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Predicting the Occurrence of Construction Disputes Using Machine 2 

Learning Techniques 3 

 4 
Murat Ayhan, Ph.D.1; Irem Dikmen2; and M. Talat Birgonul3 5 

Abstract 6 

Construction industry is overwhelmed by increasing number and severity of disputes. The primary objective of 7 

this research is to predict the occurrence of disputes by utilizing machine learning (ML) techniques on empirical 8 

data. For this reason, variables affecting dispute occurrence were identified from the literature and a conceptual 9 

model was developed to depict the common factors. Based on the conceptual model, a questionnaire was designed 10 

to collect empirical data from experts. Chi-square tests were conducted to reveal the associations between input 11 

variables and dispute occurrence. Alternative classification techniques were tested, and support vector machines 12 

(SVM) classifier achieved the best average accuracy (90.46%). Ensemble classifiers combining the tested 13 

classification techniques were developed for enhanced prediction performance. Experimental results showed that 14 

the best ensemble classifier, obtained from majority voting technique, can achieve 91.11% average accuracy. 15 

Based on Chi-square tests, the most influential factors on dispute occurrence were found as variations and 16 

unexpected events in projects. Other important predictors were all related to skills of the parties involved. This 17 

study contributes to the construction dispute domain in three ways (1) by proposing a conceptual model that 18 

combined the diverse efforts in the literature for identifying variables affecting dispute occurrence, (2) by 19 

highlighting the influential factors such as response rate and communication skills as indicators for potential 20 

disputes, (3) by providing an empirical ML-based model with enhanced prediction capabilities that can function 21 

as an early-warning mechanism for decision-makers.  22 

Keywords: Dispute prediction; Machine learning; Data classification; Construction disputes; Dispute 23 

management; Project management. 24 

Introduction 25 

     Numerous parties having different expertise, background, and goals are involved in a construction project in a 26 

coordinated manner; however, these parties also have competing goals and expectations as they seek to maximize 27 

their own profits simultaneously, which may lead to differences in perception and conflicts in interests (Soni et al. 28 

2017). In addition, construction projects are complicated in nature and their performance is highly susceptible to 29 
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several uncertainties. Stemming from their large and complex nature, construction projects involve large number 30 

of uncertainties that makes encountering conflicting situations more common than many other industries (Dalton 31 

and Shehadeh 2003). Indeed, there is evidence showing that the construction industry is more problematic 32 

compared with other industries (Tazelaar and Snijders 2010). This is mainly due to the fact that it is almost 33 

impossible to incorporate provisions to deal with all the possible contingencies due to the large number of 34 

uncertainties faced in a typical construction project (Cheung and Pang 2013). Uncertainties may lead to conflicts 35 

and when a conflict is not satisfactorily settled, it can quickly escalate to a claim and ultimately a dispute. With a 36 

potential to result in delayed schedules, budget overruns, poor quality and performance, increased tension, and 37 

damaged long-term business relationships, construction disputes can be detrimental (Cheung and Suen 2002).  38 

     The current tendency in the construction industry is to make challenging decisions related to dispute 39 

management actions intuitively based on the experience of the decision-maker. The complexity of decision-making 40 

increases considering that the availability of the information is limited, and its quality is questionable (Chou et al. 41 

2013b). Hence, experience and knowledge are invaluable in decision-making (Cheung et al. 2004; Mokhtar and 42 

Rahman 2017). The merits of Artificial Intelligence (AI) techniques include extraction of tacit knowledge in an 43 

articulable and presentable way to the decision-makers. In computer science, AI involves the systems created to 44 

perform tasks that usually require human intelligence and among various AI applications, data mining (DM) via 45 

machine learning (ML) techniques form an important research branch as they enable gathering valuable 46 

information from large volumes of data that is difficult to understand and interpret (Liao et al. 2012). In DM, which 47 

is a subset of AI, large volumes of data are processed to establish simple models with valuable use that enable 48 

identification of hidden knowledge and patterns in the data (Bilal et al. 2016). ML is a subset of DM that resorts 49 

to statistical theories for building models (i.e., predictive) and it includes the algorithms that help machines to learn 50 

from past data systematically and automatically based on optimization of a performance criterion (Alpaydin 2010; 51 

Bilal et al. 2016). As being dependent to experience and knowledge of the decision-maker rather than being 52 

systematic, the current decision-making practice in dispute management is prone to subjectivity (Parikh et al. 53 

2019). AI applications, on the other hand, has the potential to minimize this subjectivity by providing systematical 54 

decision-support based on past cases that fits the circumstances of the current case (Cheung et al. 2004).  55 

     This paper argues that in order to forestall construction disputes, prediction models for dispute occurrence could 56 

be developed to minimize the subjectivity of the decisions made by the decision-makers. To this end, the primary 57 

objective of this paper is to develop a new construction dispute prediction model by utilizing ML techniques on 58 

empirical data. The proposed model is expected to create an early-warning mechanism that will enable taking 59 
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informed management actions. Thus, the expected outcome of this research is to help construction professionals 60 

in taking the necessary precautions against disputes by early-warning. 61 

     In accordance with the research objectives, in this paper, first, research background and findings of literature 62 

review are given, and research methodology is explained. Variables affecting dispute occurrence identified from 63 

the literature are discussed and a conceptual model is presented to depict the common factors that relate to dispute 64 

occurrence. Then, the questionnaire to collect empirical data from decision-making authorities is discussed and 65 

results of Chi-square tests are presented. Chi-square results were also validated by measuring the information gain 66 

ratio in order to evaluate the worth of each individual input variable with respect to dispute occurrence. Finally, 67 

finalized prediction model that was tested by using alternative single and ensemble ML techniques to obtain the 68 

best classifiers is given. The findings are discussed along with limitations of the study and it is followed by 69 

concluding remarks and recommendations for future studies. 70 

Research Background and Motivation 71 

     The severity of disputes in construction has been well understood and documented; however, the construction 72 

industry still struggles to find methods to resolve them fairly and economically (Cheng et al. 2009). According to 73 

annual reports of Hong Kong International Arbitration Centre (HKIAC), the average rate of construction disputes 74 

was 20.2% among all HKIAC registered cases between 2015 and 2017 (HKIAC 2018). The American Arbitration 75 

Association (AAA) reported that the number of construction cases submitted to the AAA in 2017 were up by 4%, 76 

which involved 13% increase in claims higher than 1 million U.S. Dollars (AAA, 2018). Awwad et al. (2016) 77 

stated that the growth of the construction industry in the Middle East region is accompanied by an increasing 78 

number of construction disputes and growing number of arbitration cases are being witnessed. The study by Parikh 79 

et al. (2019) revealed that the National Highways Authority of India (NHAI) is struggling with more than 1000 80 

construction disputes amounting over 1 billion Indian Rupees and meanwhile, the occurrence of claims and 81 

disputes are on the rise among over 200 contracts under implementation. Ustuner and Tas (2019) drew attention 82 

to huge numbers of disputed cases submitted to resolution organizations. In their study, it is reported that the 83 

Judicial Arbitration and Mediation Services (JAMS), which is among the largest dispute resolution organizations 84 

in the world, handles approximately 15000 cases annually; and the Centre for Effective Dispute Resolution 85 

(CEDR), which is a U.K. based organization, handles approximately 30000 disputes annually. Considering all 86 

these cases, it can be concluded that the disputed projects constitute a significant portion of the construction 87 

industry and that an incremental trend is observed in the number of disputes in many regions of the world. The 88 

financial consequences of disputes are also significant. The estimated additional direct costs of disputes range from 89 
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0.5% to 5% of the contract value (Love et al. 2010). On the other hand, there are additional indirect costs due to 90 

decreased productivity, strained business relationships, loss of future business opportunities, and damaged 91 

reputation of parties that amplify the damages caused by disputes (Ilter 2012). Supported by the above-mentioned 92 

examples, it is no surprise that construction disputes drew attention of many researchers. 93 

     Diekmann and Girard (1995) conducted one of the pioneering studies on predicting the occurrence of disputes. 94 

They developed a ‘dispute potential index (DPI)’ using Logistic Regression (LR) on a dataset of 159 construction 95 

projects. An improvement was achieved by analyzing the same dataset using the Structural Equation Modeling 96 

(SEM) (Molenaar et al. 2000). Both studies aimed to predict dispute propensity at early stages. However, 97 

construction disputes require consideration of numerous complex and interrelated factors that are difficult to 98 

rationalize (Chou 2012). Therefore, results from techniques like LR and SEM, which have limitations in describing 99 

nonlinear relationships (An et al. 2007) and in modeling multiple correlations, can be misguiding. In this paper, 100 

these limitations are addressed by ML techniques that can reflect the complex interrelationships between variables. 101 

