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ABSTRACT  

 

Cardiometabolic diseases such as cardiovascular diseases (CVD), obesity, hypertension and 

type 2 diabetes are a major cause of morbidity, mortality, and healthcare spending worldwide, 

especially in lower-middle-income countries. While cardiometabolic diseases are strongly 

affected by changes in environmental factors (such as unhealthy diet, sedentary lifestyle, and 

urbanization), they also have strong genetic determinants. Thus, understandings the role of 

gene–lifestyle interactions on cardiometabolic diseases and related traits can improve our 

understanding of disease pathophysiology and contribute to precision nutrition aiming to 

prevent and treat these diseases. Genome-wide association studies (GWAS) and candidate gene 

studies have revealed thousands of single nucleotide polymorphisms (SNPs) that have shown 

to be associated with cardiometabolic traits. However, these studies have been extensively 

performed in European populations, inadequately representing other ethnic groups. Genetic 

association studies of cardiometabolic diseases have great potential in terms of informing 

personalised and prevention medicine. This potential benefit, however, will only be understood 

by including populations of diverse ancestral backgrounds in these genetic studies. Hence, the 

main aims of this PhD work were to investigate the individual and joint effect of several SNPs 

on cardiometabolic disease-related traits in ethnically diverse populations. The interaction of 

these SNPs with lifestyle factors such as physical activity and dietary macronutrient intake on 

cardiometabolic disease-related traits was also assessed. This thesis included five different 

studies: three cross-sectional cohort studies [The Minangkabau Indonesia Study on Nutrition 

and Genetics (MINANG study; Indonesian women; n=110), The Genetics of Obesity and 

Nutrition in Ghana (GONG study; Ghanaian adults; n= 302) and The Obesity, Lifestyle and 

Diabetes in Brazil (BOLD study; Brazilian young adults; n= 200)] and two case-control studies 

[study in Turkish adults (n= 400) and Chennai Urban Rural Study (CURES; Asian Indian, 

n=1062)]. Statistical analysis was performed using Statistical Package for the Social Sciences 



 

(SPSS) software (version 24; SPSS Inc., Chicago, IL, USA). We found significant gene-protein 

interactions on central obesity risk (Pinteraction=0.044) in the Turkish population, on triglyceride 

levels and waist circumference (WC) (Pinteraction=0.003 and 0.002, respectively) in the 

Indonesian population, and on fasting blood glucose and glycated haemoglobin (Pinteraction=0.01 

and 0.007, respectively) in the Indian population. Furthermore, there were GRS-fat intake 

interactions on WC in the Ghanaian population and on fasting insulin level (Pinteraction=0.017), 

insulin-glucose ratio (Pinteraction=0.010), homeostasis model assessment estimate of insulin 

secretion (HOMA-B) (Pinteraction=0.002) and homeostasis model assessment estimate of insulin 

resistance (HOMA-IR) (Pinteraction=0.051) in the Brazilian population. Also, a significant 

interaction between the fat mass and obesity-associated (FTO) SNP rs9939609 and physical 

activity on adiponectin concentrations was found in the Turkish population. In summary, the 

findings from this thesis contribute to the science of nutrigenetics by demonstrating the 

existence of genetic heterogeneity in gene-diet interactions on cardiometabolic disease-related 

traits across different ethnic groups. However, these findings need to be replicated using larger 

cohort and dietary intervention studies before they would be considered for personalised 

dietary recommendations, which are an innovative and promising approach for the prevention 

and treatment of cardiometabolic diseases. 
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Chapter 1 Introduction to the thesis 

1.1 Introduction 

A major epidemic of cardiometabolic diseases including diabetes and cardiovascular 

diseases (CVD) currently represents a significant public health issue worldwide. In 2016, the 

World Health Organization (WHO) estimated that approximately 1.6 million individuals died 

from diabetes and 17.9 million individuals died from CVD (1). Cardiometabolic risk refers to 

a condition of increased risk of developing CVD and diabetes. There are several risk factors, 

including insulin resistance (IR), obesity, dyslipidaemia and hypertension, playing major roles 

in the disease pathophysiology (2).  

Evidence has shown strong associations of genetic factors with cardiometabolic 

diseases. Mapping genes associated with cardiometabolic diseases and related traits has been 

performed using two main approaches: candidate gene and genome-wide approaches (3). The 

substantial increase in the prevalence of these diseases in the urban society, characterised by 

unhealthy diet and sedentary behaviours, also indicates the significant contribution of our 

lifestyle and environment in disease risk. This highlights the importance of examining 

interactions between genetic and lifestyle factors (4).  

The science of nutrigenetics investigates the effect of genetic factors on an individual’s 

response to dietary interventions, with an ultimate aim of tailoring dietary recommendations 

based on the individual’s genetic profile for preventing or treating cardiometabolic diseases 

(5).   

This chapter will: (i) discuss the effect of genetic and environmental factors on 

cardiometabolic diseases; (ii) discuss the importance of investigating gene-lifestyle 

interactions and the implications of personalised nutrition in clinical practice. 

1.2 An overview of cardiometabolic diseases   
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Cardiometabolic diseases including diabetes and CVD have been recognised as a global 

emergency (6, 7). Cardiometabolic diseases lead to medical impoverishment (8-11) and enforce 

economic burden especially on low- and middle-income countries (LMICs) (12). While 

cardiometabolic diseases remain most prevalent among wealthier groups, they are growing at 

faster rates among groups of poorer socioeconomic status (13). These diseases are strongly 

clustered amongst individuals of low socioeconomic status in high-income countries (HICs) 

(10, 11). Furthermore, the highest rates of death from cardiometabolic diseases are found in 

LMICs (11, 14). It is well-documented that the prevalence of cardiometabolic diseases and 

their main risk factors vary across populations. Over recent decades, the mortality rate caused 

by CVD has increased in LMICs (15). Furthermore, the prevalence of diabetes has increased 

globally but the rate was faster in LMICs (16). Moreover, in LMICs, mortality due to CVD 

usually occurs at an earlier age (15). The increasing prevalence of cardiometabolic diseases 

highlights the crucial need for major enhancements in both the timely diagnosis and 

management of these diseases (17). 

1.2.1 Type 2 diabetes  

Diabetes is defined as a chronic increase in the blood glucose concentrations caused by 

insufficient secretion of insulin from the pancreatic beta cells (termed “insulin deficiency”) or 

limited ability to respond to insulin (termed “IR”). In clinical settings, prediabetes and diabetes 

are diagnosed by measuring fasting glucose (an overnight fast) and oral glucose tolerance tests 

(OGTT). For OGTT, individuals are asked for 8-12 hours of fasting before the test. The glucose 

level is then assessed before and after orally administering a 75g of glucose load for 2 hours. 

Diabetes is defined by the WHO/IDF as 2h-glucose of ≥11.1 mmol/L or fasting glucose 

concentration of ≥7.0 mmol/L, impaired glucose tolerance as 2h-glucose of 7.8-11.1 mmol/L 

and fasting glucose of <7.0mmol/L, and impaired fasting glucose as 2h-glucose of <7.8 

mmol/L and fasting plasma glucose of 6.1-6.9 mmol/L (18). It is commonly acknowledged that 



14 

 

the three types of diabetes are type 1 diabetes mellitus (T1D), type 2 diabetes mellitus (T2D) 

and gestational diabetes (GDM) (17). In T1D, the immune system of the body attacks and 

destroys the pancreatic beta-cells that produce insulin, wherein T2D, beta-cells cannot produce 

enough insulin, or the cells of the body do not react to the actions of insulin. In GDM, the levels 

of blood glucose increase in some women during pregnancy, and their body ability to produce 

enough insulin is limited (17). 

1.2.2 CVDs  

CVDs refers to disorders that affect the heart or blood vessels including stroke, peripheral 

artery disease and coronary heart disease (CHD). The process of atherosclerosis plays a critical 

role in the development of CVDs (19). In this process, plaque (fatty deposits) accumulates 

inside the wall of arteries, hardening and narrowing these arteries. As a result, the flow of blood 

and supply of oxygen to vital organs is restricted, and the risk of developing blood clots which 

ultimately could block the blood flow to the brain or heart is increased (19). CVDs are the 

largest contributor to worldwide mortality, accounting for global death of 17.9 million every 

year (20). Also, CVDs are the main cause of morbidity and mortality in diabetic individuals. 

The long-term exposure of blood vessels to a high concentration of blood glucose over a long 

period can be damaging, because of the glycation, release of oxygen free radicals, inactivation 

of vascular cells proteins, and stimulation of apoptosis of the endothelial cell (21-23). 

1.3  Cardiometabolic risk 

Cardiometabolic risk refers to risk factors that increase an individual’s likelihood of 

developing a CVD or diabetes. The American Diabetes Association was the first to implement 

the term “cardiometabolic risk” (24), acknowledging that limiting focus on the clustering of 

risk factors termed as metabolic syndrome (MetS) was not an ideal approach to determine 

individual risk for CVD and diabetes (25). Cardiometabolic risk is similar to MetS but with a 
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much broader meaning. As shown in Figure 1 (26), traditional risk factors for T2D and CVD 

include obesity (particularly central), IR, hypertension and dyslipidaemia, which can occur as 

a cluster or in isolation. Obesity can contribute directly to disease risk and indirectly through 

IR syndrome which can lead to dyslipidaemia, hypertension or hyperglycaemia, however, these 

abnormalities can also occur independent of IR (26). Lipid abnormalities, including elevated 

triglycerides, low high-density lipoprotein cholesterol (HDL-C), and increased low-density 

lipoprotein cholesterol (LDL-C), are also common findings in patients with cardiometabolic 

risk  (2, 26). Family history, advancing age and lifestyle factors including physical inactivity, 

unhealthy diet and smoking have also shown to increase cardiometabolic risk. Other, newly 

emerged cardiometabolic risk factors include hypercoagulation and inflammation.  

 

 

Figure 1: Factors that contribute to cardiometabolic risk of CVD and diabetes.  
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Abbreviations: BP, blood pressure; LDL, low-density lipoprotein; Apo B, apolipoprotein B; 

HDL, high-density lipoprotein. Ref. Kahn R. Metabolic syndrome: is it a syndrome? Does it 

matter? Circulation. 2007;115(13):1806-10. 

 

1.3.1 Obesity 

Obesity is a medical condition in which excess body fat (adipose tissue) accumulates 

in the body and may impair health. The management of obesity has been set as the top priority 

in relation to disease prevention in the WHO public health agenda (27). Fat distribution is more 

important in risk assessment than total fat where evidence suggests that visceral fat surrounding 

the intra-abdominal organs is more pathogenic than subcutaneous fat as it releases 

inflammatory agents, hormones and fatty acids and ultimately leading to higher blood pressure, 

blood glucose, triglycerides and LDL-C (28). Obesity can be assessed using several 

measurements including BMI, waist circumference (WC), waist: hip ratio (WHR) and skinfold 

thickness as well as technology-based methods such as dual-energy X-ray absorptiometry 

(DXA). BMI is the most frequently used adiposity measure in epidemiological studies and 

clinical practice as it is easy-to-perform and inexpensive (29). Table 1 shows the WHO 

classification of BMI for adults (30). The effect of obesogenic environments on disease risk 

differs across ethnic groups. For instance, diabetes has been shown to develop at a relatively 

low BMI among Asians (31). The increase of cardiometabolic diseases in LMICs has been 

closely linked to the increased prevalence of obesity. African data came from 321 population-

based surveys observed that BMI rose from 21.9 to 24.9 and from 21.0 to 23.0 in African 

women and men, respectively, with a positive association being detected between the 

prevalence of diabetes and BMI (32).  

Table 1: The WHO classification of obesity according to BMI.  
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WHO Classification BMI 

 

Population description 

 

Underweight <18.5 Thin 

Normal range 18.5-24.9 ‘Healthy’, ‘normal’, ‘acceptable’ 

Overweight 25.0-29.9 Pre-obese 

Obesity class I 30.0-34.9 Moderate obese 

Obesity class II 35.0-39.9 Severe obese 

Obesity class III ≥ 40.0 Very severe obese 

Note: Asians have different criteria. For individuals with the same BMI, sex and age, 

Asians usually have a higher body fat percentage and a higher risk of developing negative 

health consequence in comparison with Caucasians (33). The WHO expert committee later 

recommended new cut-off points for Asians; 23 kg/m2 for overweight and 27.5 kg/m2 for 

obesity (34). 

 

1.3.2 Central Obesity 

Evidence suggests a strong correlation between central obesity, rather than general 

obesity which is defined by BMI, and the risk of CVD and metabolic diseases (35). A previous 

study found that centrally obese individuals with normal BMI had the worst long-term survival 

than their overweight and obese counterparts (36). Furthermore, a study including 42,702 

European individuals showed a significant association of central obesity with increased 

mortality risk even in those of normal weight (35). The most accurate measure for central 

obesity is computed tomography (CT), quantifying subcutaneous and visceral fat. However, 

the use of CT is limited due to the increased risk of exposure to radiation and high cost (37). 

BMI is a common measure of general obesity; however, it might not accurately reflect the 

degree of abdominal adiposity. Epidemiological and clinical and evidence indicate that WC 

and WHR are strong indicators of abdominal obesity, providing a better prediction of CVDs 

risk than BMI (37). Studies have reported that obesity-related outcomes, such as CVDs, can be 
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predicted using WC (38-40). WC is used as the primary clinical method for assessing central 

obesity as it is easy to measure and strongly correlated with visceral fat (41). In the Asian 

population, the prevalence of severe abdominal obesity is higher than in the Caucasian 

population with identical BMIs, highlighting the need for different diagnostic criteria according 

to each ethnic group. In 2009, abdominal obesity in Asians was defined as a WC of ≥90 cm 

and ≥80 cm for men and women, respectively, according to the National Heart, Lung, and 

Blood Institute and the International Association for the Study of Obesity and the American 

Heart Association (42). 

1.3.3 Insulin resistance 

The term IR refers to the impairment in the insulin-mediated disposal of glucose from 

the bloodstream into body cells. IR is a complex metabolic disorder and several mechanisms 

have been suggested to cause IR, with inflammation induced by obesity playing a critical role 

(43). In the early stages of IR, the pancreas compensates for attenuation in insulin effects by 

secreting more insulin and maintain normal levels of glucose (44). Eventually, however, this 

compensation reaches a point that, regardless of how much insulin is secreted, glucose in the 

blood remains consistently above the prediabetic threshold, potentially leading to diabetes 

development (45). Adipose IR has been identified as a significant factor of cardiometabolic 

risk, increasing the release of free fatty acids (FFAs) due to increased lipolysis (46, 47). The 

increased flux of FFAs in the liver leads to high production of triglycerides and glucose as well 

as the release of very-low-density lipoprotein (VLDL). Associated abnormalities also include 

increased levels of LDL-C and decreased levels of HDL-C. Furthermore, FFAs decrease 

muscle insulin sensitivity and contribute to the enhanced pancreatic secretion of insulin, 

leading to hyperinsulinemia. Studies have shown that hyperinsulinemia (and probably 

increased levels of FFA) might cause increased activity of the sympathetic nervous system and 

sodium reabsorption, possibly contributing to hypertension development (46, 47) 
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Glucose is a major energy source for all body cells. The circulating blood glucose 

comes from three different sources including intestinal absorption of dietary glucose, 

glycogenolysis (breakdown of stored glycogen into glucose) and gluconeogenesis (glucose 

synthesis from precursors of noncarbohydrate) (48). Glucose homeostasis is mainly controlled 

by the liver and pancreas. The liver regulates several pathways related to utilising and 

endogenously producing glucose. The pancreatic beta cells secrete insulin in response to 

increased postprandial blood levels of glucose and amino acid. The disposal of glucose from 

the bloodstream into peripheral tissues is promoted when insulin binds to its receptors located 

on the membrane of many cells. Insulin is an anabolic hormone accelerating the synthesis of 

glycogen in the liver, adipose tissue, and muscle, as well as inhibiting the glucagon actions 

(48). The hormone glucagon is secreted by the pancreatic alpha cells to stimulate 

gluconeogenesis and glycogenolysis in the liver, ultimately increasing blood glucose level. 

Insulin also plays a role in regulating the metabolism of protein and lipids, for instance, insulin 

decrease lipolysis (fat breakdown) in adipose tissue, raise triglycerides uptake by muscle and 

adipose tissue and rise the synthesis of VLDL in the liver. The pancreatic beta cells also secrete 

amylin acting complementary to insulin (48). IR occurs when the concentration of glucose 

increases in blood. The pancreatic beta cells secrete more insulin and hyperinsulinemia is 

developed in order to maintain normoglycemia. Over time, cells become less sensitive to 

insulin action (insulin resistant) and less glucose is absorbed. Eventually, the pancreatic beta 

cells become unable to maintain the secretion of more insulin to compensate IR, leading to 

higher levels of blood glucose. 

1.3.4 Dyslipidaemia 

Plasma lipids include total cholesterol, triglycerides, cholesterol esters and 

phospholipids. Cholesterol is predominantly transported and stored in the body in the form of 

cholesteryl esters (i.e.: cholesterol hydroxyl group linked to long-chain fatty acids by 
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ester bond). Triglycerides and cholesteryl esters bind to a different type of apolipoproteins, 

forming complex capsules of lipid and protein named lipoproteins that can freely move across 

blood and tissue fluid. Lipoproteins include very low-density lipoproteins (VLDLs), HDL-C, 

LDL-C (49). Dyslipidaemia is a disorder of lipoprotein metabolism characterised by raised 

blood levels of total cholesterol, LDL-C and/or triglycerides, and reduced HDL-C levels, 

increasing the risk of atherosclerosis (50). Dyslipidaemia plays a critical role in the 

development of atherosclerosis and it is a significant risk factor for CVD (51). A large body of 

evidence has shown a strong association between high LDL-C level and atherosclerosis (50), 

while HDL particles have been consistently established as cardioprotective in epidemiological 

studies (52). Although the mechanism by which triglycerides affect cardiovascular health is 

not completely clear, it is commonly agreed that a high blood triglyceride concentration leads 

to enrichment in HDL and LDL particles via the process of neutral lipid exchange (53). 

Triglyceride-enriching HDL and LDL particles undergo hydrolysis by hepatic lipase to produce 

small dense HDL and LDL particles, which are associated with functional loss and higher 

atherogenic potential, respectively (53). 

1.4 Genetic factors 

The estimated heritability (proportion of inter-individual variation attributable to genetic 

factors) for T2D is 30%–70% (54), for obesity is 40–70% (55), for plasma cholesterol and 

triglycerides are 56%-77% (56), and for blood pressure is 30%-60% (57).  

1.4.1 Genetic association studies 

Genetic association studies are performed to discover genome regions or candidate genes 

that contribute to the development of a specific disease by assessing for a correlation between 

genetic variation and disease status (58). The most common type of genetic variation among 

individuals is the single nucleotide polymorphism (SNP), which is defined as a variation at a 
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single position (nucleotide) in a DNA sequence (59). SNPs might locate within genes’ coding 

or non-coding regions, or between genes (in the intergenic regions) (59). SNPs are the most 

examined markers in association studies. A higher frequency of a genotype or allele in a group 

of people affected with a specific disease refers to the fact that the examined variant increases 

the risk of that disease. The simplest and commonly used design in genetic association studies 

is the case-control study design, in which a group of individuals with the disease of interest 

(cases) are compared with control individuals free of the disease (58). The significant genetic 

association might be interpreted in three ways (1) direct association, where the investigated 

variant is the true causal SNP conferring the susceptibility of a disease of interest; (2) indirect 

association, where an association is tested with a SNP that is in linkage disequilibrium (LD) 

with the true causal SNP; or (3) a false-positive finding due to either systematic confounding, 

including population stratification, or chance (58). 

1.4.2 Gene discovery methods 

Several gene discovery methods have been used for mapping causal genes for 

cardiometabolic diseases and related traits including candidate gene and genome-wide 

approaches (3).  

1.4.2.1 The candidate gene approach  

A candidate gene study is a hypothesis-driven approach investigating the association 

between a pre-specified variant within or near a candidate gene and a phenotype of interest. 

Candidate genes are identified based on previous knowledge suggesting the involvement of 

these genes in the disease biology and pathophysiology (a biological candidate), or because of 

its location in a chromosomal region that has been associated with the disease (positional 

candidate) (60). The first important stage in performing candidate gene studies is the selection 

of an appropriate candidate gene that might plausibly have a relevant role in the disease or 
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process under investigation (61). Once a candidate gene is selected, investigators determine the 

most useful genetic variants for examination based on previous knowledge of existing 

polymorphisms and decide which of those SNPs lead to proteins functionally altered that may 

impact the trait of interest (61). Once a candidate gene/ SNP is chosen, the role of the selected 

gene is commonly tested in a sample of individuals with the disease (i.e., cases) and those 

without the disease (i.e., controls) (62). The first update of the Human Obesity Gene Map in 

2005 listed 127 genes as candidate genes of obesity traits (61). Also, an extensive search of the 

literature identified 547 candidate genes for obesity-susceptibility (63). Furthermore, more than 

60 candidate genes for T2D have been examined in several populations (61, 64). A previous 

study identified 286 T2D candidate genes associated simultaneously with insulin signaling and 

mitochondrial genes and thus may possibly act as a molecular bridge between both systems  

(65). Large-scale candidate gene association studies have reported robust association of genes 

such as melanocortin 4 receptor (MC4R) with obesity and related traits. The most prominent 

discoveries of candidate association studies are the peroxisome proliferator-activated receptor 

gamma (PPARG) and potassium voltage-gated channel subfamily J member 11 (KCNJ11), 

both of which were associated with T2D (66-69).  

1.4.2.2 The genome-wide approaches  

Genome-wide scans include genome-wide linkage and genome-wide association 

studies (GWAS), and both are hypothesis-generating aiming to expand our knowledge in 

relation to disease pathophysiology. In these studies, the entire genome is scanned to identify 

associations of novel, unanticipated genetic variants with a disease or trait of interest (70, 71). 

The linkage studies are based on only populations of related participants, investigating whether 

certain chromosomal regions co-segregate with disease-related phenotypes across generations 

(70). The cysteine protease calpain 10 (CAPN10) gene was the first type 2 diabetes-associated 

gene discovered through linkage analysis (72), however, the replication of the observed finding 
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in subsequent studies was limited. A robust linkage signal of chromosome 10p with T2D was 

shown in Icelanders and Mexican Americans (73). To find the causal region, data on 

microsatellite genotype was used to perform analysis of single-marker association and 

discovered transcription factor7-like 2 (TCF7L2) to be significantly associated with T2D (74). 

The association of the TCF7L2 rs7903146 with T2D (relative risk of ~1.4 ) has been 

consistently replicated in several populations including European, African and Asian (75). 

Unlike linkage studies, GWAS can be performed using family members, as well as unrelated 

individuals using larger sample sizes which have been shown to improve statistical power. This 

approach screens the whole genome at higher resolution levels than genome-wide linkage 

studies, and hence it is able to narrow down the associated locus more accurately (71). 

GWASs have been hugely involved in the detection of tens of thousands of SNPs 

associated with cardiometabolic diseases and their related traits. The Fat Mass and Obesity-

associated gene (FTO) was the first and strongest GWAS-identified gene associated with 

obesity (76, 77). A large GWAS-metanalysis consisting of more than 339,000 European 

individuals had discovered 97 BMI-associated loci (78). Expression enrichment of genes 

located near these loci was found in the central nervous system (CNS), suggesting the 

involvement of hypothalamic control of energy intake in regulating BMI (78). Another large-

scale meta-analysis of GWAS of 224,459 individuals of African-American, south and east 

Asian and European ancestry focusing on body fat distribution identified 49 loci for waist-to-

hip ratio adjusted for BMI (79). Genes located near these loci presented expression enrichment 

in adipose tissue, suggesting that the distribution of fat is mainly controlled in local fat depots 

(79). A previous review summarised the GWAS-identified loci for obesity-related traits at the 

genome-wide significance level (p<5 × 10-⁸) and grouped these loci into seven categories: body 

fat related (15 loci); BMI (141 loci); birthweight (8 loci); extreme obesity (23 loci); WHR or 

WC (26 loci); WHR or WC adjusted for BMI (97 loci) and visceral adiposity (2 loci) (80).   
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The first T2D-GWAS discovered four novel loci associated with T2D in a case-control 

study in French individuals (n=1,363) (81). Also, three following GWASs observed similar 

results (82-84). A second wave of GWAS led to the discovery of over 100 loci associated with 

quantitative glycemic traits, insulin metabolism or diabetes (85-88). To date, the largest 

GWAS-meta-analysis on T2D (comprising ~74,000 cases and ~824,000 controls from 32 

European cohorts) identified 243 loci reaching genome-wide significance (89).  

In 2008, the European Network for Genetic and Genomic Epidemiology (ENGAGE) 

consortium performed the first comprehensive GWAS on lipids (n=17,797 - 22,562 

individuals), identifying 22 loci associated with total cholesterol, triglyceride, LDL-C, and 

HDL-C levels (90). In 2009, a GWAS including 19,840 European individuals and replication 

in up to European 20,623 individuals identified 30 loci to be associated with lipoprotein levels, 

11 of which were novel (91). The Global Lipids Genetics Consortium (GLGC) carried out two 

large GWASs (n> 100,000 and 188,578 individuals, respectively), reporting 95 loci and 157 

loci with independent effect on blood lipids, respectively (92, 93). Recently, a large GWAS 

based on electronic health records (n= 94,674 individuals) discovered 121 novel lipid-

associated SNPs in an ancestrally diverse population (Latino, East and South Asian, Hispanic 

White and African American) (94).  

 

1.4.3 Cardiometabolic-disease related genes investigated in this thesis 

The TCF7L2 gene is located on chromosome 10q25.2–q25.3, encoding for high 

mobility group (HMG) box-containing transcription factor which has a major role in the Wnt 

signaling pathway. The protein has been shown to be involved in the homeostasis of blood 

glucose (95). The TCF7L2 expression showed positive associations with insulin gene 

expression in human pancreatic islets (96). The TCF7L2 is critical for several processes 

including development of the pancreas, determination of the beta-cell mass, maintenance of 
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the beta-cell secretory function, and regulation of the production and processing of insulin (96, 

97). Studies have confirmed the associations of TCF7L2 genetic variants with the risk of T2D 

among various populations (98-101). A meta-analysis of data from 155 studies with 121,174 

participants found significant associations of TCF7L2 SNPs, rs7903146 [odds ratios (ORs) 

(95% confidence interval) of 1.39 (1.34–1.45)] and rs12255372 [1.33 (1.27–1.40)] with T2D 

(102).  

The FTO gene is located on chromosome 16 and encodes for a 2-oxoglutarate (2-OG) 

Fe (II)-dependent AlkB family dioxygenase. The association of the FTO SNP rs9939609 with 

increased BMI (effect per allele=0.30-0.39 kg/m2) has been consistently reported in several 

genetic association studies (103-106). Studies reported that individuals with the risk allele ‘A’ 

of the FTO SNP rs9939609 had a high percentage of body fat (107, 108). Although the function 

and mechanism of the FTO gene is not completely known, possible functional alterations 

caused by the FTO gene have been found in the hypothalamic–pituitary–adrenal axis and the 

reward system in the brain (109, 110) 

The PPARG is a protein-coding gene located on chromosome 3p25.2, encoding for the 

PPAR subfamily of nuclear receptors. The PPARG gene is recognised as a candidate gene for 

T2D and CVDs, and evidence shows that the genetic variants of PPARG play a key role in 

controlling the metabolism of glucose and lipid (111-113), with the SNP rs1801282 (also 

known as Pro12Ala) being extensively examined in epidemiologic studies. The SNP rs1801282 

is a missense variant leading to a change of amino acid from Proline (P) to Alanine (A). A 

study including Finnish and Japanese-American individuals reported that the Pro/Pro genotype 

was associated with a 4.35-times higher T2D risk compared with Ala/Ala genotype (114). Also, 

a meta-analysis of 16 studies showed the association of the proline allele of the Pro12Ala SNP 

with T2D (66). Furthermore, evidence suggested significant associations of the PPARG SNPs 

and CVDs (115, 116).   
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The MC4R gene is a protein-coding gene localised on chromosome 18q22. The protein 

encoded by this gene is a membrane-bound receptor and member of the melanocortin receptor 

family. MC4R have a major role in regulating energy homeostasis and food intake (117). 

Genetic variants in the coding region of MC4R have been shown to be associated with common 

and severe types of human obesity (118). Furthermore, polymorphisms in the non-coding 

region were found to be associated with susceptibility to polygenic obesity. Meta-analyses of 

GWAS performed in Caucasians (80,957 cases and 220,223 controls) showed a strong 

association of the MC4R SNP rs17782313 (C/T) with higher BMI (119). This variant was also 

associated with early-onset severe obesity (120, 121), and findings were replicated in various 

populations including adults, adolescents, and children (119, 122). The SNP rs17782313 also 

shown to be associated with T2D in numerous studies (123-125). 

The potassium voltage-gated channel, KQT-like sub-family, member 1 (KCNQ1) gene 

is located on chromosome 11p15.5 and encodes the pore-forming α-subunit of the voltage-

gated K+ channel, playing a major role in controlling the process of ventricular repolarization 

(126). Although KCNQ1 is largely expressed in the cardiac cells or tissues, it is also expressed 

in other organs or tissues such as the pancreas (127). A meta-analysis including 114,140 T2D 

cases and 167,322 controls with different ethnicities suggested that KCNQ1 SNPs, rs231362, 

rs2237892, rs2237897, rs2237895 and rs2283228, were associated with increased risk of T2D 

(128). Another recent meta-analysis also reported that genetic variants of the KCNQ1 gene 

(rs2237892, rs2283228, rs2237895, rs151290, and rs2074196) may be a susceptible factor for 

T2D, especially in Asians (129). 

The cyclin-dependent kinase inhibitor genes 2A/2B (CDKN2A/B) are tumour 

suppressor genes located at chromosome 9p21, and they are highly expressed in the pituitary, 

pancreas, and adipose tissues (130). CDKN2A and CDKN2B encode p16INK4a and p15INK4b, 

that act as inhibitors for cyclin-dependent kinase 4 (CDK4) and cyclin-dependent kinase 5 
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(CDK5), respectively. Both CDK4 and CDK5 have a critical role in beta-cell regeneration and 

function (130). Previous studies reported the CDKN2A/B SNPs, rs10811661 and rs564398, as 

T2D risk factors (83, 131, 132). SNP rs10811661 also confers risk for T2D in individuals of 

Framingham Offspring Study (133). A meta-analysis consisting of 24,407 T2D cases and 

33,937 controls confirmed the association of the CDKN2A/B SNP rs10811661 with the risk of 

T2D (134).  

The adiponectin gene (ADIPOQ) is located on chromosome 3q27 and encodes for the 

protein adiponectin that regulates the metabolism of lipid and glucose as well as insulin 

sensitivity (135-137). Adiponectin is adipokine that has been associated with obesity and MetS 

(138). The concentrations of adiponectin have been shown to be influenced by ADIPOQ SNPs 

(139, 140). Several studies have demonstrated the association of genetic variants in ADIPOQ 

with T2D (141) and CVDs (142-144). The three most investigated genetic variants of ADIPOQ 

were rs1501299, rs2241766 and rs266729. Significant association of the ADIPOQ SNPs 

rs2241766 and rs266729 with increased risk of CVD was reported in a meta-analysis including 

19,106 cases and 31,629 controls from ethnically diverse populations (145). Furthermore, 

evidence from the Finnish diabetes prevention study (n=507 individuals) suggested the 

contribution of the ADIPOQ SNPs to variation in serum adiponectin levels and body size (146).  

The gene encoding CAPN10 is a ubiquitously expressed member of the calpain cysteine 

protease family. CAPN10 is expressed in several tissues, particularly those involved in the 

glucose homeostasis regulation, such as liver, pancreatic beta-cell, adipocytes and skeletal 

muscle (147, 148). CAPN10 is located on chromosome 2q37.3, and comprises 15 exons 

spanning 31 kb, and encodes a 672 amino-acid intracellular protease. Significant associations 

of the CAPN10 SNPs with IR and T2D have been demonstrated (147, 149-151). These include 

the extensively studied SNPs: SNP-43 G/A variant, SNP-19 2R (two 32-bp repeats)/3R (three 

32-bp repeats), and SNP-63 C/T variant (148, 151).  
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1.4.4 Single SNP vs. genetic risk score (GRS) 

GWASs have discovered thousands of genetic variants associated with cardiometabolic 

diseases, however, the individual SNPs explain only a small proportion of variation in the 

complex traits, with limited ability for predicting disease risk (152). Given that cardiometabolic 

diseases and their related traits are influenced by several genetic variants, with each having a 

small effect on these traits, combining the effect of several variants as a polygenic score can 

provide a better understanding of disease risk than single variant approaches (153). The idea 

of grouping individual SNPs into GRSs has been used to predict and quantify a discrete 

increment in the overall risk of cardiometabolic diseases, as well as capturing the overall 

variance in a trait (153). There are several approaches for generating a GRS such as weighted 

and unweighted methods. Fundamentally, a GRS is constructed by summarising genotype data 

across multiple genetic variants (154). The most commonly used method is summing the 

number of alleles that confer risk across all loci (0, 1, or 2) (154). Employing the GRS approach 

for predicting disease risk has advantages over analysing the effect of individuals SNPs as it 

decreases the drawback of multiple testing, maximises statistical power, and widens the scope 

of generalisability of genetic associations (155, 156). Previous studies have emphasised the 

potential of GRS for predicting the risk of cardiometabolic diseases (157-160). A 28-SNP GRS 

reported a significant association with high BMI in a Gambia population, whereas no 

association was detected with the individual SNP analysis (161, 162). A case-control study of 

5,148 Indians reported a significant association between an 8-SNP GRS and T2D (159). 

Another case-control study of 3,357 Indian adults also observed that individuals with a higher 

32-SNP GRS were at a higher risk of T2D in comparison to those with lower GRS (160).  

1.5 Environmental factors  
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Epidemiological studies have underlined numerous potential environmental factors 

associated with the development of cardiometabolic diseases, with the combination of excess 

calorie intake and physical inactivity being major contributors. However, the effect of several 

other possible environmental factors has been found, including smoking, alcohol, endocrine 

disruptors, and sleep deprivation (4, 163-165). It has been shown that obesogenic environments 

play a significant role in the epidemic of obesity and cardiometabolic diseases in Norwegian 

individuals (n=118959) who were followed up for 45 years, suggesting that the environment 

can primarily determine the individuals’ metabolic load (166). Evidence from two longitudinal 

dietary trials (2.8 and 3.2 years, respectively) recruiting ethnically diverse individuals (n= 3234 

and 522, respectively) have found that reducing fat consumption is effective in decreasing the 

incidence of T2D by up to 58% (167, 168). Additionally, the recent epidemiological transition 

experienced in LMICs has significantly contributed to the increasing burden of cardiometabolic 

diseases (169). Growing urbanization, economic development, and liberalization of trade in 

LMICs have led to significant changes in the availability, promotion, composition, 

affordability and accessibility of foods (170). Importantly, there was evolvement in food prices 

in LMICs in recent years. The prices for packaged and ready-to-eat food products have been 

decreased by large-scale retails, making buying foods high in trans and saturated fatty acids, 

sodium and sugars, such as salty snacks or sugary sodas, cheaper than buying healthy foods 

such as dairy products, vegetables and fruits, although this association might differ based on 

the country and its economy (171). As a result, these food products have become available to, 

and promoted to, the groups of those belonging to lower socioeconomic status. The intake of 

ultra-processed foods is critically involved in the epidemic of cardiometabolic diseases that 

impose the biggest economic and health burden in LMICs (172). Thus, elements of the 

obesogenic environment generated by the epidemiological, urban, and nutritional transitions in 

LMICs should be targeted for preventing and treating cardiometabolic diseases (173).  
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1.5.1 Dietary intake  

There are a variety of modifiable risk factors for cardiometabolic diseases, including 

dietary intake and physical activity. Dietary intake can be assessed using several methods 

including food consumption record, 24-hour dietary recall, dietary record, dietary history and 

food frequency questionnaire and duplicate diet approach, (174). Diet is a leading risk factor 

to morbidity and mortality globally and the influence of dietary intake on cardiometabolic traits 

such as BMI, blood lipids, glycaemia, and glucose-insulin homeostasis is relevant to the 

management and prevention of cardiometabolic diseases (175). Individual food is composed 

of a complex matrix of nutrients such as protein, carbohydrate quality, fatty acids and 

micronutrients that together influence cardiometabolic risk (176).  

Although the high intake of protein has been one of the most popular weight-loss 

strategies for overweight and obesity management (177-179), studies reported inconsistent 

health effects of high-protein diets on T2D. High animal protein consumption, but not plant 

protein, was associated with increased risk of T2D in 38,094 European individuals (180), and 

in 37,309 women from the United States (US) (181). A longitudinal study (n=27,140 Swedish 

individuals) reported that the consumptions in the highest quintiles of eggs and processed meat 

were associated with higher T2D risk (182).  

The Prospective Urban Rural Epidemiology study (n=135 335 individuals) reported 

that a higher intake of carbohydrate (>60 % of total energy intake (TEI)) was associated with 

higher all-cause and cardiovascular mortality (183). However, recent meta-analyses 

investigating the association between the intake of carbohydrate and cardiovascular health have 

shown a U-shaped relationship of carbohydrate intake with all-cause mortality, particularly in 

individuals consuming a diet low in carbohydrate (<40% of TEI) but higher in fat and animal 
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protein (184, 185). A previous systematic review and meta-analysis of 22 cohort studies 

observed that the higher intake of dietary fibre was associated with a lower risk of CVDs (186). 

The right balance of dietary fat is a major determinant of cardiovascular health. Studies 

have also long been suggesting that the intake of trans fat and saturated fatty acids (SFA) has 

harmful effects on cardiovascular health (187, 188). A recent meta-analysis of randomised 

control trials (RCTs), however, reported that decreasing SFA intake did not significantly affect 

CVD mortality or total mortality, although it did significantly reduce combined cardiovascular 

events by 17% (189). Furthermore, greater reductions in CVD events were reported in studies 

that replaced SFA with polyunsaturated fatty acids (PUFA) when compared to replacement 

with carbohydrate, monounsaturated fatty acids (MUFA) or protein (189). Furthermore, in a 

meta-analysis of randomised controlled feeding trials, PUFA intake (in place of SFA, MUFA 

or carbohydrate) has shown the most consistent favourable effects in relation to improved 

glycaemia, insulin resistance, and insulin secretion capacity (190). Another meta-analysis 

including 102 350 participants of European descent reported that the increase of PUFA intake 

in place of refined starch and sugars is associated with a lower T2D risk, whereas the increase 

of MUFA intake in place of carbohydrate is associated with a higher T2D risk (191). Therefore, 

decreasing the intake of SFA and replacing it with unsaturated fat seems to convey the highest 

cardiovascular benefit and lower the risk of T2D, rather than reducing SFA and replacing it 

with refined carbohydrates. The sources of SFA (dairy vs animal) can also modify these 

associations (188). A recent systematic review of RCTs (n=656 individuals) concluded that the 

intake of SFA from dairy product seems to have a protective impact on some cardiometabolic 

risk factors (decrease WC and total cholesterol and increase HDL-C) compared to other sources 

of SFA (188).  

1.5.2 Physical activity  
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Physical inactivity is a key modifiable risk factor for cardiometabolic diseases and related 

traits. Common clinical approaches of assessing physical activity include questionnaires, heart 

rate monitoring, pedometers and accelerometers (192). Being physically inactive contributes 

significantly to obesity, high levels of cholesterol, blood glucose and blood pressure, all of 

which increase the risk of cardiometabolic diseases (34, 193-195). Studies have demonstrated 

that physical activity has a wide range of benefits, including decreasing mortality risk, 

preventing diabetes and CVD, lowering hypertension, improving levels of blood lipids and 

enhancing functional status (196-199).  In both observational and interventional studies, 

physical activity has been reported to decrease the risk of T2D by 30-60 % (200-202). A 

systematic review including 310,588 individuals showed that the relative risk of T2D was 31 

% lower in individuals with regular physical activity in comparison with those with a sedentary 

lifestyle (203).  

1.6 Nutrigenetic approach  

Nutrigenomics and nutrigenetics have a lot of potential for improving dietary guidelines 

for the general population and individuals. Nutrigenomics explores the effect of certain 

nutrients on gene expression and, consequently, the proteome (the entire collection of proteins 

expressed by an organism) and the metabolome (the total number of low molecular weight 

metabolites) using new high-throughput tools such as “omics” technologies (204). 

Nutrigenetics is the science that examines the effect of DNA sequence variation in response to 

diet in relation to individuals’ health and disease risk (205). The field of nutrigenetics has 

undergone rapid progression, generating evidence of gene-nutrient interactions that ultimately 

can be used to personalise dietary guidelines to prevent or treat disease (205). 

1.6.1 Genetic variations and the role of ethnicity in cardiometabolic risk 

The human genome is 99.9% identical with only 0.1% variations explaining individual 
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differences in health and disease states (206). Advances in the field of GWAS have led to the 

discovery of thousands of genetic variants (such as SNPs located in the TCF7L2, PPARG and 

FTO genes) associated with cardiometabolic diseases (3, 63, 207-210). The frequencies of 

genetic variants vary from one population to another, leading to a difference in the prevalence 

of diseases across multiple ethnic groups (211). For example, genetic variants in the TCF7L2 

gene, which is one of the strongest T2D associated genes, have shown varied frequency across 

different ethnicities. While the ‘T’ allele of the TCF7L2 SNP rs7903146 has a frequency 

ranging from 0.180 - 0.462 in Europeans, 0.214 - 0.500 in Africans, and 0.274 - 0.483 in the 

Middle Eastern population, the allele is almost absent in Native American and Southeast Asian 

populations (<5%) (212). Therefore, it is important to study the influence of genetic factors on 

cardiometabolic risk across various ethnicities.  

1.6.2 Rationale for investigating gene-diet interactions 

The genetic contribution to cardiometabolic diseases has been extensively examined in 

GWAS. The “common disease/common variant” hypothesis argues that if a heritable disease 

is common in the population, then the frequency of the genetic contributors in the population 

will also be high/common (213). So, common genetic components of high frequency have 

been suggested to explain the heritability of common diseases. However, after discovering 

thousands of genetic variants that have shown associations with common diseases, the 

combined effect of these variants only accounted for a small proportion of disease heritability 

(214). For example, the estimated heritability for BMI was 40–70%. However, the discovered 

genetic variants only accounted for a small proportion of the actual heritability for BMI, 

proposing so-described ‘missing heritability’ (215). Disease risk prediction is complicated by 

gene-diet interactions which are ubiquitous and might partly explain the missing heritability of 

diseases (216). Several studies have found that genetic variants can increase the risk of diseases 

when an individual with a high genetic predisposition is exposed to high-risk lifestyle factors 
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(217). Thus, identifying the role of gene–lifestyle interactions on cardiometabolic diseases and 

related traits can improve our understanding of disease pathophysiology and contribute to 

precision nutrition aiming to prevent and treat these diseases by implementing dietary 

modification based on an individual’s genetic makeup (5).  

1.6.3 Importance of investigating gene-diet interactions in ethnically diverse 

populations 

GWASs of cardiometabolic diseases have been extensively performed in European 

populations, inadequately representing other ethnic groups (218). Given that the prevalence of 

cardiometabolic diseases varies across worldwide populations, it is necessary to investigate 

ethnically diverse populations to improve our understanding of the genetic architecture of these 

diseases (219). In fact, the under-representation of ancestrally diverse individuals in genomic 

research can hamper the ability of translating genetic research into clinical settings, as well as 

exacerbating health inequalities in the current policy of public health (219). Genetic studies of 

cardiometabolic diseases have great potential in terms of informing personalised and 

prevention medicine. This potential benefit, however, will only be understood by including 

populations of diverse ancestral backgrounds in these genomic studies (219). Given that the 

risk of cardiometabolic diseases can also be influenced by lifestyle factors such as dietary 

intake, it is also necessary to study gene-diet interactions in various populations, so that it will 

be eventually possible to personalise dietary recommendation based on ethnicity (220, 221). It 

is important to note that an individual’s response to dietary interventions differs across 

populations (222). Thus, taking into consideration of ethnicity can improve predicting an 

individual’s response to dietary interventions.  

1.6.4 Study designs and their role in identifying gene-diet interactions 
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There are several study designs that potentially can be used for investigating gene-

lifestyle interactions including observational study design (such as cross-sectional and case-

control studies) and experimental study design (such as RCTs) (223). The cross-sectional 

design is one of the most used designs, determining the association of exposure with certain 

outcomes of interest. The case-control design is another illustration of observational studies. In 

this design individuals who have certain disease or outcome (cases) are compared to matching 

individuals (controls) who don’t have this disease or outcome (58). Observational studies can 

be performed to generate a hypothesis using large sample sizes as they are relatively 

inexpensive, easy to use and quick. However, the observational design cannot explain causal 

relationship as associations are examined at a single point in time (223). Also, the residual 

effect of confounding factors cannot be eliminated in these studies, highlighting the need for 

adjusting for confounding in the statistical model (223). However, the cross-sectional design 

has been commonly used in GWAS, identifying thousands of genetic variants associated with 

disease risk, and these associations are less likely to be influenced by confounding factors 

(224). With respect to nutrigenetic research, observational studies can be influenced by 

inherent bias when investigating interactions between genes and lifestyle factors, as phenotypes 

can vary significantly over time. For instance, the triglyceride concentrations vary over time, 

therefore, relying on only fasting triglyceride values taken at a single time point might be a 

limitation (225). Observational studies have also limitations by difficulties in replicating the 

initial findings. Dietary intake in observational studies is commonly assessed using a food 

frequency questionnaire (FFQ) as it is easy to use and can represent individuals’ intake over a 

long period with less burden. However, this method is self-reported and relies on memory, 

introducing recall bias (226).  

Regarding the experimental design (RCTs), individuals are randomly assigned into two 

groups: the ‘intervention group’ where they receive a certain treatment and the ‘control group’ 
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where they receive a placebo, control or standard treatment, to be assessed for intervention-

related changes in certain biomarkers. The main advantage of this design is the possibility that 

both researcher and participants can be blinded regarding the type of treatment received (223). 

