where x ∈ Rn is a candidate solution (a search point in a solution space 
X), and we want f(x) to be as minimum as possible. An SOO algorithm 
converges to a solution x∗ such that f(x∗) ≤ f(x), ∀x ∈ X. The solution x∗, 
therefore, is a global minimum (global optimum). However, if for f(x∗) ≤

f(x) there exists some δ > 0 such that |x − x∗| ≤ δ for any x ∈ X, then the 
solution x∗ is a local minimum (near-optimum). 

We study two population-based single-objective global optimization 
algorithms: CMA-ES [11] and DE [12]. The basic steps and operators of 
CMA-ES and DE are as follows. 

3.1.1. Covariance matrix adaptation evolution strategies (CMA-ES) 
CMA-ES is a population-based evolutionary strategy optimization al-

gorithm [11]. CMA-ES algorithm generates new candidate solutions 
during its search by sampling solutions from a multivariate normal dis-
tribution, N (m, C), uniquely determined by its mean m ∈ Rn and its 
symmetric positive definite covariance matrix C ∈ Rn×n. The initial 
population of λ candidate solutions at generation g = 0 is sampled as 

xg
k ∼ mg + σgN (0,Cg) for k = 1,…, λ, (2)  

where N (0,C) is a multivariate normal distribution with zero mean and 
covariance matrix Cg ∈ I, and σg ∈ R>0 is an initial step size. 

For generation g = 1, 2, …, multivariate normal distribution N (m,

Cg+1) is generated (updated) with mean m ∈ Rn and covariance matrix 
C ∈ Rn×n updated with scalar factor σg ∈ R>0. Selection and recombi-
nation operations in CMA-ES are equivalent to computing moving mean 
mg+1, a weighted average of selected points λratio from generation g. 
Adding a random vector with zero-mean acts as a mutation in CMA-ES 
during the offspring generation step. The steps size control and covari-
ance matrix adaptation (learning rate αμ) are additional two necessary 
steps in a generation of CMA-ES [11]. 

3.1.2. Differential evolution (DE) 
DE is a gradient-free EA, originally proposed by Storn and Price [12]. 

DE iteratively searches for a solution. For an initial population X = [x1,

x2,…, xλ] of size λ, DE repeats its steps selection, mutation, and recombi-
nation until an optimum solution vector x∗ is obtained, or until a 
maximum iteration is reached. At each generation g = 1,2,…, DE 
randomly selects three distinct candidate solutions xg

r1, xg
r2, and xg

r3 from 
X such that xg

r1 ∕= xg
r2 ∕= xg

r3. The selection of a base vector xg
r1 plays a 

crucial in DE. 
A mutation operation is performed on a base vector xg

r1 to generate a 
donor vector vg+1, which is generated using a mutation method btype, a 
difference vector (xg

r2xg
r3), and acceleration coefficient β. A mutation 

method btype = “DE/rand/1” or similar mutation is performed as 

vg+1 = xg
r1 + β(xg

r2xg
r3). (3) 

A crossover operation using a crossover method {bin, exp} is per-
formed to generate a trial vector ug+1 which takes its elements from a 
donor vector vg+1 using a crossover probability P[X]. If the fitness f(ug+1)

is better than the target vector f(xg+1
t ), then the trial vector ug+1 replaces 

the target vector xg+1
t . 

3.2. Multi-objective evolutionary algorithms 

A multi-objective optimization (MOO) algorithm minimizes two or 
more objective functions simultaneously as 

F(x) ≡ (f1(x),…, fk(x)), i.e., F : Rn→Rk for k ≥ 2 (4)  

such that no one objective of the problem can be improved without a 
simultaneous detriment to at least one of the other objectives. Each fl(x),
l = 1,2,…, k is a scalar objective, and MOO optimizes the objective 
vector F(x) where x ∈ Rn is its feasible solution. More specifically, a 
MOO algorithm produces a set of non-dominated solutions {x1, x2, …,

Table 1 
Hyperparameter tuning methods and sensitivity analysis (our framework). 
Hyperparameter tuning methods are search techniques for optimal hyper-
parameter values whereas our framework finds ordering of their significance 
and their sensitivity of influence on the algorithm.  

Method Tuning Type Use 

Manual 
Tuning 

static requires intuitive 
guesses 

trails and errors 

Grid Search static systematic search uninformed search 
Bayesian 

Search 
static informed search expansive and specific to 

instances 
AutoMOEA dynamic systematic and 

informed 
expansive and subjective 

AutoML dynamic informed search expansive and specific to 
problems 

Our 
Framework 

Static ranking and analysis expansive but one at a time  
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xλ′ }, also known as the Pareto-optimal solutions set [64]. 
A solution xi dominates other solution xj if for j = 1,2,…,λ, i ∕= j, and 

for all objectives l = 1,2,…,k, fl(xi)≼fl(xj) holds, where ≼ should be read 
as “better off.” On the contrary, a solution xi is non-dominated if, for at 
least one objective l, fl(xi)≼fl(xj) does not hold. For each xi, a set of such 
non-dominated solutions are called a Pareto-optimal set of solutions. 

In this paper, we study the population-based multi-objective global 
optimization algorithms NSGA-III [13] and MOEA/D [14] and investi-
gate their algorithmic hyperparameter setting in obtaining a better 
Pareto-optimal set of solutions. 

3.2.1. Non-dominated sorting genetic algorithm–III (NSGA-III) 
NSGA-III is a population-based MOO algorithm [13]. NSGA-III uses 

fast non-dominated sorting and niching operations to guide an initial 
population X of size λ candidate solutions through a predefined number 
of generations to a final population while simultaneously optimizing 
trade-offs of multiple objectives. In each step of NSGA-III, crossover, 
mutation, and non-dominated sorting is performed. 

The fast non-dominated sorting sorts the λ candidate solutions into 
several sets (called Fronts) of non-dominated solutions: F1, F2,…, Fs such 
that the Front F1 contains all the non-dominated candidate solutions of 
population X. That is, no one solution in F1 is dominated by any other 
solutions. From all the remaining solutions (i.e., except the ones already 
in F1), a new Front F2 that contains all the next non-dominated solutions 
of X is determined. Similarly, Front F3 and other Fronts are subsequently 
obtained using non-dominated sorting. Thus, it is possible to assign a 
rank to the candidate solutions such that those on the Front F1 have rank 
1, solutions in Front F2 have rank 2, and so on. 

NSGA-III performs niching as its selection operation on non- 
dominated sorting solutions. Niching takes advantage of a predefined 
set of reference points placed on a normalized hyperplane of a 
k-dimensional objective-space [65], where each individual x ∈ X in the 
population is associated with reference points [13]. The total number of 
reference points depends on the predefined number of divisions asso-
ciated with each objective axis. NSGA-III repeats its operations selection, 
crossover, mutation, and recombination until a maximum iteration or a 
termination condition is reached. The performance of NSGA-III is 
measured in terms of the quality of solutions it produces in its iteration 
and in the final population. 