In another notable study, Cheung and Pang (2013) proposed an anatomy of construction disputes arranged under 102 

fault-tree methodology that identified various causes of disputes, categorized them under adequate factor groups, 103 

and assessed the fuzzy occurrence likelihood of these factors, which gradually led to dispute occurrence likelihood 104 

evaluation. Although the anatomy was obtained from an expert panel, it was not supported by empirical data from 105 

real-world construction projects. Indeed, researchers highlighted the lack of empirical evidence in the construction 106 

disputes literature to support the presented theories (Love et al. 2010; Ilter 2012). Being one of the concerns of the 107 

presented paper, this gap is addressed by supporting the proposed prediction model with empirical data.  108 

     It is commonly accepted that the best solution against disputes is to avoid them and the actions for avoidance 109 

can only be taken by prediction (Fenn 2007). Considering the fact that developing deterministic mathematical 110 

models to solve construction management and prediction problems is difficult and costly, the research interest 111 

moves towards approximate inference as a fast and cost efficient alternative and consequently, the use of AI is 112 

appropriate in efforts to solve such problems (Cheng and Wu 2009). Among various AI applications, the use of 113 

DM techniques is accepted as a strongly effective method for determining numerous complex and interconnected 114 

factors related to construction disputes along with hidden relationships that are difficult to rationalize (Chou 2012). 115 

For example, it might be intuitively expected that with an increasing level of construction complexity, more 116 

disputes would occur. However, the experience of the contractor on the type of project may alter the relationship 117 

between construction complexity and dispute occurrence. Considering solely the relationship between the input 118 

variable (i.e., level of construction complexity) and the output (i.e., dispute occurrence) may not reveal the 119 
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complete picture and may lead to misinterpretation of the circumstances. DM techniques are well-suited to 120 

determine such relationships. Especially, algorithms available in the ML domain (i.e., Decision Trees (DT), 121 

Support Vector Machines (SVM)) makes developing data-specific prediction models possible. When the output 122 

variable is a categorical variable, prediction problems become data classification problems (Chou and Lin 2013). 123 

Data classification problems are problems of associating an instance (a case), which is defined by values of its 124 

attributes (observed variables), with a class among predefined classes as an output (Pulket and Arditi 2009). In the 125 

case of predicting the occurrence of disputes, a construction project is an instance, various characteristics related 126 

to a construction project are its attributes and the output variable is the occurrence of disputes, where projects can 127 

be categorized as ‘disputed’ and ‘undisputed’ projects. Using ML techniques, this paper aims to classify future 128 

construction projects as disputed or undisputed based on empirical data collected from past construction projects.  129 

     According to a study published in 2009, the tendency in disputes related literature is to produce general insights 130 

and statistical outcomes rather than establishing supporting models or systems (Ilter and Dikbas 2009). After more 131 

than a decade, the number of studies that establishes models or systems are still limited and there are even less 132 

studies that assess the dispute propensity of construction projects by utilizing ML techniques. Moreover, these 133 

limited studies suffer from various shortcomings. Existing studies are mainly specific to a certain project type (i.e., 134 

Public-Private-Partnership (PPP) projects) (Chou and Lin 2013; Chou et al. 2013a), or to a certain dispute type 135 

(i.e., change order related disputes) (Chen and Hsu 2007), or to cases from a certain country or region (Yousefi et 136 

al. 2016). The proposed study addresses these needs systematically by collecting data of various construction 137 

projects from different regions of the world. The dataset is not limited with a single project or dispute type.  138 

     A series of studies on a dispute dataset of PPP projects undertaken in Taiwan proved the effectiveness of ML 139 

techniques in dispute occurrence prediction (Chou et al.2013a; Chou and Lin 2013; Chou et al. 2014; Chou et al. 140 

2016). The first of these studies (Chou et al. 2013a) utilized k-Nearest Neighbor (kNN), Multilayer Perceptron 141 

(MLP), Naïve Bayes, SVM, and C4.5 as single classifiers. Then, in pursuit of enhanced classification performance, 142 

ensemble classifiers were established by combining k-means Clustering technique, MLP classifier, and C4.5 143 

algorithm, respectively, with the mentioned single classifiers one by one. It was highlighted that the prediction 144 

performance of ensemble models outperformed the single classifiers. In the second study (Chou and Lin 2013), 145 

the same dataset was analyzed by several single and ensemble classifiers again, and according to 10-fold cross-146 

validation (CV) performances, the highest prediction rate was 84.33%. The third study (Chou et al. 2014) focused 147 

on SVM algorithm in specific to achieve 89.30% accuracy. Finally, in the fourth study (Chou et al. 2016), the 148 

dispute occurrence was predicted by C5.0 algorithm with an average 10-fold CV accuracy of 83.92%.  149 
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     Similar to predicting the occurrence of disputes, there are studies predicting the litigation likelihood. A noted 150 

study was based on a dataset of 340 litigated cases with change order related problems in the U.S. Using this 151 

dataset, a hybrid model was developed by combining Artificial Neural Network (ANN) and Case-Based Reasoning 152 

(CBR) techniques to classify construction projects according to their litigation likelihood. The model achieved 153 

84.61% accuracy (Chen and Hsu 2007). However, the dataset was composed of litigious cases only, which ignores 154 

valuable knowledge that could have come from cases solved by other resolution methods. Moreover, this research 155 

was specific to the U.S. construction industry and change order related disputes. In their prediction models, 156 

Mahfouz et al. (2018) provided legal decision support by enabling automatic extraction of implicit knowledge 157 

about significant factors upon which verdicts of differing site condition (DSC) litigations are based. Their study 158 

was based on 600 cases from the Federal Court of New York and several prediction models were developed using 159 

ML techniques. However, the study was limited to DSC litigations from New York only. 160 

     In the light of foregoing observations, it can be concluded that the subject matter of existing studies on dispute 161 

prediction have generally focused on specific points (i.e., prediction of change order related disputes or disputes 162 

in a certain region). There is a dearth of models that incorporate various project, dispute, and project delivery 163 

system types in the literature. Besides the main goal of the paper to develop a new model for predicting the 164 

occurrence of construction disputes, another goal is related to address the lack of empirical evidence in the 165 

construction disputes literature by using a more generic dataset that reflects variations in construction types, project 166 

delivery systems, etc. while achieving an advancement in the accuracy of predictions compared to previous studies. 167 

Research Methodology 168 

     The research design includes three steps. As it is presented in Fig. 1, the first step involves the conceptual model 169 

development, the second step is the development of the prediction model, and the third step is finalization of the 170 

prediction model. 171 

Conceptual Model Development 172 

     There is a diversity in the literature about the causes of disputes or factors that affect them. Moreover, there is 173 

a confusion in the related terminology due to overlapping concepts; the distinction between causes, factors, or 174 

types of disputes are rather vague (Ilter 2012). In order to overcome these problems, an extensive literature review 175 

on conflicts, claims, and disputes was conducted with the aim of synthesizing the findings of the previous research 176 

in a conceptual model. To understand mechanisms of dispute development, researchers tried to identify causes of 177 

disputes and project characteristics or attributes that impact their occurrence. Besides, there are many other studies 178 

with various goals such as predicting the dispute proneness of projects (Diekmann and Girard 1995; Chou and Lin 179 
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2013; Chou et al. 2013a; Chou et al. 2014; Yousefi et al. 2016) that identify dispute causes or impacting attributes 180 

not as a primary goal, but as a secondary goal. Another group of studies can be found in research aiming to analyze 181 

the outcome of claims, disputes, and resolution methods (i.e., litigation outcome). Specifically, there are studies 182 

focusing on dispute causes and project or contract characteristics that affect court rulings (Kilian and Gibson 2005; 183 

Chen and Hsu 2007; Pulket and Arditi 2009; Arditi and Pulket 2010). Within this context, research in the above-184 

mentioned fields are reviewed within reputable journals from 1995 to 2018 including Journal of Construction 185 

Engineering and Management, ASCE; Journal of Computing in Civil Engineering, ASCE; Journal of Civil 186 

Engineering and Management; International Journal of Project Management; and Expert Systems with 187 

Applications. Numerous causes and reasons of disputes along with project characteristics were reviewed, and 188 

frequently perceived parameters were taken as the most prominent factors. The findings of the review showed that 189 

the prominent factors that impact dispute occurrence are related to (1) characteristics of the project (i.e., duration, 190 

value), (2) characteristics of the parties involved in construction projects and their organizational structures (i.e. 191 

response rate and communication skills), (3) occurrence of changes or unexpected events, and (4) delays. These 192 

categories were established by combining the findings of several research including (1) Diekmann and Girard 193 