However, given the high cost of running RCTs, high rate of dropouts and less adherence to 

received treatments, these trials are usually limited by having a small number of individuals 

(226). Alternatively, the ‘cross over’ design is used in experimental studies, where half of the 

study participants receive the treatment, and the other half receive the placebo for a certain 

period. Then, both groups undergo a wash-out period to ensure the clearance of the intervention 

effect from the body. After that, switching of groups between treatment and placebo takes place 

for another certain period (223). The main advantages of this design are the verification of the 

study findings among two phases and minimising confounding, which ultimately strengthen 

these findings. However, the cross-over design has limitations including the small sample size 

and the requirement for a washout period, which might decrease the power of observing effect 

sizes for gene-diet interactions and higher participant attrition (224). Another type of 

experimental studies is the postprandial study design which investigates the effect of a meal or 

meals given at different time intervals on outcome measures, such as lipaemic response, as well 

as determining the acute effect of a certain type of fatty acid consumed within the first meal on 

the postprandial lipaemic response of the second meal (in a two-meal acute study). The 

majority of the population spends most of the day in a postprandial state and postprandial 

triglyceride have been identified as an independent risk marker for cardiovascular disease. 

Changes in lipid profile in the postprandial state emphasise the importance of this design in 

examining interactions between gene and lifestyle factors (227).  

1.6.5 GeNuIne Collaboration  

Gene–lifestyle interactions studies have been extensively performed in European 

populations, suggesting that dietary intake and physical activity could modify the association 
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of genetic variants with cardiometabolic disease and related traits (228-231). Previous studies 

reported significant interactions between the risk allele ‘T’ of the TCF7L2 SNP rs7903146 and 

fibre intake on T2D risk, where the ‘T’ allele was associated with a higher risk of T2D and 

higher HbA1c concentrations among individuals with higher fibre intake (232, 233). However, 

findings from other nutrigenetic studies were discordant (234-236). Furthermore, high levels 

of physical activity attenuated the effect of SNPs, such as FTO SNPs, on cardiometabolic traits 

among various populations (229, 237, 238); however, other studies have reported conflicting 

findings (231, 239-241). This may be due to genetic heterogeneity as well as differences in 

dietary factors. Genetic make-up differs across ethnicities, emphasising the importance of 

assessing gene-diet interactions among multiple ethnic groups, which will ultimately allow us 

to personalise dietary plans based on each population. To address all these challenges, the 

Gene–Nutrient Interactions (GeNuIne) Collaboration (220) has been established to examine 

the complex interplay between genetic and dietary factors on cardiometabolic disease and 

related traits using population-based studies in LMICs such as Turkey, India, Indonesia, Brazil, 

Sri Lanka, Morocco, Thailand and Pakistan.  

1.6.6 From Nutrigenetics to Personalised nutrition 

Cardiometabolic diseases are major public health problems. Several factors are 

involved in the pathophysiology of these diseases such as physical inactivity and unhealthy 

diet. The role of dietary factors is well-known in preventing or treating cardiometabolic disease 

(4). However, genetic variants also play a significant role in population variation in the risk of 

cardiometabolic diseases, highlighting the urgent need for the science of nutrigenetics which 

suggests that elucidating undefined interactions between gene-lifestyle would support the 

application of personalised nutrition (5). Indeed, personalising dietary recommendations 

according to genetic makeup would improve an individual’s response to nutrition intervention 

and offers a new dietary strategy for improving health and decreasing disease risk (242).  
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Over the last two decades, breakthroughs in technologies such as ‘omics’ have been 

unprecedented, generating mechanistic insights and informing the development of precision/ 

personalised medicine and nutrition (243). The “omics” technologies include genomics (the 

study of an organism's genome), transcriptomics (the quantification of the transcriptome), 

proteomics (the comprehensive analysis of the entire protein produced by a cell type), and 

metabolomics (the identification and quantification of cellular metabolites) (244). In precision 

medicine, treatment is individually tailored according to all  characteristics of the patient . 

These characteristics and prognostic indicators are determined using multi-omics data for 

predicting the toxicity and identifying non-responders and responders (245). As in medicine, 

the definition of ‘personalisation’ in the nutrition context has been debated (246); and 

terminology is continuously evolving with the term 'precision' being used more recently in the 

literature over the previous 5 years. In personalised or precision nutrition, dietary 

recommendations are tailored according to an individual's biological parameters to improve 

health (242, 247). For a clinical dietitian or nutritionist, these features include anthropometric, 

biochemical and clinical measurements, along with assessments of dietary intake, physical 

activity and lifestyle. However, following the human genome sequencing, came an era of 

growing research in the fields of nutrigenetics and nutrigenomics, intending to offer 

personalised nutrition recommendations to avoid diseases associated with dietary intake 

according to genetic variation and the predicted nutrient responses obtained from genetic 

profiling (248). Precision nutrition includes strategies for preventing and treating diseases and 

improving health, considering individual variations in genes, lifestyle, dietary intake, gut 

microbiome, epigenetic markers and environment by accurately assessing a person's nutritional 

status (249). Evidence suggests the inclusion of the gut microbiota data in personalised 

nutrition as it affects the nutritional status and phenotype of the host, playing a role in nutrient 

absorption and storage regulation (250-252). Advances in the point-of-care diagnostics area 
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promise to offer a better assessment of nutritional status, as a first step towards the application 

of precision nutrition and tailoring dietary guidelines at the community and individual levels 

(249). The precise measurement of nutritional biomarkers would be useful in terms of early 

prediction of disease risk, identifying individuals who might benefit from a nutrition program, 

determining the effectiveness and efficacy of a dietary intervention (249). 

1.7 Hypothesises, aims and outline of the thesis 

Associations of SNPs with cardiometabolic diseases and their related traits have been 

confirmed in genetic association studies (89, 92, 93, 253-255). Evidence has shown that these 

associations can be modified by lifestyle factors among various ethnicities (256-262). Thus, 

given that different ethnicities have different lifestyle factors and genetic makeup, we also 

hypothesised that the gene-diet interaction will vary across different populations/ ethnic 

groups.  

This thesis aimed to:  

1- Investigate the association between selected SNPs, as GRS, and cardiometabolic traits 

among diverse ethnic groups. 

2. Investigate the interactions between these SNPs/ GRS and lifestyle factors (physical activity 

and dietary intake of fat, protein and carbohydrate) on cardiometabolic traits in multiple ethnic 

groups. The background and aims of each chapter are outlined below: 

 

Chapter 2: Obesity has been recognised as a serious public health challenge worldwide and it 

is a multifactorial condition in which environmental and genetic factors are involved (263). 

The FTO gene has been identified as one of the strongest genes associated with obesity (76). 

Examining gene-lifestyle interactions can offer better approaches for managing obesity. In 
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Turkey,  64.4% and 28.8% of the population were overweight and obese in 2017, respectively 

(264). No previous nutrigenetic studies have been conducted in the Turkish population. 

Therefore, the aims of this study were to examine the effects of the FTO SNPs rs9939609 and 

rs101634090, as well as the effect of both SNPs combined as a GRS, on obesity and related 

traits. Also, to examine the effect of dietary intake and physical activity on these associations 

in 400 Turkish adults.  

 

Chapter 3: Non-communicable diseases (NCDs) contributes to 73% of all death rate in 

Indonesia, with CVD and diabetes accounting for 35% and 6%, respectively (265). The 

pathophysiology of cardiometabolic diseases involve a complex interplay between genetic 

variants and lifestyle factors, emphasising the importance of analysing gene-lifestyle 

interactions (5). Thus, our study aimed to examine the association of a novel GRS constructed 

from 15 SNPs with cardiometabolic traits and to examine the effect of lifestyle factors 

including physical activity and dietary intake on these genetic associations among 110 

Minangkabau women from Padang, Indonesia. 

 

Chapter 4: The prevalence of obesity is increasing all over the world including LMICs. In 

Ghana, 43 % of the population are overweight or obese (266). Studies analysing gene–lifestyle 

interaction have been extensively performed in populations of European, and the replication of 

these studies in African populations is unknown (267, 268). Thus, for the first time in the 

African population, we aimed to examine the associations of different GRSs with obesity-

related traits and to investigate the effect of physical activity and dietary intake on these 

associations among 302 healthy Ghanaian adults.  
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Chapter 5: In Brazil, the prevalence of prediabetes and T2D were 22.0% and 3.3% in the 

adolescent population, respectively (269). It has been estimated that Brazilian adolescents have 

a high prevalence of cardiometabolic risk factors including high insulin levels, dyslipidaemia, 

abdominal obesity, physical inactivity, high blood pressure and unhealthy diet (269-274). Thus, 

early interventions targeting these risk factors can be an effective method for slowing the 

progression of T2D and decreasing the risk of CVD (17). T2D is a multifactorial disease caused 

by complex interactions between genetic and dietary factors. GRS-diet interactions on 

metabolic traits have not been investigated in young Brazilian adults. Therefore, we aimed to 

examine the interaction between a 10-SNP metabolic GRS and dietary intake on metabolic 

traits among 200 healthy Brazilian young adults. 

 

Chapter 6: South Asians have a 50% higher T2D risk than other populations (275, 276). India 

is a significant contributor to the worldwide elevated prevalence of T2D (17). Between 1990 

and 2016, the number of T2D cases in India increased from 26.0 million to 65.0 million (277). 

Interactions between genetic variants and urbanisation have further worsened the increasing 

prevalence of T2D in South Asians (278, 279). However, studies assessing interactions of GRS 

with dietary intake in the Indian population are sparse. Thus, we aimed to investigate the 

association of a 7-SNP-GRS on T2D and its related traits, as well as the influence of dietary 

intake in 1,062 urban south Asian Indians on these associations.  

 

Chapter 7: Findings from all 5 studies are discussed in this chapter, in addition to the 

discussion on the general trends observed across various ethnic groups, strengths, limitations, 

and future prospects and conclusions of this thesis. 
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Chapter 2 FTO gene–lifestyle interactions on serum adiponectin 

concentrations and central obesity in a Turkish population 

 

Published (The published version of the paper is attached as an appendix at the end of the 

thesis) 
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2.1 Abstract 

Aim: The aim of the study was to investigate whether lifestyle factors modify the association 

fat mass and obesity-associated (FTO) gene single nucleotide polymorphisms (SNPs) and 

obesity in a Turkish population.  

Methods: The study included 400 unrelated individuals, aged 24-50 years recruited in a 

hospital setting. Dietary intake and physical activity were assessed using 24-hour dietary 

recall and self-report questionnaire, respectively. A genetic risk score (GRS) was developed 

using FTO SNPs, rs9939609 and rs10163409.  

Results: Body mass index and fat mass index were significantly associated with FTO SNP 

rs9939609 (P=0.001 and P=0.002, respectively) and GRS (P=0.002 and P=0.003, 

respectively). The interactions between SNP rs9939609 and physical activity on adiponectin 

concentrations, and SNP rs10163409 and dietary protein intake on increased waist 

circumference were statistically significant (Pinteraction=0.027 and Pinteraction=0.044, 

respectively).  

Conclusion: This study demonstrated that the association between FTO SNPs and central 

obesity might be modified by lifestyle factors in this Turkish population.
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2.2 Introduction 

Obesity has been recognised as a worldwide public health problem due to its rising 

prevalence and concomitant health problems. The prevalence of overweight and obesity in 

Turkey were reported as 64.4% and 28.8%, respectively by WHO (280).  Obesity can lead to 

other chronic diseases including type 2 diabetes (T2D), cardiovascular diseases (CVD), 

hypertension, cancer and osteoarthritis (Forse et al. 2020). A combination of interactions 

between genetic and environmental factors is required for the development of a complex 

disease such as obesity (4). Studies have identified approximately 140 genes to be associated 

with obesity, and the fat mass and obesity associated (FTO) gene has been reported to be the 

strongest susceptibility gene for human obesity (281).  

The FTO gene is located on chromosome 16q12.2 and codes for a protein with 2-

oxoglutarate dependent nucleic acid demethylase activity which is involved in DNA repair 

and the accumulation of fat in the body (282). FTO is highly expressed in the brain, including 

the hypothalamus, adipocytes, pancreatic islet cells, and adrenal glands (76). FTO gene has 

been suggested to control energy homeostasis and food intake (283). Previous studies have 

shown that, of the various obesity susceptibility genes, single-nucleotide polymorphisms 

(SNPs) located in the first intron of FTO gene has provided the strongest evidence for genetic 

predisposition to obesity (76, 77, 284). The minor allele ‘A’ of the FTO SNP rs9939609 has 

been consistently associated with higher BMI in various populations (76, 285-288). 

Furthermore, a meta-analysis reported that the association between the SNP rs9939609 and 
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BMI was replicated in 13 cohorts with 38,759 participants, where individuals with the ‘AA’ 

genotype had 1.67-time higher odds of obesity than those with the ‘TT’ genotype (76). In the 

Turkish population, the risk alleles of the FTO rs1421085 and rs9939609 polymorphisms 

were shown to have significant associations with the risk of obesity in women and metabolic 

syndrome (MetS) in men (289).  

Turkish adults are characterized with low levels of total and high-density lipoprotein 

cholesterol, and high risk of CVD, that distinguish them from Europeans (290). They also 

have increased susceptibility to impaired glucose tolerance and MetS primarily driven by 

obesity (291). Among the non-communicable diseases (NCDs) that accounted for 88.0% of 

deaths in Turkey, CVD has shown to contribute to 47.73% of overall deaths (280). Targeting 

modifiable risk factors for NCDs including obesity could prevent many deaths. Therefore, 

several health promotion campaigns such as “Reducing Portion Sizes” and “Move for 

Health” have been implemented for the prevention of obesity in Turkey (292, 293). However, 

obesity is a multifactorial disorder, and identifying gene-environment interactions are needed 

to understand the aetiology and pathophysiology of obesity and also to develop more 

effective personalised preventative strategies (294). To date, several FTO-dietary intake 

interactions on obesity-related outcomes have been examined in different populations (241, 

295-300) however, there are no such studies to date in a Turkish population The 

investigations of the gene-diet interactions in different ethnic groups are crucial to develop 

personalised nutrition strategies for each ethnic group due to the genetic heterogeneity (301). 

The FTO SNP rs9939609 has been associated with several dietary components including 
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dietary protein intake (106, 296, 302) and the SNP rs10163409 in FTO was among the top 

associations in a large genome-wide meta-analysis study (GWAS) for total caloric intake 

(303). Therefore, this study aimed to assess whether FTO variants, rs9939609 and 

rs10163409, are associated with obesity in 400 Turkish individuals and to determine whether 

these SNPs interact with dietary intake and physical activity on obesity outcomes.  

2.3 Materials and Methods 

2.3.1 Study population 

A total of 400 unrelated individuals, aged 24-50 years, were recruited from the 

outpatient clinic of Department of Endocrinology and Metabolism at the Hacettepe 

University Hospitals, Ankara, Turkey. This study was conducted as part of the GeNuIne 

Collaboration that investigates the interactions between genetic and dietary factors on 

metabolic diseases in different ethnic groups (301). The study participants were screened 

based on the following inclusion criteria: 1) routine visits to the outpatient clinic, 2) aged 18-

50 years, and 3) having a BMI ≥ 18.50 kg/m2. The exclusion criteria were: 1) having specific 

health problems including, liver and kidney diseases, mental and psychological disorders, 

history of cancer, and serious endocrine disorders (hypothyroidism, hyperthyroidism or 

hypopituitarism), 2) history of bariatric surgery, 3) being pregnant or lactating, 4) using drugs 

that affect body weight. Researchers informed and invited the eligible participants for their 

participation into the study. The study was approved by the local ethics committee of 

Hacettepe University (GO 15/612-11), and all the participants provided the signed written 

consent.  

2.3.2 Study design  
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A cross-sectional case-control study design was used, where participants were 

divided into two groups: obese (BMI ≥25.00 kg/m2, n=200) and non-obese (BMI= 18.50-

24.99 kg/m2, n=200). All participants underwent a physical examination by the research 

endocrinologists, followed by clinical, biochemical and lifestyle assessments, and genetic 

analysis of FTO SNPs rs9939609 and rs10163409.  

2.3.3 Anthropometrical Measurements 

Body weight and height were measured by standard methods using a calibrated digital scale 

(Seca 220 Scale, Germany). BMI calculation was based on the body weight (in kilograms) 

divided by the square of height (in meter) (304). BMI classification of the WHO was used to 

classify the individuals as non-obese (BMI < 25.00 kg/m2) and obese (BMI ≥ 25.00 kg/m2) 

(305). The waist circumference (WC) was measured by a standard method (306). Increased 

WC (central obesity) was defined based on cut-points established for Turkish adults (WC ≥ 

90 cm for men/ ≥ 80 cm for women) (307). Body composition was analysed by bioelectrical 

impedance using the Tanita MC-980 MA Multi Frequency Segmental Body Composition 

Analyzer (USA). Fat mass index (FMI) was calculated based on the fat mass (in kilograms) 

divided by the square of height (in meter) (308). All anthropometrical measurements were 

taken by the research dieticians. 

2.3.4  Biochemical and clinical measures 

Serum adiponectin was analysed by enzyme-linked immunosorbent assay (ELISA) 

kits (Ebioscience, Austria) at Hacettepe University Hospitals, Clinical Pathology Laboratory. 

The physical examination included the measurement of systolic (SBP) and diastolic blood 
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pressure (DBP) using a stethoscope and sphygmomanometer in the right arm of the 

participants after sitting in a comfortable position in a quiet room for at least 15 min. Both 

blood pressures were measured twice at 5-minute intervals and recorded on average (309). 

2.3.5 Dietary assessment 

Dietary intake was assessed using 24-hour dietary recall method that was carried out 

by trained research dieticians. A photographic atlas of food portion sizes and common 

household measures were used to facilitate the quantification of the amount of food 

consumed. Total energy, macro- and micronutrient intakes of participants were analysed 

from the records using BeBIS software (BeBIS, Nutrition Information System, Version 8).  

2.3.6 Other lifestyle factors 

The socio-demographic characteristics, family and medical history, smoking and 

alcohol consumption were recorded. The physical activity level was assessed using the 

Turkish version of the International Physical Activity Questionnaire (IPAQ) (310).  

2.3.7 SNPs selection and genotyping 

FTO gene was selected based on its consistent and strong associations with obesity 

traits in large-scale GWASs (76, 77). The SNP rs9939609 is the most commonly studied 

variant and consistently associated with obesity phenotypes across multiple ethnicities (76, 

285-288) and SNP rs10163409 has been shown to be associated with dietary energy intake 

from macronutrients (303). Therefore, FTO SNPs, rs9939609 and rs10163409, which have 
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been shown to be associated with obesity traits and dietary intake in large GWASs, were 

genotyped. The genotype frequencies of the FTO SNPs, rs9939609 and rs10163409, were in 

Hardy Weinberg equilibrium (p>0.05). 

The genomic DNA was extracted from the whole blood in K2EDTA containing tubes 

by the salting out method. Genotyping of the SNPs, rs9939609 and rs10163409, were 

performed using KASP assay (a competitive allele-specific polymerase chain reaction that 

incorporates a fluorescent resonance energy transfer quencher cassette), and the KASP 

primers were designed using Kraken software system (LGC, https://www.lgcgroup.com). 

Genotyping assays were carried out according to the manufacturer’s instructions with a 7500 

Real time PCR System (Applied Biosystems). The following thermal cycling profile were 

used: 15 min at 94°C; 10 cycles of 20 s at 94°C, 60 s at 61°C with decrement -0.6°C/per 

cycle and 26 cycles of 20 s at 94°C, 60 s at 55°C; 60 s at 37°C. 

2.3.8 Statistical analysis 

SPSS software (version 23.0) was used for statistical analysis and the research 

analysis plan is included as an appendix on Page 236. The Hardy-Weinberg equilibrium was 

assessed using the x2 goodness-of-fit test. Genotype frequencies and distribution in groups 

were compared using Pearson’s chi-squared test. Continuous variables are presented as 

means and standard deviations (SD), and groups were compared using the independent t-test.  

As the number of individuals with rare homozygous genotypes was low, a dominant 

model was used, where common homozygous genotypes were compared to combined rare 
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homozygous and heterozygous genotypes. A genetic risk score (GRS) was created from both 

the FTO SNPs where the presence of one risk allele of any of the variants was scored as one 

point. This GRS ranged from 0 (homozygous individuals for non-risk alleles) to 4 points 

(homozygous individuals for the risk alleles of both FTO polymorphisms). The GRS variable 

was then categorised into two groups based on the number of points; 1st group: individuals 

with scores of <2 points; 2nd group: individuals with scores of ≥2 points.  

The independent and joint effects of FTO SNPs on the risk of obesity were assessed 

using the odds ratios (ORs) and 95% confidence intervals (CIs) that were calculated by 

logistic regression models. Also, the associations between FTO polymorphisms (separately 

and joint) and the continuous outcomes were tested using general linear models. Models were 

adjusted for age, gender, hypertension, CVD and obesity status wherever appropriate. 

Furthermore, FTO gene-environment interactions on continuous and categorical outcomes 

were tested using linear and logistic regression models, respectively. Interactions were 

investigated by including the interaction terms (e.g., carbohydrate*genotype) in the 

regression models. Environmental factors that were investigated included dietary intake 

(carbohydrate, protein, fibre and fat intakes in grams/day) and physical activity. Furthermore, 

statistically significant interactions were investigated in more depth, where individuals were 

stratified by the tertiles of the lifestyle factor. 

2.4 Results 

2.4.1 Characteristics of the Participants   
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Obese individuals were older, and had higher BMI, WC and FMI and lower 

adiponectin levels than the controls (P<0.001, for each). The cases and controls were not 

statistically different in terms of their food intake and physical activity levels (P>0.05) (Table 

2).  

2.4.2 Associations between FTO variants and obesity-related traits 

Genotype distributions and minor allele frequencies (MAFs) for both SNPs are shown in 

Table 3. The MAFs of the SNPs, rs10163409 and rs9939609, were T=0.37 and A=0.39, 

respectively. The associations between SNP rs9939609 and BMI (P=0.001) and FMI 

(P=0.002) were found significant where the ‘A’ (AT/AA) allele carriers had significantly 

higher BMI and FMI than ‘TT’ homozygotes (Table 3). Furthermore, ‘A’ allele carriers had 

significantly higher WC (P=0.007) and lower adiponectin levels (P=0.031) compared to non-

carriers. The FTO SNP rs10163409 did not show any significant association with obesity 

traits (Table 4). 
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Table 2: Anthropometric and biochemical characteristic of the study participants 

 
Non-obese Obese 

 

P 

value** 

 
Total(N=200) Men(N=100) Women(N=100) P value* Total(N=200) Men(N=108) Women(N=92) P value * 

 
Age (year) 33.29±6.83 32.64±6.04 33.93±7.51 0.182 36.37±7 36.09±6.78 36.68±7.27 0.552 <0.001 

BMI (kg/m2) 22.56±1.78 22.83±1.73 22.3±1.79 0.035 29.04±3.38 28.8±3.22 29.33±3.55 0.274 <0.001 

WC (cm) 80.68±7.96 85.62±6.52 75.75±5.98 <0.001 95.49±9.84 99.41±8.15 90.89±9.7 <0.001 <0.001 

FMI 5.12±1.69 3.97±1.16 6.27±1.31 <0.001 8.72±2.79 7.3±2.16 10.39±2.52 <0.001 <0.001 

Adiponectin (ng/ml) 11880.63±6838.36 9095.15±4929.39 14666.11±7350.18 <0.001 9115.13±5766.48 6716.49±3777.58 11930.93±6410.41 <0.001 <0.001 

Energy (kcal/day) 2416.44±1064.1 2888.13±1155.72 1944.76±700.65 <0.001 2365.08±1012.1 2728.68±1057.45 1938.23±764.28 <0.001 0.621 

Protein (g) 91.34±42.91 106.32±46.98 76.37±32.27 <0.001 87.55±43.81 97.85±50.48 75.45±30.44 <0.001 0.382 

Fat (g) 105.31±48 119.48±51.92 91.15±39.13 <0.001 100.8±51.56 113.32±56.41 86.1±40.84 <0.001 0.366 

Carbohydrate (g) 270.28±142.83 339.26±157.55 201.29±81.06 <0.001 271.34±128.5 322.74±132.03 211±93.78 <0.001 0.938 

Fibre (g) 23.49±10.65 26.71±11.66 20.27±8.43 <0.001 24.03±11.59 26.59±12.84 21.04±9.13 0.001 0.627 

SFA (g) 31.13±15.25 33.67±16.56 28.58±13.42 0.018 29.66±16.2 31.87±17.87 27.07±13.64 0.036 0.352 

MUFA (g) 35.58±17.78 39.88±19.57 31.27±14.68 0.001 35.12±20.23 39.71±22.78 29.72±15.17 <0.001 0.809 

PUFA (g) 28.79±17.35 34.88±19.04 22.7±12.95 <0.001 27.02±16.51 31.57±17.9 21.67±12.88 <0.001 0.296 

PAL levels n (%) 

Sedentary 

Active 

 

153 (76.5) 

47 (23.5) 

 

78 (78) 

22 (22) 

 

75 (75) 

25 (25) 0.617 

 

165 (82.5) 

35 (17.5) 

 

90 (83.3) 

18 (16.7) 

 

75 (81.5) 

17 (18.5) 0.737 0.137 

P values obtained from independent t-test and chi square tests comparing continuous and categorical variables between men and women within obese 
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and non-obese categories** P values obtained from independent t-test and chi square tests comparing continuous and categorical variables between 

total obese and total non-obese.   Values are mean ± SD and percentages. BMI, Body Mass Index; WC, Waist Circumference; FMI, Fat Mass Index; 

SFA, Saturated fatty acids; MUFA, Monounsaturated fatty acids; PUFA, Polyunsaturated fatty acids; PAL, Physical activity level.
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Table 3: Genotype frequencies of FTO SNPs among cases and controls 

*p values obtained from Pearson’s chi-squared test comparing genotype frequencies between 

cases and control. MAF, Minor Allele Frequency; HWE, Hardy Weinberg Equilibrium 

 

 

 

 

 

 

 

Table 4: Associations between FTO polymorphisms and anthropometric and biochemical 

parameters of obesity 

 FTO rs9939609 FTO rs10163409 

 TT AT+AA 
*p 

value 
AA TA+TT 

*P 

value 
 (n=138) (n=262)  (n=164) (n=236)  

BMI (kg/m2) 24.81±3.65 26.33±4.41 0.001 25.49±4.03 26.02±4.34 0.212 

FMI 6.23±2.61 7.29±3.02 0.002 6.72±2.57 7.06±3.15 0.251 

WC (cm) 86.08±10.62 89.14±11.99 0.007 87.26±11.47 88.66±11.7 0.234 

Adiponectin (ng/ml) 11306.18±7130.97 10072.14±6059.63 0.031 10865.59±6526.36 10242.35±6427.19 0.377 

*P values obtained from linear regression analysis adjusted for sex, age, hypertension, 

cardiovascular diseases and obesity status. Values are mean ± SD. BMI, Body Mass Index; 

WC, Waist Circumference; FMI, Fat Mass Index 

FTO rs9939609 SNP 
 Non-obese Obese Total *P value 

Additive n (%)    0.217 

TT 77 (38.5) 61 (30.5) 138 (34.5)  

AT 99 (49.5) 115 (57.5) 214 (53.5)  

AA 24 (12) 24 (12) 48 (12)  

Dominant n (%)    
0.092 

TT 77 (38.5) 61 (30.5) 138 (34.5) 

AT+AA 123 (61.5) 139 (69.5) 262 (65.5)  

HWE 0.36 0.007 0.011  

MAF 0.37 0.41 0.39  

FTO rs10163409 SNP 

Additive n (%)    0.772 

AA 85 (42.5) 79 (39.5) 164 (41)  

AT 88 (44) 90 (45) 178 (44.5)  

TT 27 (13.5) 31 (15.5) 58 (14.5)  

Dominant n (%)    0.542 

AA 85 (42.5) 79 (39.5) 164 (41)  

TA+TT 115 (57.5) 121 (60.5) 236 (59)  

HWE 0.58 0.525 0.392  

MAF 0.36 0.38 0.37  
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2.4.3 Interactions between FTO variants and dietary intake on obesity-related traits 

2.4.3.1 FTO gene-dietary protein intake interactions 

The significant interactions between SNP rs10163409 and protein intake on the risk of 

increased WC (Pinteraction=0.044) and WC as a continuous variable (Pinteraction=0.007) were 

observed. Stratification of the dietary protein intake into tertiles showed that, in the highest 

tertile group with a mean ± SD of 138±38 g/day protein intake, ‘T’ allele carriers of the SNP 

rs10163409 had a significantly higher risk of central obesity [OR= 3.3 (95% CI: 1.149-9.478), 

P=0.027] than those with ‘AA’ genotype (Figure 2).  

 

Figure 2: Interactions of the FTO rs10163409 with tertiles of protein intake (g) on 

increased WC.  

Black bars implicate the “T” allele carriers (TA+TT). FTO SNP rs10163409 showed a 

significant interaction with protein intake (g) on the risk of increased WC (Pinteraction = 0.044). 

Among those in the highest tertile of protein intake (mean ± SD: 138 ± 38 g/day), the minor 

‘T’ allele carriers of the SNP rs10163409 had a significantly higher risk of increased WC [OR 

= 3.3 (95% CI: 1.149–9.478), p =0.027] than those carrying ‘AA’ genotype. WC: Waist 
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Circumference. *Odds ratio adjusted for age, gender, hypertension, cardiovascular diseases, 

total energy intake and obesity status. 

 

 

2.4.3.2 Interactions between FTO variants and physical activity on obesity-related traits 

The interaction between the SNP rs9939609 and physical activity levels on adiponectin 

concentrations was statistically significant (Pinteraction= 0.027), where, among those with lowest 

levels of physical activity, the adiponectin concentrations were significantly lower in the allele 

‘A’ carriers compared to individuals with ‘TT’ genotype (P=0.006) (Figure 3). 
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Figure 3: Interactions between FTO rs993609 variant and physical activity levels on 

adiponectin levels.  
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White bars indicate carriers of “TT” genotype. Black bars implicate the risk allele, “A”, carriers 

(AT+AA). The regression model was adjusted for age, gender, hypertension, cardiovascular 

diseases and obesity status. There was a significant interaction between the FTO SNP 

rs9939609 and physical activity on adiponectin levels (Pinteraction=0.027), where, among those 

with low physical activity levels, carriers of the “A” allele had significantly lower adiponectin 

levels compared to those with “TT” genotype (p=0.006). 

 

2.4.4 Associations between GRS and obesity-related traits  

The GRS was significantly associated with BMI (P=0.002), FMI (P=0.003) and 

increased WC (P=0.02) (Figures 4a, 4b and 4c). However, the interactions between GRS and 

lifestyle factors on obesity traits were not found statistically significant.  
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with GRS of ≥2 risk alleles. The GRS was significantly associated with BMI (a), FMI (b) and 

WC (c). (a) Carriers of ≥2 risk alleles of the FTO variants (rs9939609 and rs10163409) had 

higher BMI (P=0.002) compared to individuals carrying <2 risk alleles. (b) Carriers of _2 risk 

alleles of the FTO variants (rs9939609 and rs10163409) had higher FMI (P=0.003) compared 

to individuals carrying <2 risk alleles. (c) Carriers of ≥2 risk alleles of the FTO variants 

(rs9939609 and rs10163409) had higher WC (P=0.020) compared to individuals carrying <2 

risk alleles. p values were obtained from linear regression analysis and adjusted for age, gender, 

hypertension, cardiovascular diseases and obesity status. 

2.5 Discussion 

To our knowledge, this is the first study that investigated the interaction between FTO 

SNPs and dietary intake on obesity traits in a Turkish population. This study has identified the 

associations of the FTO SNP rs9939609 and GRS with obesity traits, and also showed that the 

physical activity level can modify the effect of the minor allele ‘A’ of the FTO SNP rs9939609 

on adiponectin concentrations, a biomarker of metabolic syndrome (311). Furthermore, our 

study has demonstrated that the higher protein intake was associated with higher risk of central 

obesity among the ‘T’ allele carriers of the FTO SNP rs10163409 compared to non-carriers. 

Since Turkish adults have a sedentary lifestyle (280), our findings contribute to the 

development of effective public health strategies focusing on the prevention and management 

of central obesity and CVD in Turkish population (312).  

This study has shown that the risk allele ‘A’ of the FTO SNP rs9939609 was significantly 

associated with higher BMI and FMI, in agreement with the findings from other populations 

(76, 285-288, 313, 314). A meta-analysis performed on 177,330 individuals from multiple 

ethnicities have demonstrated an association between FTO rs9939609 genotype and BMI, 

suggesting a higher BMI in ‘A’ allele carriers (effect per allele=0.30 [0.30, 0.35] kg/m2, 

P=3.6*10-107) (299). The reported FTO-related genetic associations with BMI have also been 
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confirmed in a study in the Turkish population (289), where the FTO risk allele, ‘C’, carriers 

of the SNP rs1421085, which is in a high linkage disequilibrium (LD) (D’=0.967, r2=0.85) with 

the SNP rs9939609, had significantly increased BMI. Furthermore, parallel to the findings of 

other studies (300, 315, 316), we have also found that the FTO SNP rs9939609 was 

significantly associated with higher WC and lower adiponectin concentrations. On the contrary, 

there were no significant association between SNP rs10163409 and obesity. This could be 

explained by the fact that the SNP rs10163409 is not in LD with other FTO variants that have 

shown significant associations with BMI (303). 

Our study has provided evidence for gene-diet interaction in the Turkish population. We 

have demonstrated that, among those in the highest tertile of dietary protein intake, the risk of 

increased WC/central obesity was higher for the minor allele, ‘T’, carriers of the FTO SNP 

rs10163409 compared to those with AA genotype. To date, this is the first study analysing 

gene-diet interactions of the SNP rs10163409, suggesting that high intake of dietary protein 

might negatively affect WC in genetically susceptible individuals. However, studies 

investigating other FTO SNPs (rs1558902 and rs9939609) have reported conflicting results 

(302, 317, 318). It has been suggested that following a high protein diet can modulate the 

genetic effect of FTO variants on obesity traits (302, 317, 318). According to a 2-year weight 

loss intervention program, carriers of the risk allele ‘A’ of the FTO rs1558902 had a greater 

weight loss compared to non-carriers when high protein diets were consumed, whereas a 

negative genetic effect was found in response to a low-protein intake (319). The potential 

mechanism of FTO variants - protein intake interaction is still unclear; however, the regulation 

of food intake and appetite could be influenced. It has been found that the risk allele ‘A’ of the 

SNP rs9939609 was significantly associated with a greater reduction in food cravings and 

appetite scores among individuals who consumed high- protein diet but not in those in the low-

protein diet (319). Regarding the SNP rs9939609, there were no significant interactions 
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between the FTO variants and any of the dietary components on obesity traits. In agreement 

with our findings, a study of 11,091 adults from five Europeans countries have found no 

interactions between the rs9939609 variant and the dietary intake of carbohydrate, glycaemic 

index, protein or fat on BMI, WC, weight gain and risk of obesity (300). Furthermore, a meta-

analysis of 40 population-based studies reported that the total energy or macronutrient intakes 

had no effect on the association between the SNP rs9939609 and BMI (299). In contrast to our 

finding, a few large-scale studies demonstrated significant interactions between dietary 

macronutrient intakes and FTO variants in determining BMI (240, 241, 295-298). A cross-

sectional study conducted on 4,839 Swedish participants reported an association between the 

risk allele of the SNP rs9939609 and higher BMI only in individuals with high fat and low 

carbohydrate consumption (241). A similar interaction between the rs9939609 variant and 

saturated fatty acids (SFA) intake has been detected in 2,163 individuals from two independent 

populations of the United States, where individuals homozygous for the risk allele ‘AA’ had a 

higher BMI compared to other genotypes, only when the intake of SFA was high (240). 

Furthermore, the FTO SNP rs8050136, in LD with rs9939609, significantly interacted with 

carbohydrate intake on obesity risk among Asian Indian population (239).  

Regarding genetic interactions with physical activity, a previous study conducted among 

200 Turkish adults found that BMI was higher in homozygous risk allele ‘A’ carriers of the 

SNP rs9939609 than the homozygote the ‘T’ allele carriers among physically inactive 

individuals (320). The same interaction but on a biochemical measure of obesity (i.e.: 

adiponectin level), rather than BMI, was replicated in our study using a larger sample size. We 

found that, among those with lowest levels of physical activity, the adiponectin concentrations 

were significantly lower in the carriers of the risk allele ‘A’ of the FTO rs9939609 than ‘TT’ 

homozygotes. Adiponectin is a hormone produced and secreted by adipose tissue and 

commonly known for its antihyperglycemic, anti-inflammatory, antiatherogenic, and 
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cardioprotective effects (321-323). Studies have reported a strong correlation between the 

dysregulation of adipokine production and the onset of several metabolic abnormalities 

including CVD and cancer (324, 325). The positive correlation between adiponectin levels and 

physical activity has been demonstrated in several studies (326, 327), where higher levels of 

physical activity have been shown to reduce adiposity which decreases the production of 

insulin and leptin, and increases adiponectin production (328). Indeed, it has been reported that 

serum concentrations of adiponectin are inversely related to BMI, visceral body fat and blood 

concentrations of glucose, insulin, and triglycerides (329). An intervention study conducted in 

400 obese women showed that a weight reduction program resulted in a significant increase in 

adiponectin levels (330). Given that this is the first study to report an interaction between FTO 

variant and physical activity on adiponectin concentrations, the findings need to be replicated 

in a larger Turkish cohort.  

The main strengths of this study include the use of a biochemical marker of obesity (i.e., 

adiponectin) and a well-characterised population. Nevertheless, there are some limitations 

which include the small sample size and the use of self-reported measurements in the 

assessment of dietary intake and physical activity. However, this study has still confirmed the 

associations between FTO SNP rs9939609 and obesity traits which were also reported in 

previous studies (76, 285-288). Given that obesity is a multifactorial condition, several genetic 

factors and lifestyle behaviours provide a predisposition to obesity; even though we have 

focused on the two important lifestyle factors, diet and physical activity, only two genetic 

variants were examined. However, to date, the FTO gene has been shown to be the strongest 

susceptibility gene for common obesity (76, 77, 284). Furthermore, the cross-sectional design 

of this study limits the proof of causality. Even though our analysis was adjusted for several 

confounders, we cannot rule out the residual confounding caused by unknown factors. 
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Therefore, the observed interactions needed to be confirmed in further studies with larger 

sample sizes. 

2.6 Conclusion 

In summary, this study has confirmed the associations between the risk allele ‘A’ of the 

FTO rs9939609 and GRS, with obesity related traits including BMI and FMI in this Turkish 

population. Our study suggests that the impact of the FTO polymorphisms, rs10163409 and 

rs9939609, on obesity among Turkish adults might be affected by dietary protein intake and 

physical activity levels, respectively, suggesting that increased consumption of protein-rich 

foods and sedentary lifestyle could possibly increase the genetic risk ofc central obesity. Our 

results provide significant public health implications, given that the rising prevalence of central 

obesity is a major public health problem in Turkey (280, 331). Further studies with large sample 

size and objective measures of environmental factors are required to provide a better 

understanding of how these variants interact with lifestyle factors to develop effective 

prevention and treatment strategies for obesity. 
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3.1 Abstract  

Background: Cardiometabolic diseases are complex traits which are influenced by several 

single nucleotide polymorphisms (SNPs). Thus, analysing the combined effects of multiple 

gene variants might provide a better understanding of disease risk than using a single gene 

variant approach. Furthermore, studies have found that the effect of SNPs on cardiometabolic 

traits can be influenced by lifestyle factors, highlighting the importance of analysing gene-

lifestyle interactions.   

Aims: In the present study, we investigated the association of 15 gene variants with 

cardiometabolic traits and examined whether these associations were modified by lifestyle 

factors such as dietary intake and physical activity.  

Methods: The study included 110 Minangkabau women [aged 25-60 years and body mass 

index (BMI) 25.13±4.2 kg/m2] from Padang, Indonesia. All participants underwent a physical 

examination followed by anthropometric, biochemical and dietary assessments and genetic 

tests. A genetic risk score (GRS) was developed based on 15 cardio-metabolic disease-related 

SNPs. The effect of GRS on cardiometabolic traits was analysed using general linear models. 

GRS-lifestyle interactions on continuous outcomes were tested by including the interaction 

term (e.g., lifestyle factor*GRS) in the regression model. Models were adjusted for age, BMI 

and location (rural or urban), wherever appropriate. 

Results:  There was a significant association between GRS and BMI, where individuals 

carrying 6 or more risk alleles had higher BMI compared to those carrying 5 or less risk alleles 

(P=0.018). Furthermore, there were significant interactions of GRS with protein intake on waist 

circumference (WC) and triglyceride concentrations (Pinteraction= 0.002 and 0.003, respectively). 

Amongst women who had a lower protein intake (13.51±1.18% of the total daily energy 
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intake), carriers of six or more risk alleles had significantly lower WC and triglyceride 

concentrations compared with carriers of five or less risk alleles (P=0.0118 and 0.002, 

respectively). 

Conclusion: Our study confirmed the association of GRS with higher BMI and further showed 

a significant effect of the GRS on WC and triglyceride levels through the influence of a low-

protein diet. These findings suggest that following a lower protein diet, particularly in 

genetically predisposed individuals, might be an effective approach for addressing 

cardiometabolic diseases among South East Asian women.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



67 

 

3.2 Introduction 

Cardiometabolic diseases such as cardiovascular diseases (CVD), obesity, hypertension 

and type 2 diabetes are a major cause of mortality, morbidity and healthcare spending 

worldwide (332, 333). The prevalence of these diseases has significantly increased and has 

become a major problem given the significant economic burden that these diseases impose on 

low- and middle-income countries. Indonesia has the seventh largest number of diabetic 

patients (7.6 million), despite relatively low prevalence worldwide (4.8%) in 2012 (334). In 

2013, it was estimated that there were more than 132.8 million people with diabetes in the 

Western Pacific (more people than in any other region), and the number is expected to rise to 

201.8 million by 2035 (335). Furthermore, obesity is suggested to play a critical role in the 

development of chronic and non-communicable diseases (NCDs) in the South East (SE) Asia 

(336). In Indonesia, NCDs are estimated to account for 73% of all deaths (265) of which, CVD 

contributed to 35% followed by cancers (12%), and diabetes (6%) (265).  

Indonesia is the largest island country in the world, consisting of various ethnic groups 

distributed over 33 provinces (337). Minangkabau community is the world’s largest matrilineal 

society which resides mostly in West Sumatra, where the prevalence of low level of high-

density lipoprotein cholesterol (HDL-C), hypertension and central obesity is more than 50% 

(337). It is reported that the Minangkabau ethnic group had a high risk of dyslipidemia, which 

is suggested to be driven mainly by the high intake of dietary fat from poor quality sources 

(338). A study comparing lipid profiles among four ethnic groups reported that the 

Minangkabau ethnic group has the highest levels of plasma total cholesterol and low-density 

lipoprotein cholesterol (LDL-C) compared to other larger ethnicities including Sundanese, 

Javanese and Buginese (339). Furthermore, it has been reported that the prevalence of central 

obesity is high among Minangkabau women (340). Many environmental exposures contribute 
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to the increasing prevalence of cardiometabolic diseases, but one key factor is urbanization 

(341). Countries in SE Asia have undergone rapid epidemiological and nutritional transitions 

over the past few decades. Furthermore, it has been reported that dietary risks, high blood 

pressure and tobacco smoking are the three major risk factors contributing to disease burden in 

Indonesia (342). However, genetic factors also play an important role in the development of 

cardiometabolic diseases. 

Candidate gene studies and genome-wide association studies (GWAS) have identified 

several single nucleotide polymorphisms (SNPs) relating to cardiometabolic diseases and traits 

in the Asian populations (343-346). Most cardiometabolic traits are influenced by thousands 

of SNPs each having a relatively small effect on the trait when present alone. Thus, analysing 

the combined effects of multiple gene variants might provide a better understanding of traits 

variability of an individual and improve risk prediction of cardiometabolic diseases than using 

a single variant approach (347). Furthermore, studies have found that the effect of genetic 

variants on cardiometabolic traits can be influenced by lifestyle factors (348). It has been 

confirmed that using genetic risk score (GRS) approaches increase the power to detect gene-

lifestyle interactions compared to the common single variant methods (349). Therefore, our 

study aimed to investigate the association of a novel GRS with cardiometabolic traits and to 

examine whether lifestyle factors such as dietary intake and physical activity modified these 

associations in 110 Minangkabau women.  

3.3 Methods 

3.3.1 Study participants 

The study included healthy women who were enrolled in the Minangkabau Indonesia 

Study on Nutrition And Genetics (MINANG) study, a cross-sectional pilot study conducted in 
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the city of Padang, West Sumatra, Indonesia, between December 2017 to January 2018. This 

study is a part of the ongoing GeNuIne (Gene-Nutrient Interactions) Collaboration, which aims 

to examine the interactions between genetic and dietary factors (nutrigenetics) on 

cardiometabolic disease and its related traits using population-based studies from several ethnic 

groups (220). The methodology of the study has been published elsewhere (350). In brief, 133 

women were recruited from community health centres in two sub-districts in Padang City 

including Padang Timur and Kuranji districts to represent both urban and rural areas of Padang 

population, respectively. The inclusion criteria included: healthy women, aged 25-60 years old 

and with Minangkabau ethnicity. Of the 133 enrolled women, 10 were excluded from the study 

according to the following exclusion criteria: being pregnant or lactating (N=0) and taking 

dietary or vitamin supplements (N=0), have a previous history of hypertension, CVD or type 2 

diabetes (N=6), have a body mass index (BMI) of more than 40 kg/m2 or being classified as 

morbidly obese by a practitioner (N=0), being blood related to other participants in the study 

(N=0), have any communicable disease (N=4). Of the remaining 123 participants, we excluded 

another 5 women who did not undergo blood sampling. Thus, the final sample consisted of 118 

participants, of whom seven women did not have complete genetic information about all the 

investigated SNPs and were excluded from the GRS analysis (N=111). Additionally, one 

participant with no dietary information available was excluded from the GRS interaction 

analysis (N=110).  