3.2.2. Multi-objective evolutionary algorithm based on decomposition 
(MOEA/D) 

MOEA/D solves a MOO problem by decomposing the MOO problem 
into many single (scalar) objective sub-problems [14]. Tchebycheff 
approach [66] or normal boundary interaction approach [65] are typi-
cally used approaches for decomposing a MOO problem into (say) N 
scalar sub-problems. A uniform spread of N weight vectors {w1,…,wN}

and reference point z∗ = (z1
j ,…, zk

j ) = min{fi(x)
⃒
⃒x ∈ X}, for i = 1,…, k 

is used for computing j = 1,2,…,N scalar objectives yte(x
⃒
⃒wj). 

The scalar objective in Tchebycheff decomposition method is 

yte(x
⃒
⃒wj) = max1≤i≤k{wi

j

⃒
⃒
⃒fi(x) − z∗}), where the weight vector wj = (w1

j ,

…,wk
j ). The optimal solution of yte(x|wi) for weight vector wi should be 

close to a solution yte(x
⃒
⃒wj) for weight vector wj. Hence, in MOEA/D, a 

neighborhood of weight vector wi is defined with many closest points in 
{w1,…,wN}. The neighborhood may play a vital role in MOEA/D. 

Moreover, each objective is optimized as a single (scalar) objective 
problem. That is, ith objective is optimized such that it minimizes its 
distance from a reference point on a k-objective space. Thus, all 
decomposed sub-problems move towards the reference point z∗. MOEA/ 
D maintains T closest solution vectors (Neighbor) for each candidate 
solution in successive steps. In each iteration, MOEA/D generates a new 
solution by selecting two solution vectors using genetic operators and 
evaluating them in order to update their neighborhood and the best 
solution x∗. The details of the MOEA/D algorithm are available in Zhang 

and Li [14]. 

3.3. Performance metrics 

3.3.1. Single objective metrics 
A population-based EA applied to solve a single-objective problem 

offers the best solution in its final population. The best solution, x∗ is the 
one that has the lowest f(x) value among all solutions of all generations 
of a single-objective EA. Hence, the Best Solution obtained in fewer 
generations in a lesser wall clock time measures the quality of a single- 
objective EA. 

3.3.2. Multi-objective metrics 
Multi-objective EAs applied to a MOO problem typically offer a set of 

solutions that satisfy trade-offs between the objectives. This set of so-
lutions is non-dominated solutions which are also known as a Pareto- 
front. A multi-objective EA, therefore, guides a population of candi-
date solutions from current Pareto-front A toward a true Pareto-front Z. In 
such a setting, three indicators are used to measure and compare the 
performance of EAs on MOO problems: generational distance, inverse 
generational distance, and hyper-volume indicator (Fig. 1): 

Generational distance (GD) Generational distance GDi at an iteration, 
i, measures the generational distance between current Pareto-front and 
true Pareto-front of a multi-objective problem [39,40]. Generational 
distance GDi is a measure of error between current Pareto-front and true 
Pareto-front as 

GDi≜

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑
i=1d2

i

√

n
, (5)  

where d2
i is the distance of the ith solution in current Pareto-front A from 

the true Pareto-front Z [40], and GD is typically the average distance of 
such n solutions (Fig. 1). Hence, GD is a minimization metric where a 
low value indicates a better solution. 

Inverse generational distance (IGD) Inverse generational point pro-
vides combined information on the solutions’ diversity and convergence 
quality. It makes use of a set of target reference points in k-dimensional 
objective space. Like GD, IGD compares solutions in the current Pareto- 
front A with true Pareto-front Z. However, IGD uses a single reference and 
computes the average Euclidean distance between all solutions that are 
nearest to the target reference points [13] as 

IGD(A,Z)≜
1
|Z|
∑|Z|

i=1
min
|A|

j=1
d
(
zi, aj

)
, (6)  

where d(zi, aj) = ‖ zi, aj ‖2. Similar to GD, IGD is a measure of error 
between the current Pareto-front and true Pareto-front. Hence, lower 
values of IGD indicate a better solution. 

Hypervolume indicator (HV) Hyper-volume indicator, HV measures 
the dominance of Pareto-front solutions on a geometric space (e.g., area 
for a 2D objective space) framed by the k-dimensional objective-space 
with respect to a positive semi-axle r (see Fig. 1). Hence, HV measures 
the quality Pareto-optimal solutions set [67], and it is an indicator of the 
quality of the solutions obtained by two algorithms with respect to the 
same reference frame. The goal is to maximize the hyper-volume indi-
cator index HV. A greater value indicates that the algorithm’s overall 
performance is better with respect to another algorithm associated with 
a smaller hyper-volume value. Moreover, the greatest contributing point 
in a hyper-volume indicator analysis is the point covering the largest 
area, which can be considered the best solution [68]. 

4. Global sensitivity analysis 

The goal of the sensitivity analysis is to study how the uncertainty of a 
model’s output depends on the uncertainty of its inputs [69,70]. The 
elementary effects analysis, known as the “Morris method” [33], and 
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variance-based sensitivity analysis, known as the “Sobol method” [34], are 
used in this research for the global sensitivity analysis of the hyper-
parameters of four EAs. This framework of combining sensitivity anal-
ysis and EAs is an algorithms configuration problem that aims to inform 
algorithm performance to variations in hyperparameter on problem 
instances [4]. 

4.1. Elementary effects 

The elementary effects (EE) technique, known as the “Morris method” 
as it was originally introduced by Morris [33], is an effective way to 
analyze the effects (sensitivity) of input variables on the outputs of a 
model or a system. In our case, the Morris method assesses the EE of the 
algorithmic hyperparameters on the performances of an EA. This is 
useful in analyzing the sensitivity of EA hyperparameters as the Morris 
method determines whether the effects of a hyperparameter on a 
model’s outputs (EA performances on functions) are (a) insignificant 
and negligible, (b) linearly correlated, or (c) non-linearly correlated or 
involved in an interaction with other hyperparameters [70]. 

We briefly introduce the computation of EE as follows. Let us have Y 
= f(X), or simply Y(X) be the output of a model f(⋅) (an algorithm) that 
takes k hyperparameters X = {X1,X2,…,Xk} from a hyperparameter 
space Ω of the p-level grid. Then we compute the elementary effect EEi of 
ith hyperparameter Xi as 

EEi =
Y(X1,…,Xi− 1,Xi + Δ,…,Xk) − Y(X1,…,Xi− 1,Xi,…,Xn)

Δ
, (7)  

where Δ is a value in 
(

1
p− 1,…,1 − 1

p− 1

)
which is an incremental change in 

the values of hyperparameter Xi when Xi is sampled from p-level grid 
hyperparameter space Ω. In this scenario, for k hyperparameters and p 
discrete levels, Δ = p/2(p − 1) indicates the distance (length) between 
two levels in the hyperspace Ω along ith axis. The total points in the 
hyperparameter space Ω, therefore, are pk− 1[p − Δ(p − 1)] grid points, 
which increase exponentially as the number of hyperparameters k in-
creases. However, we use a one-at-a-time (OAT) sampling technique for 
generating r sample points from this space to compute r EEs for each 
hyperparameter. 