(1995) and Molenaar et al. (2000) that grouped their attributes under project, people, and process related aspects, 194 

(2) Chen and Hsu (2007) that grouped attributes related to project characteristics and delays under project data 195 

category, and attributes related to changes and other dispute characteristics under disputed issue data category, (3) 196 

Dalton and Shehadeh (2003) that focused on attributes related to skills of the parties, (4) Ilter and Dikbas (2009) 197 

and Ilter (2012) where a set of variables were designed to provide data on several project characteristics as well as 198 

project managers and their firms. These categories were used in the conceptual model to group the identified input 199 

variables. The detailed explanation related to determination of input variables from the literature is given in Ayhan 200 

(2019) that developed a conceptual model to depict the common factors influencing dispute occurrence, 201 

compensations related to disputes, and the resolution method selection. Based on the conceptual model, empirical 202 

data was collected with the aim of developing prediction models. The developed prediction models classified the 203 

dispute occurrence of construction projects; then, among the disputed projects, the type of compensation related 204 

to the dispute was predicted; and finally, the adequate resolution method was predicted. The proposed paper here 205 

reflects the first step in Ayhan (2019)’s study that presented a prediction model for dispute occurrence. 206 

     The first category in the conceptual model is named as ‘Project Characteristics (PC)’ that involves 11 attributes 207 

related to project and contract related characteristics of a construction project. The second category is the ‘Skills 208 

(S)’ that is composed of 12 attributes depending on parties involved in the project and their organizational 209 
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structures. The third category of input variables is the ‘Changes (C)’ category that involves occurrence of variations 210 

and unexpected events in a construction project. Finally, the fourth category is the ‘Delays (D)’ that considers the 211 

impact of delays on construction disputes.  212 

Development of the Prediction Model 213 

     The second step is the development of the prediction model for dispute occurrence. The model relies on 214 

empirical data from past construction projects. In order to collect construction project data, a questionnaire was 215 

designed based on the identified variables in the conceptual model. The first section of the questionnaire is used 216 

to collect background information of the participants. The second section was designed to collect information 217 

related to project characteristics. Other than the two questions related to level of design and construction 218 

complexity, which were measured on a 5-point Likert scale (1: lowest level of complexity, 2: low complexity, 3: 219 

moderate complexity, 4: high complexity, 5: highest level of complexity), the remaining questions aimed to gather 220 

quantitative data related to the project such as contract value, time extensions, etc. The third section was composed 221 

of questions to assess characteristics of the parties involved and their organizational structures (i.e., coordination 222 

skills). These were also qualitatively measured by using 5-point Likert scale. The final section was composed of 223 

yes/no questions to understand occurrence of changes or unexpected events. The complete version of the 224 

questionnaire is available in Ayhan (2019).  225 

     In the collected data, the impacts of input variables on the output will not be the same. Some variables may 226 

impact the outcome more than the others, while the impact of some can be statistically insignificant. Therefore, 227 

the significance of associations between inputs and occurrence of disputes should be analyzed. First, the dataset 228 

was cleaned from noisy data and processed such that numeric variables were turned into categorical variables (i.e., 229 

nominal and ordinal). Then, to understand if there exists a statistically significant relationship between inputs and 230 

the output, Chi-square statistics was utilized. Chi-square statistics is a useful way of testing the existence of 231 

association relationship between categorical variables (Weisburd and Britt 2007). The Chi-square tests were 232 

performed in IBM SPSS Statistics version 22.0. Finally, according to the results of the Chi-square tests, statistically 233 

insignificant variables were eliminated, and prediction model was developed including only the significant 234 

variables. In other words, attribute elimination was performed on variables of the conceptual model via Chi-square 235 

tests to construct the prediction model for dispute occurrence.  236 

Finalization of the Prediction Model 237 

     The third step is finalizing the prediction model via data classification. For this reason, classification 238 

performances of alternative single and ensemble ML techniques were experimented. The utilized single algorithms 239 
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were (1) Naïve Bayes, (2) kNN, (3) C4.5, (4) MLP, (5) Polynomial kernel SVM, and (6) Radial Basis Function 240 

(RBF) kernel SVM. Meanwhile, the ensemble classifiers were developed by using (i) voting technique, (ii) stacked 241 

generalization, and (iii) the AdaBoost algorithm. The classifier with the best classification performance was 242 

presented as the final prediction model for dispute occurrence. Containing numerous inbuilt ML algorithms, 243 

WEKA version 3.8.3 (Frank et al. 2016) was used in data classification experiments. WEKA is a tried and tested 244 

software with evidence from the literature showing that the tool has consistent results and comparable performance 245 

to other applications, if not superior (Al-Khoder et al. 2015; Arasu et al. 2020). The algorithm parameters in 246 

WEKA can be edited easily via user interface, which helps the user to easily enhance the performance of the 247 

classification algorithm, instead of having to deal with complex command line operations (Witten et al. 2016). 248 

Data Collection and Initial Findings 249 

     With the goal of reflecting varying characteristics, the data was collected from a wide variety of construction 250 

projects. The study dataset contained 151 construction projects initially. However, noisy and unrepresentative data 251 

were removed before analysis (data cleansing). The remaining dataset for this research involves 108 projects, 252 

which are executed in 19 different countries. These projects were obtained from 75 construction companies of six 253 

different nationalities via face-to-face and online meetings with 78 individuals. Among these 75 companies, 21.3% 254 

are placed in the Engineering News-Record (ENR) Top 250 International Contractors List in 2018 (ENR 2018). 255 

Among these 108 projects, 38 of them did not experience any disputes (35%), while 70 projects faced with at least 256 

one dispute. This shows that dispute occurrence in construction projects are dominant (65%) for this dataset.  257 

     The data was collected from participants having a wide variety of roles including owners (26.9%), project 258 

directors (15.7%), legal counselors / advisors (15.7%), contract managers (7.4%), claim / dispute managers (6.5%), 259 

project managers (10.2%), site managers (10.2%), and project engineers (7.4%). Moreover, participants were 260 

selected with different levels of experience, ranging from 2 years to 49 years. The average construction experience 261 

of participants in the dataset is approximately 18 years with 47% having worked more than 15 years. Thus, it can 262 

be claimed that mainly the opinions of senior professionals are reflected in this research. 263 

     Table 1 shows the categorical labels and frequencies of ‘PC’ attributes in the dataset. It should be noted that 264 

numeric attributes are converted into categorical variables (data transformation) for computational purposes. For 265 

example, Naïve Bayes classification requires discrete data. However, if the discretization process removes 266 

distinguishing features, the data type conversion may harm the accuracy of classification algorithms later. For this 267 

reason, this study used the information gain-based supervised discretization available in WEKA that minimizes 268 

the subjectivity by considering the output class while determining discretization boundaries, and that minimizes 269 
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the information loss by selecting the split points generating the largest information gain. Table 2 shows categorical 270 

levels and frequencies of ‘S’ attributes in the dataset. Table 3 is for ‘C’ attribute that is measured on a binary scale, 271 

while Table 4 holds the information for ‘D’ attribute. The ratio of extensions to total planned duration is considered 272 

as a measure of delay in this paper. However, this numeric attribute is also converted to a categorical variable. 273 

     Some attributes reveal their pattern in the dataset at the first glance. For example, the increase in project values 274 

causes an increase in dispute rates as shown in Fig. 2. The highest dispute rate is observed for the group of projects 275 

with the highest project values (86%), while projects with the lowest values have the lowest dispute rate (48%). 276 

Fig. 3 shows the dispute rates with respect to planned project duration. For this dataset, dispute rates indicate that 277 

the longer the project duration is, the higher is the dispute rate. Fig. 4 presents the dispute rates with respect to 278 

project location, which shows that encountering disputes in international projects (82%) is more likely compared 279 

with domestic projects (59%). Thus, construction professionals should pay more attention to dispute management 280 

in international construction projects. Finally, the delays attribute showed that when the project is finished without 281 

any extensions, the dispute rate is 47.7%. Meanwhile, this rate is 62.5% in projects with an extension to planned 282 

duration ratio up to 20%, and 94.1% in projects with an extension ratio between 20% and 40%. These findings are 283 

in line with Ilter (2012) that reviewed the literature to identify factors affecting disputes; and project value, 284 

duration, delays, and unfamiliarity with local conditions were reported among dispute factors. However, not all 285 

relationships are easy to interpret and, attributes can also have a combined effect on the output. Therefore, the 286 

dataset is analyzed by the Chi-square tests and ML techniques to reveal all undiscovered associations.  287 

Chi-square Tests on the Dataset and Prediction Model for Occurrence of Disputes 288 