 The MINANG study was conducted according to the principles of the Declaration of 

Helsinki and was approved by the Ethical Review Committee of the Medical Faculty, Andalas 

Univesity (No.311/KEP/FK/2017). All participants gave their written informed consent before 

participating and had the right to withdraw from the study at will and opt-out from any of the 

procedures. 
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3.3.2 Anthropometric Measures  

           Body weight (to the nearest 100 g) and height (to the nearest mm) were measured using 

an electronic scale (Seca 803, Seca GmbH. Co. kg, Hamburg, Germany) and a wall-mounted 

stadiometer (OneMed Medicom stature meter, YF.05.05. V.A.1022, Indonesia), respectively. 

BMI was calculated as weight (kg)/height (m)2 and categorised according to the Asia-Pacific 

classification of BMI (351). Waist circumference (WC) was measured in cm using a metal tape 

(Medline-OneMed Medicom, Jakarta, Indonesia) midway between the 12th rib and the 

superior border of the iliac crest at the end of normal expiration. 

3.3.3 Biochemical and clinical measures 

           After 12 hours of fasting, blood samples (5ml) were taken to measure the concentrations 

of glucose, insulin, glycated haemoglobin A1c (HbA1c), total cholesterol, triglycerides, LDL-

C and HDL-C. Samples were assayed using the xMark Microplate Spectrophotometer (Bio-

Rad Laboratories Inc, Hercules, California, USA). Fasting glucose, insulin and HbA1c were 

measured using enzyme-linked immunosorbent assay (ELISA) kits from Bioassay Technology 

Laboratory (Shanghai, China). Blood lipids were analysed using enzymatic colorimetric 

procedures, namely GPO - PAP for triglycerides, and CHOD-PAP for total cholesterol, LDL 

and HDL. A sphygmomanometer was used to measure systolic and diastolic blood pressures 

(SBP and DBP). Measurements were taken twice at 5-minute intervals and the average was 

recorded.  

3.3.4 Assessment of dietary intake and physical activity 

Information about dietary intake and physical activity were collected by a well-trained 

nutritionist in the home or in an integrated health service post. Diet was assessed using a 

previously validated and published semi-quantitative food frequency questionnaire (SQ-FFQ) 
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consisting of a list of 223 food items (352). Briefly, participants were asked to report the 

frequency of consumption (number of times per day, week or month) and portion size of 

various food items.  Participants were provided with portion size images of all relevant foods 

to enhance reporting accuracy while completing the SQ-FFQ (353). All collected data were 

double-checked for accuracy and analyzed with the Indonesian Food Database and Nutrisurvey 

(EBISpro, Germany) to estimate total energy and macronutrient intake. Values of nutrient 

intake were adjusted for total energy intake using the nutrient (energy-adjusted) residual 

method, wherever appropriate (354).  

   “The Global Physical Activity Questionnaire” (GPAQ) was used to calculate an 

individual’s level of physical activity in 3 areas (work, transport and leisure-time) and time 

spent in sedentary behaviour (355). Total time spent in moderate-to-vigorous physical activity 

was estimated using to the world health organisation (WHO) STEPwise method and was 

expressed as metabolic equivalent minutes per day (METmins/day). Participants were defined 

as “active” if they did ≥600 METmins/week or “inactive” if they accumulated <600 

METmins/week.  

3.3.5 SNP selection and genotyping 

Fifteen genetic variants located at 8 different genes were selected for the present study 

based on its consistent associations with cardio-metabolic traits in candidate gene studies and 

GWAS in Asian populations (343-346, 356-365). The selected genetic variants were Calpain 

10 (CAPN10) rs3792267 and rs5030952, fat mass and obesity-associated (FTO)- rs9939609, 

rs10163409 and rs8050136, melanocortin 4 Receptor (MC4R)- rs17782313 and rs2229616, 

Transcription factor 7-like 2 (TCF7L2)- rs12255372 and rs7903146, Potassium voltage-gated 

channel subfamily Q member 1 (KCNQ1)- rs2237895 and rs2237892, Cyclin dependent kinase 
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inhibitor 2A/2B (CDKN2A/2B)- rs10811661, Peroxisome proliferator-activated receptor 

gamma (PPARG)- rs1801282, and adiponectin (ADIPOQ)-rs266729 and rs17846866. 

Genomic DNA was extracted from peripheral blood leukocytes using the PureLink 

Genomic DNA Mini Kit (Invitrogen, Carlsbad, USA). Furthermore, a NanoDrop 

spectrophotometer was used to determine DNA concentration. The SNPs were genotyped using 

the competitive allele-specific PCR-KASP® assay at LGC Genomics 

(http://www.lgcgroup.com/services/genotyping). 

3.3.6 Statistical analysis 

Statistical analysis was performed using the SPSS software (version 23) and the 

research analysis plan is included as an appendix on Page 240. Common obesity was defined 

based on the Asia-Pacific classification of BMI for Asians, where non-obese individuals 

(BMI<23 kg/m2) and obese individuals (BMI≥23 kg/m2) were classed accordingly (366). 

Central obesity was defined based on WHO classification of WC (WC>80 cm for women) (30). 

The Hardy-Weinberg equilibrium (HWE) was assessed using the x2 goodness-of-fit test and 

the 15 SNPs were in HWE (P>0.05). Normality of distribution of all continuous variables was 

tested using the Shapiro-Wilk test and those that were not normally distributed were natural 

log-transformed before the analysis, including glucose, insulin, HbAC1, HDL-C, LDL-C, total 

cholesterol, triglyceride concentrations and total dietary protein intake (%). Continuous 

variables are expressed as means and standard deviations (SD) and comparisons between 

groups were made using the independent t-test. The descriptive statistics for categorical 

variables, such as physical activity level, were obtained by determining frequency distributions 

and compared between individuals with and without central obesity using Pearson’s chi-

squared test. The association between individual SNPs and cardiometabolic traits was analysed 

using general linear models adjusted for age, residential area (rural or urban) and BMI when 

http://www.lgcgroup.com/services/genotyping
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BMI is not an outcome. As the number of individuals with rare homozygous genotypes was 

low, a dominant model was used, where common homozygous genotypes were compared 

against combined rare homozygous and heterozygous genotypes.  

A GRS was constructed based on 15 SNPs from 8 genes. An additive genetic model 

was assumed for each gene variant, assigning a score of 0, 1, and 2 to genotypes containing 0, 

1, or 2 risk alleles, respectively. The GRS was then calculated for each individual by summing 

the number of risk alleles in the genetic variants. The count method assumed that each risk 

allele contributes equally and independently to the development of cardiometabolic traits. The 

average number of risk alleles per individual for the GRS was 5.12 (SD=2.06), which ranged 

from 2 to 10. The GRS variable was then categorised into two groups based on the median of 

risk alleles; “low genetic risk group”: individuals with a GRS≤5 risk alleles (N=69) and “high 

genetic risk group”: individuals with GRS>5 risk alleles (N=42). The effects of GRS on 

cardiometabolic traits were analysed using general linear models. Furthermore, GRS-lifestyle 

interactions on continuous outcomes were tested using linear regression models by including 

the interaction terms (e.g., diet*genotype) in these models. Models were adjusted for age, 

residential area and additionally for BMI when it is not an outcome. Lifestyle factors that were 

investigated in our study included dietary intake and physical activity. Carbohydrate, protein 

and fat intakes were expressed as a percentage of total energy intake and fibre intake was 

expressed in grams. Furthermore, statistically significant interactions were investigated in more 

depth, where individuals were stratified by the tertiles of dietary intake and the levels of 

physical activity. A P value of <0.05 was considered statistically significant. Multiple testing 

correction was not applied given that we had examined only one genetic instrument (i.e., GRS). 
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3.4 Results 

3.4.1 Characteristics of the study participants according to the central obesity status 

In the present study, 71 women (64.0%) were centrally obese and 39 (35.1%) were not. The 

characteristics of the participants are shown in Table 5. In general, centrally obese participants 

were older, and had higher SBP (P=0.006), fasting plasma glucose (P=0.039), serum 

triglycerides (P<0.001), serum total cholesterol (P<0.001) and LDL-C (P<0.001) 

concentrations compared to participants without central obesity. There were no significant 

differences in fasting HDL-C, serum insulin, HbA1c, DBP, dietary intake and physical activity 

levels and the distribution of GRS between the two groups (P>0.05).  

3.4.2 Associations between GRS and cardiometabolic traits 

To explore the combined effect of the 15 SNPs on various cardiometabolic traits, a GRS was 

calculated. There was a significant association (P=0.018) between the GRS and BMI where 

individuals carrying 6 or more risk alleles of the SNPs had higher BMI compared with those 

carrying 5 or less risk alleles (Table 6). 
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Table 5: Anthropometric and biochemical characteristics of the study participants. 

Data presented as means ± SD for continuous variables and as percentages for categorical 

variables. *P values for the differences in the means and proportions between non-centrally 

obese and centrally obese individuals were calculated using the independent t-test and the Chi-

  N 
Total  

(N=111) 

N 

Non-centrally  

Obese 

(WC≤80 cm) 

(N=39) 

N 

Centrally  

Obese  

(WC>80 cm)  

 (N=71) 

 P 

value* 

Age (yrs) 111 40.49±10.18 39 37.08±11.68 71 42.58±8.62 0.012 

BMI (kgm2) 111 25.13±4.2 39 21.85±3.71 71 26.99±3.24 <0.001 

WC (cm) 110 83.85±10.27 39 72.79±6.03 71 89.92±6.26 <0.001 

Glucose (mg/dl) 111 92.53±20.67 39 87.21±9.78 71 95.69±24.29 0.039 

Insulin (mIU/L) 111 32428.5±25706.13 39 31073.79±28460.35 71 33374.28±24368.83 0.657 

HbA1c (ng/ml) 111 655.59±601.59 39 629.22±671.07 71 666.42±568.14 0.759 

Triglycerides (mg/dl) 111 98.8±43.47 39 78.26±34.19 71 109.72±44.38 <0.001 

Cholesterol (mg/dl) 111 209.31±44.02 39 188.26±30.04 71 221.77±45.74 <0.001 

HDL-C (mg/dl) 111 59.12±10.29 39 60.9±10.45 71 58.14±10.22 0.182 

LDL-C (mg/dl) 111 128.12±39.85 39 111.49±25.55 71 138.2±42.65 <0.001 

SBP (mmHg) 111 113.37±9.07 39 110.14±8.83 71 115.05±8.81 0.006 

DBP (mmHg) 111 77.44±6.39 39 76.26±8.35 71 78.06±5.01 0.223 

Total energy (kcal/d)  110 1776.24±611.43 39 1789.55±604.31 70 1755.6±613.59 0.781 

Carbohydrate intake (%) 110 53.97±9.44 39 52.67±7.86 70 54.91±10.1 0.235 

Protein intake (%) 110 16.93±3.32 39 17.13±2.93 70 16.76±3.54 0.579 

Fat intake (%) 110 28.95±7.99 39 30.05±6.87 70 28.16±8.45 0.235 

Dietary fibre (g) 110 8.78±4.29 39 9.11±4.52 70 8.56±4.19 0.521 

SFA (g) 110 20.84±11.22 39 21.77±10.81 70 20.07±11.35 0.447 

MUFA (g) 110 8.18±4.6 39 9.00±5.08 70 7.62±4.18 0.129 

PUFA (g) 110 6.32±3.5 39 6.67±3.06 70 6.14±3.76 0.541 

MET (min/week) 111 1311.89±1877.78 39 1114.87±1625.95 71 1428.45±2016.27 0.407 

GRS 110 5.09±2.07 39 4.77±2.01 71 5.31±2.03 0.189 

Physical activity levels 44 Sedentary (39.64%) 18 Sedentary (46.15%) 26 Sedentary (36.62%) 0.616 

 55 Moderate (49.55%) 17 Moderate (43.59%) 37 Moderate (52.11%)  
 

12 Vigorous (10.81%) 4 Vigorous (10.26%) 8 Vigorous (11.27%) 
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squared test, respectively. Abbreviations: BMI Body mass index; WC Waist circumference; 

HbA1C glycated haemoglobin A1c; HDL-C High-density lipoprotein cholesterol; LDL-C 

Low-density lipoprotein cholesterol; SBP Systolic blood pressure; DBP diastolic blood 

pressure; SFA Saturated fatty acids; MUFA Monounsaturated fatty acids; PUFA 

Polyunsaturated fatty acids; MET Metabolic equivalent of task; GRS Genetic risk score.  

 

Table 6: Associations between GRS and cardiometabolic traits 

  
GRS≤5 

(N=69) 

GRS>5 

(N=42) 
P value* 

 
N Mean±SE N Mean±SE 

 
BMI (kgm2) 69 24.52±0.52 42 26.14±0.6 0.018 

WC (cm) 68 84.28±1.22 42 83.16±1.66 0.334 

Log Glucose (mg/dl) 69 93.65±2.98 42 90.69±1.72 0.327 

Log Insulin (mIU/L) 69 32365.29±3199.95 42 32532.33±3782.96 0.196 

Log HbA1C (ng/ml) 69 650.58±71.1 42 663.81±96.65 0.527 

Log triglycerides (mg/dl) 69 101.07±5.27 42 95.07±6.67 0.142 

Log Cholesterol (mg/dl) 69 212.88±5.59 42 203.43±6.11 0.228 

Log HDL-C (mg/dl) 69 58.55±1.26 42 60.05±1.56 0.404 

Log LDL-C (mg/dl) 69 131.84±4.97 42 122±5.73 0.197 

Log SBP (mmHg) 69 113.12±1.08 42 113.77±1.43 0.679 

Log DBP (mmHg) 69 77.59±0.86 42 77.2±0.76 0.535 

*P values obtained from linear regression analysis adjusted for age, residential area and 

additionally for BMI when BMI is not an outcome. The analysis was performed on log-

transformed variables. Abbreviations: BMI Body mass index; WC Waist circumference; 

HbA1C glycated haemoglobin A1c; HDL-C High-density lipoprotein cholesterol; LDL-C 

Low-density lipoprotein cholesterol; SBP Systolic blood pressure; DBP diastolic blood 

pressure. 
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3.4.3 Interactions between GRS and dietary intake on cardiometabolic traits 

There were significant interactions between the GRS and protein intake (%) on WC and 

triglyceride concentrations (Pinteraction=0.002 and 0.003, respectively), Table 7. With low protein 

intake (13.51±1.18%), carriers of 6 or more risk alleles of SNPs had lower WC and triglyceride 

concentration compared to carriers of 5 or less risk alleles (P=0.0118 and 0.002, respectively) 

(Figures 5 and 6). A significant interaction between protein intake and GRS was also detected 

on cholesterol levels (Pinteraction=0.021). Moreover, there was no other interactions between 

nutrient intake and GRS on cardio-metabolic traits. 

Table 7: Interactions between GRS and lifestyle factors on cardio-metabolic traits.  

 

Data are p values obtained from linear regression analysis adjusted for age, residential area and 

BMI when BMI is not an outcome. The analysis was performed on log-transformed variables. 

Abbreviations: BMI Body mass index; WC Waist circumference; HbA1C glycated 

 
Carbohydrate 

(%) 

Protein 

(%) 

Fat 

(%) 

Fibre 

(g) 

Physical 

activity 

BMI (kgm2) 0.961 0.282 0.721 0.876 0.362 

WC (cm) 0.224 0.002 0.577 0.614 0.297 

Log Glucose (mg/dl) 0.882 0.751 0.732 0.833 0.106 

Log Insulin (mIU/L) 0.336 0.341 0.48 0.216 0.909 

Log HbA1C (ng/ml) 0.766 0.638 0.935 0.162 0.626 

Log Triglycerides (mg/dl) 0.066 0.003 0.355 0.262 0.479 

Log Cholesterol (mg/dl) 0.081 0.021 0.261 0.583 0.308 

Log HDL-C (mg/dl) 0.978 0.905 0.984 0.323 0.540 

Log LDL-C (mg/dl) 0.266 0.337 0.431 0.896 0.721 

Log SBP (mmHg) 0.156 0.291 0.208 0.872 0.644 

Log DBP (mmHg) 0.966 0.815 0.732 0.292 0.743 



78 

 

haemoglobin A1c; HDL-C High-density lipoprotein cholesterol; LDL-C Low-density 

lipoprotein cholesterol; SBP Systolic blood pressure; DBP diastolic blood pressure. 
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Figure 5: Interaction between genetic risk score (GRS) and log protein intake (%) on 

waist circumference (WC).  

White bars indicate “low genetic risk group”: individuals with a GRS≤5 risk alleles; Black bars 

indicate “high genetic risk group”: individuals with GRS>5 risk alleles. Carriers of 6 or more 

risk alleles had lower WC compared to carriers of 5 or less risk alleles, among individual with 

lower protein intake (13.51±1.18 %). 
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Figure 6: Interaction between genetic risk score (GRS) and log protein intake (%) on log 

triglyceride levels.  

White bars indicate “low genetic risk group”: individuals with a GRS≤5 risk alleles; Black bars 

indicate “high genetic risk group”: individuals with GRS>5 risk alleles. Carriers of 6 or more 

risk alleles had lower triglyceride level compared to carriers of 5 or less risk alleles, among 

individual with lower protein intake (13.51±1.18 %). 

 

3.4.4 Associations between individual SNPs and cardiometabolic traits 

As shown in Supplementary Table 1, we found that the risk alleles of the three FTO SNPs 

rs9939609, rs8050136 and rs10163409 were associated with higher BMI (P=0.006, 0.007 and 

0.047, respectively). Furthermore, SNPs rs12255372 (TCF7L2), rs2237892 (KCNQ1) and 

rs5030952 (CAPN10) were associated with increased fasting serum LDL-C concentrations 

(P=0.032, 0.039 and 0.04, respectively). A significant association was also found between the 
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risk allele of the SNP rs17782313 (MC4R) and higher insulin level (P=0.036). No significant 

association was observed between the remaining SNPs and cardiometabolic traits in this 

population (P>0.05).  

3.5 Discussion 

The present study aimed to investigate the effects of genetic predisposition and lifestyle 

factors on cardiometabolic traits in Minangkabau women. In agreement with other studies (3), 

we have shown that the GRS based on 8 susceptible genes for cardiometabolic diseases is a 

significant risk factor for higher BMI in our study sample and might be a useful tool in 

characterising Minangkabau women at high risk for obesity. We found that women carrying 6 

or more alleles had significantly higher BMI compared to those carrying 5 or less risk alleles. 

Furthermore, we found a significant interaction between the GRS and dietary protein intake 

(%) on WC and triglyceride levels, where, among those who consumed a low protein diet 

(mean intake ± SD: 13.51±1.18 %) , individuals, despite carrying more than 6 risk alleles, had 

significantly lower WC and triglyceride levels. Given that Minangkabau women have a high 

risk of dyslipidemia (339) and the prevalence of common and central obesity is high among 

this ethnic group (340), it is important to develop effective strategies targeting these conditions 

to improve public health.  

It has been suggested that centrally obese participants defined as normal weight based 

on BMI had the worst long-term survival even when compared with their overweight and obese 

counterparts (36). In addition, recent data from 42,702 European participants reported that 

central obesity is associated with higher mortality risk even in normal-weight individuals (35). 

This is of concern for Asian populations, where increased levels of visceral adiposity are 

observed in those with normal BMIs (367-369). Furthermore, the combination of increased 

WC along with elevated triglyceride levels has been previously defined as the 
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‘hypertriacylglycerolaemic waist’ phenotype (370). Studies have shown that individuals with 

this phenotype have an increased risk of higher visceral adiposity, CVD, insulin resistance and 

other related outcomes (370). Therefore, targeting this phenotype will have significant public 

health implications in terms of reducing NCD mortality in Asian populations.  

In the present study, the average protein intake was 77±37 g/day, which exceeded the 

recommended dietary protein daily allowance of 57-59 g/day for Indonesian women (371, 

372). Observational studies have shown that higher protein intake was significantly associated 

with increases in body weight, BMI and fat mass (373-375). These results are in contrast to the 

finding from intervention studies, which have shown that high protein intake enhances weight 

loss and provides a better long-term maintenance of reduced intra-abdominal fat stores (366, 

376). These inconsistencies might be attributed to the sample size, genetic heterogeneity and 

gene-lifestyle interactions. Cross-sectional studies have demonstrated the association of several 

SNPs with obesity-related traits (77, 377-379) and interaction of these SNPs with dietary intake 

of protein on weight change (380-382) . It has been shown that high protein diets can modulate 

the genetic effect of FTO variants on body weight, BMI and WC (302, 317, 318). According 

to a 2-year weight loss intervention program, carriers of the risk allele ‘A’ of the FTO SNP 

rs1558902 had a greater reduction in weight and regional fat compared to non-carriers when 

high protein diets were consumed, whereas an opposite genetic effect was found on changes in 

fat distribution in response to a low-protein intake (318). However, studies investigating the 

joint effect of genetic variants have reported conflicting results (383-385), indicating that the 

influence of genetic predisposition on changes in body weight and WC does not seem to be 

modulated by protein intake. In contrast, the present study provides evidence for GRS-protein 

intake interactions on WC and triglyceride concentrations, and these interactions were 

independent of potential confounding effects. We found that participants with 6 or more risk 

alleles who consumed a low protein diet (mean intake ± SD: 13.51±1.18%) had significantly 
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lower WC and triglyceride concentrations compared to those with 5 or less risk alleles. This 

difference in the findings across the studies might be due to differences in the sample size, 

methods used to construct GRSs (weighted vs. unweighted), and the number of SNPs included 

in the GRSs. 

The observed interaction between GRS and dietary protein on WC and triglyceride 

concentrations might be driven by the source of protein consumed, which has not been analysed 

in our study. Different protein sources have different effects on body weight and fat mass, and 

the mechanisms behind this are still very speculative and need more investigation. The higher 

intake of protein from animal sources (protein from red and processed meat and poultry) was 

found to be associated with an increase in body weight in both genders, with a stronger 

association in women (374). Diet rich in animal protein might reflect the western pattern diet 

characterised by high red meat consumption, which has shown to be associated with weight 

gain (386). In contrast, a study has shown that protein from meat is associated with lower 

weight gain because it produces a higher 24-h energy expenditure compared to soy protein 

(387). This hypothesis is, however, based on a mechanistic study and it is still unknown 

whether this applies in the long run to individuals of the free-living populations. 

Furthermore, it has been suggested that consuming protein from dairy sources may prevent  

weight gain and promote abdominal fat loss (388). Here, the suggested mechanism primarily 

relates to the high content of calcium, which may function synergistically in combination 

with bioactive compounds, such as angiotensin-converting enzyme inhibitors and the rich 

concentration of branched-chain amino acids (388). While the above-mentioned studies failed 

to explore the genetic aspects, our study did not investigate the type of protein that was 

consumed by the participants; hence, future studies examining the effect of both factors are 

required.  
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In agreement with some studies (383, 384), no interactions were detected between GRS 

and dietary intake of protein, fat and carbohydrate on BMI in the present study. However, a 

study in the European population (N=48,170 adults) has shown that the joint effect of 93 

obesity-related SNPs on BMI might be modulated by the intake of total energy, fat and 

saturated fat (385). Furthermore, studies have shown that an obesogenic diet and physical 

inactivity with relatively high intake of sugar-sweetened beverages and prolonged television 

watching might exaggerate the effect of genetic factors on adiposity (348, 389). Even though 

several studies have demonstrated that physical activity could attenuate the combined genetic 

influence of multiple SNPs on BMI and obesity risk (267, 268, 348), no such interactions were 

detected in the present study. 

The strengths of our study include the use of a well-defined population, a validated SQ-

FFQ (352) and a genetic risk score generated from the 15 genetic variants associated with 

cardiometabolic traits. Also, the main exposures investigated in our study were collected by 

well-trained staff and using validated and standardised operating procedures. However, there 

are limitations that needs to be acknowledged. Although our analysis was adjusted for several 

factors, the potential for confounding by unmeasured or unknown factors exist. Even though 

our study has a small sample size, we were still able to find significant associations and 

interactions suggesting that our study is well powered. Even though food intake was assessed 

using validated methods, recall bias and measurement errors in these self-reported FFQs cannot 

be fully eliminated, which could alter the true underlying interactions between dietary and 

genetic factors on cardiometabolic traits (390, 391). Finally, our study was restricted to 

Minangkabau women, and it is unknown whether our findings could be generalised to men or 

other demographic or ethnic groups.  

3.6 Conclusion 
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In the present study, we have shown a significant effect of the GRS on WC and 

triglyceride levels through the influence of a low protein intake, where individuals with a high 

genetic susceptibility can overcome the risk of higher WC and triglyceride levels by consuming 

a low protein diet. These findings are potentially relevant for public health; however, future 

trials in both genders with larger sample size and objective measures of protein intake, such as 

urinary nitrogen, are needed to confirm these findings.  
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Supplementary Table 1. Associations between individual SNPs and cardiometabolic traits.
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3.7 Supplementary Material 

3.7.1 Supplementary Table 1: Associations between individual SNPs and cardiometabolic traits. 

    
BMI 

(kg/m2) 
WC (cm) 

Log 

Glucose 

(mg/dl) 

Log 

Insulin 

(mIU/L) 

Log 

HbA1C 

(ng/ml) 

Log 

triglycerides 

(mg/dl) 

Log 

Cholesterol 

(mg/dl) 

Log 

HDL-C 

(mg/dl) 

Log LDL-

C (mg/dl) 

Log SBP 

(mmHg) 

Log DBP 

(mmHg) 

MC4R rs17782313 0.967  0.552 0.969 0.036 0.135 0.238 0.234 0.565 0.595 0.447 0.928 

MC4R rs2229616 0.81  0.968 0.691 0.301 0.35 0.522 0.846 0.565 0.783 0.52 0.945 

FTO rs9939609 0.006 0.776 0.327 0.553 0.605 0.751 0.961 0.685 0.743 0.982 0.517 

FTO rs8050136 0.007 0.754 0.301 0.558 0.632 0.805 0.867 0.639 0.813 0.882 0.639 

FTO rs10163409 0.047 0.833 0.18 0.985 0.731 0.182 0.411 0.969 0.431 0.749 0.629 

TCF7L2 rs7903146 0.645 0.115 0.762 0.439 0.19 0.639 0.58 0.666 0.097 0.762 0.423 

TCF7L2 rs12255372 0.722 0.152 0.801 0.316 0.164 0.543 0.276 0.692 0.032 0.538 0.915 

ADIPOQ rs266729 0.837 0.59 0.275 0.581 0.957 0.258 0.682 0.774 0.654 0.693 0.274 

ADIPOQ rs17846866 0.221 0.555 0.21 0.129 0.179 0.797 0.597 0.774 0.845 0.882 0.389 

KCNQ1 rs2237895 0.263 0.606 0.847 0.199 0.33 0.782 0.803 0.801 0.746 0.832 0.597 

KCNQ1 rs2237892 0.501 0.215 0.937 0.502 0.775 0.868 0.546 0.16 0.039 0.866 0.968 

CDKN2A/B rs10811661 0.392 0.51 0.887 0.617 0.253 0.76 0.815 0.83 0.254 0.497 0.224 

PPARG rs1801282 0.128 0.207 0.988 0.743 0.42 0.4 0.411 0.921 0.101 0.782 0.456 

CAPN10 rs3792267 0.977 0.433 0.664 0.427 0.889 0.061 0.374 0.458 0.964 0.341 0.47 

CAPN10 rs5030952 0.88 0.852 0.949 0.566 0.849 0.828 0.425 0.373 0.04 0.773 0.912 
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Data are p values obtained from linear regression analysis adjusted for age, residential area and BMI when BMI is not an outcome. Abbreviations: 

FTO Fat mass and obesity associated gene; MC4R Melanocortin 4 Receptor ; TCF7L2 Transcription factor 7-like 2; ADIPOQ Adiponectin; 

KCNQ1 Potassium voltage-gated channel subfamily Q member 1; CDKN2A/2B Cyclin dependent kinase inhibitor 2A/2B; PPARG Peroxisome 

proliferator-activated receptor gamma and CAPN10 Calpain 10;  BMI Body mass index; WC Waist circumference; HbA1C glycated haemoglobin 

A1c; HDL-C High-density lipoprotein cholesterol; LDL-C Low-density lipoprotein cholesterol; SBP Systolic blood pressure; DBP diastolic blood 

pressure.
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4.1 Abstract 

Background: Obesity is a multifactorial condition arising from the interaction between 

genetic and lifestyle factors. We aimed to assess the impact of lifestyle and genetic factors 

on obesity-related traits in 302 healthy Ghanaian adults.  

Methods: Dietary intake and physical activity were assessed using a 3 day repeated 24 h 

dietary recall and global physical activity questionnaire, respectively. Twelve single 

nucleotide polymorphisms (SNPs) were used to construct 4-SNP, 8-SNP and 12-SNP 

genetic risk scores (GRSs).  

Results: The 4-SNP GRS showed significant interactions with dietary fat intakes on waist 

circumference (WC) (Total fat, Pinteraction = 0.01; saturated fatty acids (SFA), Pinteraction = 

0.02; polyunsaturated fatty acids (PUFA), Pinteraction = 0.01 and monounsaturated fatty acids 

(MUFA), Pinteraction = 0.01). Among individuals with higher intakes of total fat (>47 g/d), 

SFA (>14 g/d), PUFA (>16 g/d) and MUFA (>16 g/d), individuals with ≥3 risk alleles had 

a significantly higher WC compared to those with <3 risk alleles.  

Conclusion: This is the first study of its kind in this population, suggesting that a higher 

consumption of dietary fatty acid may have the potential to increase the genetic 

susceptibility of becoming centrally obese. These results support the general dietary 

recommendations to decrease the intakes of total fat and SFA, to reduce the risk of obesity, 

particularly in individuals with a higher genetic predisposition to central obesity.
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4.2 Introduction 

Obesity is a known risk factor for several health conditions, including type 2 diabetes, 

cardiovascular diseases, hypertension and cancer, and hence it is considered as an increasing 

public health problem worldwide, including in Africa (392, 393). Obesity prevalence varies 

widely between African countries with a range of 5.3% in Uganda to 30% in Nigeria and 

45.7% in South Africa (393). A recent systematic review has reported that nearly 43% of 

Ghanaian adults are either overweight or obese and that the prevalence of overweight and 

obesity was higher in women and urban dwellers (266). While obesity is strongly affected by 

changes in environmental factors (such as dietary intake, sedentary lifestyle, and 

urbanization), the composition of the gut microbiome, the disruption of circadian rhythms, 

exposure to endocrine-disrupting chemicals and epigenetic modifications (394-399), it also 

has strong genetic determinants with a heritability rate from 40 to 70% (80, 400). Genome-

wide association studies (GWAS) in European populations have revealed more than 100 loci 

to be associated with the body mass index (BMI) (78, 284, 401-405). However, these genetic 

associations have not been consistently replicated in African populations (406-410), which 

could be attributed to differences in lifestyle and genetic architecture (3). 

Given that single nucleotide polymorphisms (SNPs) have relatively small effect sizes 

on obesity, several studies have aggregated information from multiple-risk variants into a 

polygenic genetic risk score (GRS) (78, 155, 156, 284, 411-413). Employing a combined risk 

allele score is an efficient and effective approach in maximising statistical power, decreasing 

the drawback of multiple testing, and widening the generalisable nature of genetic 

associations (155, 156). A study among a rural population of Gambia demonstrated a positive 

association between a GRS of 28 SNPs and BMI and adult weight, whereas no association 

was found with the single SNP analysis (161, 162). Although genetic research in Africans is 
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increasing in numbers (409), only a few studies have examined the association of GRS with 

obesity in Africa (161, 414, 415), which highlights the need for further research in African 

populations. 

Current evidence has shown that heritability estimates for obesity-related traits can be 

modified by lifestyle factors such as diet and physical activity. Several studies have reported 

significant GRS–diet interactions on obesity-related traits. Studies in European populations 

have shown that the genetic association with BMI was stronger with higher intakes of sugar-

sweetened beverages (SSBs) and fried foods than among those with lower intakes (416, 417). 

Studies have also shown that genetic associations with BMI in Europeans can be modified 

by the levels of physical activity, television watching, and changes in sleep pattern (268, 

389). In addition, higher adherence to healthy eating patterns have shown to reduce BMI in 

Europeans despite having increased genetic susceptibility to obesity (418). Gene–lifestyle 

interaction studies have largely been conducted in populations of European ancestry, and the 

replication of these studies in African populations remains unknown (267, 268). Therefore, 

our study aimed to investigate the association of GRS with obesity-related traits and to 

examine whether lifestyle factors such as dietary intake and physical activity modified these 

associations in the Ghanaian population. 

4.3 Methods 

4.3.1 Study Population 

The Genetics of Obesity and Nutrition in Ghana (GONG) study is a cross-sectional 

study that was conducted in the Oforikrom Municipality in Kumasi, Ashanti region, Ghana. 

The GONG study was conducted as part of the ongoing GeNuIne (Gene–Nutrient 

Interactions) Collaboration, the main objective of which is to investigate the effect of gene–
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nutrient interactions (nutrigenetics) on metabolic disease outcomes using population-based 

studies from various ethnic groups (222, 419). The Oforikrom Municipal Assembly is one of 

the five Municipal Assemblies carved out of the Kumasi Metropolitan Assembly. There are 

seventeen recognized communities in this Municipal Assembly, with an estimated total 

population of 360,254. Five communities (Ayeduase, Bomso, Ayigya, Oforikrom and Kotei) 

were randomly selected from the list of communities in the Oforikrom Municipal Assembly. 

In each community, a central point was located (a vehicle station, marketplace or other 

landmarks). A fieldworker entered the first house that faced either North, South, East or West 

of that central point, and randomly recruited one respondent from each household. Upon 

exiting a house, the fieldworker entered the next house, and the house-level selection process 

was repeated. 

Three hundred and two free-living and healthy (with no physical complaints or prior 

diagnosis of cardiometabolic disease) adult volunteers, both men and women, were screened 

and recruited for the study by trained researchers. The inclusion criteria included the 

following: healthy individuals aged 25 to 60 years old and being Asante (both parents must 

be Asante). The exclusion criteria included the following: participants less than 25 years old 

or older than 60 years, those with existing cardiovascular complications or disease, those 

with a previous history of hypertension, type 2 diabetes or cardiovascular diseases, 

participants with any communicable or non-communicable chronic diseases, pregnant 

women and participants on lipid-lowering drugs, anti-diabetic drugs or anti-hypertensive 

drugs. A medical screening questionnaire was developed to screen participants for inclusion 

or exclusion from the study. 

This study was approved by the Council for Scientific and Industrial Research (CSIR) 

Institutional Review Board (IRB) (Ref: RPN 003/CSIR-IRB/2018). In addition, this study 
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was approved by the Metro Director of Health Services, Kumasi (KMHD/MPHs/13). All 

participants signed informed consent prior to their participation. 

4.3.2 Data Collection 

Structured questionnaires were used to elicit information about the participants’ 

demographic characteristics, dietary intakes, physical activity levels, sleep and sunshine 

exposure patterns and medical history. Fieldworkers were trained before the start of data 

collection. Survey instruments were also pre-tested on the 10 July 2018 to enhance the field 

workers’ understanding of questionnaires, ensure clearness and avoid ambiguity. Data 

collection took place from July to September 2018. 

4.3.3 Anthropometric Measurements 

Height, weight, percentage of body fat and visceral fat, waist circumference (WC) 

and hip circumference (HC) were measured. The measurements were taken with respondents 

wearing light clothing. Height was measured with a stadiometer (Seca 213 mobile 

stadiometer, Hamburg, Germany) to the nearest 0.1 cm with participants standing upright 

without shoes. Weight was measured using an OMRON Body Composition Analyzer to the 

nearest 0.1 kg. The same equipment provided values for BMI, percentage of body fat and 

visceral fat. WC and HC measurements were taken using a non-extensible measuring tape 

with participants in light clothing. The WC was measured just above the naval to the nearest 

0.1 cm whereas the HC was measured at the level of the greater trochanter to the nearest 0.1 

cm. The waist-to-hip ratio (WHR) was calculated by dividing WC by HC. 

4.3.4 Physical Activity and Dietary Assessments 

The health-related physical activity level of participants was measured using the 

interviewer-administered Global Physical Activity Questionnaire (GPAQ) version 2 
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developed by the World Health Organization (WHO) for physical activity surveillance (420). 

This questionnaire contains 16 questions (P1–P16) which gather information on the 

respondent’s engagement in physical activities under three domains or settings (work-related 

activity, transportation and recreational activities) as well as sedentary behaviours. The total 

physical activity per week was calculated in Metabolic Equivalents (MET- minutes) and the 

respondents who had total physical activity ≥ 600 MET- minutes/week were classified as 

active while those who had < 600 MET- minutes/week were classified as inactive (420). 

A three-day repeated (two weekdays and one weekend) 24 h dietary recall method 

was used to elicit the information concerning the participants’ dietary intake. Participants 

were requested to recollect all the meals taken as well as the times of the meal consumption 

in the previous day. Common household measures were used to estimate the actual quantities 

of foods and drinks consumed by the participants. The nutritional composition of the foods 

eaten was then analysed using the Nutrient Analysis Template (Food Science and Nutrition 

Department, University of Ghana, Accra, Ghana, 2010). 

4.3.5 SNP Selection 

Fifteen SNPs near or in 8 obesity-susceptibility loci were chosen for the study based 

on the previous GWAS for metabolic traits (78, 284, 401-405). These include Transcription 

factor 7-like 2 (TCF7L2) (rs12255372, rs7903146), melanocortin 4 Receptor (MC4R) 

(rs17782313, rs2229616), fat mass and obesity-associated (FTO) (rs9939609, rs10163409), 

adiponectin (ADIPOQ) (rs266729, rs17846866), Potassium voltage-gated channel subfamily 

Q member 1(KCNQ1) (rs2237892, rs2237895), Cyclin dependent kinase inhibitor 2A/2B 

(CDKN2A/2B) (rs10811661), Calpain 10 (CAPN10) (rs3792267, rs5030952, rs2975760) and 

Peroxisome proliferator-activated receptor gamma (PPARG) (rs1801282). Three of these 

SNPs, KCNQ1 (rs2237895), ADIPOQ (rs17846866) and CAPN10 (rs2975760), reported 
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significant deviations from Hardy–Weinberg Equilibrium (HWE) (p < 0.05) and were 

excluded from the current analysis. The detailed information of the 15 SNPs is shown in 

Table S1. 

4.3.6 Genotyping 

Blood samples for the measurement of DNA were transported in dry ice to the United 

Kingdom (UK). Genomic DNA was extracted from a 5 mL whole blood sample from each 

participant and genotyping was performed at the LGC Genomics 

(http://www.lgcgroup.com/services/genotyping), which employs the competitive allele-

specific PCR-KASP® assay. 

4.3.7 Construction of the Metabolic GRSs 

To evaluate the combined effects of the 12 SNPs on obesity-related traits, an additive 

model was used to construct the unweighted metabolic GRSs (Figure 7). We did not weigh 

the risk alleles based on their individual effect sizes, because no previously reported effect 

sizes were available for these SNPs for the Ghanaian population, and it has been shown that 

the weighting of risk alleles may only have limited effects (421). The unweighted metabolic 

GRSs were calculated by the summation of the number of risk alleles across the 12 variants. 

The risk alleles were defined as alleles previously associated with an increased risk of obesity 

in the literature. To reduce the bias caused by the missing data, only those participants 

without any missing data were included in our metabolic GRS analysis. Different metabolic 

GRSs were constructed including the 12-, 8- and the 4-SNP GRSs. The 12-SNP GRS 

included the following SNPs: TCF7L2 (rs12255372, rs7903146), MC4R (rs17782313, 

rs2229616), FTO (rs9939609, rs10163409), ADIPOQ (rs266729), KCNQ1 (rs2237892), 

CDKN2A/2B (rs10811661), CAPN10 (rs3792267, rs5030952) and PPARG (rs1801282), and 

http://www.lgcgroup.com/services/genotyping
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the score ranged from 0 to 9 risk alleles. In the 12-SNP GRS analysis, no significant results 

were identified which might be because four of the SNPs had a minor allele frequency (MAF) 

of less than 5%. Therefore, we excluded the four SNPs: MC4R (rs2229616), FTO 

(rs10163409), CDKN2B (rs10811661) and PPAR (rs1801282) and created an 8-SNP GRS. 

No significant findings were observed using the 8-SNP GRS; this might be because four of 

the eight SNPs (ADIPOQ (rs266729), KCNQ1 (rs2237892) and CAPN10 (rs3792267, 

rs5030952)) have not shown consistent associations with obesity-related traits in other 

populations (362, 422-426). Hence, these four SNPs were removed and a 4-SNP GRS 

including the SNPs (TCF7L2 (rs12255372, rs7903146), MC4R (rs17782313), FTO 

(rs9939609)) that have shown consistent associations with obesity across several populations 

was constructed. The 4-SNP GRS ranged from 0 to 6 risk alleles and significant results were 

observed. Based on the median number of each GRS, the individuals were separated into two 

groups. Given that there were no previously reported effect sizes available for these SNPs 

for the Ghanaian population, we were unable to perform sample size calculation. 
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15 SNPs chosen for the study 

TCF7L2 (rs12255372, rs7903146) 
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ADIPOQ (rs266729, rs17846866) 

KCNQ1 (rs2237892, rs2237895) 

CDKN2A/2B (rs10811661) 

CAPN10 (rs3792267, rs5030952, rs2975760) 

PPARG (rs1801282)  

3 SNPs were excluded because they were not in 

HWE  

• KCNQ1 (rs2237895) 

•  ADIPOQ (rs17846866) 

• CAPN10 (rs2975760) 

12-SNP GRS 

4 SNPs were excluded because of low MAF (< 1%) 

• MC4R (rs2229616) 

• FTO (rs10163409) 

• PPARG (rs1801282) 

• CDKN2B (rs10811661) 

4 SNPs, which have not shown consistent 

association with BMI in previous studies, were 

excluded  

• ADIPOQ (rs266729) 

• KCNQ1 (rs2237892) 

• CAPN10 (rs3792267, rs5030952) 

4-SNP GRS  

TCF7L2 (rs12255372, rs7903146) 

MC4R (rs17782313) 

FTO (rs9939609) 

8-SNP GRS 
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Figure 7: Steps involved in the construction of the metabolic GRS.  

Fifteen SNPs were genotyped in our study; however, the GRS analysis was based only on 12 

SNPs as 3 SNPs were not in the HWE. Three different GRSs, including the 12-SNP GRS, 8-

SNP GRS and the 4-SNP GRS were constructed. In the 12-SNP GRS analysis, no significant 

results were identified, which could be because 4 of the SNPs had MAF of less than 5%. 

Therefore, the 4 SNPs were excluded, and an 8-SNP GRS was created. No significant 

findings were observed using the 8-SNP GRS; this could be because four of the eight SNPs 

have not shown a consistent association with obesity-related traits in other populations. 

Hence, these four SNPs were removed and a 4-SNP GRS including those SNPs that have 

shown consistent associations with obesity across several populations was constructed. 

Abbreviations: SNP: single nucleotide polymorphisms; GRS: genetic risk score; HWE: 

Hardy–Weinberg equilibrium; MAF: minor allele frequency. 

Statistical analysis 

Data analyses were performed using Statistical Package for the Social Sciences (SPSS) 

software (version 24; SPSS Inc., Chicago, IL, USA) and the research analysis plan is included 

as an appendix on Page 244. A natural log transformation was used for the non-normally 

distributed variables. Unadjusted differences of descriptive characteristics between the 

overweight/obese and non-obese participants were calculated using an independent samples 

t-test for continuous variables. General linear models were used to examine the association 

between the metabolic GRSs and obesity traits. GRS–lifestyle interactions were analysed by 

including the interaction terms in these models. Models were adjusted for covariates 

including sex, age and BMI (when BMI is not an outcome). Nutrient–GRS interaction 

analysis was additionally adjusted for total energy intake. All GRS–lifestyle interactions 

reaching a nominal level of significance (p < 0.05) were investigated further using binary 
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analysis. Based on the median intake of total fat saturated fatty acids (SFA), monounsaturated 

fatty acids (MUFA), and polyunsaturated fatty acids (PUFA), the individuals were separated 

into two groups: ‘’below the median group’’ and ‘’above the median group”. Within each 

group, the association between the GRS and the outcome was examined. We also tested for 

GRS–sex interactions to test if sex influenced the genetic associations with obesity traits. The 

lifestyle factors investigated in our study included physical activity and the total dietary 

intake of fat, protein, carbohydrate and fibre. Significant interactions between the GRS and 

the total fat intake were further investigated to examine the influence of fat subtypes 

including saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), and 

polyunsaturated fatty acids (PUFA). Two-tailed value of p < 0.05 was considered statistically 

significant. 

4.4 Results 

4.4.1 Characteristics of the Study Participants 

The anthropometric and dietary characteristics of the study participants are presented 

in Table 8. The mean age and BMI of the total sample were 38.17 ± 9.64 years and 26.63 ± 

4.99 kg/m2, respectively. Overweight/obese individuals were older than the non-obese (p < 

0.05). Moreover, the dietary intakes were significantly different between the two groups. 

Overweight/obese individuals reported significantly lower intakes of total calories, protein, 

carbohydrate, total fat, fibre, SFA, MUFA and PUFA compared to the non-obese (p < 0.05). 

Women had significantly higher levels of BMI, body fat percentage and WHR compared to 

men, despite the men consuming significantly higher levels of carbohydrate, protein and fat 

(p < 0.05) (Table S2). 

4.4.2 Effect of Metabolic GRSs on Obesity-Related Traits 
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We first investigated the combined effect of 12 common SNPs on obesity-related 

traits and no significant associations were observed (Table S3). Similar results were found 

using an 8-SNP GRS (Table S4) and a 4-SNP GRS (Table 9). 

 

Table 8: Characteristics of the study participants. 