In the OAT sampling technique, hyperparameter Xi value is changed 
from a grid point X(j)

i to the adjacent grid point X(j±1)
i by a length of Δ 

while all other hyperparameters (say X∼i) remain as it is. Then the next 
hyperparameter Xi+1 is chosen, whose value is changed while others 
remain fixed. This way of sampling is a uniform, non-repeating random 
walk through the grid of hyperspace Ω (we call it Morris [33]). Another 
way of sampling points (a set X of hyperparameters) from the hyper-
space Ω is to use the Latin Hypercube Sample (LHS) based Morris 
method (Morris LHS) [71], which is a stratified sampling approach to 

cover all region of the hyperspace Ω. Here, we typically select r sample 
points for each hyperparameter Xi. Hence, both OAT-based Morris LHS 
and Morris sampling methods give us r(k + 1) sample points. 

We measure two indices μi and σi indicate mean (central tendency) 
and standard deviation of EEi of ith hyperparameter Xi. The measure 

μi =
1
r
∑r

j=1
EEj

i (8)  

indicates the overall influence of a hyperparameter Xi where a larger 
measure of μi means a larger overall individual ability to influence the 
outputs of an algorithm. We also measure the standard deviation σi of 
EEi as 

σi =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

r − 1
∑r

j=1

(
EEj

i − μi
)2

√

, (9)  

where a large measure of σi indicates that a hyperparameter has high 
interaction with other hyperparameters. The measure σ is an ensemble 
influence. That is, if σi has a high value, which means that the computed 
r elementary effects EEr

i of ith hyperparameter Xi varied a lot because of 
the variation in the values of other hyperparameters as well. Whereas a 
low value of σi means small differences in the computed r elementary 
effects EEr

i of the ith hyperparameter Xi. This indicates that the influence 
of a hyperparameter on a model’s output is independent of the choice of 
other hyperparameters values. However, to understand the influence of 
a hyperparameter, both μ and σ measures need to be seen together (see 
Fig. 2). We normalized the values of μi and σi between 0 and 1 to 
effectively show results as per Fig. 2. 

4.2. Variance-based sensitivity analysis 

The variance-based sensitivity analysis is known as the “Sobol method” 
[34], and it shows how much variance of a model’s output depends on 
its inputs. It is an in-depth sensitivity analysis method that uses two 
sensitivity indices: (a) first-order effect Si to indicate a direct effect of a 
hyperparameter Xi on a model’s output Y = f(X) and (b) total effect STi 
to indicate a hyperparameter Xi interaction with its complementary 
parameters X∼i. 

The direct effect Si, irrespective of the hyperparameter interaction 
STi, indicates that, on average, how much the model’s variance V[Y(X)]

could be reduced if the hyperparameter Xi is fixed to a value. Meaning a 
low value of Si shows that the variance of the model’s output Y(X

⃒
⃒Xi =

x∗
i ) does not depend on Xi, and fixing Xi to a value does not have much 

impact on the model’s output, while for a high value of Si, it strongly 
does. Indeed, a low value of Si indicates that ith hyperparameter’s in-
fluence is negligible. Similarly, the interaction effect or total effect STi =

0 indicates that the model’s output Y(X|Xi) does not depend on Xi, and it 

Fig. 1. Example of a 2D objective space and computation of GD, IGD, and HV metrics. The current Pareto front is A = {a1, a2} and true Pareto front is Z = {z1,z2,z2}, 
and optimum of two-objective is a reference point r. The distance between two points is dij, and the area framed by a point with the reference point, r, is the area Di. 
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is a non-influential parameter. The large values of interaction effect or 
total-effect STi show proportionally strong interactions between the 
hyperparameter Xi and its complementary parameter X∼i. The difference 
STi − Si ≥ 0, i.e., total interaction influence minus direct influence, 
shows how much ith hyperparameter is involved in interaction with 
other hyperparameters. We normalized the values of Si and STi between 
0 and 1 for lucid interpretation of their influence (see Fig. 2). 

The first-order effect Si and total effect STi of Sobol method are 
computed as 

Si =
V(E(Y|Xi))

V(Y)
=

yA⋅yCi − f 2
0

yA⋅yA − f 2
0
=

1
N

∑N
j=1yj

Ayj
Ci
− f 2

0

1
N

∑N
j=1

(
yj

A
)2

− f 2
0

(10)  

and 

STi = 1 −
V(E(Y|X∼i))

V(Y)
= 1 −

yB⋅yCi − f 2
0

yA⋅yA − f 2
0
= 1 −

1
N

∑N
j=1yj

Byj
Ci
− f 2

0

1
N

∑N
j=1

(
yj

A
)2

− f 2
0

, (11)  

where N is the number of random samples, yA = f(A), yB = f(B) and yCi 

= f(Ci) are model output vectors on sample matrix A,B and Ci respec-
tively; and the estimated mean f2

0 is 

f 2
0 =

(
1
N
∑N

j=1
yj

A

)2

. (12)  

Matrices AN×k and BN×(k− 2k) are random sample points (hyperparameter 
values), and each matrix Ci is formed by taking all columns of matrix B 
except ith column, which is taken from ith column of matrix A. Such a 
sampling is similar to OAT sampling, except its rows are not sorted in 
any specific order, and all elements in a row differ from the other ele-
ments in the row. 

5. Experiments 

Our sensitivity analysis framework has four essential structural 
components:  

1. setup of EAs tunable hyperparameters and optimization problems  
2. sampling of hyperparameters from hyperparameter space of 

respective sensitivity analysis methods for respective algorithms  
3. evaluation of EAs on optimization problem (testbench) for all 

sampled hyperparameter points and for each hyperparameter sam-
ple, the evaluation of respective EAs over a number of independent 
instances to obtain stable results and to observe expected (average- 
case) performance of algorithms over performance measures  

4. computation of Morris and Sobol indices 

In the experiment, all EAs start with a population of initial candidate 
solutions (uniformly randomly drawn from Rn, n being dimensionality 
of the problem). Other commonalities among EAs are evolutionary op-
erators like “selection,” “mutation,” and/or “crossover” for generating 
new (offspring) population and their evaluation. EAs repeat this process 
for a number of generations until a termination condition is met. We set 
the termination condition to be the desired number of function evaluations, 
and we set this to a value of 10000 for all four algorithms for all prob-
lems. The other hyperparameters setting for our experiments were as 
follows: 

5.1. Single-objective algorithm hyperparameters 

We analyzed two single-objective EAs over 33 optimization prob-
lems: 23 problems from testbench introduced in Yao et al. [42], and we 
took 10 optimization problems regarding shifted problems from 
CEC2014 (shifted Sphere, Ellipsoid, Ackley, and Griewank; and shifted 
and rotated Rosenbrock, and Rastrigin) and CEC 2015 (shifted and 
rotated Weierstrass, Schwefel, Katsuura, HappyCat) [43,44,72]. An EA 
needs to find a single optimal solution for an SOO problem in a few 
generations at the expanse of some wall-clock time. Hence, the Best 
Solution was used for SOO evaluation. Table 2 lists the hyperparameter 
tuning space of CMA-ES [11] and DE [12] algorithms. 