     The performance of ML algorithms is generally affected negatively by irrelevant attributes. Therefore, 289 

elimination of insignificant attributes improves generalization performance of ML algorithms (Arditi and Pulket 290 

2010; Sonmez and Sozgen 2017). Among numerous attribute elimination methods in the literature, Chi-square 291 

statistics is preferred in this paper. It is a non-parametric method that is robust to distribution of the data and 292 

unequal variances among study groups (Weisburd and Britt 2007). This means the Chi-square results can 293 

compensate the problematic issues due to data distribution (i.e., skewed data) unlike many other methods that 294 

require data with almost normal distribution and equality of variances. In addition, this method can handle both 295 

dichotomous and multiple category variables (McHugh 2013). Considering that the dataset in this research is 296 

composed of dichotomous and multiple category input variables with various distributions, Chi-square statistics is 297 

found to be an appropriate evaluation technique for attribute elimination and thus is used in this study. 298 
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     There are two types of categorical variables in the dataset as nominal and ordinal variables. The information 299 

related to the ordering is important for ordinals, and thus, methods for nominals and ordinals should not be applied 300 

interchangeably (Agresti 2007). Therefore, in the Chi-square tests, these variables should be analyzed accordingly. 301 

     Chi-square tests do not reveal the strength of association between variables (Agresti 2007); consequently, it 302 

should be followed with a statistic showing the strength (McHugh 2013). Phi and Cramer’s V are two of the 303 

measures for evaluating the strength of association between nominal variables. Phi measure calculates a strength 304 

value only for 2×2 tables. However, the real-world data and variables generally do not suit this kind of limitation. 305 

For this reason, there is another measure called Cramer’s V, which has the capability of handling tables with 306 

varying numbers of rows and columns (Weisburd and Britt 2007). Therefore, although Cramer’s V can calculate 307 

low correlation values for highly significant results, it has become the most preferred strength test for nominal 308 

variables (McHugh 2013). Consequently, to handle the changing number of rows and columns between variables 309 

of this study’s dataset, Cramer’s V is preferred as a strength measure for nominal variables. 310 

     IBM SPSS Statistics version 22.0 presents four measures of association for ordinal variables as Gamma, 311 

Somers’ d, Kendall’s tau-b, and Kendall’s tau-c. Strength values obtained from these measures are generally 312 

different from each other due to differences in handling tied pairs of observations. In Gamma measure, tied pairs 313 

of observations are not considered and consequently, there is a problem of overestimating the strength of the 314 

relationships. On the other hand, Somers’ d and Kendall’s tau measures take tied pairs into account and thus, they 315 

are superior to Gamma measure. However, Kendall’s tau-b is more adequate when the number of categories of 316 

independent and dependent variables are equal. For unequal number of rows and columns, Kendall’s tau-c is more 317 

adequate. Similar to Kendall’s tau-c, Somers’ d is also suitable for data with unequal number of rows and columns. 318 

Though, it can be considered as a better measure compared with Kendall’s tau-c (Weisburd and Britt 2007). In the 319 

light of all the facts mentioned above, Somers’ d is preferred as a strength measure for ordinal variables. 320 

     Chi-square results are tabulated in Table 5 to 8. In these tables, exact probability values are obtained from the 321 

exact Pearson Chi-square statistics for nominal variables and the Mantel-Haenszel linear-by-linear association test 322 

for ordinals. Probability values are compared with alpha level at ‘0.05’ for 95% confidence interval (CI).  323 

Insignificant attributes have an alpha level greater than ‘0.05’. The significant attributes are in moderately strong, 324 

or strong, or very strong relationship with dispute occurrence. When Cramer’s V measure is used, ‘strong’ 325 

relationship refers to a value greater than ‘0.15’ and ‘very strong’ relationship refers to a value greater than ‘0.25’ 326 

(Akoglu 2018). In this study, Cramer’s V measure of strength is used for only two of the significant attributes, 327 

PC1 and C1. Attribute PC1 (Cramer’s V = 0.215) has a strong relationship with dispute occurrence, while C1 328 
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(Cramer’s V = 0.576) has a very strong relationship. Somers’ d measure is a proportional error reduction (PRE) 329 

measure of association and for PRE values, as a rule of thumb, a value greater than ‘0.1’ refers to a ‘moderately 330 

strong’ relationship and a value greater than ‘0.4’ refers to a ‘strong’ relationship (Pollock 2011). Among attributes 331 

where Somers’ d is used, PC2, PC3, S2, S4, S5-1, S5-2, S6-2, S7-2, S8-1, S8-2, and D1 have moderately strong 332 

relationships with dispute occurrence, while S1 has strong relationship. In summary, the conceptual model for 333 

dispute occurrence prediction had 25 input variables. However, the association is statistically significant in only 334 

14 of them as indicated in Tables 5-8. Fig. 5 shows the established prediction model with these 14 attributes. 335 

     Chi-square results are also validated by measuring the information gain ratio, which evaluates the worth of each 336 

input variable with respect to the output. WEKA is used to measure the gain ratio using ‘GainRatioAttributeEval’ 337 

as the evaluator. The information gain ratio of each attribute in the conceptual model is measured and ranked. The 338 

results are given in Table 9. It is observed that the selected 14 attributes based on Chi-square results are also 339 

generating the highest 14 gain ratio values. Thus, Chi-square results are verified by gain ratio values. 340 

ML Techniques 341 

     The primary goal of this paper in utilizing ML techniques is to determine patterns in the data so that classifiers 342 

can be developed for predicting future cases. For prediction problems, researchers can resort to regression or 343 

classification techniques in the supervised ML domain. When the output variable is continuous or numerical, 344 

regression techniques can be applied. When the output is categorical, classification techniques should be used. In 345 

the case of predicting dispute occurrence, there are two classes that the instances can be assigned, and this kind of 346 

classification is called binary classification. ML techniques are well equipped to solve such problems. However, 347 

it is difficult to select the best performing ML technique that suits the prediction problem at hand. The literature 348 

has proven that it is not possible to solve all DM problems using a single ML technique because of the varying 349 

characteristics of real-world datasets (Pulket and Arditi 2009). Instead, to obtain accurate results, the bias due to 350 

the learning technique should be compatible with the dynamics of the problem domain, which makes DM an 351 

experimental process (Witten et al. 2016). The conventional approach is to experimentally compare performances 352 

of promising single ML algorithms as base classifiers and select the best one in that dataset (Arditi and Pulket 353 

2010). For this reason, this paper assessed the performance of six single ML techniques as potential base classifiers. 354 

     The reviewed single ML algorithms for data classification are taken from Witten et al. (2016) that listed the top 355 

10 DM algorithms based on results of a poll. These algorithms involve techniques for data classification, clustering, 356 

etc. However, proposed dispute prediction model requires utilization of classification techniques. Among these 10 357 

algorithms, the ones that can be used in data classification are tested on the collected data. Besides these algorithms, 358 
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MLP is also included because of its common usage in construction research. In short, the six data classification 359 

algorithms used in this paper are (1) Naïve Bayes, (2) kNN, (3) DT (C4.5), (4) MLP, (5) polynomial kernel SVM, 360 

and (6) RBF kernel SVM. The freely available C4.5 algorithm is preferred in this paper instead of the enhanced 361 

C5.0 that is the commercial version of its predecessor. Moreover, there is evidence showing the open-source C4.5 362 

can generate superior or comparable performances to C5.0 (Hssina et al. 2014; Febriantono et al. 2020). 363 

     The classification performances of single ML techniques can be enhanced further by creating ensemble 364 

classification schemes systematically (Arditi and Pulket 2010). Ensemble approaches, which are simply adding or 365 

combining base classifiers, can compensate errors of single classifiers and improve the classification accuracy. 366 

There are various approaches to develop ensemble models and this paper utilized three of them, which are (i) 367 

voting technique, (ii) stacked generalization, and (iii) the AdaBoost algorithm. This research preferred using the 368 

voting technique to benefit from its simplicity since it is reported as the simplest way to combine multiple 369 

classifiers (Alpaydin 2010). However, problems of misclassification may occur in voting when majority of the 370 

classifiers misclassifies an instance, and it is not clear which classifier’s classification is reliable. Unlike the voting 371 

technique, in stacked generalization, the classifier to be trusted can be learned by using another classifier (meta-372 

learner) and consequently, this technique may generate better classifier combinations (Witten et al. 2016). The 373 

ensemble techniques are used mainly to decrease variance (i.e., bagging), decrease bias (i.e., boosting), and 374 

improve prediction accuracy (i.e., stacked generalization). When bagging is used, generating complementary base-375 

learners is by chance; while in boosting, the next classifier is trained systematically on the mistakes of the previous 376 

one (Alpaydin 2010). Therefore, this research preferred boosting, specifically the AdaBoost algorithm due to its 377 

wide use, ease of implementation, and adaptability to a wide range of classifiers (Witten et al. 2016). 378 