 
Total 

(N = 302) 

Non-Obese * 

(N = 126) 

Overweight/Obese ** 

(N = 176) 

p Value *** 

 

Age (years) 38.17 ± 9.64 35.96 ± 9.55 39.75 ± 9.42 0.001 

BMI (kg/m2) 26.63 ± 4.99 22.01 ± 1.79 29.95 ± 3.75 <0.001 

WC (cm) 88.48 ± 12.41 77.99 ± 7.13 96.00 ± 9.61 <0.001 

WHR 1.45 ± 6.96 1.55 ± 7.76 1.38 ± 6.34 0.84 

Visceral fat (%) 8.02 ± 7.39 6.49 ± 10.97 9.12 ± 2.26 0.01 

Body fat (%) 33.12 ± 13.90 22.05 ± 12.47 41.05 ± 8.36 <0.001 

Total energy intake (%) 1647.93 ± 685.83 1772.17 ± 723.85 1558.99 ± 644.75 0.008 

Protein intake (g/day) 53.24 ± 23.73 57.38 ± 24.52 50.28 ± 22.76 0.01 

Total fat intake (g/day) 51.17 ± 26.94 55.00 ± 29.29 48.42 ± 24.85 0.04 

Carbohydrates intake (g/day) 239.03 ± 95.84 259.44 ± 104.01 224.42 ± 86.94 0.002 

Fibre intake (g/day) 21.31 ± 10.84 23.19 ± 11.44 19.96 ± 10.21 0.01 

Total SFA intake (g/day) 16.23 ± 10.36 17.41 ± 11.29 15.39 ± 9.58 0.10 

Total MUFA intake (g/day) 18.08 ± 10.49 19.63 ± 11.30 16.96 ± 9.74 0.03 

Total PUFA intake (g/day) 9.12 ± 5.03 10.20 ± 5.56 8.35 ± 4.47 0.002 

Data presented as the means ± standard deviations. * Non-obese individuals refer to the 

individuals with a BMI < 25 Kg/m2, according to the WHO classification of BMI. ** 

Overweight/obese cases refer to individuals with BMI ≥ 25 Kg/m2, according to the 

WHO classification of BMI. *** p values for the differences in the means between the 

two groups were calculated using the independent samples t-test. Abbreviations: BMI: 

body mass index; WC: waist circumference; WHR: waist–hip ratio; SFA: saturated fatty 
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acids; MUFA: monounsaturated fatty acids; PUFA: polyunsaturated fatty acids; WHO: 

World Health Organisation. 

 

Table 9: Associations of the 4-SNP GRS on obesity-related traits. 

 GRS < 3 Risk Alleles 

(N = 123) 

GRS ≥ 3 Risk Allele 

(N = 172) 
* p Value 

BMI (kg/m2) 26.13 ± 0.45 26.85 ± 0.37 0.24 

WC (cm) 87.13 ± 1.15 89.14 ± 0.92 0.19 

WHR 2.27 ± 0.98 0.88 ± 0.01 0.18 

Visceral fat (%) 7.89 ± 0.71 8.08 ± 0.55 0.43 

Body fat (%) 31.75 ± 1.32 33.87 ± 1.02 0.15 

* p Values obtained from the linear regression analysis adjusted for age, sex and 

additionally for BMI when BMI is not an outcome. The analysis was performed on 

log-transformed variables. Abbreviations: SNP: single nucleotide polymorphism; 

GRS: genetic risk score; BMI: body mass index; WC: waist circumference; WHR: 

waist–hip ratio. 

 

4.4.3 GRS–Lifestyle Interactions on Obesity-Related Traits 

There was a significant interaction of the 4-SNP GRS with dietary fat intake (g/day) 

on WC (Total fat, Pinteraction = 0.01; SFA, Pinteraction = 0.02; PUFA, Pinteraction = 0.01 and MUFA, 

Pinteraction = 0.01, Table 10). Individuals with ≥3 risk alleles had a significantly higher WC 

compared to those with <3 risk alleles, among individuals with higher intakes of total fat 

(>47 g/day), SFA (>14 g/day), PUFA (>16 g/day) and MUFA (>16 g/day), (Figure 8a–d). 

There was also a significant interaction between 4-SNP GRS and dietary fibre intake (g/day) 

on body fat percentage (Pinteraction = 0.04). Individuals with <3 risk alleles had a significantly 

lower body fat percentage compared to those with ≥3 risk alleles (p = 0.02), among 
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individuals with a higher intake of fibre (>19 g/day). In addition, there was a significant 

interaction between the 4-SNP GRS and physical activity on WHR (Pinteraction = 0.002). 

However, the finding was not significant after stratifying them by physical activity levels. 

Some significant interactions were observed between the 12- and the 8-SNP GRSs and 

lifestyle factors on obesity-related traits Table S5 and S6), however, none of these 

interactions were significant after binary analysis. Given the significant differences in the 

dietary intakes and obesity-related outcomes between men and women, interactions between 

the 4-SNP GRS and sex were tested but no significant results were found (Table S7). 

 

Table 10: Interactions between the 4-SNP GRS and the lifestyle factors on obesity-

related traits. 

 
Protein 

(g/day) 

Carbohydrat

e (g/day) 

Fibre 

(g/day) 

Fat 

(g/day) 

SFA 

(g/day) 

MUFA 

(g/day) 

PUFA 

(g/day) 

Physical 

Activity 

BMI (kg/m2) 0.45 0.22 0.12 0.15 - - - 0.76 

WC (cm) 0.08 0.21 0.41 0.01 0.02 0.01 0.01 0.24 

WHR 0.82 0.88 0.49 0.80 - - - 0.002 

Visceral fat (%) 0.50 0.35 0.32 0.38 - - - 0.93 

Body fat (%) 0.46 0.11 0.04 0.75 - - - 0.60 

Data are p values obtained from the linear regression analysis adjusted for age, sex, total 

energy intake and additionally for BMI when BMI is not an outcome. The analysis was 

performed on log-transformed variables. Abbreviations: SNP: single nucleotide 

polymorphism; GRS: genetic risk score; BMI: body mass index; WC: waist 

circumference; WHR: waist–hip ratio; SFA: saturated fatty acids; MUFA: 

monounsaturated fatty acids; PUFA: polyunsaturated fatty acids. 
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Figure 8: Interaction between the 4-SNP GRS and fat intake (g/day) on the log transformed WC.  
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(a) Interaction between the 4-SNP GRS and the log transformed total fat intake (g/day) on WC. White bars indicate individuals with a GRS < 3 

risk alleles; the black bars indicate individuals with GRS ≥ 3 risk alleles. Individuals with ≥3 risk alleles had a significantly higher WC compared 

to those with <3 risk alleles, among individuals with a higher total fat intake (above median group > 47 g/day): 71.28 ± 23.68 g/day (34.99 ± 

5.54 % TEI); (b) the interaction between the 4-SNP GRS and the log transformed SFA intake (g/day) on the log transformed WC. White bars 

indicate individuals with a GRS < 3 risk alleles; the black bars indicate individuals with GRS ≥ 3 risk alleles. Individuals with ≥3 risk alleles 

had a significantly higher WC compared to those with <3 risk alleles, among individuals with a higher SFA intake: 23.50 ± 10.08 g/day (12.19 

± 3.21% TEI); (c) the interaction between the 4-SNP GRS and the log transformed MUFA intake (g/day) on the log transformed WC. White 

bars indicate individuals with a GRS < 3 risk alleles; the black bars indicate individuals with GRS ≥ 3 risk alleles. Individuals with ≥3 risk alleles 

had a significantly higher WC compared to those with <3 risk alleles, among individuals with a higher MUFA intake: 25.72 ± 9.58 g/day (12.79 

± 2.53% TEI); (d) the interaction between the 4-SNP GRS and the log transformed PUFA intake (g/day) on the log transformed WC. White bars 

indicate individuals with a GRS < 3 risk alleles; the black bars indicate individuals with GRS ≥ 3 risk alleles. Individuals with ≥3 risk alleles 

had a significantly higher WC compared to those with <3 risk alleles, among individuals with a higher PUFA intake: 12.74 ± 4.7 g/day (6.28 ± 

1.08% TEI). Abbreviations: SNP: single nucleotide polymorphisms; GRS: genetic risk score; WC: waist circumference; SFA: saturated fatty 

acids; MUFA: monounsaturated fatty acids; PUFA: polyunsaturated fatty acids; TEI: total energy intake. Error bars indicate the standard error 

of the mean. 



106 

 

4.5 Discussion 

To our knowledge, this is the first nutrigenetic study investigating the interaction 

between metabolic GRSs and lifestyle factors on obesity-related traits in a Ghanaian 

population. Our study provides evidence for an interaction between the 4-SNP GRS and fat 

intake on WC, where individuals with ≥3 risk alleles had a significantly higher WC compared 

to those with <3 risk alleles among those who consumed a diet high in total fat, SFA, MUFA 

and PUFA. These results are in accordance with the general dietary recommendations, which 

suggest that the population decrease their intakes of total fat and SFA, to reduce the risk of 

obesity, and this will be more applicable in individuals with a higher genetic predisposition to 

obesity. Our findings are of importance to public health, considering the high consumption of 

foods that are rich in SFA and MUFA in the Ghanaian population (427). 

Our study is the first study of its kind, investigating the effect of different metabolic 

GRSs (the 12-, 8- and the 4-SNP GRS) on obesity-related traits in a Ghanaian population. We 

found that none of the metabolic GRSs were significantly associated with obesity-related traits 

in the Ghanaian population, which contradicts the findings of the previous GRS-related studies 

in European and African populations (155, 156, 161, 284, 411-415). Efforts to replicate 

previously reported genetic associations of individual SNPs with obesity measures in non-

African populations have shown limited success among Africans (162, 410, 428, 429), which 

is also in line with the findings from the present study. Several factors are likely to be involved 

in such discrepancies between our findings and genetic association studies in Europeans. First, 

the metabolic GRS in the present study was constructed based on variants strongly associated 

with BMI in European populations, which raises the question of the usefulness, applicability 

and accuracy of using this metabolic GRS in our African population. Analysing the genetic 

associations of such variants with obesity-related traits in African population may not be ideal 
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because of differences in risk allele frequency and effect size across populations (430, 431). 

Second, the ‘lead’ SNPs identified in Europeans might tag smaller regions in Africans (406, 

407, 432) and the ‘true’ causal polymorphisms might be at different loci (433). A systematic 

review of genetic research in African samples has reported that more than 300 SNPs in 42 loci 

analysed in relation to obesity, but only a few positive associations were replicable in Africans 

(434). Of the 36 variants previously established by GWAS in non-African populations, only 

the SNPs located at the FTO and MC4R loci were significantly associated with obesity in 

Nigerians, Ghanaians and black South Africans (435, 436). Furthermore, in a large-scale 

GWAS meta-analysis consisting of 71,412 individuals of African ancestry, of the 36 previously 

identified BMI-associated SNPs in Europeans, only five variants reached a genome-wide 

significant level in Africans (437). Such inconsistencies in results are likely due, in part, to the 

variation in the genetic architecture between populations of different ancestry (438). African 

populations are characterised by greater genetic variation, reduced patterns of linkage 

disequilibrium (LD) and more haplotype diversity in comparison with populations of another 

ancestry, which may cause difficulties in replicating previously reported genetic associations 

(438). Hence, future studies with a larger sample size are needed to investigate the combined 

effect of a larger number of genetic variants on obesity-related traits in the Ghanaian 

population. 

Our study has identified significant interactions between the 4-SNP GRS and intakes of 

total fat, SFA, PUFA and MUFA on WC, an indicator of central obesity that has been 

associated with the increased risk of morbidity and mortality (439, 440). Our findings suggest 

that dietary fatty acid consumption and composition may have the potential to influence the 

genetic susceptibility of becoming centrally obese. Evidence is limited concerning the GRS–

diet interactions on obesity and its related traits, and most of the research has focused on the 

influence of a single locus (240, 298, 441), despite the genetic effects on obesity being 
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polygenic (78). Our results are consistent with previous findings generated from single-locus 

gene–diet interactions on obesity, in which fat intake is considered as an important lifestyle 

modulator of genetic associations with obesity-related traits. Two previous studies in 2163 

participants from two independent United States (US) populations and in 28,449 individuals 

living in Malmö have shown significant interactions of the FTO SNP rs9939609 with total 

dietary fat on BMI (240, 241), however, a large-scale meta-analysis of 177,330 individuals 

(154,439 Whites, 5776 African Americans and 17,115 Asians) failed to identify this interaction 

(106). In addition, studies in 2163 participants from two US populations, 1754 French 

individuals and 354 Spanish children and adolescents have demonstrated a significant 

interaction of FTO SNP rs9939609 with SFAs (240, 298, 441) and MUFAs (240) on BMI. 

Furthermore, a study in 305 obese individuals in Finland reported that the high intake of MUFA 

was associated with weight loss among carriers of the risk allele (A) FTO rs9939609 (442). 

Additionally, a study in 1680 South Asians has shown a significant interaction of the risk allele 

‘T’ of the TCF7L2 SNP rs12255372 with fat intake on high-density lipoprotein cholesterol 

(HDL-C) (261). Studies on GRS–diet interactions on obesity traits have mainly focused on 

European populations (384, 385, 443). In agreement with our study, data from UK Biobank 

(385) and two studies from the US (443) have reported significant interactions between the 

GRS and dietary intakes of total fat and SFA on WC; the GRS was associated with a higher 

WC among individuals with high intakes of total fat and SFA. However, the interactions on 

BMI were not identified in the present study, which contradicts the previously reported findings 

(385, 443). Hence, larger studies are required to replicate our GRS–fat intake interactions on 

WC in the Ghanaian population. 

Several studies have investigated the impact of dietary fat on obesity measures; however, 

the findings have been inconsistent (444). For instance, prospective studies have examined the 

relationship between the intake of long-chain omega-3 (LC n−3)-PUFAs and adiposity, but 
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results have been inconsistent. A study in 124 adults living in the UK found that the plasma 

levels of n-3 PUFA were negatively associated with anthropometric measures of obesity (445), 

whereas positive associations were reported in a study of 79,839 women living in the US (446). 

However, no effect of n-3 LC-PUFA consumption on BMI was found in a 12 year follow-up 

US cohort of 43,671 men (447). In a randomised controlled trial (RCT) of 27 women, the intake 

of a 3 g/d of fish oil (1.8 g n−3 PUFAs) for 2 months was associated with adiposity reduction 

(448). Similar findings were reported in an RCT of 324 men and women from Iceland, Spain 

and Ireland, in which the intake of either lean fish (3 × 150 g portions of cod/week) or fatty 

fish (3 × 150 g portions of salmon/week), or fish oil (docosahexaenoic acid/eicosapentaenoic 

acid capsules) for 8 weeks were associated with weight loss in men (449). However, a 6 week 

RCT in 195 UK adults found no differences in the anthropometric measures between three 

intervention diets of specific fatty acid compositions of total energy intake (TEI) (%TEI 

SFA:%TEI MUFA:%TEI omega-6 PUFA): SFA-rich diet (17:11:4), MUFA-rich diet 

(9:19:4)or omega-6 PUFA-rich diet (9:13:10) (450). A meta-analysis of 534,906 European 

individuals revealed that the higher adherence to the Mediterranean diet, which is rich in 

MUFA, was associated with a beneficial effect on WC (451). However, a recent 4 week 

intervention found no significant effect of the intake of 50 g/day of olive oil, which is rich in 

MUFA, on BMI or central obesity in 91 UK adults (452). Conflicting evidence exists regarding 

the effects of dietary fat on obesity-related traits; this could be because of the genetic 

heterogeneity and the gene–diet interactions that vary across multiple ethnic groups (453); 

hence, the influence of both genetic and lifestyle factors should be considered in understanding 

the pathophysiology of obesity. 

In 2018, the WHO recommended that the intake of total fat and SFA should not exceed 

30% and 10% of TEI, respectively, to avoid weight gain (454). According to the WHO, the 

recommended range for PUFA for the general population is 6–11% of TEI (455). It has been 
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identified that the average consumption of SFA in Africa is between 8.9% and 12.5% TEI 

(North: 9.1%, Central: 12.2, Eastern: 10.7%, Southern: 8.9% and Western Africa: 12.5%; 

which is slightly higher than the ≤10% TEI recommended by the WHO). The intake of PUFA 

is low in many sub-Saharan African countries, suggesting the infrequent use of vegetable oils 

for cooking or preparing foods (456). The extremely low intake of n-3 long chain PUFA was 

also identified in Africa, which is explained by the low availability of fish in sub-Saharan 

Africa countries (456). In the present study, the average consumption of total fat intake was 

23.04 ± 9.13% of TEI and the average consumption of SFA, MUFA and PUFA were 8.95 ± 

4.10, 9.86 ± 3.65 and 4.99 ± 1.61% of TEI, respectively, which are in accordance with general 

dietary recommendations. However, nearly one third of the study population had a high 

consumption of total fat (mean intake: 34.99 ± 5.54 g/day), the group in which the GRS showed 

a significant association with a higher WC. Hence, our study suggests that following the 

general dietary recommendations might be an effective way to overcome the genetic 

susceptibility to central obesity. 

The strengths of our study include the analysis of gene–lifestyle interactions in a well 

characterized Ghanaian population and the use of different metabolic GRSs to maximise 

statistical power and to reduce multiple testing (155, 156). Nevertheless, some limitations need 

to be acknowledged. First, our analysis included an only Ghanaian population, which limits the 

generalisability of our results to other population groups within Africa. Second, our metabolic 

GRSs were constructed based on BMI-associated loci predominantly identified in Europeans, 

which might not truly reflect the genetic associations with BMI among Africans. Third, the 

food intakes were assessed using repeated 24-hour dietary recall method, which is prone to 

reporting bias and this might have contributed to the discrepancy in the caloric consumption 

between overweight/obese and non-obese groups (457). Fourth, as with any cross-sectional 

study design, residual confounding might exist, despite adjustments for several confounding 
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factors. Fifth, our sample size was small; however, our study had sufficient statistical power to 

detect significant gene–diet interactions. 

4.6 Conclusions 

In conclusion, our study has shown that higher intakes of total fat, SFA, MUFA and 

PUFA can increase the genetic risk on WC in Ghanaian adults. We found that the effect of 

metabolic risk alleles on WC is stronger among individuals with higher intakes of total fat, 

SFA, MUFA, PUFA. These results give important insights into the complex interactions 

between dietary intake and the genetic predisposition to central obesity and highlight the 

importance of personalising dietary advice according to each ethnic group. Our GRS approach 

provides insights into cumulative genetic susceptibility; however, studies with a large sample 

size will be needed to confirm the findings before public health recommendations and 

personalized nutrition advice can be developed for the Ghanaian population. 
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4.7 Supplementary materials  

4.7.1 Table S1: Genotype distribution of the fifteen SNPs that were included in the 

metabolic-GRS. 

Gene SNP Genotype 
Genotype 

Frequency 

Nucleotide 

change 
MAF 

dbSNP* 

frequency 

in Africans 

HWE 

TCF7L2 rs12255372 GG 117 G/T T= 0.37 G=0.73 0.47 

  TG 144   T=0.27  

  TT 37   
  

TCF7L2 rs7903146 CC 162 C/T T= 0.27 C=0.74 0.42 

  TC 111   T=0.26  

  TT 24   
  

MC4R rs17782313 CC 19 C/T C= 0.25 T=0.66 0.86 

  TC 110   C=0.34  

  TT 168   
  

MC4R rs2229616 GA 9 A/G A= 0.02 G=0.99 0.79 

  GG 290   A=0.01  

PPAR rs1801282 CC 298 C/G G=0 C=1 0.98 

  GC 1   G=NONE  

FTO rs9939609 AA 60 A/T A=0.47 A=0.52 0.11 

  TA 163   T=0.48  

  TT 76     

FTO rs10163409 AA 296 A/T T=0 A=0.98 0.95 

  TA 2   T=0.02  

CDKN2B rs10811661 CT 18 C/T C= 0 T=0.98 0.59 

  TT 280   C=0.02  

KCNQ1 rs2237895 AA 230 A/C C=0.12 A=0.85 0.02 

  CA 69   C=0.15  

KCNQ1 rs2237892 CC 203 C/T T=0.16 C=0.9 0.09 

  TC 90   T=0.1  

  TT 4   
  

ADIPOQ rs266729 CC 248 C/G G= 0.08 C=0.92 0.12 

  GC 49   G=0.08  

ADIPOQ rs17846866 TT 297 G/T G=0.0 T=1 - 

      G=0  

CAPN10 rs2975760 CC 1 C/T C= 0.02 T=0.7 0.01 

  TC 10   C=0.3  

  TT 281   
  

CAPN10 rs5030952 CC 57 C/T C=0.44 T=0.53 0.90 

  TC 145   C=0.47  

  TT 95   
  

CAPN10 rs3792267 AA 1 A/G A= 0.12 G=0.88 0.09 

  GA 67   A=0.12  

  GG 227     
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Abbreviations: SNP, Single nucleotide polymorphisms; GRS, Genetic risk score; MAF, Minor allele frequency; 

HWE, Hardy- Weinberg equilibrium; TCF7L2, Transcription factor 7-like 2; MC4R, Melanocortin 4 Receptor; 

FTO, Fat mass and obesity-associated; ADIPOQ, Adiponectin; KCNQ1, Potassium voltage-gated channel 

subfamily Q member 1; CDKN2A/2B, Cyclin dependent kinase inhibitor 2A/2B; CAPN10, Calpain 10; PPARG, 

Peroxisome proliferator-activated receptor gamma. * dbSNP database: https://www.ncbi.nlm.nih.gov/snp/ 

 

4.7.2 Table S2: Characteristics of the study participants stratified based on sex. 

 

Total 

(N=302) 

Men 

(N=126) 

Women 

(N=176) 

P value * 

Age (years) 38.17 ± 9.64 35.97 ± 9.02 39.74 ± 9.79 <0.001 

BMI (kg/m2) 26.63 ± 4.99 23.63 ± 3.12 28.79 ± 4.96 <0.001 

WC (cm) 88.48 ± 12.41 81.75 ± 10.05 93.31 ± 11.68 <0.001 

WHR 1.45 ± 6.96 0.87 ± 0.09 1.86 ± 9.10 0.15 

Visceral fat (%) 8.02 ± 7.39 7.99 ± 10.75 8.04 ± 3.36 0.96 

Body fat (%) 33.12 ± 13.90 21.03 ± 11.53 41.78 ± 7.54 <0.001 

Total energy intake (%) 1647.93 ± 685.83 1915.18 ± 710.80 1456.61 ± 599.92 <0.001 

Protein intake (g/day) 53.24 ± 23.73 64.25 ± 25.10 45.36 ± 19.21 <0.001 

Total fat intake (g/day) 51.17 ± 26.94 58.20 ± 29.71 46.13 ± 23.60 0.001 

Carbohydrates intake (g/day) 239.03 ± 95.84 279.36 ± 102.02 210.16 ± 79.73 <0.001 

Fibre intake (g/day) 21.31 ± 10.84 24.52 ± 11.93 19.00 ± 9.36 <0.001 

Total SFA intake (g/day) 16.23 ± 10.36 18.44 ± 11.96 14.66 ± 8.74 0.004 

Total MUFA intake (g/day) 18.08 ± 10.49 20.62 ± 11.60 16.25 ± 9.22 0.002 

Total PUFA intake (g/day) 9.12 ± 5.03 10.39 ± 5.57 8.21 ± 4.40 0.002 

Data presented as means ± standard deviations. *P values for the differences in the means 

between men and women were calculated using the independent t-test.  

https://www.ncbi.nlm.nih.gov/snp/
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Abbreviations: BMI, Body mass index; WC, Waist circumference; WHR, Waist hip ratio, SFA, 

Saturated fatty acids; MUFA, Monounsaturated fatty acids; PUFA, Polyunsaturated fatty acids. 

 

4.7.3 Table S3: Associations of the12-SNP GRS with obesity-related traits. 

 
GRS ≤ 4 risk alleles 

(N=149) 

GRS > 4 risk alleles 

(N=135) 
P value* 

BMI (kg/m2) 26.82 ± 0.43 26.31 ± 0.40 0.74 

WC (cm) 89.04 ± 1.05 87.70 ± 1.02 0.29 

WHR 2.03 ± 0.81 0.88 ± 0.01 0.28 

Visceral fat (%) 8.16 ± 0.63 7.95 ± 0.65 0.65 

Body fat (%) 33.35 ± 1.19 32.91 ± 1.14 0.11 

Data are means ± standard errors. *P values obtained from linear regression analysis adjusted 

for age, sex and additionally for BMI when BMI is not an outcome. The analysis was performed 

on log-transformed variables. Abbreviations: SNP, Single nucleotide polymorphism; GRS, 

Genetic risk score; BMI, Body mass index; WC, Waist circumference; WHR, Waist hip ratio. 
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4.7.4 Table S4: Associations of the 8-SNP GRS with obesity-related traits. 

 GRS ≤ 4 risk alleles GRS > 4 risk alleles P value* 

 (N=159) (N=127)  

BMI (kg/m2) 26.76 ± 0.41 26.28 ± 0.41 0.86 

WC (cm) 89.02 ± 1.01 87.5 ± 1.06 0.67 

WHR 1.96 ± 0.76 0.88 ± 0.01 0.31 

Visceral fat (%) 8.1 ± 0.59 7.96 ± 0.69 0.66 

Body fat (%) 33.19 ± 1.14 32.84 ± 1.18 0.07 

Data are means ± standard errors. *P values obtained from linear regression analysis adjusted 

for age, sex and additionally for BMI when BMI is not an outcome. The analysis was performed 

on log-transformed variables. Abbreviations: SNP, Single nucleotide polymorphism; GRS, 

Genetic risk score; BMI, Body mass index; WC, Waist circumference; WHR, Waist hip ratio. 

 

4.7.5 Table S5: Interactions between the 12-SNP GRS and lifestyle factors on obesity-

related traits. 

 Protein 

(g/day) 

Fat 

(g/day) 

Carbohydrate 

(g/day) 

Fibre 

(g/day) 

Physical 

activity 

BMI (kg/m2) 0.91 0.46 0.47 0.25 0.87 

WC (cm) 0.13 0.98 0.14 0.06 0.43 

WHR 0.99 0.77 0.74 0.49 0.02 

Visceral fat (%) 0.96 0.62 0.66 0.75 0.54 

Body fat (%) 0.22 0.89 0.09 0.11 0.50 

Data are P values obtained from linear regression analysis adjusted for age, sex, total energy 

intake and additionally for BMI when BMI is not an outcome. The analysis was performed on 

log-transformed variables. Abbreviations: SNP, Single nucleotide polymorphism; GRS, 

Genetic risk score; BMI, Body mass index; WC, Waist circumference; WHR, Waist hip ratio. 
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4.7.6 Table S6: Interactions between the 8-SNP GRS and lifestyle factors on obesity-

related traits. 

 
Protein  

(g/day) 

Fat  

(g/day) 

Carbohydrate 

 (g/day) 

Fibre  

(g/day) 

Physical  

Activity 

BMI (kg/m2) 0.93 0.47 0.56 0.25 0.48 

WC (cm) 0.07 0.82 0.07 0.02 0.83 

WHR 0.95 0.76 0.76 0.50 0.04 

Visceral fat (%) 0.91 0.64 0.09 0.71 0.46 

Body fat (%) 0.14 0.92 0.62 0.11 0.47 

Data are P values obtained from linear regression analysis adjusted for age, sex, total energy 

intake and additionally for BMI when BMI is not an outcome. The analysis was performed on 

log-transformed variables. Abbreviations: SNP, Single nucleotide polymorphism; GRS, 

Genetic risk score; BMI, Body mass index; WC, Waist circumference; WHR, Waist hip ratio   

 

4.7.7 Table S7: Interactions between the 4-SNP GRS and sex on obesity-related traits. 

Interaction P value* 

4-SNP GRS*Sex interaction on BMI 0.13 

4-SNP GRS*Sex interaction on WC 0.29 

4-SNP GRS*Sex interaction on WHR 0.25 

4-SNP GRS*Sex interaction on Visceral fat (%) 0.42 

4-SNP GRS*Sex interaction on Body fat (%) 0.14 

*P values obtained from linear regression analysis adjusted for age, sex and additionally for 

BMI when BMI is not an outcome. The analysis was performed on log-transformed variables.  

Abbreviations: SNP, Single nucleotide polymorphism; GRS, Genetic risk score; BMI, Body 

mass index; WC, Waist circumference; WHR, Waist hip ratio. 
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Chapter 5 Effect of dietary fat intake and genetic risk on glucose and insulin-

related traits in Brazilian young adults  

 

The manuscript has been submitted to the Journal of Diabetes & Metabolic Disorders and I am 

currently responding to the reviewers’ comments. 

Sooad Alsulami, Nathália Teixeira Cruvinel, Nara Rubia da Silva, Ana Carolina Antoneli, 

Julie A Lovegrove, Maria Aderuza Horst, and Karani Santhanakrishnan Vimaleswaran. Effect 

of dietary fat intake and genetic risk on glucose and insulin-related traits in Brazilian young 

adults. Journal of Diabetes & Metabolic Disorders. 2021. https://doi.org/10.1007/s40200-021-

00863-7 
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5.1 Abstract 

Purpose: The development of metabolic diseases such as type 2 diabetes (T2D) is closely 

linked to a complex interplay between genetic and dietary factors. The prevalence of abdominal 

obesity, hyperinsulinemia, dyslipidaemia, and high blood pressure among Brazilian 

adolescents is increasing and hence, early lifestyle interventions targeting these factors might 

be an effective strategy to prevent or slow the progression of T2D. 

Methods: We aimed to assess the interaction between dietary and genetic factors on metabolic 

disease-related traits in 200 healthy Brazilian young adults. Dietary intake was assessed using 

3-day food records. Ten metabolic disease-related single nucleotide polymorphisms (SNPs) 

were used to construct a metabolic-genetic risk score (metabolic-GRS).  

Results: We found significant interactions between the metabolic-GRS and total fat intake on 

fasting insulin level (Pinteraction=0.017), insulin-glucose ratio (Pinteraction=0.010) and HOMA-B 

(Pinteraction=0.002), respectively, in addition to a borderline GRS-fat intake interaction on 

HOMA-IR (Pinteraction=0.051). Within the high-fat intake category [37.98 ± 3.39% of total 

energy intake (TEI)], individuals with ≥5 risk alleles had increased fasting insulin level 

(P=0.021), insulin-glucose ratio (P=0.010), HOMA-B (P=0.001) and HOMA-IR (P=0.053) 

than those with <5 risk alleles.  

Conclusion: Our study has demonstrated a novel GRS-fat intake interaction in young Brazilian 

adults, where individuals with higher genetic risk and fat intake had increased glucose and 

insulin-related traits than those with lower genetic risk. Large intervention and follow-up 

studies with an objective assessment of dietary factors are needed to confirm our findings. 
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5.2 Introduction 

Metabolic diseases, such as type 2 diabetes (T2D), have been recognised as a significant public 

health problem worldwide (6, 7), playing a critical role in medical impoverishment (8-11). T2D 

is a major contributor to morbidity and mortality and individuals with T2D have a five-fold 

increased risk of developing cardiovascular diseases (CVD) (458). The prevalence of diabetes 

has increased globally (over 463 million adults) (17) but at a faster rate in low- and middle-

income countries (LMICs) (459). In Brazil, the prevalence of T2D has increased by 24% 

between 2006 and 2019 (460) and an estimate of 65,581 deaths have been shown to be caused 

by diabetes among adults aged 35–80 years (461). It has been reported that the prevalence of 

prediabetes and T2D among Brazilian adolescents were 22.0% and 3.3%, respectively (269). 

Studies have also demonstrated the occurrence of cardiometabolic risk factors including 

abdominal obesity, high insulin levels, dyslipidaemia, and high blood pressure among Brazilian 

adolescents (269-271). Hence, early interventions targeting these factors might be an effective 

strategy to prevent or slow the progression of T2D and decrease the risk of CVD and associated 

premature mortality (17).  

Much of the increase in the prevalence of metabolic diseases in Brazil is attributed to an 

epidemiological transition characterised by changes in Brazilian age structure, population 

ageing, reduced rates of infant mortality and fertility and increased low birth weight (462-466). 

Changes in the cultural and socioeconomic patterns, for instance, increasing urbanisation and 

economic improvement, have led to negative changes in lifestyle behaviours, including 

physical inactivity and unhealthy diet, in the Brazilian adolescent/ young adult population 

(272). A previous study has shown that the intake of saturated fatty acids (SFA) was higher in 

adolescents than adults in Brazil (273). Animal and human studies have demonstrated an 

association between increased dietary fat intake and increased insulin resistance (467-469). In 

addition, the dietary behaviours of Brazilian young adults have been shown to be characterised 



121 

 

by higher intakes of unhealthy foods than middle-aged and older adults, highlighting the need 

for age-specific public health interventions (274).  

The development of metabolic diseases such as T2D is closely linked to a complex interplay 

between genetic and lifestyle factors, such as diet. Numerous genetic loci have been shown to 

be associated with T2D (89, 253-255) and related traits (85, 87) and, to date, 243 genetic loci 

have been identified to be associated with the risk of T2D in multiple ethnic groups (89, 253-

255). Single nucleotide polymorphisms (SNPs) have only a modest effect on disease risk, thus, 

generating a genetic risk score (GRS) combining several SNPs across the genome is necessary 

for increasing power to identify disease predisposition patterns of an individual (153). Evidence 

has suggested that the genetic risk of metabolic diseases can be modified by dietary intake 

(256-260). There are a few gene-diet interaction studies in Brazilians; however, the studies 

have focused only on cardiovascular disease related traits (470-472). To date, there are no 

GRS-diet interaction studies on metabolic traits in Brazilians. Hence, we aimed to investigate 

the interaction of 10 metabolic disease-related SNPs, as a GRS, with dietary intake on 

metabolic traits in 200 healthy Brazilian young adults.   

5.3 Methodology 

5.3.1 Study population 

Obesity, Lifestyle and Diabetes in Brazil (BOLD) is a cross-sectional study of Brazilian healthy 

young adults aged 19–24 years recruited at the Federal University of Goiás (UFG) between 

March and June 2019. This study was conducted as part of the ongoing GeNuIne (gene-nutrient 

interactions) Collaboration, which aims to investigate the impact of genes and lifestyle factors 

on chronic diseases using data from multiple ethnic groups (221, 419). All participants 

completed baseline questionnaires regarding health status, demographics, and socioeconomic 

status. The study exclusion criteria included those who are 1) using lipid-lowering or 
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hypoglycemic drugs and mineral or vitamin supplements, 2) undergoing dietary interventions 

in the last 6 months, 3) having acute clinical conditions such as infection, inflammation, fever 

or diarrhoea, or confirmed diagnosis of chronic diseases such as diabetes mellitus, 

moderate/severe hypertension, cancer, rheumatoid arthritis and cardiovascular complications, 

4) doing vigorous physical activity. In total, 416 individuals showed interest in participating in 

the study. However, 207 participants met the inclusion criteria and only 200 completed the 

study (Figure 9). Out of the 200 participants, only 194 had information on genetic and 

phenotypic measurements as DNA samples were not available for 6 participants. The study 

was approved by the Ethics Committee of the Federal University of Goiás (protocol number 

3.007.456, 08/11/2018), and performed according to the ethical principles in the Declaration 

of Helsinki. All participants gave written informed consent for study participation. 

 

Figure 9: Flow chart showing the participant recruitment process in the BOLD study. 
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 In total, 416 individuals were initially screened. After excluding participants based on the 

exclusion criteria, 207 were included in the study. However, only 200 completed the study. 

Abbreviations: BMI: body mass index; WC: waist circumference; HbA1c: glycated 

haemoglobin A1c; HOMA-IR: homeostasis model assessment estimate of insulin resistance; 

HOMA-B: homeostasis model assessment estimate of insulin secretion; TCF7L2 Transcription 

factor 7-like 2; MC4R melanocortin 4 Receptor; PPARG Peroxisome proliferator-activated 

receptor gamma; FTO fat mass and obesity-associated; CDKN2A/2B Cyclin dependent kinase 

inhibitor 2A/2B; KCNQ1 Potassium voltage-gated channel subfamily Q member 1 and 

CAPN10 Calpain 10. 

 

5.3.2 Anthropometric and biochemical measurements 

Body weight, height and waist circumference (WC) were measured using standardized 

methods. The weighing was performed on a Tanita® portable electronic scale, with a maximum 

capacity of 150 Kg. For height, a stadiometer with a movable rod was used. WC was measured 

using an inelastic measuring tape. Body mass index (BMI) was calculated as weight in 

kilograms divided by height in meters2 and WC measurement was taken using a non-extensible 

measuring tape with partici-pants in light clothing (30). Body composition was performed by 

Dual Energy Radiological Absorptiometry (DXA), using the Lunar DPX NT model (General 

Electric Medical Systems Lunar®; Madison, USA).  

Blood samples were collected by peripheral venous puncture in the morning after a 12-h fast 

and the volunteers were advised not to consume alcohol 72 hours before the blood collection. 

Samples were immediately processed after the collection at the Romulo Rocha Laboratory 

(Goiânia, Brazil). Fasting serum glucose and insulin were collected in BD Vacutainer® tube 

and determined by the enzymatic colorimetric method, with an automatic System Vitros 
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Chemistry 950 XRL (Johnson & Johnson, New Brunswick, NJ, USA). Plasma glycated 

haemoglobin (HbA1c) was collected in an ethylene-diamine-tetra-acetic acid (EDTA) tubes 

BD Vacutainer® and measured using high-pressure chromatography (HPLC-Bio-Rad 

Laboratories, Hercules, CA, USA). Plasma samples were obtained by centrifugation at 3500 

rpm for ten minutes at 4°C. The homeostasis model assessment (HOMA) was used to assess 

the degree of insulin resistance (IR) (HOMA-IR) and β-cell function (HOMA-B). HOMA-IR 

and HOMA-B were calculated as follows: [fasting insulin levels (mU/l) × fasting glucose levels 

(mmol/l)/22.5] and [20 × fasting insulin levels)/(fasting glucose levels − 3.5], respectively 

(473).   

5.3.3 Dietary Assessment  

Food intake was assessed by trained nutritionists using non-consecutive 3-day food records, 

including a weekend day (474). Individuals were provided with measuring cups and spoons of 

different sizes to assist them in estimating portion size for each food. Foods consumed were 

converted into grams using the Avanutri Online® diet calculation software (Avanutri 

Informática Ltda, Rio de Janeiro, Brazil).   

5.3.4 Genotyping 

The blood samples (3ml each) were collected in an EDTA tubes BD Vacutainer® tubes and 

transported at a controlled temperature (- 80ºC) by the World Courier Company to perform 

genotyping at LGC Genomics (http://www.lgcgroup.com/services/genotyping), employing the 

competitive allele-specific PCR-KASP® assay. 

5.3.5 SNP selection and GRS calculation 

We selected 12 SNPs that have shown associations with metabolic traits in multiple ethnic 

groups (85, 87, 89, 253-255). The detailed information of these SNPs is shown in Table S1. 

http://www/
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Two SNPs were excluded from the current analysis, as the Calpain 10 (CAPN10) rs2975760 

SNP was not in Hardy-Weinberg equilibrium (HWE) and the melanocortin 4 Receptor (MC4R) 

rs2229616 SNP had a minor allele frequency (MAF) of less than 1%. Unweighted metabolic-

GRS was calculated by summing the number of risk alleles present in each individual. The 

GRS was generated from the following SNPs: rs12255372, rs7903146 of the Transcription 

factor 7-like 2 (TCF7L2) gene, rs17782313 of the MC4R gene, rs8050136 and rs10163409 of 

the fat mass and obesity-associated (FTO), rs2237892 and rs2237895 of the Potassium voltage-

gated channel subfamily Q member 1(KCNQ1) gene, rs10811661 of the Cyclin dependent 

kinase inhibitor 2A/2B (CDKN2A/2B) gene, rs5030952 of the CAPN10 gene, and rs1801282 

of the Peroxisome proliferator-activated receptor gamma (PPARG) gene. Genotypes were 

coded as 0, 1, or 2 according to the number of metabolic-associated risk alleles that are defined 

based on the literature. These values were then calculated by summing the number of risk 

alleles for each variant. The GRS was then categorised based on the median risk alleles into 

two categories: “GRS <5 risk alleles” and “GRS ≥5 risk alleles”. 

5.3.6 Statistical analysis 

Descriptive characteristics of the study population stratified by sex were presented as means 

and standard deviation (SDs) for continuous variables and compared using an independent 

samples t-test. Variables were tested for normality using Shapiro-Wilk's W test and non-

normally distributed variables were log-transformed including BMI, WC, body fat mass 

percentage, HbA1c, fasting glucose, fasting insulin, HOMA-IR, HOMA-B, insulin to glucose 

ratio, total energy intake (TEI), carbohydrate %, protein %, SFA %, and polyunsaturated fatty 

acids (PUFA) %. We investigated the effects of metabolic-GRS on metabolic traits using 

general linear models. To test the interactions of the metabolic-GRS with dietary factors on 

metabolic traits, we included the interaction term (e.g., GRS*fat intake) in the models. The 

dietary factors investigated in our study included the total dietary intake of fat, protein, and 
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carbohydrate (percentages of TEI). Significant interactions between the GRS and the total fat 

intake were analysed in more depth to determine the effect of fat subtypes including SFA, 

monounsaturated fatty acids (MUFA), and PUFA. The GRS-nutrient interactions that reached 

statistical significance (p<0.05) were tested for the effects of the GRSs on metabolic traits 

according to tertiles of dietary intakes (low, medium and high intake) using general linear 

models. All models were adjusted for age, sex and BMI (when BMI is not an outcome). Given 

that insulin levels are influenced by both the capacity for insulin secretion and IR (475, 476), 

analysis of HOMA-B was performed with and without adjustment for IR to improve the 

accuracy of pancreatic β‐cell function estimate. All statistical tests were two-sided, and 

analyses were performed using Statistical Package for the Social Sciences (SPSS) software 

(version 24; SPSS Inc., Chicago, IL, USA) and the analysis plan is included as an appendix on 

Page 248. 

5.4 Results 

5.4.1 Characteristics of the study participants 

Table 11 summarises the characteristics of individuals in this study according to sex. Men had 

higher BMI, WC, fasting glucose, and lower fat mass % compared to women (P<0.05 for all). 

Men also reported higher intakes of total energy and protein than women (P<0.05 for all).  

5.4.2 Associations between metabolic-GRS and metabolic traits 

None of the associations between metabolic-GRS and metabolic-disease related traits was 

statistically significant except for the association with BMI (P=0.008) (Table 12).   
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Table 11: Characteristics of study participants. 

Parameters 
 

Total 

(n = 200) 

Women 

(n = 147) 

Men 

(n = 53) p‐Value 
 

Age (years) 21.35 ± 1.67 21.33 ± 1.70 21.40 ± 1.61 0.815 

BMI (kg/m2) 23.35 ± 4.42 22.81 ± 3.97 24.86 ± 5.23 0.004 

WC (cm) 74.55 ± 13.56 71.10 ± 12.05 84.13 ± 13.01 0.000 

Body fat mass (%) 33.91 ± 10.72 37.17 ± 8.77 24.84 ± 10.48 0.000 

HbA1c (%) 4.73 ± 0.25 4.71 ± 0.25 4.78 ± 0.26 0.103 

Fasting serum glucose (mg/dL) 87.18 ± 6.84 86.43 ± 6.78 89.26 ± 6.60 0.009 

Fasting serum insulin (uU/mL) 8.74 ± 3.80 8.69 ± 3.37 8.88 ± 4.82 0.784 

HOMA-IR 1.89 ± 0.88 1.86 ± 0.76 1.98 ± 1.15 0.513 

HOMA-B 138.32 ± 65.75 142.47 ± 65.65 126.81 ± 65.25 0.137 

Insulin to glucose ratio 0.10 ± 0.04 0.10 ± 0.04 0.10 ± 0.05 0.944 

Energy (Kcal/day) 1827.81 ± 597.94 1741.52 ± 558.82 2067.15 ± 641.91 0.001 

Protein (energy %) 17.11 ± 3.63 16.74 ± 3.33 18.14 ± 4.24 0.016 

Carbohydrate (energy %) 51.09 ± 7.11 51.11 ± 7.01 51.05 ± 7.44 0.961 

Fat (energy %) 31.66 ± 5.83 32.12 ± 5.69 30.38 ± 6.08 0.061 

SFA (%) 9.43 ± 5.43 9.54 ± 6.030 9.14 ± 3.25 0.652 

PUFA (%) 5.13 ± 2.27 5.08 ± 2.38 5.26 ± 1.92 0.628 

MUFA (%) 7.72 ± 2.63 7.55 ± 2.55 8.19 ± 2.79 0.129 

Data presented as the mean ± SDs.  P values for the differences in the means between men and 

women were calculated using the independent samples t-test. Abbreviations: BMI: body mass 

index; WC: waist circumference; HbA1c: glycated haemoglobin; HOMA-IR: homeostasis 

model assessment estimate of insulin resistance; HOMA-B: homeostasis model assessment 

estimate of insulin secretion; SFA: saturated fatty acids; MUFA: monounsaturated fatty acids; 

PUFA: polyunsaturated fatty acids. 
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Table 12: Associations of metabolic-GRS with metabolic traits. 

Parameters 
GRS<5 

(n=93) 

GRS≥5 

(n=101) 
p‐Value 

BMI (kg/m2) 23.90 ± 0.43 22.60 ± 0.43 0.008 

WC (cm) 75.53 ± 1.27 73.93 ± 1.26 0.967 

Body fat mass (%) 35.80 ± 1.05 31.91 ± 1.10 0.663 

HbA1c (%) 4.72 ± 0.03 4.73 ± 0.03 0.964 

Fasting glucose (mg/dL) 87.54 ± 0.68 86.74 ± 0.72 0.419 

Fasting insulin (uU/mL) 8.91 ± 0.43 8.52 ± 0.34 0.542 

HOMA-IR 1.93 ± 0.10 1.84 ± 0.08 0.663 

HOMA-B 138.76 ± 7.15 138.17 ± 6.32 0.234 

HOMA-B adjusted for HOMA-IR 138.76 ± 7.15 138.17 ± 6.32 0.235 

Insulin to glucose ratio 0.10 ± 0.00 0.10 ± 0.00 0.477 

Data are Mean ± standard error of the mean (SEM). P values obtained from the linear 

regression analysis adjusted for age, sex and additionally for BMI when BMI is not an outcome. 