The sensitivity analysis method setup for single-objective optimiza-
tion was as follows. We used p = 10 grid levels to form the hyper-
parameter space Ω for respective single objective EAs. From this 
hyperparameter space, we select r = 50 sample points for each hyper-
parameter of CMA-ES and DE in the cases of Morris LHS and Morris 
methods (see Eqs. (8) and (9)). This gave us 300 and 400 sample points 
in total for CMA-ES and DE algorithms, respectively. The Sobol analysis 
is 2 + k times more expensive than Morris methods since it evaluates 
hyperparameter matrices A, B, and Ci, i = 1,2,…,k. For Sobol, we use 
N = 100, which gave us 700 and 900 sample points in total for CMA-ES 
and DE algorithms, respectively. 

5.2. Multi-objective algorithm hyperparameters 

We analyzed multi-objective EAs over a testbench consisting of four 
families of optimization problems: (i) DTLZ1, DTLZ2, DTLZ3, and 
DTLZ4 [73]; (ii) IDTLZ1 and IDTLZ2 [73]; (iii) CDTLZ2 [13]; and (iv) 
WFG3, WFG6, and WFG7 [74]. EAs were evaluated and analyzed for 
each listed MOO problem for 3 objectives, and each problem was solved 
as a 10-dimensional problem. This setting was chosen based on the 
computation effort required for these MOO problems. 

Since the goal of the multi-objective EAs is to obtain a set of solutions 
where no one objective dominates over the other objectives [14,64], we 

Fig. 2. Morris (left) and Sobol (right) indices 
interpretation. Top right corner circle in dark 
gray is the ideal case where a hyperparameter 
has high individual influence and high inter-
action (or total effect). Circles in white at the 
top left and bottom right corners are cases that 
have high importance in at least one direction. 
Bottom left square in white shows the least 
ideal case where hyperparameters are non- 
influential, and fixing them at any values 
within their defined domain will not influence 
the algorithm’s performance. Arrow along the 
diagonal direction indicates the order of the 
hyperparameters’ importance and influence.   
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use GD (minimization), IGD (minimization), and HV (maximization) as 
the measures of EA performances (see Section 3.3.2). These metrics 
result in higher values for a large population size λ compared to a small 
population size λ. Thus, for population-fair performance analysis, the 
metrics were calculated from a union of populations of all generations of 
EAs and from not only the population of the last generation of the EAs. 
Moreover, the values were averaged over 30 independent runs for each 
sampled set of hyperparameters. 

NSGA-III and MOEA/D have a few common tunable hyper-
parameters in addition to their subjective tunable hyperparameters. 
Table 3 shows the domain setting of these common and subjective 
tunable hyperparameters of NSGA-III and MOEA/D. 

The sensitivity analysis method setup for multi-objective optimiza-
tion was as follows. We used p = 10 grid levels to form the hyper-
parameter space Ω for respective single objective EAs. From this 
hyperparameter space, we select r = 20 sample points for each hyper-
parameter of CMA-ES and DE in the cases of Morris LHS and Morris 
methods (see Eqs. (8) and (9)). This gave us 140 and 160 sample points 
in total for NSGA-III and MOEA/D algorithms, respectively. In the Sobol 
analysis, we used N = 30, and this gave us 240 and 270 sample points in 
total for NSGA-III and MOEA/D algorithms, respectively, for their 
matrices A and B from which Ci matrices were created. The number of 
sampling points in this work is sufficiently large for good sensitivity 
analysis [69–71]. 

All algorithms, methods, and sensitivity analysis experiments were 
performed in MATLAB, and implementations of individual components 
were taken from MATLAB libraries. We used a safe toolbox [75] to 
implement sensitivity analysis sampling methods, indices calculations, 
and workflows. Single objective algorithms were implemented using 
ypea library [76]. We used the implementation of multi-objective opti-
mization problems and evaluation measure metrics related to optimi-
zation algorithms from PlatEMO library [77]. The entire workflow 
framework was synchronized with the help of inbuilt functions of 
MATLAB. 

The whole experiment was expensive to run since the total number of 
function evaluations was 19,014,600,000. The breakdown of this func-
tion evaluation was as follows (each multiplied by 10,000 concerning 
termination condition): DE, 858,580; CMA-ES, 720,080; MOEA/D, 
171,600; and NSGA-III, 151,200. For DE and CMA-ES, there were 33 
objective functions, and each one was run at least 10 times for each 
combination of hyperparameter settings. Similarly, for MOEA/D and 
NSGA-III, there were 10 functions, and each was run 30 times for stable 

results for each set. The hyperparameter sets were sampled in three 
different ways for all algorithms: Morris LHS, Morris, and Sobol, as 
mentioned in Sections 5.1 and 5.2. Our implementation of this frame-
work for sensitivity analysis of EAs and results are available in Ojha et al. 
[78]. 

6. Results and discussion 

The results of sensitivity analysis of each algorithm for their per-
formances on testbench were collected and processed to produce three 
indicators: (i) sensitivity analysis indices matrix as per Fig. 2, (ii) or-
dered bar plot arranged from low to high normalized sensitivity analysis 
total indices values, and (iii) mean score (average performance) of each 
hyperparameter over select performance measures. Additionally, the 
statistical tests and clustering analyses results are presented in supple-
mentary Sections A and B. This section describes hyperparameter in-
fluence, ranking, and quality through these three indicators. 

Each sensitivity analysis method varies how they sample hyper-
parameter sets as they use strategies such as LHS, OAT based uniform 
random walk, and OAT based uniform sampling. Morris LHS and Sobol 
use the LHS strategy, which means they stratified the hyperspace to 
draw samples to cover most of the sample space. Morris uses uniform 
random walk sampling. In summary, each method may present its own 
ordering of hyperparameters that influence ranking and interpretation. 
Hence, we are also interested in the commonality of results among 
methods. 

6.1. Single-objective EAs 

6.1.1. CMA-ES analysis 
CMA-ES results are shown in Figs. 3–5, where Fig. 3 is a scatter plot 

that presents sensitivity analysis indices as per Fig. 2. It shows the ten-
dency of the quality of influence a hyperparameter has on CMA-ES per-
formance on all 33 problems in the testbench. For instance, λ, the 
population size in CMA-ES has a high overall influence and high inter-
action influence in all three sensitivity analysis methods. Hence, λ is the 
most significant hyperparameter of the CMA-ES algorithm, and this 
must be the first hyperparameter one must select to tune for the per-
formance improvement when CMA-ES is applied to solve a problem. 

Population size λ Population size λ is the most influential factor in 
CMA-ES algorithms. Both Morris and Sobol methods show a strong 
overall influence and high interaction for λ. Morris LHS ranked it as a 

Table 2 
Hyperparameter domain range of CMA-ES [11] and DE [12]. For both algo-
rithms, the termination condition was 10,000 function evaluations.  