     Theoretical background related to tested algorithms will exceed the scope and readers seeking more information 379 

can resort to Alpaydin (2010). Each technique has its own parameters that impact the performance of the classifier 380 

differently. Table 10 shows parameter configurations for each technique with corresponding search ranges and 381 

settings. The optimum values for parameters with numeric search ranges should be determined on a test set to 382 

match the characteristics of the dataset, and this is normally determined by using a validation set or CV technique. 383 

WEKA provides several methods (i.e., CV parameter selection, grid search) to obtain optimized parameters. 384 

Data Classification Tests using ML Techniques 385 

Model Validation and Performance Evaluation Measures 386 

     When limited amount of data is available, splitting the dataset into training and test sets may cause loss of 387 

information. Instead, researchers may prefer using all the data for knowledge extraction. However, this leaves no 388 
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unseen instances, or in other words, test set for the trained classifiers. In such cases, CV technique can be used, 389 

which is a procedure using all the data for learning and estimating the accuracy of the classifier by resampling the 390 

dataset (Vanwinckelen and Blockeel 2012). K-fold CV is the most common resampling technique that is based on 391 

training and testing the model k-times randomly on different subsets of training data to generate an estimate of the 392 

performance of a classifier on new data. The k number in k-fold CV is typically ‘10’ (Alpaydin 2010). Although 393 

this number can be adjusted depending on the size of the dataset and the desired level of analysis, literature has 394 

proven that 10-folds is the right number of folds based on experiments using various datasets and algorithms (Chou 395 

and Lin 2013, Chou et al. 2013a; Witten et al. 2016; Sonmez and Sozgen 2017).  396 

     There are two shortcomings of the k-fold CV technique. Firstly, training and test sets should be representative 397 

of the dataset, and random sampling may cause uneven representation. To overcome this problem, there is a 398 

procedure called stratification that guarantees each class is properly represented in both training and test sets during 399 

random sampling (Witten et al. 2016). Secondly, if two different k-fold CVs are performed using the same 400 

algorithm and dataset, but with different random sampling, there will most likely be two quite different 401 

classification performances. This is due to high variance associated with CV results. This variance can be restored 402 

by repeating the process with different random samples of the same dataset (repeated CV) and taking the average 403 

of results obtained from each CV (Vanwinckelen and Blockeel 2012). In the light of these facts, this paper utilized 404 

10 times repeated 10-fold CV in evaluating the classifier performance and results are given within 95% CI. 405 

     In ML domain, confusion matrices are used for evaluating the performances of the classifiers (Sonmez and 406 

Sozgen 2017). They are useful in calculating the accuracy, true positive (TP) rate, true negative (TN) rate, false 407 

positive (FP) rate, and false negative (FN) rate. Table 11 is a typical confusion matrix. In the ideal case, the 408 

diagonal elements, which correspond to correct classifications, should be large and non-diagonal elements, which 409 

correspond to misclassifications, should be low (Witten et al. 2016).  410 

     Accuracy in Eq. 1 is the overall classification performance, and it is the percentage of instances predicted 411 

correctly divided by the total number of instances. Precision in Eq. 2 is the number of correctly classified positive 412 

instances divided by the number of instances predicted as positive, and it gives the positive predictive power of a 413 

classifier. Recall (or sensitivity) in Eq. 3 is the number of correctly classified positive instances divided by the 414 

number of positive instances, and it gives the TP rate of a classifier. Specificity in Eq. 4 is the number of correctly 415 

classified negative instances divided by the number of negative instances, and it gives the TN rate of a classifier. 416 

 Accuracy (%) = (
TP + TN

TP + TN + FP + FN
) 100 (1) 

 417 
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 Precision = (
TP

TP + FP
) (2) 

 418 

 Recall (TP rate) = (
TP

TP + FN
) (3) 

 419 

 Specificity (TN rate) = (
TN

TN + FP
) = 1 - FP rate (4) 

 420 
     There is a combined measure called the receiver operating characteristic (ROC) curve that characterizes the 421 

trade-off between TP and FP rates. The ROC curve depicts the performance of a classifier regardless of class 422 

distributions, and it is plotted with the TP rate (recall) on the vertical and the FP rate on the horizontal axis 423 

(Alpaydin 2010). The ROC curve indicates the ability of a classifier to avoid misclassifications (Chou and Lin 424 

2013). ROC curves can be summarized in a single quantity that is called the area under the ROC (AUROC), and 425 

the larger the area or the closer the AUROC value is to ‘1’, the better the model would be (Witten et al. 2016). The 426 

final measure is the Cohen’s Kappa coefficient that is used to measure the agreement between predicted and actual 427 

values in a dataset with a correction for agreements by chance. Among positive values of the Kappa statistic, 428 

Cohen suggested that results can be interpreted as values between (1) 0.01-0.20 indicating none to slight 429 

agreement, (2) 0.21-0.40 indicating fair agreement, (3) 0.41-0.60 indicating moderate agreement, (4) 0.61-0.80 430 

indicating substantial agreement, and (5) 0.81-1.00 indicating almost perfect agreement (McHugh 2012). 431 

Results of Data Classification Tests 432 

     Table 12 shows the 10 times repeated 10-fold CV results of the single classifiers. The most successful models 433 

in terms of average accuracy are RBF kernel SVM, polynomial kernel SVM, and C4.5 classifiers, respectively. 434 

The best average Kappa statistic value (0.790), which indicates a substantial agreement between predicted and 435 

actual values in the dataset, is obtained from the RBF kernel SVM. The best average precision and specificity 436 

values are obtained from the kNN technique, while the RBF kernel SVM generated comparable performances in 437 

these measures. The best classifiers in classifying disputed projects (TP rate) are SVM classifiers with an average 438 

recall value of 0.929. The best average AUROC value is obtained from the Naïve Bayes classifiers (0.953), which 439 

is an almost ideal value. All algorithms produced impressing AUROC values with the lowest value being 0.887. 440 

     The best performing three single techniques (RBF kernel SVM, polynomial kernel SVM, and C4.5) are used 441 

as candidates for ensemble models. In voting technique, the ensemble classifier will be the combination of these 442 

three classifiers. In stacked generalization, two single techniques are combined as base-learner and meta-learner, 443 

where base-learner is trained with the original dataset and meta-learner is trained with a subset of the original set 444 

that only includes the correctly classified instances by the base-learner. The resulting stacked classifier, which 445 

combines performances of two classifiers, is expected to achieve better performance than each single technique it 446 
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involves. However, classifiers of the same type should not be combined in stacking (Alpaydin 2010). In summary, 447 

for stacked generalization, the best performing three single techniques will be used as base-learners, while all six 448 

experimented single techniques will be considered as meta-learners. Keeping in mind that same classifiers should 449 

not be combined (i.e., combining two C4.5 classifiers is not desired), the three classifiers that will be used as base-450 

learners can be combined with the remaining five techniques excluding itself. Consequently, this will generate 15 451 

stacked classifiers. Meanwhile, since the main principle of the AdaBoost algorithm is to develop strong classifiers 452 

out of weak ones, all single techniques are boosted by the AdaBoost algorithm in pursue of such an enhancement. 453 

     Table 13 shows the 10 times repeated 10-fold CV results of the ensemble classifiers. The ensemble classifiers 454 

obtained from the majority voting technique generated 91.11% average prediction accuracy. Although the stacked 455 

generalization technique that combined RBF and polynomial kernel SVM classifiers also achieved the same 456 

average accuracy, the majority voting technique has higher performance as it is superior to all single and ensemble 457 

classifiers in terms of average Kappa (0.806), precision (0.937), and specificity (0.884) values. On the other hand, 458 

the stacked classifier generated the highest TP rate (0.931) that indicates the success in correct identification of 459 

the disputed cases among actually disputed projects, while the majority voting technique has a slightly lower TP 460 

rate (0.926). However, when AUROC values are evaluated, the ability to avoid any misclassifications (disputed or 461 

undisputed) is better in majority voting (AUROC = 0.905) compared with stacking (AUROC = 0.903).  462 

     In stacked generalization, when the classification accuracies of single classifiers contained in the ensemble 463 

model is as high as possible and classifiers are as diverse as possible, the ensemble model can outperform the 464 

performances of the classifiers it contains (Alpaydin 2010). However, experiments showed that not all 15 stacked 465 

ensemble models achieved better classification. When the base-learner is the polynomial kernel SVM or C4.5 466 

algorithm, none of the ensemble models achieved better performances. Moreover, when the base-learner was the 467 