The analysis was performed on log-transformed variables. Abbreviations: GRS: genetic risk 

score; BMI: body mass index; WC: waist circumference; HbAIc: glycated haemoglobin; 

HOMA-IR: homeostasis model assessment estimate of insulin resistance; HOMA-B: 

homeostasis model assessment estimate of insulin secretion. 

 

5.4.3 Interactions of metabolic-GRS with dietary factors on metabolic traits 

As shown in Table 13, there were statistically significant interactions between the metabolic-

GRS and total fat intake (% of TEI) on fasting insulin level (Pinteraction=0.017), insulin-glucose 

ratio (Pinteraction=0.010) and HOMA-B (Pinteraction=0.002) and a borderline interaction on 

HOMA-IR (Pinteraction=0.051). Among those in the highest tertile of fat intake (37.98±3.39 % of 

TEI), individuals with ≥5 risk alleles had higher fasting insulin level (P=0.021), insulin-glucose 

ratio (P=0.010), HOMA-B (P=0.001) and HOMA-IR (P=0.053), compared to those with <5 
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risk alleles (Figures 10 and 11). Interaction on HOMA-B was still significant after adjusting 

the analysis for HOMA-IR (Pinteraction=0.016), Figure S1. We further examined interactions with 

fat subtypes on these traits. Significant interactions were detected between the metabolic-GRS 

and MUFA intake on fasting insulin (Pinteraction=0.021), HOMA-IR (Pinteraction=0.021) and 

insulin to glucose ratio (Pinteraction=0.031), however, none of these interactions was statistically 

significant after tertile analysis. Significant interactions were also observed between the 

metabolic-GRS and intakes of total fat, PUFA and MUFA on percentage of body fat mass 

(Pinteraction=0.009, 0.033 and 0.038, respectively).  

 

Table 13: Interactions of the metabolic-GRS with dietary factors on metabolic traits. 

  
Protein 

(%) 

Carbohydrate 

(%) 

Fat  

(%) 
SFA (%) 

PUFA 

(%) 

MUFA 

(%) 

BMI (kg/m2) 0.255 0.120 0.922  - -   - 

WC (cm) 0.124 0.303 0.979  - -   - 

Body fat mass (%) 0.451 0.311 0.009 0.255 0.033 0.038 

HbA1c (%) 0.955 0.653 0.632  - -   - 

Fasting glucose (mg/dL) 0.764 0.142 0.099  -  - -  

Fasting insulin (uU/mL) 0.898 0.37 0.017 0.233 0.809 0.021 

 HOMA-IR 0.944 0.561 0.051 0.357 0.837 0.021 

HOMA-B 0.797 0.089 0.002 0.079 0.749 0.123 

HOMA-B adjusted for HOMA-IR 0.784  0.084 0.016 0.131 0.806 0.952 

Insulin to glucose ratio 0.895 0.274 0.010 0.154 0.801 0.031 

Data are P values of interaction which obtained from the linear regression analysis adjusted for 

age, sex and additionally for BMI when BMI is not an outcome. The analysis was performed 

on log-transformed variables. Abbreviations: GRS: genetic risk score; BMI: body mass index; 

WC: waist circumference; HbA1c: glycated haemoglobin; HOMA-IR: homeostasis model 

assessment estimate of insulin resistance; HOMA-B: homeostasis model assessment estimate 
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of insulin secretion; SFA: saturated fatty acids; MUFA: monounsaturated fatty acids; PUFA: 

polyunsaturated fatty acids. 
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Figure 10: Interaction between the metabolic-GRS and fat intake (%) on fasting insulin 

levels and insulin: glucose ratio. 

 White bars indicate individuals with GRS <5 risk alleles; the black bars indicate individuals 

with GRS ≥5 risk alleles; Error bars indicate the standard error of the mean. Individuals with 

≥5 risk alleles had higher fasting insulin (a) and insulin to glucose ratio (b) compared to those 

with <5 risk alleles, among individuals with a higher total fat intake (37.98±3.39 % of TEI). 

Abbreviations: GRS: genetic risk score; TEI: total energy intake. 
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Figure 11: Interaction between the metabolic-GRS and fat intake (%) on HOMA-IR and 

HOMA-B.  

White bars indicate individuals with GRS <5 risk alleles; the black bars indicate individuals 

with GRS ≥5 risk alleles; Error bars indicate the standard error of the mean. Individuals with 
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≥5 risk alleles had higher HOMA-IR (a) and HOMA-B (b) compared to those with <5 risk 

alleles, among individuals with a higher total fat intake (37.98±3.39 % of TEI). Abbreviations: 

GRS: genetic risk score; TEI: total energy intake; HOMA‐IR: homeostasis model assessment 

estimate of insulin resistance; HOMA‐B: homeostasis model assessment estimate of insulin 

secretion. 

5.5 Discussion 

The present study investigated the potential interplay between metabolic-GRS and dietary 

macronutrient intake on metabolic traits in a Brazilian young adult population. Our results 

provide evidence of significant GRS-fat intake interactions on glucose and insulin-related 

traits, where individuals with ≥5 risk alleles had higher fasting insulin level, insulin-glucose 

ratio, HOMA-IR and HOMA-B than those with <5 risk alleles among those in the high fat 

intake group (37.98±3.39 % of TEI). These findings suggest that individuals with ≥5 risk alleles 

are sensitive to dietary fat with respect to glucose and insulin-related traits and that these 

individuals may derive the most benefit from following the Brazilian dietary guidelines which 

aim at reducing fat intake to less than 30 % of TEI (477). This could have significant 

implication for public health in terms of providing early intervention to young adults with high 

genetic risk before the onset of disease, which might help halt the development of T2D.   

In the present study, the metabolic-GRS was found to be associated with lower BMI, which 

contradicts the findings of the previous GRS-related studies in European populations (155, 156, 

412, 413). However, the Brazilian population has a mixed genetic ancestry that originates from 

Europeans, Africans and Native Amerindians, which might explain the discrepancies between 

our findings and genetic association studies in Europeans (478). Furthermore, a large GWAS 

of 241,258 European adults showed that the risk allele T of TCF7L2 rs7903146 was associated 

with lower BMI compared to the non-risk allele, which may provide a possible explanation of 
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our findings (479). Metabolic diseases are complex and multifactorial influenced by both 

environmental and genetic factors including dozens or even hundreds of genetic variants each 

contributing small effects on these traits (4, 78). Thus, the effect of unmeasured factors on BMI 

might influence the observed findings. 

 The present study found that, within the high-fat intake category, individuals with 

higher metabolic-GRS showed increased fasting insulin level, insulin-glucose ratio, HOMA-

IR and HOMA-B, whereas those with lower GRS showed a reduction in these traits. Although 

direct comparison of our study with previous gene-diet interaction studies is difficult due to 

differences in the methodology related to the construction of GRSs and measurement of dietary 

intake, sample size, study design, and ethnicity, our findings are in agreement with some of the 

previous studies in other populations in which fat intake was found to interact with GRS on 

metabolic traits (256-258). In a recent study in 302 Ghanaian adults, a GRS of 4 metabolic-

related variants was associated with higher WC among individuals with high fat intake 

(34.99±5.54 % TEI) (480). Data from an intervention study in 733 European adults also 

reported that higher total fat intake was associated with increased fasting glucose in individuals 

with higher GRS of 14 fasting glucose-associated SNPs and with decreased fasting glucose 

among individuals with lower GRS (256). Taken together, these observations suggest that 

individuals with higher genetic risk might benefit more from reducing fat intake in terms of 

lowering their metabolic risk.  

Dietary guidelines have recommended to limit the dietary intake of total fat (between 15-30 % 

of TEI) to preserve overall health and reduce the risk of developing metabolic diseases (481). 

Previous studies have demonstrated that the higher intake of total fat contributes to the 

development of T2D by inducing IR (469, 482). Lowering total fat intake have been reported 

to improve glycemic control in a systematic review of clinical trials of diabetic individuals 

(483). Evidence from two previous intervention studies including individuals from various 
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ethnic groups (n= 3,234 and 522, respectively) and with long follow-up (2.8 and 3.2 years, 

respectively) have also shown that decreasing fat intake (from 6.6±0.2 % of TEI and to <30 % 

of TEI, respectively) is effective in reducing the incidence of T2D by up to 58% (167, 168). In 

addition, dietary intervention in 48,835 postmenopausal women from the US showed that 

reducing total fat intake (by ~8% of TEI) and increasing carbohydrate intake (by ~ 8% of TEI) 

through increasing intake of vegetable/fruit (five servings per day) and grain (six servings per 

day) were associated with a reduction in glycemia and diabetes progression (484). The dietary 

intake of Brazilians is characterised by unfavourable fat profile with high intakes of SFA and 

trans fatty acids and imbalances in the omega-6:omega-3 ratio, being compatible with a high 

risk of metabolic diseases (273).  In our study, the mean fat intake of the total sample 

(31.66±5.8 % of TEI) and the high fat intake group (37.98±3.39 % of TEI) were above the 

recommended dietary guidelines for Brazilian adults (< 30% of TEI) (485). 

The mechanisms by which dietary fat influences IR and β-cell function are unclear; however, 

several pathways are biologically plausible. IR is often mediated by increased inflammation 

that has been shown to be induced mostly by the effect of the fatty acids composition of the 

diet (486). In particular, SFA and omega-6 have pro-inflammatory effects, and omega-3 fatty 

acids have anti-inflammatory effects (486). Some of the molecular mechanisms of IR include 

the lipid-overload hypothesis in which ceramides or diacylglycerides are accumulated leading 

to the inhibition of insulin signalling and oxidative stress induced by excessive generation of 

free radicals or endoplasmic reticulum stress induced by excessive calorie intake (487-489). In 

addition to the insulin-related traits, there was also a significant interaction between GRS and 

intakes of total fat, PUFA and MUFA on the percentage of body fat mass in our study. Given 

that adipose tissue is a central metabolic organ that stores excess fat energy in the form of lipid 

and secretes proinflammatory adipokines that can also influence signalling of insulin, our 

finding is biologically plausible (490). It is worth observing the intake of SFA, PUFA and 
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MUFA which were significantly higher in the high fat intake category than low and medium 

intake groups; this might be one of the reasons for the observed interactions with total dietary 

fat intake. Evidence suggests that different types of dietary fat have differential effects on IR 

and insulin secretion. While a cross-sectional study in 538 Spanish individuals suggested that 

the intake of a MUFA-rich diet was associated with increased HOMA-B (491), a meta-analysis 

of randomised controlled feeding trials (n=4,220) demonstrated that PUFA intake showed the 

most consistent favourable effects in relation to improved glycaemia and insulin secretion 

capacity (190).  

Several strengths are worth consideration. This study is the first to examine whether dietary 

factors interact with metabolic-GRSs on metabolic traits among the Brazilian young adult 

population. Early prediction of insulin sensitivity in young adults and effective intervention 

can be a critical factor in terms of delaying or preventing diabetes in normoglycemic 

individuals who are at risk of diabetes (492). Also, a GRS analysis approach was used, which 

has the advantage over single-locus approach (153). This approach is especially important for 

highly polygenic metabolic traits and can identify individuals at risk of metabolic diseases who 

might benefit from targeted interventions (153). Furthermore, the study outcomes (metabolic 

traits) were measured using validated methods by trained staff which improve the accuracy of 

these estimates. Nevertheless, some limitations need to be acknowledged. A major limitation 

is the small sample size, suggesting that our analysis might be underpowered. However, the 

use of the GRS approach is suggested to improve the power and significant gene-diet 

interactions were detected in our study. As with all observational studies, causality between 

exposure and outcome cannot be inferred and residual confounders might have existed. Given 

the longitudinal dimension of the development of T2D and the complexity of gene-diet 

interactions, our cross-sectional study design fails to determine the temporality of the observed 

findings. Given that dietary intake was assessed using self-reported measures, we cannot 
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exclude the effect of measurement bias. Another limitation is that the effect of different dietary 

sources of fat (including meat, dairy and plant) were not considered in the present analysis, 

which might have provided further explanations to our GRS-fat intake interactions  (493). In 

addition, our GRS was constructed based on 10 SNPs, which account for only a small 

proportion of the metabolic disease-related genetic variants. As HOMA is a widely validated 

clinical and epidemiological tool for assessing IR and β-cell function (494), like many other 

epidemiological studies (256, 258, 482), we also used HOMA-IR and HOMA-B as proxies for 

IR and insulin secretion, respectively. However, these measures are calculated only using 

fasting insulin and glucose values which might provide different estimates compared to 

methods based on dynamic measurements of insulin and glucose responses or those derived 

from clamp experiments (495). Finally, given that the study was performed with relatively 

healthy overweight/obese young individuals with normal glucose tolerance who might have a 

quicker adaptation to changes in fat intake, the findings might not be applicable to those with 

impaired glucose metabolism or diabetes.  

5.6 Conclusion 

In conclusion, our study provides evidence of interactions between genetic predisposition and 

high fat intake on diabetes-related traits among Brazilian young adults. These findings 

encourage identifying Brazilian young adults with high genetic risk and tailoring dietary 

recommendations of fat intake according to their metabolic genetic risk profile for the primary 

prevention of adult-onset T2D. In addition, devising polygenic risk score could be used to 

provide more insights on understanding the pathophysiology of the genetics of diabetes. 

However, large interventional and follow up studies with a more comprehensive and objective 

assessment of environmental factors are needed in Brazilians to confirm our findings and to 

evaluate the clinical benefit of implementing precision dietary interventions based on an 

individual’s underlying genetic risk of metabolic diseases.   



138 

 

Declarations  

Funding: The study was funded by the Conselho Nacional das Fundações Estaduais de 

Amparo à Pesquisa (CONFAP)-UK Academies Researcher Mobility award. 

Conflicts of Interest: The authors declare no conflict of interest. 

Availability of data and material: The data that support the findings of this study are available 

from the corresponding author (KSV) upon reasonable request. 

Code availability: Not applicable. 

Author Contributions: Conceptualization, K.S.V and M.A.H.; Methodology, K.S.V., M.A.H, 

and S.A.; Data Collection, N.T.C., N.R.S. and A.C.A.; Software, S.A.; Validation, M.A.H., 

K.S.V. and S.A.; Formal Analysis, M.A.H. and S.A.; Investigation, K.S.V and M.A.H..; 

Resources, M.A.H and K.S.V.; Data Curation, K.S.V and M.A.H.; Writing – Original Draft 

Preparation, S.A. and K.S.V.; Writing – Review & Editing, K.S.V. and S.A.; Supervision, 

K.S.V., M.A.H. and J.A.L.; Project Administration, K.S.V. and M.A.H.; Funding Acquisition, 

K.S.V. and M.A.H. All authors have read, edited, and approved the published version of the 

manuscript. All authors have read and agreed to the published version of the manuscript. 

Ethical approval: The study was conducted according to the guidelines of the Declaration of 

Helsinki and approved by the Ethics Committee of the Federal University of Goiás (protocol 

number 3.007.456, 08/11/2018).  

Consent to participate: All participants gave written informed consent for study participation.  

Consent for publication: All participants gave written informed consent for the publication 

of study findings.  



139 

 

Acknowledgments: We thank all the participants from the BOLD study for their cooperation. 

Karani S Vimaleswaran acknowledges support from the Ministry of Higher Education of Saudi 

Arabia for the scholarship given to Sooad Alsulami.  

Supplementary Materials: The supplementary materials are included at the end of this 

chapter. Table S1: Genotype distribution of the twelve SNPs that were chosen for our study; 

Figure S1: Interaction between the metabolic-GRS and fat intake (%) on HOMA-B after 

adjustment of HOMA-IR.  

 

 



140 

 

5.7 Supplementary materials 

5.7.1 Table S1. Genotype distribution of the twelve SNPs that were chosen for our study. 

Gene name SNP 

Location 

of the SNP 
Genotype 

Minor 

Allele 
MAF 

HWE 

 

 

Transcription factor 7-like 2 (TCF7L2) 

  

 

rs12255372 

   

 

 Intron 

Variant 

GG 85  

T 

  

0.35 0.80 TG 92 

TT 23 

Transcription factor 7-like 2 (TCF7L2) 

  

 

rs7903146 

   

 

 Intron 

Variant 

CC 90 
T 

  
0.33 0.78 TC 87 

TT 23 

Melanocortin 4 Receptor (MC4R) 

 

rs17782313 

   

- CC 6 
C 

  
0.17 0.84 TC 55 

TT 139 

Melanocortin 4 Receptor (MC4R) 

  

rs2229616 

  

 

Missense 

Variant 

AA 0 

A 

  

0.00 0.97 GA 1 

GG 199 

Peroxisome proliferator-activated receptor gamma (PPARG)  rs1801282  CC 170 G 0.08 0.25 
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  Missense 

Variant 

GC 30 

GG 0 

Fat mass and obesity-associated (FTO)  

  

 

rs8050136 

   

 

Intron 

Variant 

AA 30 
A 

  
0.40 0.79 CA 96 

CC 71 

Fat mass and obesity-associated (FTO)  

  

 

rs10163409 

   

 

Intron 

Variant 

AA 117 
T 

  
0.25 0.06 TA 64 

TT 17 

Cyclin dependent kinase inhibitor 2A/2B (CDKN2B)  

  

 

rs10811661 

   

 

- 

CC 4  

C 

  

0.13 0.76 CT 45 

TT 151 

 

Potassium voltage-gated channel subfamily Q member (KCNQ1) 

   

 

rs2237895 

  

 

Intron 

Variant 

AA 85  

C 

  

0.34 0.86 CA 91 

CC 23 

 

Potassium voltage-gated channel subfamily Q member (KCNQ1) 

   

 

rs2237892 

   

 

Intron 

Variant 

CC 160  

T 

 

0.11 

  

 

0.08 

  

TC 35 

TT 5 

 

Calpain 10 (CAPN10)  

  

 

rs2975760 

   

 

Intron 

Variant 

CC 15  

C 

  

0.15 

  

 

<0.0001 

  

TC 31 

TT 154 
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Calpain 10 (CAPN10)  

  

 

rs5030952 

  

  

 

- 

CC 128 
 

T 

  
0.20 

  

 

0.47 

  

TC 66 

TT 6 

Abbreviations: SNP, single nucleotide polymorphisms; GRS, genetic risk score; MAF, minor allele frequency; HWE, Hardy-Weinberg 

equilibrium; TCF7L2, Transcription factor 7-like 2; MC4R, melanocortin 4 Receptor; PPARG, Peroxisome proliferator-activated receptor gamma; 

FTO, fat mass and obesity-associated; CDKN2A/2B, Cyclin dependent kinase inhibitor 2A/2B; KCNQ1, Potassium voltage-gated channel 

subfamily Q member 1; CAPN10, Calpain 10. 
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5.7.2 Figure S1. Interaction between the metabolic-GRS and fat intake (%) on HOMA-

B after adjustment of HOMA-IR.  

White bars indicate individuals with GRS <5 risk alleles; the black bars indicate individuals 

with GRS ≥5 risk alleles; Error bars indicate the standard error of the mean. Individuals with 

≥5 risk alleles had higher HOMA-B compared to those with<5 risk alleles, among individuals 

with a higher total fat intake (37.98±3.39 % of TEI). Abbreviations: GRS: genetic risk score; 

TEI: total energy intake; HOMA‐IR: homeostasis model assessment estimate of insulin 

resistance; HOMA‐B: homeostasis model assessment estimate of insulin secretion.  
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Background: The increasing prevalence of type 2 diabetes among South Asians is caused by 

a complex interplay between environmental and genetic factors.  

Ami: We aimed to examine the impact of dietary and genetic factors on metabolic traits in 

1,062 Asian Indians. 

Methods: Dietary assessment was performed using a validated semi-quantitative food 

frequency questionnaire. Seven single nucleotide polymorphisms (SNPs) from the 

Transcription factor 7-like 2 and fat mass and obesity-associated genes were used to construct 

two metabolic genetic risk scores (GRS): 7-SNP and 3-SNP GRSs.  

Results: Both 7-SNP GRS and 3-SNP GRS were associated with a higher risk of T2D (P = 

0.0000134 and 0.008, respectively), The 3-SNP GRS was associated with higher waist 

circumference (P = 0.010), fasting plasma glucose (FPG) (P = 0.002) and glycated 

haemoglobin (HbA1c) (P = 0.000066). There were significant interactions between 3-SNP 

GRS and protein intake (% of total energy intake) on FPG (Pinteraction=0.011) and HbA1c 

(Pinteraction=0.007), where among individuals with lower plant protein intake (<39 g/day) and 

those with >1 risk allele had higher FPG (P = 0.001) and HbA1c (P = 0.00006) than individuals 

with ≤1 risk allele. 

Conclusion: Our findings suggest that lower plant protein intake may be a contributor to the 

increased ethnic susceptibility to diabetes described in Asian Indians. Randomized clinical 

trials with increased plant protein in the diets of this population are needed to see whether the 

reduction of diabetes risk occurs in individuals with prediabetes. 
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6.2 Introduction 

South Asian populations have a 50% higher risk of type 2 diabetes (T2D) than other 

populations (275, 276) and this has significant implications, as patients with T2D have a 2–4 

times increased risk of cardiovascular diseases (275). The Asian Indian population have a 

unique phenotype characterised by abdominal and truncal adiposity, as indicated by larger 

waist to hip ratios and waist circumference (WC) and, higher concentrations of plasma insulin, 

greater insulin resistance, impaired function of pancreatic β-cell, and a genetic susceptibility to 

diabetes which ultimately leads to significantly increased diabetes risk (496-498).The burden 

of T2Dis increasing globally, with India being a major contributor to the worldwide burden 

(17).The number of diabetic individuals in India rose from 26.0 million in 1990 to 65.0 million 

in 2016 (277). 

The increasing prevalence of T2D among Asian Indians is caused by a complex interplay 

between environmental and genetic factors including urbanization which plays a large role 

(261, 262, 499). Urbanization in India is associated with increased consumption of processed 

foods and dietary fats, decreased level of physical activity and increased mental stress, 

amplifying the effects of abdominal obesity and insulin resistance (497, 498, 500). 

Furthermore, the urban areas in India reported higher intake of protein from pulses and animal 

sources (including meat, fish, eggs and milk) than rural areas (501). Several large longitudinal 

studies showed that the intake of animal protein was significantly associated with the risk of 

T2D (180-182, 502, 503). In the context of rapid urbanisation and nutrition transition, 

interactions between Westernized diet, lifestyle and genetic factors have further escalated T2D 

prevalence in Asia (504, 505). In South Asians, several single nucleotide polymorphisms 

(SNPs) have been associated with adiposity (364, 506-508), insulin resistance (509), pancreatic 

β-cell function (159, 506, 510), and T2D)511  ,510  ,508  ,506  ,364(  .The fat mass and obesity-

associated (FTO) gene has been recognized as one of the strongest obesity-related genes. The 
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FTO SNPs, rs1588413, rs9939609 and rs8050136, have been shown to increase obesity risk 

by 1.27, 1.15 and 2.06 times among Indians, respectively(364, 512).Studies have reported 

strong associations of the Transcription factor 7-like 2 (TCF7L2)SNPs, rs7903146 and 

rs12255372, with T2D risk in Asian Indians(75, 513, 514). To date, evidence has identified 

243 genetic loci to be associated with T2D risk in South Asians, East Asians, Europeans, 

African Americans and Hispanics (89, 253-255). Single genetic variants have only a small to 

moderate effect on disease risk, thus, combining effects of several SNPs into a genetic risk 

score (GRS) is required for better detection of individuals with high risk of diabetes (153).  

 Genome-wide association studies (GWAS) have discovered large number of genetic 

variants associated with metabolic diseases and related traits; however, these SNPs describe 

only a small proportion of estimated heritability. Risk prediction of metabolic diseases is 

complicated by interactions between dietary and genetic factors which may partly explain the 

missing heritability of diseases (216). Investigating gene-diet interaction is important in 

understanding pathophysiology of metabolic diseases, which can lead to the development of 

‘personalised’ nutrition focusing on tailoring dietary interventions according to individual 

genotypic makeup to prevent and treat metabolic diseases (247, 515). The effect of genetic 

factors on metabolic traits have been shown to be modified by dietary intake in several 

populations (256-260). However, studies investigating GRS-diet interaction in the Indian 

population are still sparse. To help fill this gap in knowledge, we assessed the combined effect 

of 7 genetic variants, as a GRS, on T2D and metabolic traits, and the extent to which dietary 

intake can influence these genetic associations among 1,062 urban Asian Indians.   

 

6.3 Methods 

6.3.1 Study participants 
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The present study included individuals from the urban area of the Chennai Urban Rural 

Epidemiology Study (CURES) follow-up study, which is a cross-sectional epidemiological 

study performed on a representative sample of Chennai city (formerly Madras) in Southern 

India. The design and procedures of the CURES study have been explained in detail previously 

(516). In phase 1, a total of 26,001 adult subjects, of which 1,529 ‘self-reported’ or `known 

diabetic’ individuals, were recruited using a method of systematic random sampling. In phase 

2, diabetic individuals were invited to the study centre for further investigation, of whom 1,382 

responded. In phase 3, every 10th individual of the total sample (n = 26,001 subjects), excluding 

individuals with self-reported diabetes, were screened using an oral glucose tolerance test 

(OGTT). Individuals with fasting plasma glucose (FPG)<5.6 mmol/L (100mg/dL) and 2 hr 

plasma glucose value of 7.8 mmol/L (140mg/dL) were defined as having normal glucose 

tolerance (NGT) [46]. Those who had 2 hr plasma glucose value of 11.1 mmol/l (200 mg/dl) 

were categorised as `newly detected diabetic subjects’ (n = 222) (Figure S1). The total sample 

of present study is 1,062 individuals; the NGT individuals were chosen from Phase 3 (n = 496) 

and T2D individuals were chosen from Phase 2 and Phase 3 of the CURES (n = 566). The 

study was approved by the Madras Diabetes Research Foundation Institutional Ethics 

committee and written informed consent was obtained from all study participants. 

6.3.2 Anthropometric and biochemical measurements 

Anthropometric variables including WC, weight and height were measured using standardised 

methods. The body mass index (BMI) was calculated with the formula of weight (in kilograms) 

divided by the square of height (in meters), with obesity being defined as BMI ≥25 according 

to World Health Organisation Asia Pacific Guidelines for Asians (517).  

Biochemical tests were carried out using a Hitachi-912 Auto Analyzer (Hitachi, Mannheim, 

Germany), with kits provided by Roche Diagnostics (Mannheim). Glycated haemoglobin 
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(HbA1c) was measured using high-performance liquid chromatography on a Variant machine 

(Bio-Rad, Hercules, CA, USA). FPG and serum insulin were measured using glucose oxidase-

peroxidase and an enzyme-linked immunosorbent assay (Dako, Glostrup, Denmark), 

respectively.  

6.3.3 Dietary assessments  

Participants’ habitual food intake over the previous year was measured using a validated semi-

quantitative food frequency questionnaire (FFQ) administered by an interviewer (518). The 

FFQ consists of 222 food items and individuals were asked to estimate the usual portion size 

and frequency (number of times per day, week, month or year/never) of food items listed in the 

FFQ. Participants were shown common household measures and photographic atlas of different 

sizes of fruits to help them in estimating portion sizes. The EpiNu® software was used to 

analyse the recorded data and estimate the intake of energy and macronutrients. The reported 

intake of various food groups was also estimated. The EpiNu software also provided the source 

of protein from various food groups. Animal protein intake was summed up using protein 

intake (g/day from FFQ) from animal food groups such as meat, poultry, fish, egg, and dairy 

products. Similarly, plant protein intake was estimated from food groups such as cereals, 

millets, pulses legumes, tubers, nuts, oilseeds, vegetables, and fruits. In addition, dairy protein 

was estimated separately using the dairy products such as milk products and fermented and 

unfermented milk. 

6.3.4 SNP selection and GRS construction 

A total of 7 metabolic disease-associated SNPs which have been extensively studied in various 

populations including Asian Indians were selected for the study (159, 364, 506-511, 513). The 

selected SNPsincludedTCF7L2 SNPs, rs12255372and rs7903146, and FTO SNPs, rs8050136, 

rs918031, rs1588413, rs7193144 and rs1076023. Details regarding these SNPs are summarised 
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in Tables S1. Each SNP was coded with the expected number of metabolic diseases-associated 

risk alleles. Consistent with previous studies (257, 519, 520), we used an unweighted method 

to construct the GRSs by summing the number of risk alleles of each SNP for each participant. 

The seven SNPs were used to generate a 7-SNP GRS that ranges from 1 to 11 risk alleles. The 

GRS was divided into 2 categories according to the median number of risk alleles: ‘‘GRS<6 

risk alleles’’ and ‘‘GRS≥6 risk alleles’’, indicating individuals with lower and higher risk 

alleles of the SNPs, respectively. In addition, we constructed a GRS of 3 SNPs (FTOSNP 

rs8050136 and TCF7L2SNPs rs12255372 and rs7903146) that have shown consistent 

associations with metabolic disease-related outcomes across various ethnicities including 

Asians (77, 102, 521, 522). The 3-SNP GRS ranges from 0 to 6 risk alleles and was divided 

into 2 categories according to the median number of risk alleles: “GRS ≤1 risk allele” group 

and “GRS >1 risk allele” group, indicating individuals with lower and higher risk alleles of the 

SNPs, respectively. 

6.3.5 Genotyping  

The genotyping methodologies have been previously published (364, 514). The Phenol-

chloroform technique was used to extract DNA from whole blood. Genotyping was performed 

using restriction fragment length polymorphism and confirmed by direct sequencing in which 

duplicate samples (n = 200; 20%) were genotyped with 100% concordance, suggesting high 

genotyping accuracy. 

6.3.6 Statistical analysis 

Descriptive statistics of continuous variables are provided as means with standard deviations 

(SDs) and compared between T2D and controls using an independent sample t-test. Normality 

tests were performed and variables with no-normal distribution were log-transformed. For each 

individual SNP, genotype counts were assessed for Hardy-Weinberg equilibrium (HWE) using 
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a goodness-of-fit chi-square test. As shown in Table S1, all SNPs were in HWE (P > 0.092, for 

all comparisons). General linear models were utilised to analyse the main associations of the 

GRS with metabolic traits. Interactions of the GRS with dietary intake were investigated by 

including the interaction term (GRS*dietary intake) in the models. Furthermore, significant 

interactions with protein intake were analysed in more depth according to dietary sources of 

protein (animal and plant protein), where individuals were classified into two groups according 

to the sample median intake of plant (39g/day) and animal protein (19g/day): below and above 

median groups. Individuals who consumed below the median were categorised as those who 

had lower intakes of plant and animal protein, respectively, whereas individuals who consumed 

above the median were categorised as those who had higher intakes of plant and animal protein, 

respectively. Dietary intakes as percentage of total energy intake (TEI) included intake of 

protein, carbohydrate, and fat. Models were adjusted for sex, age, T2D, anti-diabetic 

medication, and BMI (when BMI is not an outcome). Furthermore, as part of the sensitivity 

analysis, we further adjusted for duration of diabetes, dairy protein intake, physical activity 

level, smoking, alcohol consumption, and fibre intake. Statistical analyses were carried out 

using Statistical Package for the Social Sciences (SPSS) software (version 24; SPSS Inc., 

Chicago, IL, USA), with a significance level of 0.05. The research analysis plan is included as 

an appendix on Page 251. 

6.4 Results 

6.4.1 Characteristics of study participants 

As shown in Table 14, individuals with T2D were significantly older and had higher BMI, WC, 

HbA1c, FPG, insulin, compared to individuals with NGT (P<0.05 for all). Also, diabetic 

individuals had significantly higher intakes of total protein and carbohydrate, than individuals 

with NGT (P<0.05 for all).  



152 

 

 

Table 14: Characteristics of study participants 

  

Total 

  

NGT controls 

  

T2D cases 

  P value 

 n  n  n   

Sex             
0.807 

  Men (%) 591 56 278 56 313 55 

  Women (%) 471 44 218 44 253 45   

Age (years) 1062 45 ± 12 496 38 ± 10 566 51 ± 11 1.160*10-71 

BMI (kg/m2) 1061 24.6 ± 4.56 496 23.5 ± 4.64 565 25.5 ± 4.30 1.480*10-12 

WC (cm) 1022 87 ± 12 479 83 ± 12 543 91 ± 10 5.692*10-33 

HBA1C (%) 1056 7.3 ± 2.4 492 5.6 ± 0.47 564 8.8 ± 2.4 1.480*10-14 

FPG (mg/dl) 1060 126 ± 64 495 85 ± 8 565 162 ± 69 1.392*10-127 

Fasting Insulin (μIU/ml) 699 9 ± 7 448 8 ± 6 251 12 ± 7 6.386*10-101 

Energy (kcal/day) 1062 2536 ± 805 496 2685 ± 708 566 2406 ± 861 8.773*10-9 

Protein (%) 1062 11 ± 1 496 11.27 ± 1.17 566 11.45 ± 1.23 0.014 

Animal protein (g/day) 1062 22 ± 12 496 25 ± 13 566 19 ± 11 3.787*10-14 

Plant protein (g/day) 1062 40 ± 14 496 42 ± 15 566 39 ± 13 0.006 

Fat (%) 1062 23 ± 5 496 24 ± 5 566 23 ± 5 0.113 

Carbohydrate (%) 1062 65 ± 6 496 64 ± 6 566 65 ± 6 0.003 

Dietary fibre (g) 1062 32 ± 11 496 32 ± 10 566 31 ± 12 0.150 

Total SFA (g) 1062 24 ± 10 496 27 ± 10 566 22 ± 10 2.295*10-12 

Total MUFA (g) 1062 20 ± 8 496 21 ± 8 566 18 ± 8 3.943*10-9 

Total PUFA (g) 1062 18 ± 10 496 19 ± 9 566 18 ± 10 0.184 

Data presented as Mean±SD.* P values are for the mean differences between controls and T2D 

cases using an independent sample t-test. ** P values are from the Chi-squared test. Frequency 

of men and women between controls and cases was compared using a chi-square test. 

Abbreviations: NGT, normal glucose tolerance, T2D, type 2 diabetes; BMI, body mass index; 

WC, waist circumference; HbA1c, glycated haemoglobin; FPG, fasting plasma glucose; SFA: 

saturated fatty acids; MUFA: monounsaturated fatty acids; PUFA: polyunsaturated fatty acids. 
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6.4.2 Association between metabolic GRS and metabolic traits.  

After adjusting for the potential confounders, there were no significant associations between 

the 7-SNP GRS and metabolic traits, Table 15.  

In the 3-SNP GRS analysis, significant associations were found with WC (P = 0.010), FPG (P 

= 0.002) and HbA1c (P = 0.000066), where individuals with >1 risk allele had higher WC, 

FPG and HbA1c compared to individuals with ≤1 risk allele, Table 15. Both 7-SNP GRS and 

3-SNP GRS were associated with a higher risk of T2D (P = 0.0000134 and 0.008, respectively), 

Table 16. 

6.4.3 Interaction of 7-SNP and 3-SNP GRSs with dietary factors on metabolic traits.  

As shown in Table 17, there were significant interactions between the 3-SNP GRS and total 

protein intake (% of TEI) on FPG (Pinteraction=0.011) and HbA1c (Pinteraction=0.007). Among 

individuals with lower intake of plant protein (<39 g/day), those with >1 risk allele had higher 

FPG (P = 0.001) and HbA1c (P = 0.00006) than individuals with ≤1 risk allele (Figure 12). 

Furthermore, among individuals with higher intake of animal protein (>19 g/day), those with 

>1 risk allele had higher FPG (P = 0.008) and HbA1c (P = 0.001) than individuals with ≤1 risk 

allele (Figure S2). None of the interactions were significant between the 7-SNP GRS and 

dietary intakes on metabolic traits except for the interactions between 7-SNP GRS and protein 

intake on HbA1c (Pinteraction=0.032), and 7-SNP GRS and carbohydrate intake (Pinteraction=0.04) 

on fasting insulin. However, these interactions were not significant after stratifying based on 

animal and plant protein. 
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Table 15: Associations of 7-SNP and 3-SNP GRS and with metabolic traits 

 

7-SNP GRS 3-SNP GRS 

n GRS <6  n GRS ≥6 P value n GRS ≤1 n GRS >1 P value * 

 

BMI (kg/m2) 526 24.5 ± 0.2 535 24.7 ± 0.2 0.572 645 24.7 ± 0.2 416 24.5 ± 0.2 0.572 
 

WC (cm) 508 86.7 ± 0.5 514 87.4 ± 0.5 0.668 620 87.0 ± 0.47 402 88.0 ± 0.57 0.010 
 

HBA1C (%) 524 7.1 ± 0.1 532 7.4 ± 0.1 0.935 640 7.0 ± 0.1 416 7.7 ± 0.1 0.000066 
 

FPG (mg/dL) 526 119.9 ± 2.6 534 131.6 ± 2.9 0.181 644 120.0 ± 2.35 416 135.0 ± 3.39 0.002 
 

Fasting insulin (μIU/ml) 373 9.5 ± 0.4 326 9.4 ± 0.3 0.767 419 10.0 ± 0.36 280 9.0 ± 0.33 0.171 
 

Data are Mean ± stander error of the mean. * P values adjusted for sex, age, T2D, anti-diabetic medication and additionally for BMI, when BMI 

is not an outcome. The analysis was carried out using log-transformed variables. Abbreviations: GRS: genetic risk score; BMI, body mass index; 

WC, waist circumference; HbA1c, glycated haemoglobin; FPG, fasting plasma glucose. 
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Table 16: Association of 7-SNP and 3-SNP GRSs with T2D. 

GRS OR 

95% CI for OR 

P Value * 

Lower Upper 

7-SNP GRS 2.083 1.496 2.898 0.0000134 

3-SNP GRS 1.559 1.121 2.170 0.008 

* P values were obtained from the logistic regression models adjusted for sex, age, anti-diabetic 

medication, and BMI. Abbreviations: GRS: genetic risk score; SNP, single nucleotide 

polymorphism; T2D, type 2 diabetes; OR, odds ratio; CI, confidence interval; BMI, body mass 

index  
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Table 17: Interactions of 7-SNP and 3-SNP GRSs with dietary factors on metabolic traits 

 7-SNP GRS 3-SNP GRS 

 

Protein Fat 
Carbohydrate (% of 

TEI) 

Protein Fat Carbohydrate 

(% of 

TEI) 

(% of 

TEI) 

(% of 

TEI) 
(% of TEI) (% of TEI) 

BMI (kg/m2) 0.176 0.388 0.195 0.36 0.653 0.805 

WC (cm) 0.852 0.786 0.892 0.638 0.958 0.914 

HBA1C (%) 0.032 0.629 0.618 0.007 0.677 0.756 

FPG (mg/dl) 0.249 0.489 0.507 0.011 0.367 0.231 

Fasting insulin 

(μIU/ml) 
0.952 0.085 0.04 0.299 0.567 0.999 

T2D 0.956 0.214 0.152 0.764 0.508 0.365 

Data are Pinteraction values adjusted for sex, age, T2D, antidiabetic medications and additionally for BMI, when BMI is not an outcome. The analysis 

was carried out using log-transformed variables. Abbreviations: GRS: genetic risk score; TEI, total energy intake; BMI, body mass index; WC, 

waist circumference; HbA1c, glycated haemoglobin; FPG, fasting plasma glucose; T2D, type 2 diabetes. 
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Figure 12: Interaction between 3-SNP GRS and plant protein intake on fasting plasma 

glucose and glycated haemoglobin.  
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White bars refer to individuals with GRS≤1 risk allele; the black bars refer to individuals with 

GRS>1 risk allele. (a) Individuals with>1 risk allele had a significantly higher FPG compared 

to those with ≤1 risk allele, among those with lower intake of plant protein (<39 g/day) (P = 

0.001). (b) Individuals with>1 risk allele had a significantly higher HbA1c compared to those 

with ≤1 risk allele, among those with lower intake of plant protein (<39 g/day) (P = 0.00006). 

P values were adjusted for age, sex, T2D, BMI, anti-diabetic medication, total fat intake (%) 

and TEI. Abbreviations: GRS, genetic risk score; FPG, fasting plasma glucose; HbA1c, 

glycated haemoglobin and TEI, total energy intake. 

 

6.4.4 Sensitivity analyses 

We subjected our regression results to a wide range of robustness checks. First, we adjusted 

for duration of diabetes, and the association of 3-SNP GRS with HbA1c and FPG (P = 0.010 

and 0.040, respectively) and the interaction of 3-SNP GRS with protein intake (%) 

(Pinteraction=0.025 and 0.019 for HbA1c and FPG, respectively) were still significant. Second, 

we excluded individuals with diabetes, and this resulted in a small sample size of 496 NGTs. 

However, a significant association of 3-SNP GRS with HbA1c (P = 0.012) was still observed; 

but none of the interactions were statistically significant (P = 0.126 and 0.405 for HbA1c and 

FPG, respectively). Third, given the association between dietary fat intake and T2D traits, we 

adjusted for total dietary fat intake and found that the interaction of 3-SNP GRS with protein 

intake (%) (Pinteraction= 0.007 and 0.009 for HbA1c and FPG, respectively) was still significant. 

Fourth, we tested for the interaction between 3-SNP GRS and dairy protein intake to see if the 

interactions with the animal protein intake were driven by the intake of dairy protein and we 

found that the interactions between 3-SNP GRS and dairy protein intake were not statistically 

significant (Pinteraction=0.439 and 0.597 for HbA1c and FPG, respectively) suggesting that dairy 
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protein intake is unlikely to confound the GRS-animal protein intake interaction on diabetes 

traits. Fifth, in addition to the aforementioned factors, we adjusted for other possible 

confounders such as physical activity level, smoking, alcohol consumption, and fibre intake 

and found that the interactions between the 3-SNP GRS and protein intake on HbA1c and FPG 

were still significant (Pinteraction= 0.009 and 0.008, on HbA1c and FPG respectively). 

6.5 Discussion  

The current research provides evidence for the GRS-protein intake interaction on T2D-related 

traits in an Asian Indians. We found that individuals with >1 risk allele had higher FPG and 

HbA1c levels than those with ≤1risk allele among individuals with lower intake of plant protein 

(<39 g/day). Given that the prevalence of obesity, high FPG and T2D has increased in India 

from 1990 to 2016 (523), our findings are of importance in terms of public health. Our study 

suggests that increasing the intake of plant protein might be an effective strategy towards better 

management of blood glucose levels especially in Asian Indians with a higher genetic 

susceptibility for T2D. 

In the present study, the 3-SNP-GRS was associated with higher WC, which is in accordance 

with the findings in 7,067 individuals from the Indian Migrant Study, where a combined risk 

score of 8 variants was observed to be nominally associated with higher WC (P = 0.02) (524). 

The 3-SNP GRS was also associated with FPG and HbA1c, where individuals with higher GRS 

had higher FPG and HbA1c. Similarly, a large GWAS in 159,940 individuals of African, South 

Asian, East Asian and European ancestries identified 60 genetic variants influencing HbA1c 

(525), including SNPs located in the FTO and TCF7L2 genes. An association of 8-SNP GRS 

with T2D was found in a case-control study of 5,148 Indians (including 1,808 individuals 

withT2D and 1,549 controls) from in and around Pune in western India (159). A case-control 

study of 3,357 Indian adults (including 2,486 individuals with T2D and 2,678 controls) also 
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found that individuals with a higher GRS, derived from 32 SNPs, were at a higher T2D risk 

compared to those with lower GRS (160). The EpiDREAM prospective cohort study (n=15,466 

individuals) has shown that South Asians might have a greater genetic load for T2D than 

Latinos and Europeans (526). If our study findings are confirmed in larger cohorts, our 3-SNP 

GRS might serve as a diagnostic marker for investigating the cumulative effect of SNPs on 

diabetes-related traits and identifying Asian Indians with a high genetic risk of T2D. 

Increasing evidence has shown that certain dietary factors might interact with genetic 

susceptibility in relation to the risk of diabetes and related traits (256-258, 260, 527). In our 

study, individuals with higher 3-SNP GRS had higher fasting glucose and HbA1c 

concentrations than individuals with lower GRS among individuals with low intake of plant 

protein. The results of the current analysis are in agreement with a recent study among 

Southeast Asian women (n=110) showing significant interactions between a 15-SNP GRS and 

total protein intake. The study found that consuming a low protein diet (13.51±1.18 % of TEI) 

was associated with lower WC and triacylglycerol concentrations, particularly in individuals 

with high genetic risk (527). Also, significant interactions of the FTO SNPs [rs8044769 (C>T), 

rs3751812 (G>T) and rs8050136 (A>C)] with protein intake on blood glucose were observed 

in 819 Polish adults, where high protein intake (>18 % of TEI) was associated with higher 

blood glucose in individuals with the TT genotype of rs8044769, CC genotype of rs8050136, 

and GG genotype of rs3751812 (528). However, the effect of protein sources was not analysed 

in the abovementioned studies, thus, direct comparison between these studies and our findings 

cannot be performed. In contrast to our study, a large prospective case-cohort study from 8 

European countries (n=21,900) found no significant interactions between intake of protein and 

metabolic GRSs on T2D (529).Similarly, no interaction was found between protein intake and 

a 10-SNP GRS on T2D risk among 8,842 Korean adults (258). These discrepancies in the 

findings might be due to differences in ethnicity, dietary assessments, dietary patterns, relative 
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proportions of different macronutrients, protein sources, sample sizes and GRS construction 

methods; hence, larger studies in multiple ethnic groups are needed to confirm the GRS-protein 

intake interactions. 