Algo Params Domain Description 

CMA- 
ES 

λ [10,1000] Population size 
αμ [0,4] Learning rate 
σ0 [0.1,2] Initial step size 
σ0− scale {False, True} Re-scaling of σ0: convergence speed 

controller 
μλratio [0.1,1] Percentage of population’s elements 

usage in co-variance matrix 
estimation and update 

DE λ [10,1000] Population size 
X {bin,exp Crossover methods: Binomial and 

Exponential 
P[X] [0,1] Crossover probability 
βmin [0,1] Minimum Acceleration coefficient 
βmax [0,2] Maximum Acceleration coefficient, 

βmax = βmin + βmax 
btype {“best,” “target-to- 

best,” “rand-to-best,” 
“rand”} 

Base vector selection methods 
(mutation type or DE algorithm 
version) 

bλratio [0.01,0.5] Percentage of base vectors (solution) 
to be used for difference vectors 
computation  

Table 3 
Hyperparameter domain range of NSGA-III and MOEA/D and their shared 
(Common) hyperparameters domain. For both algorithms, the termination con-
dition was 10,000 function evaluations.  

Algo Params Domain Description 

Common λ [10,1000] Population size. 
P[X] [0,1] Simulated binary crossover 

(SBX) probability 
XDI [1,200] SBX distribution index 
P[PM] [0,1] Polynomial mutation (PM) 

probability 
PMDI [1,200] PM distribution index 

NSGA-III K [2,10] Tournament size 
Selection Tournament Parents selection for 

offspring generation 
MOEA/ 

D 
Mode {“penalty based boundary 

intersection (PBI),” 
“Tchebycheff,” 
“Tchebycheff with 
normalization,” “modified 
Tchebycheff”} 

Method for MOO 
decomposition into many 
SOO subproblems  

ϵN [0.05,0.5] Neighbors: percentage of 
the population considered 
as neighbors for each sub- 
problem generation  
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high direct influence but slightly lower interaction influence than 
covariance matrix size controller μλratio that has the highest interaction 
and direct influence in the Morris LHS method. Since MOEA/D de-
composes problems into several single-objective problems, unsurpris-
ingly, the size of the population and related hyperparameters are the 
most influential. This corroborates the fact that they offer exploration 
capabilities to population-based algorithms, allowing them to search a 
huge part of the search space concurrently. Figs. 4 and 5 confirm the 
significance of λ in CMA-ES. Fig. 5 also suggests that variation in CMA- 
ES performance is very high due to this interaction of population size 
with other hyperparameters as we observe a highly fluctuating perfor-
mance of CMA-EA for varied λ values. 

Covariance matrix size controller μλratio Hyperparameter μλratio, which 
controls the percentage of population λ to be used for the covariance 

matrix estimation and update, has high interaction and direct influence 
on CMA-ES performance. The μλratio is the second most influential 
hyperparameter across all three methods (see Fig. 4). The significance of 
μλratio is evident as its values and the choice of λ are closely linked, and 
the choice of this ratio will increase or decrease the size of the covari-
ance matrix that is at the core of the CMA-ES algorithm functioning. 
Similar to the performance of λ, μλratio performance is largely variable for 
its values (see Fig. 5). 

Initial step size σ0 Fig. 4 confirms the significance of σ0 (initial step 
size) influence as this emerged as the next best hyperparameter in Morris 
and Sobol methods. Morris LHS, which is a stratified sampling method 
that covers the most hyperspace region, suggests that σ0 is taken from 
most regions of its possible values and the CMA-ES performance had 
varied because of such sampling. However, the scores remain relatively 

Fig. 3. Single objective algorithms sensitivity analysis. CMA-ES and DE hyperparameters sensitivity analysis are shown in column 1 and column 2, respectively. Rows 
1, 2, and 3, respectively, indicate Morris LHS, Morris, and Sobol methods. The upper right legend belongs to CMA-ES and the lower right to DE. A symbol and a color 
represent each hyperparameter. An eclipse centered at a hyperparameter is the span of the standard deviation of the influence along with direct and interaction 
influences. A larger width of the eclipse of a hyperparameter in the x-axis direction means more variation in direct dominance of that hyperparameter, and a larger 
height in the y-axis direction means its variation in total (or interaction) influence. In each plot, the further apart a hyperparameter in the diagonal direction from the 
origin (0,0) is, the higher its importance to the algorithm. CMA-ES hyperparameter λ, μλratio, σ0, αμ, and σ0− scale respectively are population size, percentage of the 
population for covariance matrix, initial step size, learning rate, and convergence speed controller. DE hyperparameters λ, btype, bλratio, X, P[X], βmin, and βmax 
respectively are population size, base vector selection type (mutation type), percentage of the population for base vector selection, crossover-type, crossover 
probability, minimum acceleration coefficient, and maximum acceleration coefficient. Table 2 contains the hyperparameter name, definition and domain infor-
mation. Supporting statistical tests [79] between direct and interaction effects and clustering analysis are provided in supplementary Sections A and B. 
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high (see Fig. 5). The performance σ0 in Morris LHS is also impacted by 
the fact that for almost half of the time, its re-scaling was switched off by 
σ0− scale. Accordingly, σ0− scale should have a higher influence on Morris 
LHS than σ0, which indeed is the case (see Fig. 4). Examining Fig. 5, we 
may observe that for range [1,2] of σ0 values, CMA-ES mean perfor-
mances were largely consistent (or above certain high scores). More 
precisely, a range [0.8, 1.5) σ0 produces the best performance. 

Learning-rate αμ Learning-rate αμ was found to be non-influential. 

However, since the performance of CMA-ES was consistent with its 
chosen values across all three methods, the learning-rate αμ was better 
than re-scaling σ0− scale. Moreover, the learning-rate αμ shows more 
interaction with other hyperparameters than the convergence speed 
controller σ0− scale. This is also evident as the gray bars are larger than the 
white bars in Fig. 4 and drop in performance for only a very small range 
of values around 2 in Fig. 5). 

Convergence controller σ0− scale CMA-ES convergence controller 

Fig. 4. Ordering (small to larger) of the sum of sensitivity analysis indices of single objective algorithms. CMA-ES (row 1) and DE (row 2) algorithms hyper-
parameters performance across all problems (functions). Columns 1, 2, and 3 respectively show performance evaluated using Morris LHS, Morris, and Sobol methods. 
The white color portion of a bar is the direct influence normalized value in [0, 1] and gray color portion is interaction (total) influence value in [0,1]. Larger height bar 
implies a higher influence. Table 2 contains the hyperparameter name, definition and domain information. 

Fig. 5. CMA-ES and DE algorithms average performance on 10 runs (for 72 cases, 30 runs) of each hyperparameter set. CMA-ES and DE algorithms had 2740 and 
2,980 hyperparameter sample sets evaluated in total (black dots) by Morris LHS (blue lines), Morris (cyan lines), Sobol (green lines) methods. Each dot in a subplot is 
a mean performance of a bin of total samples. Along x-axis there are 50 bins from lower to higher values which are plotted against each hyperparameter normalized 
score filtered (using Gaussian filter with sigma 2) in the y-axis. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.) 
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hyperparameter σ0− scale, a hyperparameter meant for re-scaling of initial 
step size σ0 on and off, is the least influential in both Morris and Sobol 
methods (see Fig. 3). This result is supported by both Figs. 4 and 5. 
However, it is an influential hyperparameter in the sense that it has a 
very high influence on σ0, which is the third most influential hyper-
parameter. From Fig. 5, it is evident that no re-scaling of σ0 performs 
better than re-scaled σ0. This is the reason why for Morris LHS, σ0 is the 
least influence hyperparameter. 