RBF kernel SVM, all ensemble models gave the exact same accuracy values. This is because the base-learner does 468 

most of the work and the meta-learner is like an arbiter in the stacked ensemble models (Witten et al. 2016). 469 

Among the five stacked classifiers where RBF kernel SVM is the base-learner, only the results of the model that 470 

combined RBF and polynomial kernel SVMs are given since it generated the best average AUROC value. 471 

     All six single ML techniques are boosted by the AdaBoost algorithm. However, the boosting process might 472 

perform poorly if single classifiers are too complex for the available training data (Witten et al. 2016). Experiments 473 

in this research showed that the performance is improved only in the Naïve Bayes and MLP, which are the weakest 474 

performing single techniques, and they are still being outperformed by the remaining single techniques. The 475 

AdaBoost results of the remaining algorithms are not given as they do not improve the single versions.  476 
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Discussion of Findings 477 

     The literature review revealed 25 attributes that prominently impact occurrence of disputes and these attributes 478 

can be grouped under four categories as attributes related to project characteristics (PC), skills of the parties 479 

involved (S), changes (C), and delays (D). These 25 attributes were used to establish a conceptual model and this 480 

model was used to collect data. In a similar vein, the proposed conceptual model for predicting the occurrence of 481 

disputes can be used with different datasets to conduct similar research. 482 

     Chi-square tests showed that 14 of these attributes have significant association with dispute occurrence. Among 483 

the PC attributes, project location (PC1), value (PC2), and planned duration (PC3) were the selected attributes for 484 

the final prediction model. In a study that reviewed the literature to identify dispute factors, these three attributes 485 

were also reported among the prominent factors (Ilter 2012). On the other hand, construction type (PC4), contractor 486 

type (PC5), employer type (PC6), and contract type (PC7) were not significantly associated with dispute 487 

occurrence. Similarly, payment method (PC8), project delivery system (PC9), and level of design and construction 488 

complexity (PC10, PC11) attributes were also eliminated. This finding contradicts with the studies (such as Cheng 489 

et al. 2009; Chou and Lin 2013) that relate disputes with certain types of construction, project delivery system, etc.  490 

     Among the S attributes, relationship between parties / individuals (S1), previous experience with each other / 491 

reputation (S2), communication between parties (S4), working culture and skills of the represented party (S5-1) 492 

and the counter party (S5-2), response rate and communication skills of the counter party (S6-2), experience of the 493 

counter party (S7-2), project management and coordination skills of the represented party (S8-1), and the counter 494 

party (S8-2) were found to be significantly associated with dispute occurrence. It was interesting that the adequacy 495 

of dispute avoidance incentives (S3) was not found significant and left out of the prediction model. Although it 496 

was expected that organizational goals or reward mechanisms would increase individuals’ motivation to avoid 497 

disputes (Diekmann and Girard 1995; Molenaar et al. 2000), findings in this study did not support this argument. 498 

This irregularity may be associated with the rooted adversarial relationships in the construction industry and even 499 

adequate avoidance incentives cannot prevent occurrence of disputes. Another interesting finding was related to 500 

response rate and communication skills of the represented party (S6-1). Although S4 and S6-2 attributes were 501 

significantly associated with dispute occurrence, it was found that S6-1 is not significantly associated. When 502 

responses to S6-1 attribute were reviewed, it is observed that the experts tend to overestimate their skills related 503 

to this attribute. Experts rated their response rate and communication skills for their organization (S6-1) as strong 504 

(Level 4) or very strong (Level 5) in 78.7% of the cases while this rate is 40.7% for the counter parties (S6-2). 505 
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     The highest strength of association (Cramer’s V = 0.576) is obtained for the changes (C1) attribute. Therefore, 506 

it is the most influential factor on dispute occurrence. This was also verified by the information gain ratio measure 507 

as C1 attribute generated the highest gain ratio (0.338). This finding is in accordance with the previous research 508 

stating that variations comprise one of the major causes of disputes (Kilian and Gibson 2005; Chen and Hsu 2007). 509 

According to their influence on dispute occurrence, the other influential attributes were S1 (Somers’ d = -0.406; 510 

second highest gain ratio = 0.136), S4 (Somers’ d = -0.370; third highest gain ratio = 0.115), S5-2 (Somers’ d = -511 

0.303; fourth highest gain ratio = 0.082), and S8-2 (Somers’ d = -0.321; fifth highest gain ratio = 0.082). Therefore, 512 

majority of influential attributes were related to the parties involved. Considering dispute management is a process 513 

dominated by human factors (Cheung and Suen 2002), these results highlight the primary areas to focus in 514 

individual and organizational level. The negative signs in Somers’ d values indicate that when the level of the 515 

attribute increases, the dispute rate decreases. Therefore, efforts directed to improve these areas will be beneficial 516 

in dispute avoidance. Other than the S attributes, the most influential project characteristics related attribute on 517 

dispute occurrence is the planned project duration (PC3) according to the gain ratio values. It is followed by another 518 

duration related attribute, delays (D1), which represents the ratio of extensions to planned duration.  519 

     In summary, PC1, PC2, PC3, S1, S2, S4, S5-1, S5-2, S6-2, S7-2, S8-1, S8-2, C1, and D1 were used in the 520 

prediction model.  10-fold CV results with 10 repeats showed that RBF kernel SVM, polynomial kernel SVM, and 521 

C4.5 algorithms are the three-best performing single techniques for the reviewed dataset with average prediction 522 

accuracies of 90.46%, 89.91%, and 88.98%, respectively. Hence, the SVM algorithm outperformed the remaining 523 

single techniques tested in this paper. The superiority of the SVM algorithm is not surprising considering that the 524 

algorithm was developed specifically for binary classification problems (Witten et al. 2016). 525 

     In pursue of an enhancement to classification performances, ensemble classifiers were developed. Experiments 526 

revealed that the best classifier for predicting the occurrence of disputes, which was obtained from the majority 527 

voting technique by combining classification decisions of the top three single techniques, can achieve 91.11% 528 

average prediction accuracy. Moreover, this classifier generated the best performance in Kappa, precision (the 529 

accuracy in prediction of disputed cases), and specificity (identifying undisputed cases correctly) measures. 530 

Although the highest AUROC value is obtained from the AdaBoost technique that boosted the Naïve Bayes 531 

classifier (0.954), the majority voting technique has the advantage of producing higher average accuracy compared 532 

with the boosted Naive Bayes classifier (88.06%), and thus, it is more desirable. In addition, the highest TP rate is 533 

obtained from the stacked classifier combining RBF and polynomial kernel SVM classifiers (0.931). However, as 534 

explained earlier, the TP rate of majority voting is only slightly lower (0.926), while it has better performance in 535 
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remaining evaluation criteria compared with the stacked classifier. Therefore, the final prediction model for 536 

predicting the occurrence of disputes in this paper is the classifier obtained from the majority voting technique. 537 

     Among limited empirical research on dispute occurrence prediction, Chou and Lin (2013) achieved a 10-fold 538 

CV prediction accuracy of 84.33% from the ensemble model that combined SVM, ANN, and C5.0 classifiers. 539 

They also achieved 85.60% precision, 95.26% sensitivity, 48.82% specificity, and 0.7229 AUROC values. The 540 

prediction model proposed in this study not only outperformed this classifier in terms of accuracy, but also it was 541 

capable of generating higher precision (93.70%), sensitivity (92.60%), specificity (88.40%), and AUROC (0.9050) 542 

values; although it should be noted that compared studies used different datasets and attributes. Chou et al. (2014) 543 

developed an SVM model on the same dataset to achieve 89.30% prediction success along with 94.67% precision, 544 

74.24% sensitivity, 93.64% specificity, and 0.8364 AUROC values. This classifier was also outperformed by the 545 

proposed study. Although precision and specificity values seem higher in Chou et al. (2014), they were obtained 546 

from the best classifier with only a single trial and the variance in ML algorithms was not considered. On the other 547 

hand, the proposed study presents average results obtained from repeating each test 10 times. In another trial by 548 

repeating classification tests 10 times, Chou et al. (2016) achieved an average 10-fold CV accuracy of 83.92% 549 

using C5.0 algorithm. In the light of these comparisons, the proposed prediction model in this research achieved 550 

better performance in predicting dispute occurrence and it can firmly be concluded that results are promising. 551 

     The efforts to identify attributes that impact dispute occurrence showed that the literature relates several 552 

subjectively assessed attributes with the occurrence of disputes. The empirical dataset collected for this research 553 

is also based on the subjective judgments of the domain experts. For example, level of design complexity was 554 

subjectively assessed by the experts. This is regarded as the main limitation of the research. Another limitation is 555 

related to the data scarcity. Although the collected data is claimed to be quite representative, the number of projects 556 

is still limited due to access to such information, research duration, and budget. It can be increased to improve the 557 

generalization capability of the presented model. This data scarcity problem has also been highlighted by Yu 558 