 Previous studies have examined the relationship between protein intake and T2D in 

South Indians. A cross-sectional study of 900 urban South Indians from Chennai demonstrated 

that individuals with known T2D had significantly higher protein intake (15.9%) than controls 

(14%) (530). Another study in Asian Indians from different parts of India reported similar 

findings, where diabetic individuals (n=385) had higher protein intake (14%) than controls 

(12%) (n=409) (531). A cohort including 146 Asian Indians living in San Francisco found that 

individuals were at increased T2D risk when the protein intake was high. The same study also 

reported that the intake of animal protein (32±15 g/day) was more likely to be associated with 

diabetes risk (P=0.07) in comparison with the intake of vegetable protein (38±8 g/day; P=0.26) 

(532). Even though consuming diets high in protein have been one of the most popular 

strategies for losing weight and the management of overweight and obesity (177-179), the 

health impacts of diets high in protein on T2D are inconsistent. High animal protein intake, but 

not plant protein, showed significant association with a higher risk of T2D in 38,094 

individuals (median intake of animal protein=62 g/day;10 years of a follow-up period) from 

the European Prospective Investigation into Cancer and Nutrition-Netherlands (EPIC-NL) 

study (180), and in 37,309 women from the US (median intake of total meat in the highest 

quintiles=53.5 serving/day; 8.8 years of a follow-up period) from the Women's Health Study 

(181). Also, a large case-cohort study including 28,557 European individuals reported that high 

animal protein intake was associated with higher incidence of T2D (per 10 g: 1.05 [1.02–1.08], 

Ptrend =0.001) over an average follow-up period of 12 years (502). Furthermore, the high intake 

of animal protein (5% increase in consumption of protein derived from meat and meat 

products) was shown to be associated with a 34% increased risk of T2D, whereas the intake of 
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plant protein was shown to have a considerable protective effect in 1,190 elderly participants 

from the Mediterranean islands (503). A large study of 92,088 women and 40,722 men from 

the United States found that substituting 5% of energy intake from animal protein with plant 

protein was associated with a decrease in T2D risk by 23% (533). Also, a systematic review 

and meta-analysis of thirteen randomized controlled trials (n=280 middle-aged adults from 

Iran, Denmark, United States, Germany, Canada and Greece) found significant decreases in 

HbA1c, fasting insulin and fasting glucose in diets that substituted animal protein with plant 

protein at a median level of ~ 35% of total protein intake/day (534). Another systematic review 

and meta-analysis of eleven cohort studies, including individuals from the United States, 

Europe, Asia, Melbourne and Finland (52,637 cases among 483,174 individuals), showed that 

the intakes of total protein and animal protein increased T2D risk in both men and women, 

whereas plant protein intake decreased T2D risk in women (535). Previous cohort studies in 

the United States (90,239 women and 40,539 men) and in the Netherlands (6798 individuals), 

found that an association between the higher adherence to a plant-based diet and a lower risk 

of T2D (536, 537). In contrast, other prospective cohort studies (n=8,370-38,094 individuals) 

observed no significant associations (180, 538, 539). It is possible that the interactions between 

genetic factors and protein intake might be one of the reasons for the discrepancies in the effect 

of dietary protein intake on the risk of T2D and its related traits.  

The dietary patterns across different parts of India have been significantly affected by 

urbanisation. Given that food availability and purchasing power are higher in urban than rural 

areas, diets of both residents tend to differ significantly (501, 540).  Protein intake has been 

shown to be positively related to individuals’ income, where the demand for animal protein 

increased with the disposable income (501). Higher protein intake has also been reported in 

urban areas in India, with the overall mean intake of protein being the highest in the high-

income group (73.1 g/day) followed by the middle-income group (63.2 g/day), industrial 
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labourer (59.4 g/day), and low-income group (57.8 g/day) (541, 542). The present study 

included urban residents and the mean protein intake is 71.6±22.7g/day, which is higher than 

dietary protein recommendations for Asian Indians (55-60 g/day) (543). However, the mean 

protein intake is only 11% (percentage calories coming from the protein), which is similar to 

the previous large studies such as National Family Health and National Nutrition Monitoring 

Bureau surveys that were conducted in the Indian population (544, 545). A study in 6,907 

adults from South India aged > 20 years showed that the consumption of pulses was lower in 

the rural compared to urban Indian adults (546) and a cross-sectional study including 56,742 

men and 99,574 women aged 20-49 years also demonstrated that an inverse association 

between the daily or weekly legumes and presence of diabetes (547). A recent study in 1,033 

Indian adults also showed that a significant decrease in the risk of T2D was observed among 

those having higher intakes of legumes and pulses (548). In the same population, a study in 

2,042 individuals reported that pulses and legumes contributed only to 17.2% of the daily 

protein suggesting a reduced intake of plant protein (549).  Hence, according to the findings 

from the previous studies and the GRS- plant protein intake interaction from the present study, 

increasing the intake of plant protein might be an effective strategy to arrest the rising epidemic 

of T2D among Indian adults. 

The strength of this study include is the use of a representative sample of the urban Chennai 

population. Given that diabetes prevalence continues to be higher in urban residents compared 

to rural residents in India (276, 550, 551), understanding gene-diet interactions on T2D in urban 

areas would improve diabetes prevention strategies among urban Indians. Our study used 

unweighted GRSs to analyse the combined effect of several SNPs, which is an effective 

approach to study polygenic diseases such as T2D and obesity, providing a better knowledge 

of disease risk compared to a single-SNP analysis (153). A comprehensive and validated semi-

quantitative FFQ was used for analysing dietary intakes (518). Furthermore, anthropometric 
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outcomes were assessed by qualified staff rather than self-reported to improve the accuracy of 

anthropometric measurements. However, the study has several limitations. First, the study has 

a small sample size suggesting that we might have had insufficient power for our analysis. To 

maximise power, we used a GRS approach, which has an advantage over single-SNP analysis, 

and significant associations and interactions were found. Second, the observational nature of 

the study design cannot explain causal relationships or exclude residual confounding; however, 

sensitivity analyses were carried out where adjustment for additional confounding factors such 

as diabetes duration, total fat intake, physical activity level, anti-diabetic medication, alcohol 

consumption, smoking and fibre intake was performed. Third, dietary intake was assessed 

using self-reported FFQ, which might have introduced recall and measurement bias. Finally, 

SNPs contributing to our GRSs represent only a small proportion of the increasing number of 

identified metabolic disease-associated variants in Asian Indians; however, we have chosen 

SNPs in TCF7L2 and FTO genes that have presented the most consistent and strongest 

associations with T2D and obesity, respectively in several populations (80, 253).  

6.6 Conclusion  

In summary, the current study has found a novel GRS-protein intake interaction where 

individuals with >1 risk allele and lower intake of plant protein (<39 g/day) had higher FPG 

and HbA1c levels. This suggests that increasing the intake of plant protein may be an effective 

approach to overcome the genetic risk of diabetes in urban Asian Indians and to prove this 

hypothesis appropriate randomized clinical trials with diets of higher and lower plant protein 

intake need to be done. Moreover, there is a need for studies with larger sample sizes to confirm 

gene-diet interactions. Ultimately there is a need for the assessment of the clinical benefit of 

targeted interventions based on individuals’ underlying genetic risk. 
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Supplementary Materials: The following are available online at, Table S1: Genotype 

distribution of the seven SNPs that were chosen for our study (n = 1,062). Figure S1: 

Methodology of the Chennai Urban Rural Epidemiology Study (CURES). Figure S2: 

Interaction between 3-SNP GRS and animal protein intake (%) on fasting plasma glucose and 

glycated haemoglobin after adjusting for anti-diabetic medication.  
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6.7 Supplementary materials 

6.7.1 Table S1. Genotype distribution of the seven SNPs that were chosen for our study 

(n= 1,062) 

Gene SNP 

MAF 

among 

NGT 

Controls 

MAF 

among 

T2D 

cases  

MAF in the 

present study 

dbSNP 

MAF for 

SA 

HWE 

  
 

TCF7L2 rs12255372 0.20 0.21 T= 0.21 0.22 0.36  

TCF7L2 rs7903146 0.30 0.33 T= 0.31 0.30 0.12  

FTO rs8050136 0.06 0.13 A= 0.10 0.29 0.35  

FTO rs918031 0.49 0.48 C= 0.49 0.48 0.09  

FTO rs1588413 0.25 0.32 T= 0.29 0.26 0.15  

FTO rs11076023 0.49 0.45 T= 0.47 0.36 0.48  

FTO rs7193144 0.13 0.12 T= 0.12 0.29 0.16  

Abbreviations: SNP single nucleotide polymorphisms; dbSNP single nucleotide polymorphism 

database; MAF minor allele frequency; T2D type 2 diabetes; SA South Asians; HWE Hardy-

Weinberg equilibrium; TCF7L2 Transcription factor 7-like 2; FTO fat mass and obesity-

associated. 
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6.7.2 Figure S1: Methodology of the Chennai Urban Rural Epidemiology Study 

(CURES) 
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6.7.3 Figure S2: Interaction between 3-SNP GRS and animal protein intake (%) on 

fasting plasma glucose and glycated haemoglobin after adjusting for antidiabetic 

medications.  
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White bars indicate individuals with GRS ≤1 risk allele; the black bars indicate individuals 

with GRS >1 risk allele. (a) Individuals with>1 risk allele had a significantly higher FPG 

compared to those with ≤1 risk allele, among those with higher intake of animal protein (>19 

g/day) (P=0.008). (b) Individuals with>1 risk allele had a significantly higher HbA1c compared 

to those with ≤1 risk allele, among those with higher intake of animal protein (>19 g/day) 

(P=0.001). P values were adjusted for age, sex, T2D, BMI, antidiabetic medications, total fat 

intake (%) and TEI. Abbreviations: GRS, genetic risk score; FPG, fasting plasma glucose; 

HbA1c, glycated haemoglobin and TEI, total energy intake. 

 



170 

 

Chapter 7 Discussion and conclusion 

7.1 Discussion  

The science of nutrigenetics explores gene-diet interactions in relation to individuals’ 

variation in health and disease states, including type 2 diabetes (T2D), obesity and 

cardiovascular diseases (CVD), to offer personalised dietary advice according to the 

individual’s genetic susceptibility. Personalised nutrition might be a promising approach for 

preventing or treating cardiometabolic diseases (5). The findings from this thesis contribute to 

the science of nutrigenetics by demonstrating the occurrence of genetic heterogeneity in gene-

diet interactions on cardiometabolic diseases and their related traits across different ethnic 

groups.  

Studies investigating gene-diet interactions on cardiometabolic diseases have reported 

inconsistent findings. This can be explained by genetic heterogeneity and small sample sizes, 

limiting the ability of these studies to offer personalised nutrition for each ethnic group (222, 

419). Gene-diet interactions have been investigated extensively in developed countries. In 

contrast, nutrigenetic studies are scarce in developing countries due to limitation in several 

factors including funding, infrastructure and expertise (222, 419). In this thesis, a genetic 

approach was used to analyse the association between cardiometabolic disease-related single 

nucleotide polymorphisms (SNPs) and cardiometabolic traits in various ethnic groups. In 

addition, a nutrigenetic approach was used to investigate the interaction between these SNPs 

and lifestyle factors including physical activity and dietary intake of proteins, carbohydrates 

and fats on cardiometabolic traits in five different ethnic groups. 

Given that the genetic make-up differs between populations, this thesis included 

individuals from different ethnic groups [Turkish adults, Indonesian women, Ghanaian adults, 

Brazilian young adults and South Asian Indian adults and elderly] to examine gene-lifestyle 
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interactions, which will allow us to tailor dietary guidelines based on each ethnicity. This 

project included five studies: three cross-sectional cohort studies [The Minangkabau Indonesia 

Study on Nutrition and Genetics (MINANG study; Indonesian women; n=110), The Genetics 

of Obesity and Nutrition in Ghana (GONG study; Ghanaian adults; n= 302) and The Study of 

Cholesterol, Obesity, Lifestyle and Diabetes (BOLD study; Brazilian young adults; n= 200)] 

and two case-control studies [study of obesity in Turkish adults (n= 400) and study of diabetes 

in Chennai Urban Rural Epidemiological Study (CURES; Asian Indian, n=1062)]. Statistical 

analysis was performed using Statistical Package for the Social Sciences (SPSS) software 

(version 24; SPSS Inc., Chicago, IL, USA). Both logistic and general linear models were used 

for association and interaction analyses. Models were adjusted for age, sex, body mass index 

(BMI), T2D, residential area, total energy intake (TEI) wherever appropriate. Findings from 

this thesis are summarised below.  

7.2 FTO gene–lifestyle interactions on serum adiponectin concentrations and central 

obesity in a Turkish population 

Obesity is a significant global public health problem. In 2017, 64.4% and 28.8% of the 

Turkish population were overweight and obese, respectively (264). Obesity is caused by 

complex interactions between lifestyle and genetic factors (263), with the fat mass and obesity-

associated (FTO) gene being one of the strongest obesity genes (76). Investigating these 

interactions would provide better approaches for obesity management. There were no previous 

nutrigenetic studies among the Turkish population. Thus, our study aimed to investigate the 

associations of two FTO SNPs (rs9939609 and rs101634090) with obesity and related traits, 

including BMI, waist circumference (WC), fat mass index (FMI) and adiponectin level), and 

to assess whether lifestyle factors modify these association in 400 Turkish adults (aged 24-50 

years). A genetic risk score (GRS) was developed using both FTO SNPs.  
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In agreement with previous studies (76, 268, 287, 288, 314, 552, 553), we found that the 

FTO SNP rs9939609 and GRS were both associated with BMI and FMI. Similarly, the 

FTO SNP rs1421085, which is in linkage disequilibrium (LD) with the SNP rs9939609, 

showed a significant association with higher BMI in a previous study among Turkish adults 

(289). In the present study, significant interactions were also detected between SNP rs9939609 

and physical activity on adiponectin concentrations, and SNP rs10163409 and dietary protein 

intake on the risk of increased WC. A study including Turkish adults (n=200) showed that 

homozygous individuals of the risk allele ‘A’ of the FTO SNP rs9939609 had significantly 

higher BMI than those with the genotype ‘TT, among those with low physical activity level 

(320). Our study (n=400) detected a similar interaction, but on concentrations of adiponectin 

(which is a biochemical measure of obesity), rather than BMI. We found that individuals with 

the allele “A” of the SNP rs9939609 had significantly lower adiponectin concentrations than 

individuals with the “TT” genotype among those with the lowest physical activity level. 

Adiponectin is a protein hormone generated by adipose tissue and has antiatherogenic, anti-

inflammatory, antihyperglycemic and cardioprotective effects (321-323). A strong correlation 

between dysregulation of adipokine production and the onset of metabolic abnormalities such 

as CVD and cancer has been reported (324, 325, 554). A positive correlation was also reported 

between physical activity and adiponectin concentrations (326, 327), where an increased level 

of physical activity was associated with reduced body adiposity which increases the production 

of adiponectin and decreases glucose, leptin and insulin production (555). Indeed, adiponectin 

levels are inversely associated with glucose, BMI, insulin, IR and the levels of triglyceride and 

visceral adiposity (329). It has been found that levels of adiponectin were significantly 

increased in response to a weight-loss intervention among 400 obese European women (330).  

Furthermore, our study has shown that the higher intake of protein (mean ± SD: 138 ± 

38 g/day) was associated with higher central obesity risk in individuals with the “T” allele of 
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the SNP rs10163409 than individuals with the “AA” genotype. The Turkish population has a 

sedentary lifestyle (264) and has undergone a nutrition transition in which dietary intake has 

changed because of changes in food accessibility, globalisation and lifestyle (556). It has been 

estimated that protein intake per capita has increased by 10.6% (between the period 1961 and 

2011) (556). Given these environmental changes along with the increase in obesity prevalence 

in Turkey, our findings might contribute to the implementation of successful public health 

policies aimed at preventing and managing central obesity in this population. 

7.3 Interaction between the genetic risk score and dietary protein intake on 

cardiometabolic traits in Southeast Asians 

Cardiometabolic diseases are a significant cause of morbidity, mortality and health care 

spending especially in low-middle income countries (LMICs) (169). In Indonesia, non-

communicable diseases (NCDs) contributed to 73% of all death rate, with CVD accounting for 

35%, cancers (12%) and diabetes (6%) (265). These diseases are complex traits influenced by 

several SNPs, as well as lifestyle factors, emphasising the importance of investigating gene-

lifestyle interactions (5). Thus, our study aimed to examine the association of a novel GRS 

constructed from 15 SNPs with cardiometabolic traits and examined whether these associations 

were modified by lifestyle factors such as dietary intake and physical activity in 110 

Minangkabau women (aged 25–60 years) from Padang, Indonesia. The Minangkabau ethnic 

group is a matrilineal society mostly living in West Sumatra, where the prevalence of obesity, 

hypertension, and low concentration of high-density lipoprotein cholesterol (HDL-C) is higher 

than 50% (337). Previous studies have demonstrated that Minangkabau community has an 

increased risk of dyslipidaemia (338), high prevalence of central obesity (340), as well as the 

highest concentrations of low-density lipoprotein cholesterol (LDL-C) and total plasma 

cholesterol than other larger ethnic groups (Buginese, Sundanese and Javanese) (339).  
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 The selected SNPs were rs3792267 and rs5030952 located in Calpain 10 (CAPN10) 

gene; rs9939609, rs10163409 and rs8050136 located in FTO gene; rs17782313 and rs2229616 

located in melanocortin4 Receptor (MC4R) gene; rs12255372 and rs7903146 located in 

transcription factor 7-like 2 (TCF7L2) gene; rs2237895 and rs2237892 located in potassium 

voltage-gated channel subfamily Qmember 1 (KCNQ1) gene; rs10811661 located in cyclin 

dependent kinase inhibitor 2A/2B (CDKN2A/2B) gene; rs1801282 located in peroxisome 

proliferator-activated receptor gamma (PPARG) gene; and rs266729 and rs17846866 located 

in adiponectin (ADIPOQ) gene. 

This study identified an association of the GRS with BMI as well as the FTO SNP 

rs10163409 interaction with protein intake on WC which was also observed in our Turkish 

study. In the present study, the GRS was significantly associated with BMI, where individuals 

with > 5 risk alleles had higher BMI than those with ≤ 5 risk alleles, suggesting that having a 

higher GRS is a strong risk factor for higher BMI. Also, significant interactions were detected 

between the GRS and protein intake on WC and triglyceride concentrations, where women 

with > 5 risk alleles had significantly lower WC and triglyceride concentrations than those with 

≤ 5 risk alleles among those with a lower intake of protein (13.51 ± 1.18% of TEI). The mean 

protein intake of our sample was 77± 37 g/day, which is higher than the recommended dietary 

protein daily allowance of 57–59 g/day for Indonesian women (371, 372). Our study indicates 

that consuming a diet low in protein (13.51 ± 1.18% of TEI), particularly in individuals with 

higher genetic risk, may be an effective strategy for preventing cardiometabolic disease in 

Southeast Asian women. These findings are important in terms of public health, considering 

the high prevalence of central and common obesity in Minangkabau women (340) A previous 

study including European individuals (n= 42,702) has reported a significant association 

between central obesity and a higher risk of mortality even in individuals with normal weight 

(35). This is of great concern in Asians, where elevated levels of visceral adiposity levels are 
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present even in individuals with normal BMIs (367-369). The combination of increased 

triglyceride concentrations along with elevated WC has been termed as the 

‘hypertriacylglycerolaemic waist’ phenotype (370). Evidence has shown that this phenotype is 

associated with a higher risk of IR, visceral adiposity and CVD (370). Thus, targeting 

‘hypertriacylglycerolaemic waist’ phenotype might have major public health implications in 

relation to decreasing mortality rate caused by cardiometabolic diseases in Asian populations.  

7.4 Interaction between Metabolic Genetic Risk Score and Dietary Fatty Acid Intake 

on Central Obesity in a Ghanaian Population. 

Obesity is a multifactorial condition caused by a complex interplay between genetic and 

lifestyle factors. It has reported that overweight or obesity account for nearly 43% of Ghanaian 

adults (266). The majority of gene–lifestyle interaction studies have been performed in 

European ancestry populations, and the replication of these nutrigenetic studies in Africans is 

uncertain (267, 268). Thus, we aimed to examine the associations of different GRSs with 

obesity-related traits and to investigate the effect of physical activity and dietary intake on these 

associations among 302 healthy Ghanaian adults.  

Three metabolic GRSs were calculated including the 12-, 8- and the 4-SNP GRSs. The 

12-SNP GRS included the following SNPs: ADIPOQ (rs266729), KCNQ1 (rs2237892), 

TCF7L2 (rs12255372, rs7903146), MC4R (rs2229616, rs17782313), CDKN2A/2B 

(rs10811661), CAPN10 (rs5030952, rs3792267), FTO (rs10163409, rs9939609) and PPARG 

(rs1801282). No significant associations or interactions were observed with the 12-SNP GRS 

which could be explained by the fact that four of the SNPs had low minor allele frequency 

(MAF) of less than 5%; MC4R (rs2229616), FTO (rs10163409), CDKN2B (rs10811661) and 

PPARG (rs1801282). Hence, these four SNPs were excluded, and an 8-SNP GRS was 

constructed. In the 8-SNP GRS, no significant findings were detected which might be because 
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the GRS included 4 SNPs [ADIPOQ (rs266729), KCNQ1 (rs2237892) and CAPN10 

(rs3792267, rs5030952)] that have not shown consistent associations with obesity and related 

traits in several ethnic groups (362, 422-426). Thus, these 4 SNPs were removed, and a 4-SNP 

GRS was calculated from [TCF7L2 (rs12255372, rs7903146), MC4R (rs17782313) and FTO 

(rs9939609)] that have shown consistent associations with obesity across various populations.  

Interestingly, associations between metabolic-GRSs and metabolic traits in other 

populations examined in this thesis (Turkey, Indonesia and India) were not found and this 

might be because individuals of African ancestry have decreased patterns of linkage 

disequilibrium, greater genetic variation and more diverse haplotype than other populations, 

limiting the replication of previously observed genetic associations (438). Gene-environment 

and gene-gene interactions as well as differences in sample sizes and GRS construction 

methods could also explain discrepancies between studies. In this Ghanaian study, the 4-SNP 

GRS showed significant interactions with dietary fat intakes on waist circumference (WC). 

Among Ghanaian adults with higher consumptions of total fat, saturated fatty acids (SFA), 

monounsaturated fatty acids (MUFA), and polyunsaturated fatty acids (PUFA), individuals 

with ≤ 3 risk alleles had a significantly higher WC than those with <3 risk alleles. These 

findings are in agreement with previous studies in the UK (385) and the US (443) populations, 

reporting significant associations of GRSs with increased WC among individuals with high 

consumption of total fat and SFA on WC. Our findings are also consistent with previous 

evidence investigating interactions of a single gene locus with diet on obesity-related traits. For 

example, data from 2,163 and 28,449 individuals living in the US and Malmö, respectively, 

showed significant interactions between the FTO SNP rs9939609 and total fat consumption on 

BMI (240, 241). Furthermore, significant interactions of the FTO SNP rs9939609 with MUFAs 

(240) and SFAs (240, 298, 441) on BMI have been reported the US (n= 2,163 individuals), 

French (n=1,754 individuals) and Spanish (n=354 children and adolescents) populations. In 
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addition, high MUFA consumption showed an association with lower weight loss among 

individuals with the risk allele ‘A’ of FTO rs9939609 (557). Also, a significant interaction 

between the risk allele ‘T’ of the TCF7L2 SNP rs12255372 and fat consumption on HDL-C 

was reported in South Asians (n=1,680) (261). 

Our study is the first of its kind in the Ghanaian population, suggesting that a higher 

intake of dietary fat might have the potential to raise the genetic risk of central obesity. These 

findings support the current dietary guideline of reducing the intakes of total fat and SFA, to 

decrease obesity risk, particularly in adults with a higher genetic predisposition to central 

obesity. Given the high intake of SFA and MUFA- rich foods in the Ghanaian population, our 

findings are of importance to public health (427). 

7.5 Effect of dietary fat intake and genetic risk on glucose and insulin-related traits in 

Brazilian young adults 

T2D prevalence has raised over the world (17), but at a faster rate in LMICs (459). In 

Brazil, 22.0% and 3.3% of adolescents have prediabetes and T2D, respectively (269). Studies 

have reported a high prevalence of cardiometabolic risk factors including dyslipidaemia, 

abdominal obesity and high blood pressure, high insulin levels, physical inactivity, and 

unhealthy diet among Brazilian adolescents (269-274). Thus, early interventions focusing on 

these risk factors would be an effective approach for slowing T2D progression and decreasing 

the risk of CVD (17). T2D pathogeneses involve complex interactions between genetic and 

dietary factors, however, no previous GRS-diet interaction studies have been performed in 

young Brazilian adults. Therefore, we aimed to examine the interaction between a metabolic 

10-SNP GRS and dietary intake on metabolic traits among 200 healthy Brazilian young adults.  

The GRS was calculated from the following SNPs: rs12255372, rs7903146 of the Transcription 

factor 7-like 2 (TCF7L2) gene, rs17782313 of the melanocortin 4 Receptor (MC4R) gene, 
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rs8050136 and rs10163409 of the fat mass and obesity-associated (FTO), rs2237892 and 

rs2237895 of the Potassium voltage-gated channel subfamily Q member 1(KCNQ1) gene, 

rs10811661of the Cyclin dependent kinase inhibitor 2A/2B (CDKN2A/2B) gene, rs5030952 of 

the Calpain 10 (CAPN10) gene, and rs1801282 of the Peroxisome proliferator-activated 

receptor gamma (PPARG) gene. 

In contrast to the Turkish and Indonesian studies, the GRS was associated with lower 

BMI. The Brazilian population is characterised by a mixed genetic ancestry including Africans, 

Europeans and Native Amerindians and this may justify these discrepancies between studies 

(478). In the present study, significant interactions between the GRS and fat intake observed 

in the Ghanaian study was also replicated, however, on diabetes-related traits rather than WC. 

We found that individuals with ≥5 risk alleles had increased fasting insulin level, insulin-

glucose ratio, HOMA-B and HOMA-IR than those with <5 risk alleles among the high-fat 

intake category (37.98 ± 3.39% of total energy intake (TEI)). The GRS-fat interactions 

observed in this study possibly reflects the dietary pattern of the Brazilian population that is 

characterised by a high intake of processed foods (273). Although it is difficult to directly 

compare our findings with previous nutrigenetic studies, because of differences in the study 

design, ethnicity, sample size, GRS construction and assessment of dietary intake, our study is 

consistent with previous research, reporting significant interactions between fat intake and 

GRS on metabolic traits (256-258). An intervention study (n=733 European adults) found that 

the higher total fat consumption was associated with higher fasting glucose among individuals 

with a higher 12-SNP GRS and with reduced fasting glucose in those with a lower 12-SNP 

GRS (256). Similar SNP-fat interactions were observed in studies using single-locus approach 

analysis (558-560).  

Our study proposes that individuals with high genetic risk are sensitive to fat intake with 

respect to these traits and might obtain the greatest benefit from following the Brazilian dietary 
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guidelines aiming to reduce the intake of fat to less than 30 % of TEI (477). This might have 

important public health implications in terms of offering early dietary interventions to young 

adults in Brazil, particularly those with high genetic predisposition before the development of 

T2D.   

7.6 Low dietary intake of plant protein is associated with genetic risk of diabetes-

related traits in urban Asian Indian adults. 

South Asian ethnic population have a 50% higher risk of T2D than other ethnic groups 

(275, 276). India is a major contributor to the global increased prevalence of T2D (17), where 

the number of T2D cases increased from 26.0 million to 65.0 million between 1990 and 2016 

(277). In India, urbanization plays a major role in T2D development as it is associated with a 

decreased level of physical activity and increased intake of processed foods and dietary fats 

(497, 498, 500). Furthermore, the consumption of protein from animal sources (including meat, 

fish, eggs and milk) and pulses in the Indian urban areas is higher in comparison with the rural 

areas (501). The intake of animal protein has been shown to be associated with increased T2D 

risk in several large longitudinal studies (180-182, 502, 503), where the intake of plant protein 

was associated with lower T2D risk in several studies (533-535). Interactions between genetic 

factors and urbanisation have further escalated the increasing T2D prevalence in South Asians 

(278, 279). However, studies examining interactions between GRS and nutrient intake among 

Indians are sparse. Thus, we investigated the joint effect of 7 SNPs on T2D and metabolic traits 

and interactions with dietary factors in 1,062 urban south Asian Indians.  

In the present study, a 7-SNP GRS was created using the following SNPs: TCF7L2 SNPs 

(rs7903146 and rs12255372) and FTO SNPs (1588413, rs8050136, 7193144, 918031 and 

1076023). Additionally, we generated a GRS of only 3 variants (TCF7L2 rs7903146 and 
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rs12255372 and FTO rs8050136) which have shown consistent associations with metabolic 

disease and related outcomes in several populations.  

Unlike Turkish and Indonesian studies, no significant association between the GRSs and 

BMI was detected in this Indian study. Similar to the Turkish and Indonesian studies, this study 

observed significant GRS-protein interactions, however, on diabetes-related traits rather than 

on central obesity. We found significant associations of the 7-SNP and 3-SNP GRS with higher 

WC. Also, we detected significant associations between the 3-SNP GRS and higher fasting 

plasma glucose (FPG) and glycated haemoglobin (HbA1c), and these associations were 

modified by protein intake. We found that among individuals with low plant protein intake 

(<39g/day) and high animal protein intake (>19.27g/day), those with >1 risk allele had higher 

HbA1c (P=0.00005 and P=0.001, respectively) and FPG (P=0.0005 and P=0.008, respectively) 

than individuals with ≤1 risk allele. In agreement with our findings, a longitudinal study (10 

years of a follow-up period) including 38,094 European individuals reported a significant 

association between the high intake of animal protein, but not plant protein, and increased T2D 

risk (median animal protein intake =62 g/day) (180). A similar association was reported in the 

Women's Health Study (n=37,309; 8.8 years of a follow-up period) (181). A large cohort 

(n=92,088 women and 40,722 men living in the United States (US)) found that replacing 5% 

of energy intake from animal protein with plant protein was associated with a reduction in T2D 

risk by 23% (533). Also, a systematic review and meta-analysis of thirteen randomized 

controlled trials including 280 individuals found significant reductions in HbA1c, fasting 

insulin and fasting glucose in diets that substituted animal protein with plant protein at a median 

level of ~ 35% of total protein intake/day (534). Another systematic review and meta-analysis 

of eleven cohort studies, including individuals from the US, Finland, Asia, Europe and 

Melbourne (52,637 cases among 483,174 individuals), found that the intakes of total protein 

and animal protein increased T2D risk in both men and women, whereas plant protein intake 
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decreased T2D risk in women (535). Furthermore, the high intake of animal protein showed a 

significant association with higher T2D incidence (per 10 g: 1.05 [1.02–1.08], Ptrend =0.001) in 

28,557 European individuals followed for about 12 years (502). In contrast, no significant 

associations were found in other large prospective cohort studies (n=8,370-38,094 participants) 

(180, 538, 539), which could be explained by undetected gene-protein interactions.  

Our findings further support the contribution of both FTO and TCF7L2 SNPs in the 

development of T2D and central obesity and the modification of genetic associations with 

diabetes-related traits by high intake of protein in urban South Asian Indians. The present study 

also indicates that higher the intake of plant protein and lower the intake of animal protein are 

associated with lower diabetes genetic risk in urban Asian Indians. This might have significant 

public health implication in terms of reducing the high prevalence of obesity, high FPG and 

T2D in India (523), although requires confirmation in further larger cohorts or intervention 

studies. 

7.7 General trends observed across various ethnic groups.  

As shown in Table 18, macronutrient intake is different across the five ethnic groups 

included in this thesis, highlighting the need for investigating the effect of different dietary 

factors, as well as gene-diet interactions on cardiometabolic diseases in various populations. 

The percent of energy from fat was highest in the Turkish population (38.29 ± 8.08%) and 

lower in Ghanaian adults (22.98 ± 9.11 %) and Indian adults (23.42 ± 4.73 %) than other 

populations (Indonesian: 28.95 ± 7.99 % and Brazilian young adults: 31.66 ± 5.83 %). The 

acceptable macronutrient distribution range (AMDR) for fat is 20-35 % of TEI (561). The 

Turkish population consumed fat above the AMDR, where the fat intake of all other groups 

was within the AMDR. Protein intake as a percentage of TEI was higher in Brazilian young 

adults (17.11 ± 3.63 %) and Indonesian women (16.93 ± 3.32 %) and lowest in Indian adults 
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(11.36 ± 1.21 %) than other populations (Turkish: 15. 58 ± 4.33 % and Ghanaian: 14.11 ± 4.14 

%). Protein intake was within the AMDR (10-35%) in all the populations (561). The percent 

of energy from carbohydrate was higher in the Indian (64.62 ± 6.21 %) and Ghanaian 

populations (62.48 ± 9.70 %) and lowest in the Turkish population (45.92 ± 9.34 %) than other 

ethnic groups (Brazilian young adults: 51.09 ± 7.11 % and Indonesian adults: 53.97 ± 9.44 %). 

The carbohydrate intake of Turkish and Indian populations was very close to the lower and 

upper limits of the AMDR, respectively, where the intake of other populations was within the 

AMDR (45-65 %) (561).  

Comparison of dietary intake across these five studies might have been affected by 

sampling methods. The Brazilian population included young adults (19-24 years), whereas the 

Indian population included adults and elderly participants (25-80 years). Indonesian, Turkish 

and Ghanaian populations included participants with age ranging between 25-60 years. It is 

worth noting that adopting new dietary patterns is more likely in younger populations than 

older populations; hence, to prevent adult onset diseases such as obesity and diabetes, providing 

dietary advice to the younger population might be an effective strategy. Further research 

looking at both urban and rural populations and controlling for confounding factors such as 

socioeconomic status is required (562).  

As shown in Table 18, the highest mean of BMI was observed in the Ghanaian population 

(26.63±4.99), whereas Brazilians reported the lowest mean (23.35 ± 4.42) and Turkish and 

Indonesians reported similar means of BMI (25.80 ± 4.22 and 25.13±4.20, respectively). 

Similar means of percentage of body fat mass were observed in Ghanaian (33.12±13.90) and 

Brazilian (33.91 ± 10.72) populations. Indians reported the highest means of fasting glucose 

(125.78 ± 63.95), and HbA1c (7.28 ± 2.4) compared to the other four populations. Given the 

heterogeneity that exists across these studies, generalizing these findings is difficult. 
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Table 18: Macronutrient Intakes, Anthropometric and biochemical parameters: A 

Comparison of the Turkish, MINANG, GONG, BOLD and CURES studies. 

Parameters Turkish study 

Indonesian 

MINANG study 

Ghanaian 

GONG study 

Brazilian 

BOLD study 

Indian 

CURES 

study 

 

(N= 400) (N=111) (N=302) (N= 200) (N= 1,062) 

Total energy (Kcal/day) 2416.44 ± 1064.1 1776.24 ± 611.43 1647.93 ± 685.83 

1827.81 ± 

597.94 

2536.01 ± 

804.95 

Fat (%) 38.29 ± 8.08 28.95 ± 7.99 22.98 ± 9.11 31.66 ± 5.83 23.42 ± 4.73 

Protein (%) 15. 58 ± 4.33 16.93 ± 3.32 14.11 ± 4.14 17.11 ± 3.63 11.36 ± 1.21 

Carbohydrate (%) 45.92 ± 9.34 53.97 ± 9.44 62.48 ± 9.70 51.09 ± 7.11 64.62 ± 6.21 

BMI (kg/m2) 25.8 ± 4.22 25.13 ± 4.2 26.63 ± 4.99 23.35 ± 4.42 24.59 ± 4.56 

WC 88.09 ± 11.61 83.85±10.27 88.48±12.41 74.55 ± 13.56 87.05 ± 11.55 

Body fat mass (%) N/A N/A 33.12±13.90 33.91 ± 10.72 N/A 

Fat Mass Index 6.92 ± 2.93 N/A N/A N/A N/A 

WHR N/A N/A 1.45±6.96 N/A N/A 

Visceral fat (%) N/A N/A 8.02±7.39 N/A N/A 

Plasma adiponectin 

(ng/ml) 

10497.88 ± 

6467.17 N/A N/A N/A N/A 

FPG (mg/dL) N/A 92.53±20.67 N/A 87.18 ± 6.84 

125.78 ± 

63.95 

HBA1C (%) N/A 6.56 ± 6.02 N/A 4.73 ± 0.25 7.28 ± 2.4 

Fasting insulin N/A 32428.5±25706.13 N/A 8.74 ± 3.80 9.45 ± 6.68 

(μIU/ml) 

     
HOMA-IR N/A N/A N/A 1.89 ± 0.88 N/A 

HOMA-B N/A N/A N/A 138.32 ± 65.75 N/A 

Insulin to glucose ratio N/A N/A N/A 0.10 ± 0.04 N/A 

Triglycerides (mg/dl) N/A 98.8±43.47 N/A N/A N/A 

Cholesterol (mg/dl) N/A 209.31±44.02 N/A N/A N/A 

HDL-C (mg/dl) N/A 59.12±10.29 N/A N/A N/A 

LDL-C (mg/dl) N/A 128.12±39.85 N/A N/A N/A 

SBP (mmHg) N/A 113.37±9.07 N/A N/A N/A 

DBP (mmHg) N/A 77.44±6.39 N/A N/A N/A 
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Abbreviations: MINANG, Minangkabau Indonesia Study on Nutrition and Genetics; CURES 

Chennai Urban Rural Epidemiology Study; GONG, Genetics of obesity and nutrition in Ghana; 

BOLD, Obesity, Lifestyle and Diabetes in Brazil; BMI, body mass index; WC, waist 

circumference; WHR, waist hip ratio; FPG, fasting plasma glucose; HbA1c, glycated 

haemoglobin; HOMA-IR: homeostasis model assessment estimate of insulin resistance, 

HOMA-B, homeostasis model assessment estimate of insulin secretion; HDL-C, high density 

lipoprotein cholesterol; LDL-C, low density lipoprotein cholesterol; SBP, systolic blood 

pressure; DBP, diastolic blood pressure.  

 

Ethnic differences in metabolic traits were observed across the five populations 

included in this thesis, which could be driven by variations at several genetic loci (Table 19). 

The TCF7L2 rs12255372 and rs7903146 SNPs are examples of genetic heterogeneity, where 

the frequency of minor allele ‘T’ of the SNP rs12255372 was 9% in the Indonesian population 

vs 35% in the Brazilian population, whereas Ghanaian individuals reported the highest MAF 

(37%) compared to other populations. The FTO SNP rs9939609 is one of the strongest BMI 

associated variants in several populations, demonstrating ethnic variations in this project. For 

example, the MAF of this variant in the Indonesian population was 23% in comparison to the 

Turkish population (39%). The Ghanaian population has reported the highest MAF (47%) for 

the SNP rs9939609 which is in line with previously reported values for the African population 

(https://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?do_not_redirect&rs=rs9939609). 

MAFs of MC4R and PPARG SNPs were extremely low in all populations. Another example is 

CDKN2A/B SNP rs10811661 that was present in 33 % of the Indonesian population and absent 

in the Ghanaian population.

https://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?do_not_redirect&rs=rs9939609
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Table 19: Frequencies of the SNPs: A Comparison of the Turkish, MINANG, GONG, BOLD and CURES studies 

Gene rs number 

Major 

allele 

Minor 

allele 

Common 

Homozygotes 

n (%) 

Heterozygotes 

n (%) 

Rare 

Homozygotes 

n (%) 

Minor 

allele 

frequency HWE Ethnicity 

TCF7L2 

rs12255372 G T 92 (82.9) 19 (17.1)  0.09 0.32 Indonesian 

rs12255372 G T 117 (38.7) 144 (47.7) 37 (12.3) 0.37 0.47 Ghanaian 

rs12255372 G T 85 (42.5) 92 (46) 23 (11.5) 0.35 0.80 Brazilian 

rs12255372 G T 674 (63.5) 338 (31.8) 50 (4.7) 0.21 0.36 Indian 

rs7903146 C T 90 (45) 87 (43.5) 23 (11.5) 0.33 0.78 Brazilian 

rs7903146 C T 512 (48.2) 435 (41) 115 (10.8) 0.31 0.12 Indian 

rs7903146 C T 162 (53.6) 111 (36.8) 24 (7.9) 0.27 0.42 Ghanaian 

rs7903146 C T 91 (82) 20 (18) - 0.09 0.30 Indonesian 

MC4R 

rs17782313 T C 168 (55.6) 110 (36.4) 19 (6.3) 0.25 0.86 Ghanaian 

rs17782313 T C 139 (69.5) 55 (27.5) 6 (3) 0.17 0.84 Brazilian 

rs17782313 T C 84 (75.7) 26 (23.4) 1 (0.9) 0.13 0.51 Indonesian 

rs2229616 G A 290 (96) 9 (3) - 0.02 0.79 Ghanaian 

rs2229616 G A 199 (99.5) 1 (0.5) - 0 0.97 Brazilian 

rs2229616 G A 110 (99.1) 1 (0.9) - 0 0.96 Indonesian 

PPARG 

rs1801282 C G 298 (98.7) 1 (0.3) - 0 0.98 Ghanaian 

rs1801282 C G 170 (85) 30 (15) - 0.08 0.25 Brazilian 

rs1801282 C G 100 (90.1) 10 (9) 1 (0.9) 0.05 0.21 Indonesian 

FTO 

rs9939609 T A 76 (25.2) 163 (54) 60 (19.9) 0.47 0.11 Ghanaian 

rs9939609 T A 66 (59.5) 38 (34.2) 7 (6.3) 0.23 0.63 Indonesian 

rs9939609 T A 138 (34.5) 214 (53.5) 48 (12) 0.39 0.01 Turkish 

rs10163409 A T 296 (98) 2 (0.7) - 0 0.95 Ghanaian 

rs10163409 A T 117 (58.5) 64 (32) 17 (8.5) 0.25 0.06 Brazilian 

rs10163409 A T 100 (90.1) 11 (9.9) - 0.05 0.58 Indonesian 

rs8050136 C A 866 (81.5) 183 (17.2) 13 (1.2) 0.1 0.35 Indian 

rs8050136 C A 66 (59.5) 38 (34.2) 7 (6.3) 0.23 0.63 Indonesian 

rs8050136 C A 71 (35.5) 96 (48) 30 (15) 0.4 0.79 Brazilian 

918031 T C 267 (25.1) 558 (52.5) 237 (22.3) 0.49 0.09 Indian 
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1588413 C T 530 (49.9) 454 (42.7) 78 (7.3) 0.29 0.15 Indian 

11076023 T A 225 (21.2) 540 (50.8) 297 (28) 0.53 0.48 Indian 

CDKN2A/B 

rs10811661 T C 280 (92.7) 18 (6) - 0 0.59 Ghanaian 

rs10811661 T C 151 (75.5) 45 (22.5) 4 (2) 0.13 0.76 Brazilian 

rs10811661 T C 47 (42.3) 55 (49.5) 9 (8.1) 0.33 0.20 Indonesian 

KCNQ1 

rs2237895 A C 230 (76.2) 69 (22.8) - 0.12 0.02 Ghanaian 

rs2237895 A C 85 (42.5) 91 (45.5) 23 (11.5) 0.34 0.86 Brazilian 

rs2237895 A C 56 (50.5) 45 (40.5) 10 (9) 0.29 0.82 Indonesian 

rs2237892 C T 203 (67.2) 90 (29.8) 4 (1.3) 0.16 0.09 Ghanaian 

rs2237892 C T 160 (80) 35 (17.5) 5 (2.5) 0.11 0.08 Brazilian 

rs2237892 C T 42 (37.8) 50 (45) 19 (17.1) 0.4 0.54 Indonesian 

ADIPOQ 

rs266729 C G 248 (48) 49 (42.7) - 0.08 0.12 Ghanaian 

rs266729 C G 44 (39.6) 54 (48.6) 13 (11.7) 0.36 0.56 Indonesian 

rs17846866 T G 297 (98.3) - - 0 - Ghanaian 

rs17846866 T G 103 (92.8) 8 (7.2) - 0.04 0.69 Indonesian 

CAPN10 

rs2975760 T C 281 (93) 10 (3.3) 1 (0.3) 0.02 0.01 Ghanaian 

rs2975760 T C 154 (77) 31 (15.5) 15 (7.5) 0.15 <0.0001 Brazilian 

rs5030952 T C 95 (31.5) 145 (48) 57 (18.9) 0.44 0.90 Ghanaian 

rs5030952 C T 73 (65.8) 31 (27.9) 7 (6.3) 0.2 0.15 Indonesian 

rs5030952 G A 227 (75.2) 67 (22.2) 1 (0.3) 0.12 0.09 Ghanaian 

rs3792267 G A 101 (91) 9 (8.1) 1 (0.9) 0.05 0.14 Indonesian 

rs3792267   813 (76.6) 238 (22.4) 11 (1) 0.12 0.16 Indian 

Abbreviations: MINANG, Minangkabau Indonesia Study on Nutrition and Genetics; CURES Chennai Urban Rural Epidemiology Study; GONG, 

Genetics of obesity and nutrition in Ghana; BOLD, Obesity, Lifestyle and Diabetes in Brazil; SNP single nucleotide polymorphisms; MAF minor 

allele frequency; HWE Hardy-Weinberg equilibrium; TCF7L2 Transcription factor 7-like 2; MC4R melanocortin 4 Receptor; PPARG Peroxisome 

proliferator-activated receptor gamma; FTO fat mass and obesity-associated; CDKN2A/2B Cyclin dependent kinase inhibitor 2A/2B; KCNQ1 

Potassium voltage-gated channel subfamily Q member 1; ADIPOQ, adiponectin and CAPN10 Calpain.
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7.8 Limitations and strengths  

There are some limitations that need to be considered. Some of the studies included in 

this thesis had relatively small sample sizes; suggesting that we may have had insufficient 

power for our analysis. However, we used a GRS approach to maximise power and significant 

associations and interactions were observed. Furthermore, a cross-sectional study design was 

employed by all 5 studies, limiting our ability to investigate the causal relationship between 

the GRS-lifestyle interactions on cardiometabolic diseases and related traits. Dietary intake and 

physical activity were assessed using self-reported measures which might introduce recall bias. 

Additionally, the effect of food source (plant and animal) on detected GRS-diet interactions 

was examined only in the CURES study, which might have led to a better understanding of 

these interactions. The impact of different fats (e.g., omega-6 and omega-3 PUFA), 

carbohydrates (eg sugars and starch) wasn’t determined in any of the studies and these may 

have differential effects. 