CMA-ES hyperparameters ranking In summary, we may provide a 
ranking of hyperparameters for CMA-ES from the most to least influential 
hyperparameter as λ, μλratio, σ0, αμ, and σ0− scale. One may ignore tuning αμ 
and σ0− scale completely as setting a sufficiently large function evaluation 
number would neutralize their importance in the CMA-ES algorithm. 

6.1.2. DE analysis 
DE versions btype DE results are shown in Figs. 3–5, where Fig. 3 shows 

the quality of influence each hyperparameter has on DE performance 
over 33 problems. As per the result of the three sensitivity analysis 
methods, it is clear that the type of DE base vector selection method 
(mutation type) btype (DE version) is by far the most significant hyper-
parameter. Examining Fig. 5, we observe that the type of DE mutation 
strategy best and rand have lower scores, and they fluctuate. In com-
parison, the base vector selection methods target-to-best and best-to-best 
performed more consistently with high scores. Therefore, the average 
performance of DE over the testbench was highly sensitive to the se-
lection of btype. We also observe that btype in Fig. 3 remains at (1,1) corner 
of the plot, meaning it had both a high direct effect and high interaction 
effect. 

Population size λ Overall population size λ is the second most influ-
ential hyperparameter in DE (cf. Figs. 3 and 4). Comparatively, it had 
produced better scores for larger population sizes than the smaller 
population sizes (see Fig. 5). However, the size of the population of DE 
was a distant second influential hyperparameter. This indicates that 
except for small population size (less than 200), DE’s performance was 
invariable when the population size was increased from 200 to 1000 
(Fig. 5). This was when the number of function evaluations was the same 
for each population size, i.e., the number of function evaluations was 
10,000 for each population size. 

Crossover-type X and crossover probability P[X] The crossover related 
hyperparameters are the type of crossover X and the probability of 
crossover P[X]. Between these, P[X] plays a vital role in DE’s perfor-
mance, and the type of DE btype was the least influential (cf. Figs. 3 and 
4). For crossover-type binomial offered better scores than the crossover- 
type exponential (see Fig. 5). The crossover probability P[X] has its usage 
only for binomial crossover. Hence, it was an influential hyperparameter 
in this setting. 

Base vectors selection pool bλratio The hyperparameter bλratio defines the 
percentage of the population used for the selection of base vectors for 
DE. We found that bλratio has a negligible influence on the performance of 
DE (cf. Figs. 3 and 4). 

Acceleration coefficients βmin and βmax Similar to bλratio, acceleration 
coefficients hyperparameters βmin and βmax are least significant in DE. 
However, setting an appropriate range is vital for DE performance, as we 
observed in Fig. 5. This is evident because βmin and βmax acquire a rela-
tively moderate influence in Morris LHS methods (see Fig. 4). Since the 
Morris LHS method uses a stratified sampling approach, it forced the 
selection of βmin and βmax values across their whole range and the per-
formance of DE is impacted negatively by the higher values of βmin and 
βmax. Examining Fig. 5, we observed that βmin scores for values in [0.0,
0.5] performed consistently with better scores than the values in (0.5,
1.0]. However, Morris and Sobol had a uniform distribution and show 
that the influence of this hyperparameter is non-influential; therefore, 
setting these values somewhere in [0.0, 0.5] will suffice, and one may not 
need to exhaustively tune this hyperparameter. 

Similarly, βmax was found sensitive to its range selection. Fig. 5 offers 

us the ways to investigate which range had a positive influence and 
which had a negative. We observe that the lower values had higher 
scores than the larger values of βmax (see Fig. 5). Investigating closely, we 
found that scores in [0.2, 0.9] are by far better than the scores for other 
values. This means tuning βmax values within range [0.2,0.9] for a 
problem is an appropriate strategy. 

DE hyperparameters ranking In summary, we rank DE hyper-
parameters from the most significant to least significant as btype, λ, P[X], 
bλratio, βmax, βmin, and X. That one would safely use DE with binomial 
crossover and set appropriate values (discussed above) of βmax, βmin. 

6.1.3. Remarks on SOO hyperparameter rankings and algorithms 
We evaluated two single objective optimization algorithms and 

presented rankings of their hyperparameter influence based on a com-
bined assessment of three sensitivity analysis methods. Each method, as 
mentioned, has its own way of drawing samples from the hyper-
parameter space and thus has produced its own ranking. However, the 
results reveal some obvious signs of influence based on direct and 
interaction effects. 

Supplementary A provides rich information on statistical tests among 
hyperparameters that one can thoroughly examine to reach the pre-
sented ranking and may find more information should one is interested 
in studying specific hyperparameters. For instance, the interaction effect 
of population size in CMA-ES is more significant than its direct effect 
(see Supplementary A), which confirms the analysis presented in Fig. 5. 
Additionally, clustering analysis of hyperparameters and objective 
function provides information behaviors of the algorithm on the class of 
problems they solve (see supplementary B). For example, the type of 
mutation in DE forms a distinct cluster of its performance characteris-
tics, and all other hyperparameters are grouped together in one cluster 
(see supplementary B). 

As a consequence of this analysis and the results presented in Section 
6.1, it is clear that DE is a more stable algorithm than CMA-ES. See vari-
ation in scores of the hyperparameters of the CMA-ES algorithm 
compared to DE’s hyperparameters in Fig. 5 and high interaction among 
CMA-ES’s hyperparameters. In contrast, DE has a clear ranking of 
hyperparameters. Additionally, during the experiments, CMA-ES failed 
to solve some classes of problems for some combination of hyper-
parameters (see results in [78]). 

6.2. Multi-objective EAs 

6.2.1. NSGA-III analysis 
Population size λ Results of NSGA-III are presented in Figs. 6–8. In 

Fig. 6, we present results of three measures GD, IGD, and HV; see col-
umns in Fig. 6, and along rows in Fig. 6, we present Morris LHS, Morris, 
and Sobol sensitivity methods. For NSGA-III, we clearly observe that the 
population size λ is a significant hyperparameter, and the probability of 
crossover is the second most significant hyperparameter. Population size 
influence has approximately equal high direct influence and high 
interaction influence. That is, although population size is the most sig-
nificant hyperparameter, NSGA-III performance varied because of the 
variation of the other hyperparameters as well (see NSGA-III has a 
monotonous line for λ in Fig. 8 that indicates a more liner influence on 
NSGA-III). This fact was found true across all methods and all measures 
as the eclipse of its influence centered around coroner (1,1) in Fig. 6, and 
the white and gray bars have comparable lengths in Fig. 8. 