(2007) by stating that historical data are scarce in nature for construction industry. Another limitation is the extent 559 

of the experimented techniques. Although performances of various ML techniques were compared, there are 560 

considerable classification techniques that are not evaluated in this research such as Random Forest, Convolutional 561 

Neural Networks, etc. with the potential to achieve an advancement in classification performance.  562 

Conclusions 563 

     This study experimentally compared the performances of several single and ensemble ML techniques to predict 564 

the occurrence of disputes. In terms of average prediction accuracy, RBF kernel SVM (90.46%), polynomial kernel 565 
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SVM (89.91%), and C4.5 (88.98%) classifiers gave the best classification performances. However, two ensemble 566 

classifiers outperformed the single techniques by achieving 91.11% average accuracy, which are the stacked 567 

generalization technique that combined RBF and polynomial kernel SVMs, and the majority voting that combined 568 

all three-best performing single techniques. The superiority of the classifier obtained from majority voting 569 

technique in Kappa (0.806), precision (0.937), and specificity (0.884) measures made it become the best classifier 570 

in predicting the occurrence of disputes in this research.  571 

     The outcomes of this research can be valuable for professionals as it will avail early planning for taking 572 

necessary precautions, which may help reducing the effort, time, and cost of dispute management actions 573 

considerably. In addition, the research contributes to disputes literature with an empirical study that consider 574 

variations in project and organizational characteristics. Moreover, researchers can benefit from the conceptual 575 

model that constitutes a generic approach for dispute occurrence by using it to conduct similar research. As another 576 

contribution, the most influential factors on dispute occurrence are highlighted and results showed that occurrence 577 

of variations and unexpected events are the primary respondent of dispute occurrence. Moreover, the relationship 578 

between parties, communication between parties, and project management and coordination skills of the counter 579 

party have the highest impact on dispute occurrence, respectively. Researchers and construction professionals are 580 

advised to focus on enhancements on these areas to avoid dispute occurrence to a certain extent if not completely. 581 

     The next step of this research covers developing models for predicting the potential compensation and best 582 

resolution method in cases where disputes are inevitable. A potential tool combining the presented and forthcoming 583 

models can be beneficial by mitigating the detrimental effects of disputes. In addition, to mitigate the data scarcity 584 

problem in this research, researchers that will conduct similar studies may resort to the soft computing approach 585 

proposed by Yu (2007), which integrates fuzzy logic, learning ability of classifiers, and messy Genetic Algorithm.  586 

Data Availability Statement 587 

     Some or all data, models, or code that support the findings of this study are available from the corresponding 588 

author upon reasonable request. Some or all data, models, or code generated or used during the study are 589 

proprietary or confidential in nature and may only be provided with restrictions. Company names, project names, 590 

and participant contact information cannot be provided to preserve anonymity of participants and to comply with 591 

legal issues such as privacy laws; instead, generic identification numbers have been assigned to each case. 592 
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Fig. 1. Research Methodology 

Fig. 2. Dispute Rates with respect to Project (Contract) Values 

Fig. 3. Dispute Rates with respect to Planned Project Duration 

Fig. 4. Dispute Rates with respect to Project Location 

Fig. 5. Prediction Model for Occurrence of Disputes 

Fig. 6. 10-times 10-fold CV Performances of Experimented Classifiers 
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Table 1. Project Characteristics (PC) Attributes – Categorical Labels and Frequencies 

ID Attribute Categorical Label Frequency 

Relative  

Frequency (%) 

PC1 Project Location 1 Domestic 80 74.1 

2 International 28 25.9 

PC2 Project (Contract) Value 1 < 10 million $ 44 40.7 

2 10-100 million $ 35 32.4 

3 > 100 million $ 29 26.9 

PC3 Planned Project Duration 1 < 1 year 31 28.7 

2 1 – 2 years 37 34.3 

3 2 – 3years 21 19.4 

4 > 3 years 19 17.6 

PC4 Type of Construction 1 Housing 18 16.7 

2 Commercial 10 9.3 

3 Industrial 12 11.1 

4 Transportation 17 15.7 

5 Power Plants & Lines 8 7.4 

6 Water Supplies & 

Reservoirs 
10 9.3 

7 Sports & Cultural & 

Educational 
11 10.2 

8 Medical 7 6.5 

9 Public 6 5.6 

10 Soil Works 9 8.3 

PC5 Type of Contractor 1 Single 88 81.5 

2 Joint Venture 11 10.2 

3 Consortium 9 8.3 

PC6 Type of Employer 1 Public 52 48.1 

2 Private 43 39.8 

3 Public-Private-

Partnership 
13 12.0 

PC7 Type of Contract 1 Private Contracts 53 49.1 

2 Public Procurement 36 33.3 

3 FIDIC Red 10 9.3 

4 FIDIC Silver & Yellow 9 8.3 

PC8 Payment Method 1 Fixed (Lump-Sum) 58 53.7 

2 Unit Price 50 46.3 

PC9 Project Delivery System 1 Design-Bid-Build 67 62.0 

2 Design-Build 26 24.1 

3 Engineering-

Procurement-

Construction 

15 13.9 

PC10 Level of Design 

Complexity 

1 Very Low 13 12.0 

2 Low 16 14.8 

3 Moderate 20 18.5 

4 High 37 34.3 

5 Very High 22 20.4 

PC11 Level of Construction 

Complexity 

1 Very Low 9 8.3 

2 Low 15 13.9 

3 Moderate 19 17.6 

4 High 38 35.2 

5 Very High 27 25.0 
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Table 2. Skills (S) Attributes – Levels and Frequencies 

ID Attribute Levels 

F
re

q
u

en
cy

 

R
el

at
iv

e 

F
re

q
u

en
cy

 

(%
) 

ID Attribute Levels 

F
re

q
u

en
cy

 

R
el

at
iv

e 

F
re

q
u

en
cy

 

(%
) 

S1 Relationship 

between parties 

/ individuals 

Level 1 10 9.3 S6-1 Response rate 

& 

communication 

skills of the 

represented 

party 

Level 1 10 9.3 

Level 2 14 13.0 Level 2 14 13.0 

Level 3 12 11.1 Level 3 12 11.1 

Level 4 48 44.4 Level 4 48 44.4 

Level 5 24 22.2 Level 5 24 22.2 

S2 Previous 

experience with 

each other / 

Reputation 

Level 1 2 1.9 S6-2 Response rate 

& 

communication 

skills of the 

counter party 

Level 1 19 17.6 

Level 2 7 6.5 Level 2 21 19.4 

Level 3 20 18.5 Level 3 24 22.2 

Level 4 42 38.9 Level 4 26 24.1 

Level 5 37 34.3 Level 5 18 16.7 

S3 Dispute 

avoidance 

incentive 

Level 1 46 42.6 S7-1 Experience of 

the represented 

party 

Level 1 1 0.9 

Level 2 3 2.8 Level 2 3 2.8 

Level 3 16 14.8 Level 3 15 13.9 

Level 4 21 19.4 Level 4 33 30.6 

Level 5 22 20.4 Level 5 56 51.9 

S4 Communication 

between parties 

Level 1 7 6.5 S7-2 Experience of 

the counter 

party 

Level 1 11 10.2 

Level 2 18 16.7 Level 2 16 14.8 

Level 3 25 23.1 Level 3 22 20.4 

Level 4 34 31.5 Level 4 30 27.8 

Level 5 24 22.2 Level 5 29 26.2 

S5-1 Working 

culture & skills 

of the 

represented 

party 

Level 1 1 0.9 S8-1 Project 

management & 

coordination 

skills of the 

represented 

party 

Level 1 1 0.9 

Level 2 7 6.5 Level 2 4 3.7 

Level 3 20 18.5 Level 3 22 20.4 

Level 4 45 41.7 Level 4 50 46.3 

Level 5 
35 32.4 

Level 5 
31 28.7 

S5-2 Working 

culture & skills 

of the counter 

party 

Level 1 18 16.7 S8-2 Project 

management & 

coordination 

skills of the 

counter party 

Level 1 10 9.3 

Level 2 17 15.7 Level 2 26 24.1 

Level 3 29 26.9 Level 3 32 29.6 

Level 4 27 25.0 Level 4 31 28.7 

Level 5 17 15.7 Level 5 9 8.3 

 

 

Table 3. Changes (C) Attribute – Categorical Labels and Frequencies 

ID Attribute Categorical Label Frequency 

Relative Frequency 

(%) 

C1 Changes 0 No 67 62.0 

1 Yes 41 38.0 
 

 