The main strengths of this thesis included the use of well-characterised populations and 

the construction of different GRSs using several genetic variants. This approach is especially 

important for polygenic traits and has an advantage over single-SNP analysis as it can increase 

statistical power and provide better identification of an individual’s disease risk (153). The 

CURES and MINANG studies used validated food frequency questioners (FFQs) (352, 518) 

to measure the long-term macronutrient consumption of the population. Furthermore, study 

outcomes were measured by trained staff to ensure the accuracy of these measures. GRS-diet 

interactions on metabolic traits have not been previously analysed in healthy Turkish adults, 

Ghanaian adults, and Brazilian young adults, thus these studies were the first of their kind in 

these populations.  
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7.9 Future prospects  

In this thesis, the effects of genetic variants on cardiometabolic traits were found to be 

influenced by lifestyle factors including physical activity and intakes of protein and fat. 

Replicating these gene-lifestyle interactions using longitudinal interventional studies with 

larger sample sizes is important before enforcing any public health recommendations. 

Mechanistic studies are also required to examine how SNPs interact with lifestyle factors in 

relation to disease risk. Isolating the macronutrient accountable for any nutrigenetic effects 

from a complex food matrix is difficult, as these nutrients usually compensate each other (563). 

Thus, conducting dietary trials is recommended as it can strongly emphasise individuals’ 

compliance to a specific dietary exposure. Future studies should also investigate the modulation 

effect of micronutrients and food source on genetic associations with cardiometabolic traits; 

such evidence will have significant implications in terms of applying dietary recommendations 

in clinical settings. Future research should consider assessing anthropometric parameters using 

robust measures such as magnetic resonance imaging, dual-energy X-ray absorptiometry, 

and/or computed tomography scans to assess body composition (29). It is also recommended 

to examine gene-lifestyle interaction in individuals at high risk of cardiometabolic diseases 

such as the elderly. Insights from this thesis encourage the use of personalised nutrition in 

preventing or treating cardiometabolic diseases, whereby genetic information can be used in 

predicting an individual’s risk of cardiometabolic diseases and might be modified by an 

individual’s dietary intake and physical activity.  

Although gene-nutrient interactions have been investigated extensively in the population 

of the West, very few research studies have been performed in the LMICs and, hence, the 

Gene–Nutrient Interactions (GeNuIne) Collaboration has been established to focus on this 

missing gap in human nutrition in these countries and significant interactions on 

cardiometabolic diseases have been detected (220, 221). The field of nutrigenetics has been 
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remarkably improved, however, little is known regarding cardiometabolic pathways of 

observed gene-nutrient interactions (564). Hence, there is a need for a science investigating 

connections between nutrient intake and genetic susceptibility (565). In the broadest context of 

studying gene-diet interactions, a new field termed “Nutrigenomics” has been identified  (204). 

Both nutrigenetics and nutrigenomics can ultimately help in implementing personalised 

nutrition and revolutionising our ability in designing optimal nutrition recommendations based 

on an individual’s characteristics for maintaining health and preventing cardiometabolic 

diseases (243). Currently, dietary recommendations are population-based in which ‘one size 

fits all’, showing limited success in terms of preventing or treating diet-related diseases due to 

several factors such as lack of adherence and motivation to dietary interventions (566). 

Considering genetic information when designing nutritional interventions has shown to 

promote better changes in dietary behaviours (564).   

The field of ‘Foodomics’ has become an increasingly important tool, combining ‘omics’ 

technologies (i.e., transcriptomics, metabolomics and proteomics) to prevent diet-related 

diseases (567, 568). Foodomics has helped in understanding interindividual differences in 

response to dietary interventions, and in identifying interactions of dietary bioactive 

compounds at the cellular, molecular and biochemical levels (567, 569). For example, 

numerous studies have examined the effect of dietary polyphenols in controlling intracellular 

signalling and biochemical mechanisms in relation to cancer prevention (570, 571).  

The majority of genetic association studies focusing on disease risk have been performed 

in European populations (78%), highlighting the need for recruiting more diverse populations 

(572). The under-representation of diverse ethnic groups in genomic studies in humans can 

limit our ability of translating these studies into clinical practice. Studying ethnically diverse 

populations is challenging in many settings, and this might be due to mistrust in the biomedical 

study originated from previous exploitation experiences (572). Obtaining reliable phenotype 
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information is important for generating quality genetic associations, emphasising the need for 

adequate facilities and personnel. In many low middle-income countries that are characterised 

by great diversity, investment in professional training and infrastructure is primarily required 

(572).  

In summary, improvement in the field of nutrigenetics offers a promising future in terms 

of implementing personalised nutrition for preventing or treating dietary-related 

cardiometabolic diseases. However, there is a continuous need for investigating gene-diet 

interactions in diverse ethnic groups using well-powered interventions with larger sample sizes.  

7.10 Conclusion  

In conclusion, my research has identified novel interactions between metabolic-GRSs 

and dietary intakes of protein and fat on central obesity indicators in the Indonesian and 

Ghanaian populations, respectively. There was also a significant interaction between the FTO 

SNP rs10163409 and protein intake on the risk of central obesity in the Turkish population. 

Furthermore, metabolic-GRSs showed significant interactions with intakes of protein and fat 

on T2D-related traits among Indian and Brazilian populations, respectively. High metabolic-

GRSs were associated with higher BMI in both Turkish and Indonesian populations, where it 

was associated with lower BMI in Brazilian young adults. Similarly, having higher GRS was 

associated with higher WC in Turkish and Indian Individuals. Given that reducing fat intake to 

less than 30% of TEI and consuming a safe amount of dietary protein are recommended by the 

WHO for improving health and preventing cardiometabolic diseases (481), the gene-nutrient 

interaction findings identified in this thesis can have significant public health implications. 

Interestingly, gene-protein interactions on cardiometabolic traits were similar in the Turkish, 

Indonesian and Indian populations, where GRS-fat intake interactions on metabolic traits were 

similar in both Ghanaian and Brazilian individuals. In summary, this thesis contributes to a 
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better understanding of the complex interplay between genetic and lifestyle factors in the 

variation of cardiometabolic metabolic traits across multiple ethnic groups (Figure 13).  

Randomised control trials with larger sample sizes of different ethnicities and more 

precise and objective measures of lifestyle factors are needed to replicate our findings. 

Furthermore, prospective genotyping should be considered in future studies to avoid an 

imbalance in the frequency of genotype between groups, which might confound the findings. 

This thesis investigated only a limited number of the increasingly identified metabolic-

associated SNPs, thus there is a need to utilise a comprehensive panel of genetic variants to 

construct the GRS.   

To conclude, this thesis has demonstrated significant GRS-nutrient interactions on 

cardiometabolic traits. However, these interactions need to be replicated in larger independent 

cohorts. Functional studies are also required to understand the molecular aspects of these 

interactions before applying personalised dietary strategies to prevent or treat cardiometabolic 

diseases.  
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Figure 13: The main findings of the thesis. 

Abbreviations: GeNuIne, Gene–Nutrient Interactions; MINANG, Minangkabau Indonesia Study on Nutrition and Genetics; CURES Chennai 

Urban Rural Epidemiology Study; GONG, Genetics of Obesity and Nutrition in Ghana; BOLD, Obesity, Lifestyle and Diabetes in Brazil; SNP, 

single nucleotide polymorphism; GRS, genetic risk score; BMI, body mass index; WC, waist circumference; FMI, fat mass index; FPG, fasting 

plasma glucose; HbA1c, glycated haemoglobin; HOMA-IR, homeostasis model assessment estimate of insulin resistance and HOMA-B, 

homeostasis model assessment estimate of insulin secretion.
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Appendix 

9.1 Research analysis plan: FTO gene–lifestyle interactions on serum adiponectin 

concentrations and central obesity in a Turkish population. 

  

Main study objective:  

The study aimed to investigate the associations of the fat mass and obesity associated (FTO) 

gene single nucleotide polymorphisms (SNPs) with obesity in a Turkish population (n=200) 

and to examine whether these associations were influenced by lifestyle factors.   

 

Table 1. Previous studies that have examined the association of the selected SNPs with 

obesity and related traits. 

Gene rs number Reference  

Fat mass and obesity associated (FTO) rs9939609 (76, 285-288) 

Fat mass and obesity associated (FTO) rs10163409 (303) 

 

 

Obesity cut-off values: 

 

1- The body mass index (BMI) classification of the world health organisation (WHO) was 

used to classify individuals as non-obese (BMI < 25.00 kg/m2) and obese (BMI ≥ 25.00 

kg/m2) (305). 

2- Increased waist circumference (WC) (central obesity) was defined based on cut-points 

established for Turkish adults (WC ≥ 90 cm for men/ ≥ 80 cm for women) (307) 

 

Table 2. The study objectives.  

 

Objective 1: Determining which genetic model to use for each genetic variant: additive, 

dominant or recessive. 

Aims:  Statistical test 

used:  

1) Reason for statistical test used  

2) Outcome of statistical test used  

3) covariates (when appropriate)  
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1a) Determining genotypes’ 

frequencies to select the 

appropriate genetic model. 

Descriptive 

statistics: 

Frequencies  

1) Reason for test: Exposure variables 

(FTO SNPs) are categorical variables. 

2) Outcome of statistical test used: To 

identify the frequencies of the common 

homozygous, heterozygous, and rare 

homozygous genotypes. Thus, an 

appropriate genetic model can be selected 

for each genetic variant: additive, 

dominant or recessive. Also, the minor 

allele frequency can be calculated.  

 

Objective 2: Determining whether each genetic variant was in HWE 

2a) Assess whether the 

observed genotype 

frequencies are in HWE 

Chi-Squared test  1) Reason for test: Comparing the 

observed genotype frequencies with the 

expected values under Hardy-Weinberg  

2) Outcome of statistical test: 

Determining whether a population is in 

HWE at a specific locus (239) 

Objective 3: To generate descriptive statistics of the study participants 

3a) To define the descriptive 

statistics of the study 

participants  

 

Descriptive 

statistics:  

-Descriptive for 

continuous 

variables  

 

-Frequencies for 

categorical 

variables 

1. Reason for statistical test used: 

Determining the demographic, dietary 

and anthropometric measures of the 

targeted outcomes in all the study 

participants (239, 573). 

 

2. Outcome of statistical test used: 

 -Determining the means and standard 

deviations of the collected demographic, 

dietary and anthropometric variables:  

• Age (year) 

• BMI (kg/m2) 

• WC (cm) 

• FMI 

• Adiponectin (ng/ml) 

• Energy (kcal/day) 

• Protein (g) 

• Fat (g) 

• Carbohydrate (g) 

• Fibre (g) 

• SFA (g) 

• MUFA (g) 

• PUFA (g) 

-Determining the frequency for 

categorical variables: 

• Physical activity levels  
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3b) The descriptive statistics 

table was then categorised 

into two groups: non-Obese 

and Obese.  

-Students t-test  

(Continuous 

variables) 

 

-Chi-square test 

(Categorical 

variables) 

1. Reason for statistical test used: 

Comparing the means and standard 

deviations, as well as the frequencies of 

the demographic, dietary and 

anthropometric variables between the two 

groups (non-Obese and Obese 

individuals). 

2. Outcome of statistical test used: 

Detecting if the demographic, 

anthropometric and dietary variables 

were significantly different between the 

two groups (241, 441).  

Objective 4: To test the associations of the FTO SNPs with obesity and related traits; BMI 

(kg/m2), FMI, WC (cm), Adiponectin (ng/ml). 

4a) To compare the genotype 

frequencies between obese 

and non-obese. 

Chi-square test 1) Reason for test: The exposure variables 

(FTO SNPs) are categorical variables, 

and the outcome variable (obesity) is a 

categorical variable.  

2) Outcome of test: Identifying the impact 

of the FTO SNPs on obesity.  

4b) To test for the 

associations of the FTO SNPs 

with obesity-related traits. 

Univariate linear 

regression  

1) Reason for test: The exposure variables 

(FTO SNPs) are categorical variables, 

and the outcome variables (obesity-

related traits) are continuous variables.  

2) Outcome of test: Identifying the impact 

of the FTO SNPs on obesity-related traits 

(573, 574).  

3) Covariates to be adjusted: Sex, age, 

hypertension, cardiovascular diseases, 

and obesity status (258). 

Objective 5: Testing the interaction between FTO SNPs and lifestyle factors (dietary 

intake and physical activity) on obesity and related traits.  

5a) Testing the interaction 

between the FTO SNPs and 

lifestyle factors including 

dietary intake (carbohydrate, 

protein, fibre and fat intakes 

in grams/day) and physical on 

obesity-related traits  

Univariate linear 

regression  

1) Reason for test: The exposure variables 

(FTO SNPs) are categorical variables, 

and the outcome variables (obesity-

related traits) are continuous variables.  

2) Outcome of test: Finding the effect of 

the FTO SNPs and lifestyle factors 

including physical activity and dietary 

intakes of carbohydrate, protein, fat and 

fibre in grams on obesity-related traits 

(261, 575).  

3) Covariates to be adjusted: age, gender, 

hypertension, cardiovascular diseases, 

total energy intake and obesity status 

(529).  
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5b) Testing the interaction 

between the FTO SNPs and 

lifestyle factors including 

dietary intake (carbohydrate, 

protein, fibre and fat intakes 

in grams/day) and physical on 

obesity.  

Logistic 

regression 

1) Reason for test: The exposure variables 

(FTO SNPs) are categorical variables, 

and the outcome variable (obesity) is a 

categorical variable.  

2) Outcome of test: Finding the effect of 

the FTO SNPs and lifestyle factors 

including physical activity and dietary 

intakes of carbohydrate, protein, fat and 

fibre (in grams) on obesity (573, 575).  

3) Covariates to be adjusted: Age, gender, 

hypertension, cardiovascular diseases, 

total energy intake and obesity 

status. (258) 

5c) Statistically significant 

interactions were investigated 

in more depth, where 

individuals were stratified by 

the tertiles of the lifestyle 

factors. 

 

-Univariate linear 

regression  

 

-Logistic 

regression 

1) Reason for test: -The exposure 

variables (FTO SNPs) are categorical 

variables, and the outcome variables 

(obesity-related traits) are continuous 

variables.   

- The exposure variables (FTO SNPs) are 

categorical variables, and the outcome 

variables (obesity) is a categorical 

variable.   

2) Outcome of test: Determining whether 

the low, medium, and high intakes of 

these macronutrients, as well as the levels 

of physical activity, are causing the 

observed interactions (261, 575). 

3) Covariates to be adjusted: age, gender, 

hypertension, cardiovascular diseases, 

total energy intake and obesity status 

(576). 

SPECIAL NOTES:  

When investigating the effect 

of macronutrients in grams, 

the analysis should be 

adjusted for Kcal. However, 

no adjustment for Kcal is 

needed when testing 

interactions with the 

percentage energy intake of 

the macronutrients because 

adjustment has already been 

performed.  

Compute 

variables  

 

• For carbohydrate interactions:  

1g of carbohydrates = 4kcal  

 

• For fat interactions:  

1g=9 kcal  

 

• For protein interactions:  

1g= 4kcal (577) 

 

GRS genetic risk score; SNP single nucleotide polymorphisms; HWE, Hardy-Weinberg equilibrium; BMI, body 

mass index; WC, waist circumference; FMI, fat mass index; SFA, saturated fatty acids; MUFA, monounsaturated 

fatty acids; PUFA, polyunsaturated fatty acids. 
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9.2  Research analysis plan: Interaction between the genetic risk score and dietary 

protein intake on cardiometabolic traits in Southeast Asians (Indonesian 

population). 

Main study objective:  

The study aimed to investigate the association of 15-SNP GRS with cardiometabolic traits and 

examined whether these associations were modified by lifestyle factors such as dietary intake 

and physical activity in 110 Minangkabau women. 

 

Table 3. Previous studies that have examined the associations of the selected SNPs with 

cardiometabolic traits. 

Gene rs number Reference 

Melanocortin 4 Receptor (MC4R) rs17782313 (120, 378, 578) 

Melanocortin 4 Receptor (MC4R) rs2229616 (579-581) 

Fat mass and obesity associated (FTO) rs9939609 (76, 285-288) 

Fat mass and obesity associated (FTO) rs8050136 (582-584) 

at mass and obesity associated (FTO) rs10163409 (303) 

Transcription factor 7-like 2 (TCF7L2) rs7903146 (585-588) 

Transcription factor 7-like 2 (TCF7L2) rs12255372 (589, 590) 

Adiponectin (ADIPOQ) rs266729 (145, 591) 

Adiponectin (ADIPOQ) rs17846866 (591, 592) 

Potassium voltage-gated channel subfamily Q member 1 

(KCNQ1) 
rs2237895 

(89, 593) 

Potassium voltage-gated channel subfamily Q member 1 

(KCNQ1) 
rs2237892 

(594, 595) 

Cyclin dependent kinase inhibitor 2A/2B (CDKN2A/2B) rs10811661 (596, 597) 

Peroxisome proliferator-activated receptor gamma 

(PPARG) 
rs1801282 

(598, 599) 

Calpain 10 (CAPN10) rs3792267 (600, 601) 

Calpain 10 (CAPN10) rs5030952 (600-602) 

 

Obesity cut-off values:  
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1- Common obesity was defined based on the Asia-Pacific classification of BMI for 

Asians, where non-obese individuals (BMI<23 kg/m2) and obese individuals (BMI≥23 

kg/m2) were classed accordingly (366).  

 

2- Central obesity was defined based on WHO classification of WC (WC>80 cm for 

women) (30). 

 

 

Table 4. The study objectives.  

Objective 1: Determining whether each genetic variant was in HWE  

Aims:  Statistical test 

used:  

1) Reason for statistical test used  

2) Outcome of statistical test used  

3) covariates (when appropriate)  

1a) Assess whether the observed 

genotype frequencies are in HWE 

Chi-Squared test  1) Reason for test: Comparing the observed genotype 

frequencies with the expected values under Hardy-

Weinberg  

2) Outcome of statistical test: determining whether a 

population is in HWE at a specific locus (239) 

Objective 2: To generate descriptive statistics of the study participants. 

2a) To define the descriptive 

statistics of the study participants  

 

Descriptive 

statistics:  

 

-Descriptive for 

continuous 

variables  

 

- Frequency for 

categorical 

variables  

1. Reason for statistical test used: Determining the 

demographic, dietary, biochemical, and 

anthropometric measures of the targeted outcomes in 

all the study participants (239, 573). 

 

2. Outcome of statistical test used:  

-Determining the means and standard deviations of the 

collected demographic, dietary, biochemical, and 

anthropometric variables:  

• Age (yrs) 

• BMI (kgm2) 

• WC (cm) 

• Glucose (mg/dl) 

• Insulin (mIU/L) 

• HbA1c (ng/ml) 

• Triglycerides (mg/dl) 

• Cholesterol (mg/dl) 

• HDL-C (mg/dl) 

• LDL-C (mg/dl) 

• SB (mmHg) 

• DBP (mmHg) 

• Total energy (kcal/d)  

• Carbohydrate intake (%) 

• Protein intake (%) 
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• Fat intake (%) 

• Dietary fibre (g) 

• SFA (g) 

• MUFA (g) 

• PUFA (g) 

• MET (min/week) 

• GRS 

- Determining the frequency for categorical variable: 

• Physical activity levels 

2b) The descriptive statistics table 

was then categorised into two 

groups: non-centrally obese and 

centrally obese.  

 

-Students t-test 

 

- Chi-squared test  

1. Reason for statistical test used: Comparing the mean 

and standard deviations and the frequencies of 

demographic, dietary and anthropometric variables 

between the two groups (non-centrally obese and 

centrally obese). 

2. Outcome of statistical test used: Detecting if the 

demographic, anthropometric and dietary variables 

were significantly different between the two groups 

(241, 441).  

Objective 3: To test the associations between cardiometabolic-related genetic variants, as a 15-SNP GRS, 

and cardiometabolic traits; BMI, WC, glucose, insulin, HbA1C, triglycerides, cholesterol, HDL-C, LDL-

C, SB, DBP.  

3a) To test for the association 

between the GRS and 

cardiometabolic traits. 

Univariate linear 

regression  

1) Reason for test: The exposure variable (GRS) is a 

categorical variable, and the outcome variables 

(cardiometabolic traits) are continuous variables.  

2) Outcome of test: Identifying the impact of the GRS 

on cardiometabolic traits (573, 574).  

3) Covariates to be adjusted: Age, residential area and 

additionally for BMI when BMI is not an outcome 

(258, 603) 

Objective 4: Testing the interaction between cardiometabolic-related genetic variants, as a 15-SNP GRS, 

and lifestyle factors (dietary intake and physical activity) on cardiometabolic traits.  

4a) Testing the interaction between 

the GRS and lifestyle factors 

including dietary intakes of protein 

(% of TEI), fat (% of TEI), 

carbohydrate (% of TEI) and fibre 

(grams), and physical activity) on 

cardiometabolic traits  

Univariate linear 

regression  

1) Reason for test: The exposure variable (GRS) is a 

categorical variable, and the outcome variables 

(cardiometabolic traits) are continuous variables.  

2) Outcome of test: Finding the effect of the GRS and 

lifestyle factors including physical activity and dietary 

intakes of carbohydrate, protein, fat and fibre in grams 

on cardiometabolic-related traits (261, 575). 

3) Covariates to be adjusted: Age, residential area and 

BMI when BMI is not an outcome (258, 529, 603).  

4b) Statistically significant 

interactions were investigated in 

more depth, where individuals were 

stratified by the tertiles of the 

lifestyle factors. 

Univariate linear 

regression  

1) Reason for test: The exposure variable (GRS) is a 

categorical variable, and the outcome variables 

(cardiometabolic traits) are continuous variables.  

2) Outcome of test: Determining whether the low, 

medium and high intakes of these macronutrients, as 

well as the levels of physical activity, are causing the 

observed interactions (261, 575). 

3) Covariates to be adjusted: Age, residential area and 

BMI when BMI is not an outcome (258, 576, 603). 
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SPECIAL NOTES:  

When investigating the effect of 

macronutrients in grams, the 

analysis should be adjusted for Kcal. 

However, no adjustment for Kcal is 

needed when testing interactions 

with the percentage energy intake of 

the macronutrients because 

adjustment has already been 

performed.  

Compute 

variables  

 

• For carbohydrate interactions:  

1g of carbohydrates = 4kcal  

 

• For fat interactions:  

1g=9 kcal  

 

• For protein interactions:  

1g= 4kcal (577) 
GRS genetic risk score; SNP single nucleotide polymorphisms; HWE, Hardy-Weinberg equilibrium; BMI, body 

mass index; WC, waist circumference; HbA1C, glycated haemoglobin A1c; HDL-C, high-density lipoprotein 

cholesterol; LDL-C, low-density lipoprotein cholesterol; SBP, systolic blood pressure; DBP, diastolic blood 

pressure; SFA, saturated fatty acids; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; 

MET, metabolic equivalent of task; TEI, total energy intake 
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9.3 Research analysis plan: Interaction between Metabolic Genetic Risk Score and 

Dietary Fatty Acid Intake on Central Obesity in a Ghanaian Population  

 

Main study objective:  

The study aimed to investigate the association of selected SNPs, as 12-SNP, 8-SNP and 4-SNP 

GRS, with obesity-related traits and to examine whether lifestyle factors such as dietary intake 

and physical activity modified these associations in 302 healthy Ghanaian adults.  

 

 

Table 5. Previous studies that have examined the association of the selected SNPs with 

obesity-related traits. 

Gene rs number Reference 

Transcription factor 7-like 2 (TCF7L2) rs12255372 (589, 590) 

Transcription factor 7-like 2 (TCF7L2) rs7903146 (589, 590) 

Melanocortin 4 Receptor (MC4R) rs17782313 (120, 378, 578) 

Melanocortin 4 Receptor (MC4R) rs2229616 (579-581) 

Fat mass and obesity associated (FTO) rs9939609 (76, 285-288) 

Fat mass and obesity associated (FTO) rs10163409 (303) 

Adiponectin (ADIPOQ) rs266729 (145, 591) 

Potassium voltage-gated channel subfamily Q 

member 1 (KCNQ1) 

rs2237892 (594, 595) 

Cyclin dependent kinase inhibitor 2A/2B 

(CDKN2A/2B) 

rs10811661 (596, 597) 

Calpain 10 (CAPN10) rs3792267 (598, 599) 

Calpain 10 (CAPN10) rs5030952 (600-602) 

Peroxisome proliferator-activated receptor 

gamma (PPARG) 

rs1801282 (598, 599) 

 

 

 

Obesity cut off-values:  

Non-obese individuals refer to the individuals with a BMI < 25 Kg/m2, according to the WHO 

classification of BMI. Overweight/obese cases refer to individuals with BMI ≥25 Kg/m2, 

according to the WHO classification of BMI (305). 
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Table 6. The study objectives.  

 

Objective 1: Determining whether each genetic variant was in HWE 

Aims:  Statistical test 

used:  

1) Reason for statistical test used  

2) Outcome of statistical test used  

3) covariates (when appropriate)  

1a) Assess whether the 

observed genotype 

frequencies are in HWE 

Chi-Squared test  1) Reason for test: Comparing the observed 

genotype frequencies with the expected values 

under Hardy-Weinberg  

2) Outcome of statistical test: Determining 

whether a population is in HWE at a specific locus 

(239) 

Objective 2: To generate descriptive statistics of the study participants. 

2a) To define the descriptive 

statistics of the study 

participants  

 

Descriptive 

statistics: 

Descriptive for 

continuous 

variables  

 

1. Reason for statistical test used: Determining the 

demographic, dietary and anthropometric 

measures of the targeted outcomes in all the study 

participants (239, 573). 

 

2. Outcome of statistical test used: Determining 

the means and standard deviations of the collected 

demographic, dietary and anthropometric 

variables:  

• Age (years)  

• BMI (kg/m2)  

• WC (cm 

• WHR 

• Visceral fat (%)  

• Body fat (%)  

• Total energy intake (%)  

• Protein intake (g/day)  

• Total fat intake (g/day) 

• Carbohydrate intake (g/day)  

• Fibre intake (g/day) 

• Total SFA intake (g/day) 

• Total MUFA intake (g/day)  

• Total PUFA intake (g/day)  
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2b) The descriptive statistics 

table was then categorised 

into two groups: non-Obese 

and overweight/Obese.  

Students t-test  1. Reason for statistical test used: Comparing the 

means and standard deviations of demographic, 

dietary and anthropometric variables between the 

two groups (non-Obese and overweight/Obese 

individuals). 

2. Outcome of statistical test used: Detecting if the 

demographic, anthropometric and dietary 

variables were significantly different between the 

two groups (241, 441).  

Objective 3: To test the associations of the 12-SNP, 8-SNP and 4-SNP GRS with obesity-related 

traits; BMI, percentage of body fat and visceral fat, WC and WHR. 

3a) To test for the association 

between the 12-SNP, 8-SNP 

and 4-SNP GRS and obesity-

related traits 

Univariate linear 

regression  

1) Reason for test: The exposure variables (GRSs) 

are categorical variables, and the outcome 

variables (obesity-related traits) are continuous 

variables.  

2) Outcome of test: Identifying the impact of the 

GRSs on obesity-related traits (573, 574).  

3) Covariates to be adjusted: age, sex and 

additionally for BMI when BMI is not an outcome 

(258) 

Objective 4: Testing the interaction between the 12-SNP, 8-SNP and 4-SNP GRS, and lifestyle 

factors (dietary intake and physical activity) on obesity-related traits.  

4a) Testing the interaction 

between lifestyle factors 

(dietary intake and physical 

activity) and 12-SNP, 8-SNP 

and 4-SNP GRS on obesity-

related traits  

Univariate linear 

regression  

1) Reason for test: The exposure variables (GRSs) 

are categorical variables, and the outcome 

variables (obesity-related traits) are continuous 

variables.  

2) Outcome of test: Finding the effect of the GRSs 

and lifestyle factors including physical activity 

and dietary intakes of carbohydrate, protein, fat 

and fibre (in grams) on obesity-related traits (261, 

575) 

3) Covariates to be adjusted: age, sex, total energy 

intake and additionally for BMI when BMI is not 

an outcome (529).  

4b) Determining whether the 

below or above the median 

intake of these macronutrients 

are causing the observed 

interactions 

Univariate linear 

regression  

1) Reason for test: The exposure variables (GRSs) 

are categorical variables, and the outcome 

variables (obesity-related traits) are continuous 

variables.  

2) Outcome of test: Detecting the effect of GRSs 

and the intake of various quantities of 

macronutrients on obesity-related traits. 

3) Covariates to be adjusted: Age, sex, total 

energy intake and additionally for BMI when 

BMI is not an outcome (576).  

SPECIAL NOTES:  

When investigating the effect 

of macronutrients in grams, 

the analysis should be 

adjusted for Kcal. However, 

no adjustment for Kcal is 

Compute 

variables  

 

• For carbohydrate interactions:  

1g of carbohydrates = 4kcal  

 

• For fat interactions:  
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needed when testing 

interactions with the 

percentage energy intake of 

the macronutrients because 

adjustment has already been 

performed.  

1g=9 kcal  

 

• For protein interactions:  

1g= 4kcal (577) 

 

Significant GRS*nutrient 

interactions were analysed in 

more depth according to the 

specific type of macronutrient 

showing the interaction 

Univariate linear 

regression  

For fat interactions:  

Based on the median intake of total fat, SFA, 

MUFA and PUFA, the individuals were separated 

into two groups: ‘’below the median group” and 

‘’above the median group”. Within each group, 

the association between the GRS and the outcome 

was examined (240). 
GRS genetic risk score; SNP single nucleotide polymorphisms; HWE, Hardy-Weinberg equilibrium; BMI, body 

mass index; WC, waist circumference; WHR, waist hip ratio; SFA, saturated fatty acids; MUFA, monounsaturated 

fatty acids; PUFA, polyunsaturated fatty acids. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



242 

 

9.4 Effect of dietary fat intake and genetic risk on glucose and insulin-related traits in 

Brazilian young adults 

Main study objective:  

The study aimed to investigate the association of selected 10-SNPs, as a metabolic-GRS, with 

metabolic disease-related traits and to assess the interaction between dietary and genetic factors 

on these traits in 200 healthy Brazilian young adults. 

 

Table 7. Previous studies that have examined the associations of selected SNPs with 

metabolic disease-related traits 

Gene rs number  Reference  

Melanocortin 4 Receptor (MC4R) rs17782313 (120, 378, 578) 

Fat mass and obesity associated (FTO) rs8050136 (582-584) 

at mass and obesity associated (FTO) rs10163409 (303) 

Transcription factor 7-like 2 (TCF7L2) rs7903146 (585-588) 

Transcription factor 7-like 2 (TCF7L2) rs12255372 (589, 590) 

Potassium voltage-gated channel subfamily Q member 1 (KCNQ1) rs2237895 (89, 593) 

Potassium voltage-gated channel subfamily Q member 1 (KCNQ1) rs2237892 (594, 595) 

Cyclin dependent kinase inhibitor 2A/2B (CDKN2A/2B) rs10811661 (596, 597) 

Peroxisome proliferator-activated receptor gamma (PPARG) rs1801282 (598, 599) 

Calpain 10 (CAPN10) rs5030952 (600-602) 

 

 

 

Table 8. The study objectives.  

Objective 1: Determining whether each genetic variant was in HWE 

Aims:  Statistical test 

used:  

1) Reason for statistical test used  

2) Outcome of statistical test used  

3) covariates (when appropriate)  

1a) Assess whether the observed 

genotype frequencies are in HWE 

Chi-Squared test  1) Reason for test: Comparing the observed genotype 

frequencies with the expected values under Hardy-

Weinberg  

2) Outcome of statistical test: Determining whether a 

population is in HWE at a specific locus (239) 

 

Objective 2: To generate descriptive statistics of the study participants. 

2a) To define the descriptive 

statistics of the study participants  

 

Descriptive 

statistics:  

 

-Descriptive for 

continuous 

variables  

 

1. Reason for statistical test used: Determining the 

demographic, dietary, biochemical, and 

anthropometric measures of the targeted outcomes in 

all the study participants (239, 573). 

 

2. Outcome of statistical test used: Determining the 

mean and standard deviation of the collected 
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demographic, dietary, biochemical and 

anthropometric variables:  

• Age (years) 

• BMI (kg/m2) 

• WC (cm) 

• Body fat mass (%) 

• HbA1c (%) 

• Fasting serum glucose (mg/dL) 

• Fasting serum insulin (uU/mL) 

• Homeostasis model assessment estimate of 

insulin resistance (HOMA-IR)  

• Homeostasis model assessment estimate of 

insulin secretion (HOMA-B) 

• Insulin to glucose ratio 

• Energy (Kcal/day) 

• Protein (energy %) 

• Carbohydrate (energy %) 

• Fat (energy %) 

• SFA (%) 

• PUFA (%) 

• MUFA (%) 

2b) The descriptive statistics table 

was then categorised into two 

groups: men and women.  

 

Students t-test 

 

1. Reason for statistical test used: Comparing the mean 

and standard deviations of demographic, dietary and 

anthropometric variables between the two groups 

(men and women). 

2. Outcome of statistical test used: Detecting if the 

demographic, anthropometric and dietary variables 

were significantly different between the two groups 

(241, 441).  

Objective 3: To test the associations of the 10-SNP GRS with metabolic traits; BMI, WC, body fat mass, 

HbA1c, fasting glucose, fasting insulin, HOMA-IR, HOMA-B, HOMA-B adjusted for HOMA-IR and 

insulin to glucose ratio 

3a) To test for the association 

between the metabolic-GRS and 

metabolic traits. 

Univariate linear 

regression  

1) Reason for test: The exposure variable (metabolic-

GRS) is a categorical variable, and the outcome 

variables (metabolic traits) are continuous variables.  

2) Outcome of test: Identifying the impact of the 

metabolic-GRS on metabolic traits (573, 574).  

3) Covariates to be adjusted: Age, gender and 

additionally for BMI when BMI is not an outcome 

(258) 

Objective 4: Testing the interaction between cardiometabolic-related genetic variants, as a GRS, and 

dietary intake on metabolic traits.  

4a) Testing the interaction between 

the GRS and lifestyle factors 

including dietary intakes of protein, 

fat and carbohydrate (in % of TEI) 

on metabolic traits.  

Univariate linear 

regression  

1) Reason for test: The exposure variable (metabolic-

GRS) is a categorical variable, and the outcome 

variables (metabolic traits) are continuous variables.  

2) Outcome of test: Finding the effect of the 

metabolic-GRS and dietary intakes of carbohydrate, 

protein and fat on metabolic-related traits (261, 575).  
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3) Covariates to be adjusted: Age, gender, and BMI 

when BMI is not an outcome (529).  

4b) Statistically significant 

interactions were investigated in 

more depth, where individuals were 

stratified by the tertiles of dietary 

intakes. 

Univariate linear 

regression  

1) Reason for test: The exposure variable (metabolic-

GRS) is a categorical variable, and the outcome 

variables (metabolic traits) are continuous variables.  

2) Outcome of test: Determining whether the low, 

medium and high intakes of these macronutrients are 

causing the observed interactions (261, 575). 

3) Covariates to be adjusted: Age, gender and BMI 

when BMI is not an outcome (576). 

SPECIAL NOTES:  

When investigating the effect of 

macronutrients in grams, the 

analysis should be adjusted for Kcal. 

However, no adjustment for Kcal is 

needed when testing interactions 

with the percentage energy intake of 

the macronutrients because 

adjustment has already been 

performed.  

Compute 

variables  

 

• For carbohydrate interactions:  

1g of carbohydrates = 4kcal  

 

• For fat interactions:  

1g=9 kcal  

 

• For protein interactions:  

1g= 4kcal (577) 

 

Significant GRS*nutrient 

interactions were analysed in more 

depth according to the specific type 

of macronutrient showing the 

interaction 

Univariate linear 

regression  

For fat interactions:  

Based on the median intake of total fat, SFA, MUFA 

and PUFA, the individuals were separated into two 

groups: ‘below the median group” and ‘above the 

median group”. Within each group, the association 

between the GRS and the outcome was examined 

(240). 
GRS genetic risk score; SNP single nucleotide polymorphisms; HWE, Hardy-Weinberg equilibrium; BMI, body 

mass index; WC, waist circumference; HbA1c: glycated haemoglobin; HOMA-IR: homeostasis model assessment 

estimate of insulin resistance; HOMA-B: homeostasis model assessment estimate of insulin secretion; SFA, 

saturated fatty acids; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; TEI, total energy 

intake 
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9.5 Lower Dietary Intake of Plant Protein Is Associated with Genetic Risk of 

Diabetes-Related Traits in Urban Asian Indian Adults 

 

Main study objective:  

The study aimed to examine the impact of dietary and genetic factors, as 7-SNP and 3-SNP 

GRS, on metabolic traits in 1062 Asian Indians. 

 

Table 9. Previous studies which have examined the association of selected SNPs with 

metabolic disease-related traits  

Gene rs number  Reference  

Transcription factor 7-like 2 (TCF7L2) rs7903146 (585-588) 

Transcription factor 7-like 2 (TCF7L2) rs12255372 (589, 590) 

Fat mass and obesity associated (FTO) rs918031 (364, 604) 

Fat mass and obesity associated (FTO) rs1588413 (364) 

Fat mass and obesity associated (FTO) rs7193144 (364, 579, 605) 

Fat mass and obesity associated (FTO) rs1076023 (239, 364) 

Fat mass and obesity associated (FTO) rs8050136 (582-584) 

 

 

Disease cut off-values:  

1) Subjects with fasting plasma glucose (FPG)<5.6 mmol/l (100mg/dl) and 2 hr plasma 

glucose value of 7.8 mmol/l (140mg/dl) were defined as having normal glucose 

tolerance (NGT) according to the WHO (606). 

2)  Common obesity was defined as BMI ≥25 according to WHO Asia Pacific Guidelines 

for Asians (517). 

 

 

Table 10. The study objectives.  

 

Objective 1: Determining whether each genetic variant was in Hardy-Weinberg equilibrium 

(HWE)  

Aims:  Statistical test 

used:  

1) Reason for statistical test used  

2) Outcome of statistical test used  

3) covariates (when appropriate)  

1a) Assess whether the 

observed genotype 

frequencies are in HWE 

Chi-Squared test  1) Reason for test: Comparing the observed 

genotype frequencies with the expected values 

under Hardy-Weinberg  

2) Outcome of statistical test: Determining 

whether a population is in HWE at a specific locus 

(239) 

Objective 2: To generate descriptive statistics of the study participants. 

2a) To define the descriptive 

statistics of the study 

participants  

 

Descriptive 

statistics: 

 

-Descriptive for 

continuous 

variables  

1. Reason for statistical test used: Determining the 

demographic, dietary, biochemical and 

anthropometric measures of the targeted 

outcomes in all the study participants (239, 573). 

 

2. Outcome of statistical test used:  



246 

 

 

-Frequencies for 

categorical 

variables  

 

-Determining the means and standard deviations 

and the frequencies of the collected demographic, 

dietary, biochemical, and anthropometric 

variables:  

• Age (years) 

• BMI (kg/m2) 

• WC (cm) 

• HBA1C (%) 

• FPG (mg/dl) 

• Fasting Insulin (μIU/ml) 

• Energy (kcal/day) 

• Protein (%) 

• Animal protein (g/day) 

• Plant protein (g/day) 

• Fat (%) 

• Carbohydrate (%) 

• Dietary fibre (g) 

• Total SFA (g) 

• Total MUFA (g) 

• Total PUFA (g) 

- Determining the frequency for the categorical 

variable: 

• Sex (%) 

2b) The descriptive statistics 

table was then categorised 

into two groups: NGT and 

DM.   

-Students t-test for 

continuous 

variables  

 

-Chi-square for 

categorical 

variables  

 

1. Reason for statistical test used: Comparing the 

means and standard deviations, as well as the 

frequency of demographic, dietary and 

anthropometric variables between the two groups 

(NGT and DM). 

2. Outcome of statistical test used: Detecting if the 

demographic, anthropometric, biochemical and 

dietary variables were significantly different 

between the two groups (241, 441).  

Objective 3: To test the associations of the 7-SNP and 3-SNP GRS with metabolic traits; BMI, 

WC, HBA1C, FPG (mg/dl) and fasting insulin. 

3a) To test for the association 

between the 7-SNP and 3-

SNP GRS and metabolic traits 

Univariate linear 

regression  

1) Reason for test: The exposure variables (GRSs) 

are categorical variables, and the outcome 

variables (metabolic traits) are continuous 

variables.  

2) Outcome of test: Identifying the impact of the 

GRSs on metabolic traits (573, 574).  

3) Covariates to be adjusted: ex, age, T2D, anti-

diabetic medication and additionally for BMI, 

when BMI is not an outcome (258) 

Objective 4: To test the associations of the 7-SNP and 3-SNP GRS with DM. 
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4a) To test for the association 

between the 7-SNP and 3-

SNP GRS and DM. 

Logistic 

regression  

1) Reason for test: The exposure variables (GRSs) 

are categorical variables, and the outcome 

variables (DM) is a categorical variable.  

2) Outcome of test: identifying the impact of the 

GRSs on obesity-related traits.  

3) Covariates to be adjusted: sex, age, anti-

diabetic medication, and BMI (258) 

Objective 5: Testing the interaction between 7-SNP and 3-SNP GRS, and dietary intake on 

metabolic traits.  

5a) Testing the interaction 

between dietary intake and 7-

SNP and 3-SNP GRS on 

metabolic traits. 

Univariate linear 

regression  

1) Reason for test: The exposure variables (GRSs) 

are categorical variables, and the outcome 

variables (metabolic traits) are continuous 

variables.  

2) Outcome of test: Finding the effect of the GRSs 

and dietary intakes of fat, protein and 

carbohydrate (% of TEI) on metabolic traits (261, 

575). 

3) Covariates to be adjusted: Sex, age, T2D, 

antidiabetic medications and additionally for 

BMI, when BMI is not an outcome (529).  

5b) Determining whether the 

below or above the median 

intake of these macronutrients 

are causing the observed 

interactions 

Univariate linear 

regression  

1) Reason for test: The exposure variables (GRSs) 

are categorical variables, and the outcome 

variables (metabolic traits) are continuous 

variables.  

2) Outcome of test: Detecting the effect of GRSs 

and the intake of various quantities of 

macronutrients on metabolic traits. 

3) Covariates to be adjusted: age, sex, total energy 

intake and additionally for BMI when BMI is not 

an outcome (576).  

SPECIAL NOTES:  

When investigating the effect 

of macronutrients in grams, 

the analysis should be 

adjusted for Kcal. However, 

no adjustment for Kcal is 

needed when testing 

interactions with the 

percentage energy intake of 

the macronutrients because 

adjustment has already been 

performed.  

Compute 

variables  

 

• For carbohydrate interactions:  

1g of carbohydrates = 4kcal  

 

• For fat interactions:  

1g=9 kcal  

 

• For protein interactions:  

1g= 4kcal (577) 

 

Significant GRS*nutrient 

interactions were analysed in 

more depth according to the 

specific type of macronutrient 

showing the interaction 

Univariate linear 

regression  

For protein interactions:  

Significant interactions with protein intake were 

analysed in more depth according to dietary 

sources of protein (animal and plant protein), 

where individuals were classified into two groups 

according to the sample median intake of plant 

(39g/day) and animal protein (19g/day): below 

and above median groups. Individuals who 



248 

 

consumed below the median were categorised as 

those who had low intakes of plant and animal 

protein, respectively, whereas individuals who 

consumed above the median were categorised as 

those who had high intakes of plant and animal 

protein, respectively. 
GRS genetic risk score; SNP single nucleotide polymorphisms; HWE, Hardy-Weinberg equilibrium; BMI, body 

mass index; WC, waist circumference; HbA1c: glycated haemoglobin; FPG, fasting plasma glucose; SFA, 

saturated fatty acids; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; NGT; normal 

glucose tolerance; DM diabetes mellites; TEI, total energy intake. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



nutrients

Article

Lower Dietary Intake of Plant Protein Is Associated with
Genetic Risk of Diabetes-Related Traits in Urban Asian
Indian Adults

Sooad Alsulami 1,2, Dhanasekaran Bodhini 3 , Vasudevan Sudha 4, Coimbatore Subramanian Shanthi Rani 5,
Rajendra Pradeepa 6, Ranjit Mohan Anjana 6, Venkatesan Radha 3, Julie A. Lovegrove 1 , Rajagopal Gayathri 4,
Viswanathan Mohan 6 and Karani Santhanakrishnan Vimaleswaran 1,7,*

����������
�������

Citation: Alsulami, S.; Bodhini, D.;

Sudha, V.; Shanthi Rani, C.S.;

Pradeepa, R.; Anjana, R.M.; Radha, V.;

Lovegrove, J.A.; Gayathri, R.; Mohan,

V.; et al. Lower Dietary Intake of

Plant Protein Is Associated with

Genetic Risk of Diabetes-Related

Traits in Urban Asian Indian Adults.

Nutrients 2021, 13, 3064.

https://doi.org/10.3390/

nu13093064

Academic Editors: Antonio Brunetti

and Louise Deldicque

Received: 16 June 2021

Accepted: 27 August 2021

Published: 31 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, University of Reading,
Reading RG6 6DZ, UK; s.alsulami@student.reading.ac.uk (S.A.); j.a.lovegrove@reading.ac.uk (J.A.L.)

2 Department of Clinical Nutrition, Faculty of Applied Medical Sciences, King Abdulaziz University,
Jeddah 21589, Saudi Arabia

3 Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai 603103, India;
bodhinid@gmail.com (D.B.); radharv@yahoo.co.in (V.R.)

4 Department of Foods, Nutrition and Dietetics Research, Madras Diabetes Research Foundation,
Chennai 600086, India; s2r_7@mdrf.in (V.S.); gayathri@mdrf.in (R.G.)

5 Department of Clinical Epidemiology, Madras Diabetes Research Foundation, Chennai 600086, India;
kshan_rany@yahoo.com

6 Department of Diabetology, Madras Diabetes Research Foundation & Dr. Mohan’s Diabetes Specialities
Centre, WHO Collaborating Centre for Non-Communicable Diseases Prevention and Control, ICMR Centre
for Advanced Research on Diabetes, Gopalapuram, Chennai 600086, India; guhapradeepa@gmail.com (R.P.);
dranjana@drmohans.com (R.M.A.); drmohans@diabetes.ind.in (V.M.)