An examination of scores of the population size shows that popula-
tion size does not fluctuate much for the HV metric after a certain 
population size, but for GD and IGD metrics, the scores keep increasing 
for increasing population size (see Fig. 8). However, this is monotonous, 
and one would expect such performance for GD and IGD metrics. The 
probability of crossover shows more fluctuations in all three metrics. 
Therefore, the variations in the performance of NSGA-III after a suffi-
ciently large population size (in this case, 200) come from the variations 
of other hyperparameters, including crossover probability. 
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Crossover and mutation hyperparameters The probability of crossover 
P[X] shows a more linear relationship between its values and NSGA-III 
performance measures GD, IGD, and HV. For increasing values of 
crossover probability, we see decreasing GD and IGD scores (signs of 
better performance) and increasing scores of HV for some values (see 
Fig. 8). A crossover rate of around 0.6 leads to better solutions along the 
problem’s objective dimensions, i.e., increasing scores of HV and lower 

scores of GD and IGD. This fact is supported by the strong direct and 
interaction influence of crossover P[X] for IGD and HV metrics and 
relatively direct influence on GD. The Sobol method on P[X] does show a 
very strong total influence compared to direct influence on all metrics. 
In summary, the P[X] performance has a behavior of monotonous in-
crease and is one of the most influential hyperparameters in NSGA-III. 

For crossover related hyperparameter crossover distribution indices 

Fig. 6. NSGA-III hyperparameters sensitivity analysis. Columns 1, 2, and 3 respectively indicate performance metrics GD, IGD, and HV. Rows 1, 2, and 3, 
respectively, indicate Morris LHS, Morris, and Sobol methods. Legends of hyperparameter are shown at the bottom. Each hyperparameter is represented by a symbol 
and a color. An eclipse centered at a hyperparameter is the standard deviation of its influence and direction of its influence. The further apart a hyperparameter in the 
diagonal direction from the origin (0,0) is, the higher its importance to the algorithm. A larger width of the eclipse of a hyperparameter in the x-axis direction means 
more variation in the direct influence of a hyperparameter, and a larger height in the y-axis direction means variation in total (or interaction) influence. Supporting 
statistical tests and clustering analysis are provided in supplementary Sections A and B. 
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XDI, the performance remains consistent and largely non-influential (cf. 
Figs. 6 and  8) as only for a certain range of its value (a small range 
around 100), it shows a spike in the performance of NSGA-III. Similarly, 
the mutation distribution index PMDI, the performance of NSGA-III is 
better for a certain range (around 100–150 or low values of PMDI, see 
Fig. 8). For both XDI and PMDI, this phenomenon occurred roughly 
around a value of 100 of these indices, which aligned with the range for 
these hyperparameters suggested in Deb and Deb [80], Deb et al. [81]. 

Similar to the probability of crossover P[X], the probability of mu-
tation P[PM] shows a sudden change in performance around a value of 
0.6, but in a complementary direction (see a drop in HV and spike in GD 
and IGD metric in Fig. 8). The direct and interaction influence of mu-
tation related hyperparameters P[PM] and PMDI is low for NSGA-III (cf. 

Figs. 6 and 7). 
Tournament size K Tournament size K, probability of polynomial 

mutation P[PM], polynomial mutation distribution index PMDI and 
simulated binary crossover (SBX) distribution index XDI have compa-
rable significance. However, they differ in different methods and met-
rics. Among these hyperparameters, tournament size K clearly shows a 
high influence on NSGA-III performance. Tournament size K shows more 
interaction influence than direct influence, except for the HV metric of 
the Sobol method. The high score of K in Fig. 8 with clear fluctuation is 
the evidence of its interaction with other hyperparameters, but the 
scores (especially in GD and IGD scores) show an upward trend, indi-
cating it has comparatively less influence on guiding the population 
towards true Pareto-front than hyperparameters P[PM], PMDI and XDI. 

Fig. 7. NSGA-III algorithm’s hyperparameters performance across all problems (functions). Rows 1, 2, and 3 respectively, show performance evaluated using GD, 
IGD, and HV metrics. Columns 1, 2, and 3, respectively indicate Morris LHS, Morris, and Sobol methods. The white color portion of a bar is direct influence 
normalized value in [0, 1] and gray color portion is interaction (total) influence value in [0,1]. A larger height bar implies a higher influence, and hyperparameters in 
each subplot are arranged from low to high influence. 

Fig. 8. NSGA-III algorithm average performance on 30 runs of each set of hyperparameters. NSGA-III hyperparameter (x-axis) against the mean metric value (y-axis). 
Rows 1, 2, and 3, respectively, are GD, IGD, and HV metrics. The scores are normalized between 0 and 1 and smooth out using a Gaussian 1D filter with sigma 0.99. 
The y-axis is GD, IGD, and HV metrics values normalized between a score of 0 and 1, where 0 is the best score for GD and IGD, and 1 is the best score for HV. A total of 
520 samples were evaluated for the NSGA-III algorithm jointly by Morris LHS (blue lines), Morris (cyan lines), and Sobol (green lines) methods. The hyperparameter 
values are arranged in 20 bins (lower values to higher values) across the x-axis. Each line in each plot connects the mean values of 20 bins of such samples. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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We may also confirm that the lower value of K is more influential than its 
higher values. 

NSGA-III hyperparameters ranking Considering the hyperparameters’ 
performance influence, we rank them from most influential to least 
influential hyperparameters as λ, P[X], XDI, K, P[PM], and PMDI. Here, λ is 
effective up to a certain population size, and then λ saturates. The tuning 
of crossover P[X] linearly influences NSGA-III, and XDI, P[PM], and PMDI 
require setting a fixed value, but their influence fluctuates, i.e., they are 
affected by the setting of values of other hyperparameters a lot. 

6.2.2. MOEA/D analysis 
Population size λ MOEA/D results are shown in Figs. 9–11. In Fig. 9, 

the results of three sensitivity analysis methods for three metrics of 
MOEA/D performance are presented. Unlike NSGA-III results, popula-
tion size λ is not a clear most significant hyperparameter for MOEA/D 
multi-objective algorithm. Rather, MOEA/D’s hyperparameters Mode, 
the MOO decomposition method, is also among the influential hyper-
parameters. Morris LHS method shows that the Mode is the most sig-
nificant hyperparameter overall on three metrics. Fig. 11 also confirms 
this fact as for the population size values, the GD, IGD, and HV metrics 

Fig. 9. MOEA/D hyperparameters sensitivity analysis. Columns 1, 2, and 3 respectively indicate performance metrics GD, IGD, and HV. Rows 1, 2, and 3, 
respectively, indicate Morris LHS, Morris, and Sobol methods. Legends of hyperparameter are shown at the bottom. Each hyperparameter is represented by a symbol 
and a color. An eclipse centered at a hyperparameter is the standard deviation of its influence and direction of its influence. Further apart a hyperparameter in the 
diagonal direction from the origin (0,0) is, the higher its importance to the algorithm. A larger width of the eclipse of a hyperparameter in the x-axis direction means 
more variation in the direct influence of a hyperparameter, and a larger height in the y-axis direction means variation in total (or interaction) influence. Supporting 
statistical tests and clustering analysis are provided in supplementary Sections A and B. 
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show a strong relation. 
For example, the HV metric in Fig. 11 shows a linear trend, but it has 

clear fluctuations in scores. This is because population size has high 
interaction with other hyperparameters, and tuning population size 
alone cannot compensate for the role of the other hyperparameters in 
the performance of MOEA/D on the GD metric. However, for the IGD 
metric, population size improves the performance of MOEA/D. This 
shows a highly fluctuating behavior of population size in MOEA/D for 
varied metrics, i.e., MOEA/D performance has a nonlinear relationship 
with the population size. This means population size is rather highly 
involved with interaction with other hyperparameters as the variation in 
other hyperparameters also influences the performance of MOEA/D. 