Table 4. Delays (D) Attribute – Categorical Labels and Frequencies 

ID Attribute Categorical Label Frequency  

Relative 

Frequency (%) 

D1 Delays 1 Ratio = 0% 44 40.7 

2 Ratio 0-20% 24 22.2 

  3 Ratio 20-40% 17 15.7 

  4 Ratio > 40% 23 21.3 
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Table 5. The Chi-Square Test Results of Project Characteristics (PC) Attributes  

Attribute Categories 
p-

value 

Dispute 

Occurrence 

Rate (%) 

Selected for 

Final Model 

Strength of 

Association 

PC1 – Project Location 0.037  YES Cramer’s V 

 Domestic  58.8  0.215 

 International  82.1   

PC2 – Project (Contract) Value 0.003  YES Somers’ d 

 < 10 million $  47.7  0.259 

 10-100 million $  68.6   

 > 100 million $  86.2   

PC3 – Planned Project Duration 0.000  YES Somers’ d 

 < 1 year  41.9  0.286 

 1-2 years  62.2   

 2-3 years  71.4   

 > 3 years  100.0   

PC4 – Type of Construction 0.157  NO - 

PC5 – Type of Contractor 0.749  NO - 

PC6 – Type of Employer 0.961  NO - 

PC7 – Type of Contract 0.074  NO - 

PC8 – Payment Method 0.842  NO - 

PC9 – Project Delivery System 0.957  NO - 

PC10 – Level of Design Complexity 0.938  NO - 

PC11 – Level of Construction 

Complexity 
1.000  NO - 

 

Table 6. The Chi-Square Test Results of Skills (S) Attributes  

Attribute p-value 
Selected for 

Final Model 

Strength of 

Association 

S1 – Relationship between parties / individuals 0.000 YES 
Somers’ d 

-0.406 

S2 – Previous Experience with each other / 

Reputation 
0.007 YES 

Somers’ d 

-0.185 

S3 – Dispute avoidance incentive 0.158 NO - 

S4 – Communication between parties 0.000 YES 
Somers’ d 

-0.370 

S5-1 – Working culture & skills of the  

represented party 
0.012 YES 

Somers’ d 

-0.162 

S5-2 – Working culture & skills of the  

counter party 
0.000 YES 

Somers’ d 

-0.303 

S6-1 – Response rate & communication skills of the 

represented party 
0.228 NO - 

S6-2 – Response rate & communication skills of the 

counter party 
0.000 YES 

Somers’ d 

-0.280 

S7-1 – Experience of the represented party 0.085 NO - 

S7-2 – Experience of the counter party 0.001 YES 
Somers’ d 

-0.233 

S8-1 – Project management & coordination skills of 

the represented party 
0.006 YES 

Somers’ d 

-0.199 

S8-2 – Project management & coordination skills of 

the counter party 
0.000 YES 

Somers’ d 

-0.321 

 

Table 7. The Chi-Square Test Results of Changes (C) Attribute 

Attribute Categories p-value 

Dispute 

Occurrence  

Rate (%) 

Selected for 

Final Model 

Strength of 

Association 

C1 – Changes 0.000  YES Cramer’s V 

 Yes  100.0  0.576 

 No  43.3   

 



29 
 

Table 8. The Chi-Square Test Results of Delays (D) Attribute 

Attribute Categories p-value 

Dispute 

Occurrence 

Rate (%) 

Selected for 

Final Model 

Strength of 

Association 

D1 – Delays 0.002  YES Somers’ d 

 Ratio = 0%  47.7  0.232 

 Ratio 0-20%  62.5   

 Ratio 20-40%  94.1   

 Ratio > 40%  78.3   

 

Table 9. Gain Ratio Values of the Input Variables with respect to Dispute Occurrence 

Rank 
Attribute 

ID 

Gain Ratio 

Value 

Selected for 

Final Model 

Based on Chi-

Square Results 

Rank 
Attribute 

ID 

Gain Ratio 

Value 

Selected for 

Final Model 

Based on Chi-

Square Results 

1 C1 0.338 YES 15 S3 0.030 NO 

2 S1 0.136 YES 16 PC7 0.030 NO 

3 S4 0.115 YES 17 PC4 0.027 NO 

4 S5-2 0.082 YES 18 S7-1 0.018 NO 

5 S8-2 0.082 YES 19 PC11 0.015 NO 

6 PC3 0.081 YES 20 S6-1 0.015 NO 

7 S6-2 0.079 YES 21 PC10 0.007 NO 

8 S5-1 0.068 YES 22 PC5 0.005 NO 

9 D1 0.055 YES 23 PC9 0.001 NO 

10 S7-2 0.055 YES 24 PC6 0.001 NO 

11 PC2 0.053 YES 25 PC8 0.000 NO 

12 S8-1 0.046 YES     

13 PC1 0.044 YES     

14 S2 0.039 YES     

 

Table 10. Parameter Configurations for the Utilized ML techniques 

Algorithm Parameter Search Range 

Naïve Bayes No parameter optimization is required 

kNN k value 1-100 (in step size of 1) 

Distance measurement function Chebyshev, Euclidean, Manhattan, Minkowski 

Distance weighting method Equal, Inverse (1/weight), Similarity (1-weight)  

C4.5 Pruning True, False  

Reduced error pruning True, False  

Subtree raising True, False  

Confidence threshold factor for 

pruning 

[0.01-0.50] (in step size of 0.01)  

Minimum number of instances 

per leaf 

[1-10] (in step size of 1) 

Number of folds for pruning [2-5] (in step size of 1) 

Use Laplace for counts at leaves True, False  

MLP Number of hidden layers 0, 1, 2, (total number of inputs and outputs) / 2 

Number of epochs (cycles) 500, 1000 

Momentum [0.1-0.9] (in step size of 0.1) 

Learning rate [0.1-0.9] (in step size of 0.1) 

Polynomial SVM Penalty parameter C [2-2-215] (in exponentially growing sequence) 

Exponent [1-10] (in step size of 1) 

RBF kernel SVM Penalty parameter C [2-2-215] (in exponentially growing sequence) 

RBF kernel gamma [2-15-24] (in exponentially growing sequence) 

Voting Technique Combination rule Majority voting, Average of Probabilities Voting 

Stacked 

Generalization 

Base learner  Top 3 performing single classifiers 

Meta-learner Remaining single techniques (base-learner and 

meta-learner cannot be the same technique) 

AdaBoost 
Number of iterations to be 

performed 

10 

 Boosting mechanism True (use resampling), False (use reweighting) 
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Table 11. Confusion Matrix for Binary Classification 

Class Predicted Class: Disputed Predicted Class: Undisputed 

Actual Class: Disputed TP FN 

Actual Class: Undisputed FP TN 

 

Table 12. 10-Times 10-Fold CV Performance of Single Classifiers 

Algorithm 

Avg. 

Accuracy 

(%) 

%95 CI 

Accuracy 

(%) 

Avg. 

Kappa 

Avg. 

Precision 

Avg. 

Recall 

(TP Rate) 

Avg. 

Specificity 

Avg. 

AUROC 

Naive Bayes 87.50 [86.60-88.40] 0.728 0.912 0.893 0.843 0.953 

kNN 87.69 [86.65-88.72] 0.737 0.931 0.874 0.881 0.928 

C4.5 88.98 [87.26-90.70] 0.761 0.927 0.901 0.868 0.947 

MLP 83.52 [82.06-84.98] 0.641 0.879 0.866 0.779 0.894 

Poly. Kernel SVM 89.91 [88.85-90.96] 0.777 0.917 0.929 0.845 0.887 

RBF kernel SVM 90.46 [89.17-91.75] 0.790 0.925 0.929 0.861 0.894 

Note: Bold values show the best performance obtained in the corresponding measure 

 

Table 13. 10-Times 10-Fold CV Performance of Ensemble Classifiers 

Algorithm 

Avg. 

Accuracy 

(%) 

%95 CI 

Accuracy 

(%) 

Avg. 

Kappa 

Avg. 

Precision 

Avg. 

Recall 

(TP Rate) 

Avg. 

Specificity 

Avg. 

AUROC 

Majority Voting 91.11 [89.93-92.29] 0.806 0.937 0.926 0.884 0.905 

        

Stacking: 

RBF kernel SVM + 

Poly. kernel SVM 

91.11 [89.78-92.44] 0.805 0.932 0.931 0.874 0.903 

        

AdaBoost: 

Naïve Bayes 
88.06 [87.20-88.91] 0.738 0.908 0.907 0.832 0.954 

        

AdaBoost: 

MLP 
83.70 [81.68-85.73] 0.651 0.895 0.849 0.816 0.908 

Note: Bold values show the best performance obtained in the corresponding measure 