MOO decomposition type Mode The next set of hyperparameters that 

we observe as highly influential is Mode, as it shows high interaction and 
high overall influence in Morris LHS, Morris, and Sobol for GD and HV 
metrics. HV metric for Sobol placed the hyperparameters on the direct 
influence to high total influence diagonal (see Fig. 9), which suggests 
that the hyperparameters either have a good high interaction or good 
overall influence. Hence, the sum of these, presented in Fig. 10, differs 
only marginally. Sobol rank Mode is second in the GD metric as both 
high interaction and high overall influence and third in the HV metric as 
it has a high direct influence. 

Examining the performance of Mode in Fig. 11, we confirm that the 
type of MOO decomposition “Tchebycheff with normalization” had the 
best performance, followed by “penalty based boundary intersection 
(PBI)” and “Tchebycheff” has significantly poor performance and 

Fig. 10. MOEA/D algorithm’s hyperparameters performance across all problems (functions). Rows 1, 2, and 3, respectively, show performance evaluated using GD, 
IGD, and HV metrics. Columns 1, 2, and 3 respectively indicate metric Morris LHS, Morris, and Sobol methods. The white color portion of a bar is direct influence 
normalized value in [0, 1] and gray color portion is interaction (total) influence value in [0,1]. A larger height bar implies a higher influence, and hyperparameters in 
each subplot are arranged from low to high influence. 

Fig. 11. MOEA/D algorithm average performance on 30 runs of each set of hyperparameters. MOEA/D hyperparameter (x-axis) against the mean metric value 
(y-axis). Rows 1, 2, and 3, respectively, are GD, IGD, and HV metrics. The scores are normalized between 0 and 1 and smooth out using a Gaussian 1D filter with 
sigma 0.99. The y-axis is GD, IGD, and HV metrics values normalized between a score of 0 and 1, where 0 is the best score for GD and IGD, and 1 is the best score for 
HV. A total of 590 samples were evaluated for the MOEA/D algorithm jointly by Morris LHS (blue lines), Morris (cyan lines), Sobol (green lines) methods. The 
hyperparameter values are arranged in 20 bins (lower values to higher values) across the x-axis. Each line in each plot connects the mean values of 20 bins of such 
samples. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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“modified Tchebycheff,” decomposition mode had the worse scores 
among MOO decomposition methods. MOEA/D hyperparameter ϵN re-
fers to the number of neighbors for selecting the percentage of the 
population for sub-problems selection MOEA/D has an equivalent in-
fluence as the probability of mutation distribution index PMDI. However, 
ϵN value less than 0.2 show a sharp improvement in MOEA/D 
performance. 

Crossover and mutation hyperparameters Genetic operator related 
hyperparameters P[X], XDI, P[PM] and PMDI show varied significance on 
different metrics on different sensitivity methods. For example, the 
probability of mutation distribution index PMDI has a high influence on 
HV metrics (pink diamond and eclipse in Fig. 9) and a high total influ-
ence on HV metrics in the Sobol method. The probability of mutation 
P[PM] is second to PMDI in total influence on HV as per the Sobol 
method. This suggests that mutation has a high influence in diversifying the 
population in MOEA/D, helping it produces a better Pareto-front. We also 
observe that P[PM] and PMDI have mirror image like performance (see 
Fig. 11), which suggests that values of P[PM] around 0.8 and higher 
values of PMDI are more effective in MOEA/D performance. The prob-
ability of crossover P[X] has competing performance in the MOEA/D, 
and it is similar to performances of mutation related hyperparameters. 
That is, unlike NSGA-III, the probability of crossover does not outshine 
the crossover and mutation related hyperparameters. 

MOEA/D hyperparameters ranking In summary, the ranking of hyper-
parameters of MOEA/D from the most influential to least influential 
hyperparameters is λ, Mode, PMDI, P[PM], P[X], ϵN, and XDI. 

6.2.3. Remarks on MOO hyperparameter rankings and algorithms 
Providing ranking to hyperparameters for MOO is more challenging 

than SOO since it uses three distinct sensitivity analysis methods and 
uses three distinct performance metrics. However, we look for potential 
agreement between these distinct measures. We observe that the pop-
ulation size λ clearly emerged as the most influential hyperparameter in 
all three analyses and metrics for NSGA-III, and the probability of 
crossover was the second most influential. These two hyperparameters 
significantly dominate all other hyperparameters in NSGA-III. Whereas 
for MOEA/D, the population size λ dominates only for the GD metric and 
for Morris analysis. For HV and IGD metric and Morris LHS and Sobol 
analysis, Mode and mutation probability are dominant factors. Unlike 
NSGA-III, there is no clear, significantly dominant hyperparameter in 
MOEA/D. Therefore, considering hyperparameters’ strong variability 
and dependency on the type of hyperparameter sampling methods and 
type of performance metrics, we may confirm that NSGA-III is a more 
stable algorithm than MOEA/D. 

7. Conclusions 

We present a framework for systematic and methodological analysis 
of the effectiveness of the evolutionary algorithm hyperparameters. This 
analysis results in (i) identifying the pattern of influence each hyper-
parameter has on the algorithm, (ii) recommending rankings of hyper-
parameter influence, and (iii) analyzing the stability of algorithms 
related to hyperparameter sampling and performance metrics. We apply 
our methodology to state-of-the-art evolutionary algorithms: two single- 
objective algorithms and two multi-objective algorithms. The single- 
objective algorithms used are covariance matrix adaptation evolu-
tionary strategy (CMA-ES), differential evolution (DE), and multi- 
objective algorithms used are non-dominated sorting genetic algo-
rithm III (NSGA-III), and multi-objective evolutionary algorithm based 
on decomposition (MOEA/D). Our methodology involves two global 
sensitivity analysis methods, Morris and Sobol. This methodology is 
computationally heavy, but it produces widely usable and effective 
recommendations on hyperparameters ranking, being the order in 
which one can tune EA hyperparameters to achieve high performance. 
For example, the initial step size, base vector selection type (mutation), 
probability of crossover, and mode multi-objective problem 

decomposition were among the most influential hyperparameters of 
CMA-ES, DE, NSGA-III, and MOEA/D algorithms, respectively. The re-
sults show how the hyperparameters interact with one another when 
they are sampled differently, and different performance measures are 
used. This framework can further analyze the sensitivity and influence of 
adaptive and dynamically tuneable hyperparameters for future work. 
Furthermore, since different hyperparameters sampling methods 
showed varied ranking, this work can further study the influence of the 
sampling method or sensitivity of an algorithm or its hyperparameters 
towards a particular type of sampling. 
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