7 The Institute for Food, Nutrition, and Health (IFNH), University of Reading, Reading RG6 6AP, UK
* Correspondence: v.karani@reading.ac.uk; Tel.: +44-(0)-118-378-8702

Abstract: The increasing prevalence of type 2 diabetes among South Asians is caused by a complex
interplay between environmental and genetic factors. We aimed to examine the impact of dietary and
genetic factors on metabolic traits in 1062 Asian Indians. Dietary assessment was performed using a
validated semi-quantitative food frequency questionnaire. Seven single nucleotide polymorphisms
(SNPs) from the Transcription factor 7-like 2 and fat mass and obesity-associated genes were used
to construct two metabolic genetic risk scores (GRS): 7-SNP and 3-SNP GRSs. Both 7-SNP GRS and
3-SNP GRS were associated with a higher risk of T2D (p = 0.0000134 and 0.008, respectively). The
3-SNP GRS was associated with higher waist circumference (p = 0.010), fasting plasma glucose (FPG)
(p = 0.002) and glycated haemoglobin (HbA1c) (p = 0.000066). There were significant interactions
between 3-SNP GRS and protein intake (% of total energy intake) on FPG (Pinteraction = 0.011) and
HbA1c (Pinteraction = 0.007), where among individuals with lower plant protein intake (<39 g/day)
and those with >1 risk allele had higher FPG (p = 0.001) and HbA1c (p = 0.00006) than individuals
with ≤1 risk allele. Our findings suggest that lower plant protein intake may be a contributor to
the increased ethnic susceptibility to diabetes described in Asian Indians. Randomised clinical trials
with increased plant protein in the diets of this population are needed to see whether the reduction
of diabetes risk occurs in individuals with prediabetes.

Keywords: genetic risk score; metabolic traits; urban Asian Indian; dietary protein intake; gene–diet
interaction; T2D

1. Introduction

South Asian populations have a 50% higher risk of type 2 diabetes (T2D) than other
populations [1,2] and this has significant implications, as patients with T2D have a 2–4 times
increased risk of cardiovascular diseases [1]. The Asian Indian population have a unique
phenotype characterised by abdominal and truncal adiposity, as indicated by larger waist
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to hip ratios and waist circumference (WC), higher concentrations of plasma insulin, greater
insulin resistance, impaired function of pancreatic β-cell and a genetic susceptibility to
diabetes, which ultimately leads to significantly increased diabetes risk [3–5]. The burden
of T2D is increasing globally, with India being a major contributor to the worldwide
burden [6]. The number of diabetic individuals in India rose from 26.0 million in 1990 to
65.0 million in 2016 [7].

The increasing prevalence of T2D among Asian Indians is caused by a complex in-
terplay between environmental and genetic factors, including urbanisation, which plays
a large role [8–10]. Urbanisation in India is associated with increased consumption of
processed foods and dietary fats, decreased level of physical activity and increased mental
stress, amplifying the effects of abdominal obesity and insulin resistance [4,5,11]. Fur-
thermore, the urban areas in India reported higher intake of protein from pulses and
animal sources (including meat, fish, eggs and milk) than rural areas [12]. Several large
longitudinal studies showed that the intake of animal protein was significantly associated
with the risk of T2D [13–17]. In the context of rapid urbanisation and nutrition transition,
interactions between Westernised diet, lifestyle and genetic factors have further escalated
T2D prevalence in Asia [18,19]. In South Asians, several single nucleotide polymorphisms
(SNPs) have been associated with adiposity [20–23], insulin resistance [24], pancreatic
β-cell function [20,25,26] and T2D [20,22,23,26,27]. The fat mass and obesity-associated
(FTO) gene has been recognised as one of the strongest obesity-related genes. The FTO
SNPs, rs1588413, rs9939609 and rs8050136, have been shown to increase obesity risk by
1.27, 1.15 and 2.06 times among Indians, respectively [22,28]. Studies have reported strong
associations of the Transcription factor 7-like 2 (TCF7L2) SNPs, rs7903146 and rs12255372,
with T2D risk in Asian Indians [29–31]. To date, evidence has identified 243 genetic loci to
be associated with T2D risk in South Asians, East Asians, Europeans, African Americans
and Hispanics [32–35]. Single genetic variants have only a small to moderate effect on
disease risk, thus combining effects of several SNPs into a genetic risk score (GRS) is
required for better detection of individuals with high risk of diabetes [36].

Genome-wide association studies (GWAS) have discovered a large number of genetic
variants associated with metabolic diseases and related traits; however, these SNPs describe
only a small proportion of estimated heritability. Risk prediction of metabolic diseases
is complicated by interactions between dietary and genetic factors, which may partly
explain the missing heritability of diseases [37]. Investigating gene–diet interaction is
important in understanding pathophysiology of metabolic diseases, which can lead to
the development of ‘personalised’ nutrition focusing on tailoring dietary interventions
according to individual genotypic makeup to prevent and treat metabolic diseases [38,39].
The effect of genetic factors on metabolic traits have been shown to be modified by dietary
intake in several populations [40–44]. However, studies investigating GRS–diet interaction
in the Indian population are still sparse. To help fill this gap in knowledge, we assessed the
combined effect of seven genetic variants, as a GRS, on T2D and metabolic traits, and the
extent to which dietary intake can influence these genetic associations among 1062 urban
Asian Indians.

2. Methods
2.1. Study Participants

The present study included individuals from the urban area of the Chennai Urban
Rural Epidemiology Study (CURES), which is a cross-sectional epidemiological study
performed on a representative sample of Chennai city (formerly Madras) in southern
India. The design and procedures of the CURES have been explained in detail previ-
ously [45]. In phase 1, a total of 26,001 adult subjects, of which 1529 were ‘self-reported’
or ‘known diabetic’ individuals, were recruited using a method of systematic random
sampling. In phase 2, diabetic individuals were invited to the study centre for further
investigation, of whom 1382 responded. In phase 3, every 10th individual of the to-
tal sample (n = 26,001 subjects), excluding individuals with self-reported diabetes, were
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screened using an oral glucose tolerance test (OGTT). Individuals with fasting plasma
glucose (FPG) < 5.6 mmol/L (100 mg/dL) and 2 h plasma glucose value of 7.8 mmol/L
(140 mg/dL) were defined as having normal glucose tolerance (NGT) [46]. Those who
had 2 h plasma glucose value of 11.1 mmol/L (200 mg/dL) were categorised as ‘newly
detected diabetic subjects’ (n = 222) (Figure S1). The total sample of present study is 1062 in-
dividuals; the NGT individuals were chosen from Phase 3 (n = 496) and T2D individuals
were chosen from Phase 2 and Phase 3 of the CURES (n = 566). The study was approved
by the Madras Diabetes Research Foundation Institutional Ethics Committee and written
informed consent was obtained from all study participants.

2.2. Anthropometric and Biochemical Measurements

Anthropometric variables including WC, weight and height were measured using
standardised methods. The body mass index (BMI) was calculated with the formula of
weight (in kilograms) divided by the square of height (in metres), with obesity being
defined as BMI ≥ 25 according to World Health Organisation Asia Pacific Guidelines for
Asians [47].

Biochemical tests were carried out using a Hitachi-912 Auto Analyzer (Hitachi,
Mannheim, Germany), with kits provided by Roche Diagnostics (Mannheim). Glycated
haemoglobin (HbA1c) was measured using high-performance liquid chromatography on a
Variant machine (Bio-Rad, Hercules, CA, USA). FPG and serum insulin were measured
using glucose oxidase-peroxidase and an enzyme-linked immunosorbent assay (Dako,
Glostrup, Denmark), respectively.

2.3. Dietary Assessments

Participants’ habitual food intake over the previous year was measured using a
validated semi-quantitative food frequency questionnaire (FFQ) administered by an inter-
viewer [48]. The FFQ consists of 222 food items and individuals were asked to estimate the
usual portion size and frequency (number of times per day, week, month or year/never) of
food items listed in the FFQ. Participants were shown common household measures and
photographic atlas of different sizes of fruits to help them in estimating portion sizes. The
EpiNu® software was used to analyse the recorded data and estimate the intake of energy
and macronutrients. The reported intake of various food groups was also estimated. The
EpiNu software also provided the source of protein from various food groups. Animal
protein intake was summed up using protein intake (g/day from FFQ) from animal food
groups such as meat, poultry, fish, egg and dairy products. Similarly, plant protein intake
was estimated from food groups such as cereals, millets, pulses and legumes, tubers, nuts,
oilseeds, vegetables and fruits. In addition, dairy protein was estimated separately using
dairy products such as milk products and fermented and unfermented milk.

2.4. SNP Selection and GRS Construction

A total of 7 metabolic disease-associated SNPs which have been extensively studied
in various populations, including Asian Indians, were selected for the study [20–27,29].
The selected SNPs included TCF7L2 SNPs, rs12255372 and rs7903146, and FTO SNPs,
rs8050136, rs918031, rs1588413, rs7193144 and rs1076023. Details regarding these SNPs
are summarised in Table S1. Each SNP was coded with the expected number of metabolic
diseases-associated risk alleles. Consistent with previous studies [41,49,50], we used an
unweighted method to construct the GRSs by summing the number of risk alleles of
each SNP for each participant. The seven SNPs were used to generate a 7-SNP GRS
that ranges from 1 to 11 risk alleles. The GRS was divided into 2 categories according
to the median number of risk alleles: “GRS < 6 risk alleles” and “GRS ≥ 6 risk alleles”,
indicating individuals with lower and higher risk alleles of the SNPs, respectively. In
addition, we constructed a GRS of 3 SNPs (FTOSNP rs8050136 and TCF7L2SNPs rs12255372
and rs7903146) that have shown consistent associations with metabolic disease-related
outcomes across various ethnicities, including Asians [51–54]. The 3-SNP GRS ranges from
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0 to 6 risk alleles and was divided into 2 categories according to the median number of risk
alleles: “GRS ≤ 1 risk allele” group and “GRS > 1 risk allele” group, indicating individuals
with lower and higher risk alleles of the SNPs, respectively.

2.5. Genotyping

The genotyping methodologies have been previously published [22,30]. The phenol-
chloroform technique was used to extract DNA from whole blood. Genotyping was per-
formed using restriction fragment length polymorphism and confirmed by direct sequenc-
ing in which duplicate samples (n = 200; 20%) were genotyped with 100% concordance,
suggesting high genotyping accuracy.

2.6. Statistical Analysis

Descriptive statistics of continuous variables are provided as means with standard
deviations (SDs) and compared between T2D and controls using an independent sample
t-test. Normality tests were performed and variables with no-normal distribution were log
transformed. For each individual SNP, genotype counts were assessed for Hardy–Weinberg
equilibrium (HWE) using a goodness-of-fit chi-square test. As shown in Table S1, all SNPs
were in HWE (p > 0.092, for all comparisons). General linear models were utilised to
analyse the main associations of the GRS with metabolic traits. Interactions of the GRS with
dietary intake were investigated by including the interaction term (GRS*dietary intake)
in the models. Furthermore, significant interactions with protein intake were analysed
in more depth according to dietary sources of protein (animal and plant protein), where
individuals were classified into two groups according to the sample median intake of plant
(39 g/day) and animal protein (19 g/day): below and above median groups. Individuals
who consumed below the median were categorised as those who had lower intakes of
plant and animal protein, respectively, whereas individuals who consumed above the
median were categorised as those who had higher intakes of plant and animal protein,
respectively. Dietary intakes as percentage of total energy intake (TEI) included intake
of protein, carbohydrate and fat. Models were adjusted for sex, age, T2D, anti-diabetic
medication and BMI (when BMI is not an outcome). Furthermore, as part of the sensitivity
analysis, we further adjusted for duration of diabetes, dairy protein intake, physical activity
level, smoking, alcohol consumption and fibre intake. Statistical analyses were carried
out using Statistical Package for the Social Sciences (SPSS) software (version 24; SPSS Inc.,
Chicago, IL, USA), with a significance level of 0.05.

3. Results
3.1. Characteristics of Study Participants

As shown in Table 1, individuals with T2D were significantly older and had higher
BMI, WC, HbA1c, FPG and insulin, compared to individuals with NGT (p < 0.05 for
all). Moreover, diabetic individuals had significantly higher intakes of total protein and
carbohydrate than individuals with NGT (p < 0.05 for all).
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Table 1. Characteristics of study participants.

Total NGT Controls T2D Cases
p Value

n n n

Sex
0.807 **Men (%) 591 56 278 56 313 55

Women (%) 471 44 218 44 253 45
Age (years) 1062 45 ± 12 496 38 ± 10 566 51 ± 11 1.160 × 10−71 *
Diabetes duration - - - - 566 5.20 ± 5.29 -
Anti-diabetic medication - - - - 164 15.4% -
BMI (kg/m2) 1061 24.6 ± 4.56 496 23.5 ± 4.64 565 25.5 ± 4.30 1.480 × 10−12 *
WC (cm) 1022 87 ± 12 479 83 ± 12 543 91 ± 10 5.692 × 10−33 *
HBA1C (%) 1056 7.3 ± 2.4 492 5.6 ± 0.47 564 8.8 ± 2.4 1.480 × 10−14 *
FPG (mg/dL) 1060 126 ± 64 495 85 ± 8 565 162 ± 69 1.392 × 10−127 *
Fasting Insulin (µIU/mL) 699 9 ± 7 448 8 ± 6 251 12 ± 7 6.386 × 10−101 *
Energy (kcal/day) 1062 2536 ± 805 496 2685 ± 708 566 2406 ± 861 8.773 × 10−9 *
Protein (%) 1062 11 ± 1 496 11.27 ± 1.17 566 11.45 ± 1.23 0.014 *
Animal protein (g/day) 1062 22 ± 12 496 25 ± 13 566 19 ± 11 3.787 × 10−14 *
Plant protein (g/day) 1062 40 ± 14 496 42 ± 15 566 39 ± 13 0.006 *
Fat (%) 1062 23 ± 5 496 24 ± 5 566 23 ± 5 0.113 *
Carbohydrate (%) 1062 65 ± 6 496 64 ± 6 566 65 ± 6 0.003 *
Dietary fibre (g) 1062 32 ± 11 496 32 ± 10 566 31 ± 12 0.150 *
Total SFA (g) 1062 24 ± 10 496 27 ± 10 566 22 ± 10 2.295 × 10−12 *
Total MUFA (g) 1062 20 ± 8 496 21 ± 8 566 18 ± 8 3.943 × 10−9 *
Total PUFA (g) 1062 18 ± 10 496 19 ± 9 566 18 ± 10 0.184 *
Physical activity level
Sedentary 695 71% 335 73% 360 70%

0.001 **Moderate 223 23% 110 24% 113 22%
Vigorously active 58 6% 13 3% 45 8%
Smoking

0.206 **Non-smokers 865 81.5% 396 79.8% 469 82.9%
Smokers 197 18.5% 100 20.2% 97 17.1%
Alcohol consumption
Non-alcoholics 793 74.7% 358 72.2% 435 76.9% 0.080 **
Alcoholics 269 25.3% 138 27.8% 131 23.1%

Data presented as Mean ± SD. * p values are for the mean differences between controls and T2D cases using an independent sample t-test.
** p values are from the Chi-squared test. Frequency of men and women between controls and cases was compared using a chi-square test.
Abbreviations: NGT, normal glucose tolerance; T2D, type 2 diabetes; BMI, body mass index; WC, waist circumference; HbA1c, glycated
haemoglobin; FPG, fasting plasma glucose; SFA, saturated fatty acids; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated
fatty acids.

3.2. Association between Metabolic GRS and Metabolic Traits

After adjusting for the potential confounders there were no significant associations
between the 7-SNP GRS and metabolic traits (Table 2).

Table 2. Associations of 7-SNP and 3-SNP GRS and with metabolic traits.

7-SNP GRS 3-SNP GRS

n GRS < 6 n GRS ≥ 6 p Value n GRS ≤ 1 n GRS > 1 p Value *

BMI (kg/m2) 526 24.5 ± 0.2 535 24.7 ± 0.2 0.572 645 24.7 ± 0.2 416 24.5 ± 0.2 0.572
WC (cm) 508 86.7 ± 0.5 514 87.4 ± 0.5 0.668 620 87.0 ± 0.47 402 88.0 ± 0.57 0.010

HBA1C (%) 524 7.1 ± 0.1 532 7.4 ± 0.1 0.935 640 7.0 ± 0.1 416 7.7 ± 0.1 0.000066
FPG (mg/dL) 526 119.9 ± 2.6 534 131.6 ± 2.9 0.181 644 120.0 ± 2.35 416 135.0 ± 3.39 0.002
Fasting insulin

(µIU/mL) 373 9.5 ± 0.4 326 9.4 ± 0.3 0.767 419 10.0 ± 0.36 280 9.0 ± 0.33 0.171

Data are Mean ± standard error of the mean. * p values adjusted for sex, age, T2D, anti-diabetic medication and additionally for BMI, when
BMI is not an outcome. The analysis was carried out using log-transformed variables. Abbreviations: GRS, genetic risk score; BMI, body
mass index; WC, waist circumference; HbA1c, glycated haemoglobin; FPG, fasting plasma glucose.

In the 3-SNP GRS analysis, significant associations were found with WC (p = 0.010),
FPG (p = 0.002) and HbA1c (p = 0.000066), where individuals with >1 risk allele had higher
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WC, FPG and HbA1c compared to individuals with ≤1 risk allele (Table 2). Both 7-SNP
GRS and 3-SNP GRS were associated with a higher risk of T2D (p = 0.0000134 and 0.008,
respectively) (Table 3).

Table 3. Association of 7-SNP and 3-SNP GRSs with T2D.

GRS OR
95% CI for OR

p Value *
Lower Upper

7-SNP GRS 2.083 1.496 2.898 0.0000134
3-SNP GRS 1.559 1.121 2.170 0.008

* p values were obtained from the logistic regression models adjusted for sex, age, anti-diabetic medication and
BMI. Abbreviations: GRS, genetic risk score; SNP, single nucleotide polymorphism; T2D, type 2 diabetes; OR,
odds ratio; CI, confidence interval; BMI, body mass index.

3.3. Interaction of 7-SNP and 3-SNP GRSs with Dietary Factors on Metabolic Traits

As shown in Table 4, there were significant interactions between the 3-SNP GRS and
total protein intake (% of TEI) on FPG (Pinteraction = 0.011) and HbA1c (Pinteraction = 0.007).
Among individuals with lower intake of plant protein (<39 g/day), those with >1 risk
allele had higher FPG (p = 0.001) and HbA1c (p = 0.00006) than individuals with ≤1 risk
allele (Figure 1). Furthermore, among individuals with higher intake of animal protein
(>19 g/day), those with >1 risk allele had higher FPG (p = 0.008) and HbA1c (p = 0.001)
than individuals with ≤1 risk allele (Figure S2). None of the interactions were significant
between the 7-SNP GRS and dietary intakes on metabolic traits except for the interactions
between 7-SNP GRS and protein intake on HbA1c (Pinteraction = 0.032), and 7-SNP GRS and
carbohydrate intake (Pinteraction = 0.04) on fasting insulin. However, these interactions were
not significant after stratifying based on animal and plant protein.

Table 4. Interactions of 7-SNP and 3-SNP GRSs with dietary factors on metabolic traits.

7-SNP GRS 3-SNP GRS

Protein Fat Carbohydrate Protein Fat Carbohydrate

(% of TEI) (% of TEI) (% of TEI) (% of TEI) (% of TEI) (% of TEI)

BMI (kg/m2) 0.176 0.388 0.195 0.36 0.653 0.805
WC (cm) 0.852 0.786 0.892 0.638 0.958 0.914

HBA1C (%) 0.032 0.629 0.618 0.007 0.677 0.756
FPG (mg/dL) 0.249 0.489 0.507 0.011 0.367 0.231

Fasting insulin (µIU/mL) 0.952 0.085 0.04 0.299 0.567 0.999
T2D 0.956 0.214 0.152 0.764 0.508 0.365

Data are Pinteraction values adjusted for sex, age, T2D, antidiabetic medications and additionally for BMI, when BMI is not an outcome. The
analysis was carried out using log-transformed variables. Abbreviations: GRS, genetic risk score; TEI, total energy intake; BMI, body mass
index; WC, waist circumference; HbA1c, glycated haemoglobin; FPG, fasting plasma glucose; T2D, type 2 diabetes.
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Figure 1. Interaction between 3-SNP GRS and plant protein intake on fasting plasma glucose and glycated haemoglobin.
White bars refer to individuals with GRS ≤ 1 risk allele; the black bars refer to individuals with GRS > 1 risk allele. (a)
Individuals with >1 risk allele had a significantly higher FPG compared to those with ≤1 risk allele, among those with
lower intake of plant protein (<39 g/day) (p = 0.001). (b) Individuals with >1 risk allele had a significantly higher HbA1c
compared to those with ≤1 risk allele, among those with lower intake of plant protein (<39 g/day) (p = 0.00006). p values
were adjusted for age, sex, T2D, BMI, anti-diabetic medication, total fat intake (%) and TEI. Abbreviations: GRS, genetic risk
score; FPG, fasting plasma glucose; HbA1c, glycated haemoglobin; TEI, total energy intake.
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3.4. Sensitivity Analyses

We subjected our regression results to a wide range of robustness checks. First, we
adjusted for duration of diabetes, and the association of 3-SNP GRS with HbA1c and FPG
(p = 0.010 and 0.040, respectively) and the interaction of 3-SNP GRS with protein intake (%)
(Pinteraction = 0.025 and 0.019 for HbA1c and FPG, respectively) were still significant. Second,
we excluded individuals with diabetes, and this resulted in a small sample size of 496 NGTs.
However, a significant association of 3-SNP GRS with HbA1c (p = 0.012) was still observed,
but none of the interactions were statistically significant (p = 0.126 and 0.405 for HbA1c
and FPG, respectively). Third, given the association between dietary fat intake and T2D
traits, we adjusted for total dietary fat intake and found that the interaction of 3-SNP GRS
with protein intake (%) (Pinteraction = 0.007 and 0.009 for HbA1c and FPG, respectively) was
still significant. Fourth, we tested for the interaction between 3-SNP GRS and dairy protein
intake to see if the interactions with the animal protein intake were driven by the intake
of dairy protein. We found that the interactions between 3-SNP GRS and dairy protein
intake were not statistically significant (Pinteraction = 0.439 and 0.597 for HbA1c and FPG,
respectively), suggesting that dairy protein intake is unlikely to confound the GRS–animal
protein intake interaction on diabetes traits. Fifth, in addition to the aforementioned factors,
we adjusted for other possible confounders such as physical activity level, smoking, alcohol
consumption and fibre intake, and found that the interactions between the 3-SNP GRS and
protein intake on HbA1c and FPG were still significant (Pinteraction = 0.009 and 0.008, on
HbA1c and FPG, respectively).

4. Discussion

The current research provides evidence for the GRS–protein intake interaction on
T2D-related traits in Asian Indians. We found that individuals with >1 risk allele had
higher FPG and HbA1c levels than those with ≤1 risk allele among individuals with lower
intake of plant protein (<39 g/day). Given that the prevalence of obesity, high FPG and
T2D has increased in India from 1990 to 2016 [55], our findings are of importance in terms
of public health. Our study suggests that increasing the intake of plant protein might be an
effective strategy towards better management of blood glucose levels, especially in Asian
Indians with a higher genetic susceptibility for T2D.

In the present study, the 3-SNP GRS was associated with higher WC, which is in
accordance with the findings in 7067 individuals from the Indian Migrant Study where
a combined risk score of eight variants was observed to be nominally associated with
higher WC (p = 0.02) [56]. The 3-SNP GRS was also associated with FPG and HbA1c, where
individuals with higher GRS had higher FPG and HbA1c. Similarly, a large GWAS in
159,940 individuals of African, South Asian, East Asian and European ancestries identified
60 genetic variants influencing HbA1c [57], including SNPs located in the FTO and TCF7L2
genes. An association of 8-SNP GRS with T2D was found in a case-control study of 5,148
Indians (including 1808 individuals with T2D and 1549 controls) from in and around Pune
in western India [25]. A case-control study of 3357 Indian adults (including 2486 individuals
with T2D and 2678 controls) also found that individuals with a higher GRS, derived from
32 SNPs, were at a higher T2D risk compared to those with lower GRS [58]. The EpiDREAM
prospective cohort study (n = 15,466 individuals) has shown that South Asians might have
a greater genetic load for T2D than Latinos and Europeans [59]. If our study findings
are confirmed in larger cohorts, our 3-SNP GRS might serve as a diagnostic marker for
investigating the cumulative effect of SNPs on diabetes-related traits and identifying Asian
Indians with a high genetic risk of T2D.

Increasing evidence has shown that certain dietary factors might interact with genetic
susceptibility in relation to the risk of diabetes and related traits [40–42,44,60]. In our study,
individuals with higher 3-SNP GRS had higher fasting glucose and HbA1c concentrations
than individuals with lower GRS among individuals with lower intake of plant protein.
The results of the current analysis are in agreement with a recent study among Southeast
Asian women (n = 110) showing significant interactions between a 15-SNP GRS and total
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protein intake. The study found that consuming a low protein diet (13.51 ± 1.18% of
TEI) was associated with lower WC and triacylglycerol concentrations, particularly in
individuals with high genetic risk [60]. Moreover, significant interactions of the FTO SNPs
(rs8044769 (C>T), rs3751812 (G>T) and rs8050136 (A>C)) with protein intake on blood
glucose were observed in 819 Polish adults, where higher protein intake (>18% of TEI) was
associated with higher blood glucose in individuals with the TT genotype of rs8044769,
CC genotype of rs8050136 and GG genotype of rs3751812 [61]. However, the effect of
protein sources was not analysed in the abovementioned studies, thus a direct comparison
between these studies and our findings cannot be performed. In contrast to our study,
a large prospective case-cohort study from eight European countries (n = 21,900) found
no significant interactions between intake of protein and metabolic GRSs on T2D [62].
Similarly, no interaction was found between protein intake and a 10-SNP GRS on T2D
risk among 8842 Korean adults [42]. These discrepancies in the findings might be due
to differences in ethnicity, dietary assessments, dietary patterns, relative proportions of
different macronutrients, protein sources, sample sizes and GRS construction methods;
hence, larger studies in multiple ethnic groups are needed to confirm the GRS–protein
intake interactions.

Previous studies have examined the relationship between protein intake and T2D
in South Indians. A cross-sectional study of 900 urban South Indians from Chennai
demonstrated that individuals with known T2D had significantly higher protein intake
(15.9%) than controls (14%) [63]. Another study in Asian Indians from different parts of
India reported similar findings, where diabetic individuals (n = 385) had higher protein
intake (14%) than controls (12%) (n = 409) [64]. A cohort including 146 Asian Indians living
in San Francisco found that individuals were at increased T2D risk when the protein intake
was high. The same study also reported that the intake of animal protein (32 ± 15 g/day)
was more likely to be associated with diabetes risk (p = 0.07) in comparison with the intake
of vegetable protein (38 ± 8 g/day; p = 0.26) [65]. Even though consuming diets high in
protein has been one of the most popular strategies for losing weight and the management
of overweight and obesity [66–68], the health impacts of diets high in protein on T2D
are inconsistent. Higher animal protein intake, but not plant protein, showed significant
association with a higher risk of T2D in 38,094 individuals (median intake of animal
protein = 62 g/day; 10-year follow-up period) from the European Prospective Investigation
into Cancer and Nutrition-Netherlands (EPIC-NL) study [13], and in 37,309 women from
the US (median intake of total meat in the highest quintiles = 53.5 serving/day; 8.8 year
follow-up period) from the Women’s Health Study [14]. Moreover, a large case-cohort study
including 28,557 European individuals reported that higher animal protein intake was
associated with higher incidence of T2D (per 10 g: 1.05 (1.02–1.08), Ptrend = 0.001) over an
average follow-up period of 12 years [16]. Furthermore, the higher intake of animal protein
(5% increase in consumption of protein derived from meat and meat products) was shown
to be associated with a 34% increased risk of T2D, whereas the intake of plant protein
was shown to have a considerable protective effect in 1190 elderly participants from the
Mediterranean islands [17]. A large study of 92,088 women and 40,722 men from the United
States found that substituting 5% of energy intake from animal protein with plant protein
was associated with a decrease in T2D risk by 23% [69]. Moreover, a systematic review and
meta-analysis of thirteen randomised controlled trials (n = 280 middle-aged adults from
Iran, Denmark, United States, Germany, Canada and Greece) found significant decreases
in HbA1c, fasting insulin and fasting glucose in diets that substituted animal protein with
plant protein at a median level of ~35% of total protein intake/day [70]. Another systematic
review and meta-analysis of eleven cohort studies, including individuals from the United
States, Europe, Asia, Melbourne and Finland (52,637 cases among 483,174 individuals),
showed that the intakes of total protein and animal protein increased T2D risk in both men
and women, whereas plant protein intake decreased T2D risk in women [71]. Previous
cohort studies in the United States (90,239 women and 40,539 men) and in the Netherlands
(6798 individuals) found that an association between the higher adherence to a plant-
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based diet and a lower risk of T2D [72,73]. In contrast, other prospective cohort studies
(n = 8370–38,094 individuals) observed no significant associations [13,74,75]. It is possible
that the interactions between genetic factors and protein intake might be one of the reasons
for the discrepancies in the effect of dietary protein intake on the risk of T2D and its
related traits.

The dietary patterns across different parts of India have been significantly affected by
urbanisation. Given that food availability and purchasing power are higher in urban than
rural areas, diets of both residents tend to differ significantly [12,76]. Protein intake has
been shown to be positively related to an individual’s income, where the demand for animal
protein increased with the disposable income [12]. Higher protein intake has also been
reported in urban areas in India, with the overall mean intake of protein being the highest
in the high-income group (73.1 g/day) followed by the middle-income group (63.2 g/day),
industrial labourer (59.4 g/day) and low-income group (57.8 g/day) [77,78]. The present
study included urban residents and the mean protein intake is 71.6 ± 22.7 g/day, which
is higher than dietary protein recommendations for Asian Indians (55–60 g/day) [79].
However, the mean protein intake is only 11% (percentage calories coming from the
protein), which is similar to the previous large studies, such as the National Family Health
and National Nutrition Monitoring Bureau surveys that were conducted in the Indian
population [80,81]. A study in 6907 adults from South India aged >20 years showed that
the consumption of pulses was lower in rural compared to urban Indian adults [82] and
a cross-sectional study including 56,742 men and 99,574 women aged 20–49 years also
demonstrated that inverse association between daily or weekly legumes and the presence
of diabetes [83]. A recent study in 1033 Indian adults also showed that a significant
decrease in the risk of T2D was observed among those having higher intakes of legumes
and pulses [84]. In the same population, a study in 2042 individuals reported that pulses
and legumes contributed to only 17.2% of the daily protein suggesting a reduced intake
of plant protein [85]. Hence, according to the findings from the previous studies and
the GRS–plant protein intake interaction from the present study, increasing the intake of
plant protein might be an effective strategy to arrest the rising epidemic of T2D among
Indian adults.

The strength of this study is the use of a representative sample of the urban Chennai
population. Given that diabetes prevalence continues to be higher in urban residents com-
pared to rural residents in India [2,86,87], understanding gene–diet interactions on T2D
in urban areas would improve diabetes prevention strategies among urban Indians. Our
study used unweighted GRSs to analyse the combined effect of several SNPs, which is an
effective approach to study polygenic diseases such as T2D and obesity, providing a better
knowledge of disease risk compared to a single-SNP analysis [36]. A comprehensive and
validated semi-quantitative FFQ was used for analysing dietary intakes [48]. Furthermore,
anthropometric outcomes were assessed by qualified staff rather than self-reported to
improve the accuracy of anthropometric measurements. However, the study has several
limitations. First, the study has a small sample size suggesting that we might have had
insufficient power for our analysis. To maximise power, we used a GRS approach, which
has an advantage over single-SNP analysis, and significant associations and interactions
were found. Second, the observational nature of the study design cannot explain causal
relationships or exclude residual confounding; however, sensitivity analyses were carried
out where adjustment was performed for additional confounding factors such as diabetes
duration, total fat intake, physical activity level, anti-diabetic medication, alcohol consump-
tion, smoking and fibre intake. Third, dietary intake was assessed using self-reported FFQ,
which might have introduced recall and measurement bias. Finally, SNPs contributing
to our GRSs represent only a small proportion of the increasing number of identified
metabolic disease-associated variants in Asian Indians; however, we have chosen SNPs in
TCF7L2 and FTO genes that have presented the most consistent and strongest associations
with T2D and obesity, respectively, in several populations [32,88].
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5. Conclusions

In summary, the current study has found a novel GRS–protein intake interaction
where individuals with >1 risk allele and lower intake of plant protein (<39 g/day) had
higher FPG and HbA1c levels. This suggests that increasing the intake of plant protein may
be an effective approach to overcome the genetic risk of diabetes in urban Asian Indians.
To prove this hypothesis, appropriate randomised clinical trials with diets of higher and
lower plant protein intake need to be performed. Moreover, there is a need for studies
with larger sample sizes to confirm gene–diet interactions. Ultimately, there is a need for
the assessment of the clinical benefit of targeted interventions based on an individual’s
underlying genetic risk.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nu13093064/s1, Table S1: Genotype distribution of the seven SNPs that were chosen for our
study (n = 1062), Figure S1: Methodology of the Chennai Urban Rural Epidemiology Study (CURES),
Figure S2: Interaction between 3-SNP GRS and animal protein intake (%) on fasting plasma glucose
and glycated haemoglobin after adjusting for anti-diabetic medication.
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Abstract
Purpose The development of metabolic diseases such as type 2 diabetes (T2D) is closely linked to a complex interplay 
between genetic and dietary factors. The prevalence of abdominal obesity, hyperinsulinemia, dyslipidaemia, and high blood 
pressure among Brazilian adolescents is increasing and hence, early lifestyle interventions targeting these factors might be 
an effective strategy to prevent or slow the progression of T2D.
Methods We aimed to assess the interaction between dietary and genetic factors on metabolic disease-related traits in 200 
healthy Brazilian young adults. Dietary intake was assessed using 3-day food records. Ten metabolic disease-related single 
nucleotide polymorphisms (SNPs) were used to construct a metabolic-genetic risk score (metabolic-GRS).
Results We found significant interactions between the metabolic-GRS and total fat intake on fasting insulin level 
 (Pinteraction = 0.017), insulin-glucose ratio  (Pinteraction = 0.010) and HOMA-B  (Pinteraction = 0.002), respectively, in addition to a 
borderline GRS-fat intake interaction on HOMA-IR  (Pinteraction = 0.051). Within the high-fat intake category [37.98 ± 3.39% 
of total energy intake (TEI)], individuals with ≥ 5 risk alleles had increased fasting insulin level (P = 0.021), insulin-glucose 
ratio (P = 0.010), HOMA-B (P = 0.001) and HOMA-IR (P = 0.053) than those with < 5 risk alleles.
Conclusion Our study has demonstrated a novel GRS-fat intake interaction in young Brazilian adults, where individuals 
with higher genetic risk and fat intake had increased glucose and insulin-related traits than those with lower genetic risk. 
Large intervention and follow-up studies with an objective assessment of dietary factors are needed to confirm our findings.

Keywords Genetic risk score · Metabolic traits · Brazil · Fat intake · Gene–diet interaction

Introduction

Metabolic diseases, such as type 2 diabetes (T2D), have been 
recognised as a significant public health problem worldwide 
[1, 2], playing a critical role in medical impoverishment 
[3–6]. T2D is a major contributor to morbidity and mor-
tality and individuals with T2D have a five-fold increased 
risk of developing cardiovascular diseases (CVD) [7]. The 
prevalence of diabetes has increased globally (over 463 mil-
lion adults) [8] but at a faster rate in low- and middle-income 
countries (LMICs) [9]. In Brazil, the prevalence of T2D has 
increased by 24% between 2006 and 2019 [10] and an esti-
mate of 65,581 deaths have been shown to be caused by 
diabetes among adults aged 35–80 years [11]. It has been 
reported that the prevalence of prediabetes and T2D among 
Brazilian adolescents were 22.0% and 3.3%, respectively 
[12]. Studies have also demonstrated the occurrence of car-
diometabolic risk factors including abdominal obesity, high 
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insulin levels, dyslipidaemia, and high blood pressure among 
Brazilian adolescents [12–14]. Hence, early interventions 
targeting these factors might be an effective strategy to pre-
vent or slow the progression of T2D and decrease the risk of 
CVD and associated premature mortality [8].

Much of the increase in the prevalence of metabolic dis-
eases in Brazil is attributed to an epidemiological transition 
characterised by changes in Brazilian age structure, popu-
lation ageing, reduced rates of infant mortality and fertil-
ity and increased low birth weight [15–19]. Changes in the 
cultural and socioeconomic patterns, for instance, increas-
ing urbanisation and economic improvement, have led to 
negative changes in lifestyle behaviours, including physical 
inactivity and unhealthy diet, in the Brazilian adolescent/ 
young adult population [20]. A previous study has shown 
that the intake of saturated fatty acids (SFA) was higher in 
adolescents than adults in Brazil [21]. Animal and human 
studies have demonstrated an association between increased 
dietary fat intake and increased insulin resistance [22–24]. 
In addition, the dietary behaviours of Brazilian young adults 
have been shown to be characterised by higher intakes of 
unhealthy foods than middle-aged and older adults, high-
lighting the need for age-specific public health interventions 
[25].

The development of metabolic diseases such as T2D is 
closely linked to a complex interplay between genetic and 
lifestyle factors, such as diet. Numerous genetic loci have 
been shown to be associated with T2D [26–29] and related 
traits [30, 31] and, to date, 243 genetic loci have been identi-
fied to be associated with the risk of T2D in multiple ethnic 
groups [26–29]. Single nucleotide polymorphisms (SNPs) 
have only a modest effect on disease risk, thus, generating a 
genetic risk score (GRS) combining several SNPs across the 
genome is necessary for increasing power to identify disease 
predisposition patterns of an individual [32]. Evidence has 
suggested that the genetic risk of metabolic diseases can be 
modified by dietary intake [33–37]. There are a few gene-
diet interaction studies in Brazilians; however, the studies 
have focused only on cardiovascular disease related traits 
[38–40]. To date, there are no GRS-diet interaction stud-
ies on metabolic traits in Brazilians. Hence, we aimed to 
investigate the interaction of 10 metabolic disease-related 
SNPs, as a GRS, with dietary intake on metabolic traits in 
200 healthy Brazilian young adults.

Methodology

Study population

Obesity, Lifestyle and Diabetes in Brazil (BOLD) is a cross-
sectional study of Brazilian healthy young adults aged 
19–24 years recruited at the Federal University of Goiás 

(UFG) between March and June 2019. This study was con-
ducted as part of the ongoing GeNuIne (gene-nutrient inter-
actions) Collaboration, which aims to investigate the impact 
of genes and lifestyle factors on chronic diseases using 
data from multiple ethnic groups [41, 42]. All participants 
completed baseline questionnaires regarding health status, 
demographics, and socioeconomic status. The study exclu-
sion criteria included those who are 1) using lipid-lowering 
or hypoglycemic drugs and mineral or vitamin supplements, 
2) undergoing dietary interventions in the last 6 months, 3) 
having acute clinical conditions such as infection, inflam-
mation, fever or diarrhoea, or confirmed diagnosis of 
chronic diseases such as diabetes mellitus, moderate/severe 
hypertension, cancer, rheumatoid arthritis and cardiovascu-
lar complications, 4) doing vigorous physical activity. In 
total, 416 individuals showed interest in participating in the 
study. However, 207 participants met the inclusion criteria 
and only 200 completed the study (Fig. 1). Out of the 200 
participants, only 194 had information on genetic and pheno-
typic measurements as DNA samples were not available for 
6 participants. The study was approved by the Ethics Com-
mittee of the Federal University of Goiás (protocol number 
3.007.456, 08/11/2018), and performed according to the 
ethical principles in the Declaration of Helsinki. All partici-
pants gave written informed consent for study participation.

Anthropometric and biochemical measurements

Body weight, height and waist circumference (WC) were 
measured using standardized methods. The weighing was 
performed on a Tanita® portable electronic scale, with a 
maximum capacity of 150 kg. For height, a stadiometer with 
a movable rod was used. WC was measured using an inelas-
tic measuring tape. Body mass index (BMI) was calculated 
as weight in kilograms divided by height in  meters2 and WC 
measurement was taken using a non-extensible measuring 
tape with partici-pants in light clothing [43]. Body composi-
tion was performed by Dual Energy Radiological Absorp-
tiometry (DXA), using the Lunar DPX NT model (General 
Electric Medical Systems Lunar®; Madison, USA).

Blood samples were collected by peripheral venous 
puncture in the morning after a 12-h fast and the volun-
teers were advised not to consume alcohol 72 h before 
the blood collection. Samples were immediately pro-
cessed after the collection at the Romulo Rocha Labora-
tory (Goiânia, Brazil). Fasting serum glucose and insulin 
were collected in BD Vacutainer® tube and determined 
by the enzymatic colorimetric method, with an automatic 
System Vitros Chemistry 950 XRL (Johnson & Johnson, 
New Brunswick, NJ, USA). Plasma glycated haemoglo-
bin (HbA1c) was collected in an ethylene-diamine-tetra-
acetic acid (EDTA) tubes BD Vacutainer® and measured 
using high-pressure chromatography (HPLC-Bio-Rad 
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Laboratories, Hercules, CA, USA). Plasma samples were 
obtained by centrifugation at 3500 rpm for ten minutes 
at 4  °C. The homeostasis model assessment (HOMA) 
was used to assess the degree of insulin resistance (IR) 
(HOMA-IR) and β-cell function (HOMA-B). HOMA-IR 
and HOMA-B were calculated as follows: [fasting insulin 
levels (mU/l) × fasting glucose levels (mmol/l)/22.5] and 
[20 × fasting insulin levels)/(fasting glucose levels − 3.5], 
respectively [44].

Dietary assessment

Food intake was assessed by trained nutritionists using non-
consecutive 3-day food records, including a weekend day 
[45]. Individuals were provided with measuring cups and 
spoons of different sizes to assist them in estimating portion 
size for each food. Foods consumed were converted into 
grams using the Avanutri Online® diet calculation software 
(Avanutri Informática Ltda, Rio de Janeiro, Brazil).

Genotyping

The blood samples (3 ml each) were collected in an EDTA 
tubes BD Vacutainer® tubes and transported at a controlled 
temperature (- 80ºC) by the World Courier Company to per-
form genotyping at LGC Genomics (http:// www. lgcgr oup. 
com/ servi ces/ genot yping), employing the competitive allele-
specific PCR-KASP® assay.

SNP selection and GRS calculation

We selected 12 SNPs that have shown associations with 
metabolic traits in multiple ethnic groups [26–31]. The 
detailed information of these SNPs is shown in Table S1. 
Two SNPs were excluded from the current analysis, as 
the Calpain 10 (CAPN10) rs2975760 SNP was not in 
Hardy–Weinberg equilibrium (HWE) and the melanocor-
tin 4 Receptor (MC4R) rs2229616 SNP had a minor allele 
frequency (MAF) of less than 1%. Unweighted metabolic-
GRS was calculated by summing the number of risk alleles 

Fig. 1  Flow chart showing the participant recruitment process in the 
BOLD study. In total, 416 individuals were initially screened. After 
excluding participants based on the exclusion criteria, 207 were 
included in the study. However, only 200 completed the study. BMI 
body mass index, WC waist circumference, HbA1c glycated haemo-
globin A1c, HOMA-IR homeostasis model assessment estimate of 

insulin resistance, HOMA-B homeostasis model assessment estimate 
of insulin secretion, TCF7L2 Transcription factor 7-like 2, MC4R 
melanocortin 4 Receptor, PPARG  Peroxisome proliferator-activated 
receptor gamma, FTO fat mass and obesity-associated, CDKN2A/2B 
Cyclin dependent kinase inhibitor 2A/2B, KCNQ1 Potassium voltage-
gated channel subfamily Q member 1 and CAPN10 Calpain 10

http://www.lgcgroup.com/services/genotyping
http://www.lgcgroup.com/services/genotyping
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present in each individual. The GRS was generated from 
the following SNPs: rs12255372, rs7903146 of the Tran-
scription factor 7-like 2 (TCF7L2) gene, rs17782313 of the 
MC4R gene, rs8050136 and rs10163409 of the fat mass 
and obesity-associated (FTO), rs2237892 and rs2237895 
of the Potassium voltage-gated channel subfamily Q mem-
ber 1(KCNQ1) gene, rs10811661 of the Cyclin dependent 
kinase inhibitor 2A/2B (CDKN2A/2B) gene, rs5030952 of 
the CAPN10 gene, and rs1801282 of the Peroxisome pro-
liferator-activated receptor gamma (PPARG ) gene. Geno-
types were coded as 0, 1, or 2 according to the number of 
metabolic-associated risk alleles that are defined based 
on the literature. These values were then calculated by 
summing the number of risk alleles for each variant. The 
GRS was then categorised based on the median risk alleles 
into two categories: “GRS < 5 risk alleles” and “GRS ≥ 5 
risk alleles”.

Statistical analysis

Descriptive characteristics of the study population strati-
fied by sex were presented as means and standard deviation 
(SDs) for continuous variables and compared using an inde-
pendent samples t-test. Variables were tested for normality 
using Shapiro–Wilk's W test and non-normally distributed 
variables were log-transformed including BMI, WC, body 
fat mass percentage, HbA1c, fasting glucose, fasting insu-
lin, HOMA-IR, HOMA-B, insulin to glucose ratio, total 
energy intake (TEI), carbohydrate %, protein %, SFA %, and 
polyunsaturated fatty acids (PUFA) %. We investigated the 
effects of metabolic-GRS on metabolic traits using general 
linear models. To test the interactions of the metabolic-GRS 
with dietary factors on metabolic traits, we included the 
interaction term (e.g., GRS*fat intake) in the models. The 
dietary factors investigated in our study included the total 
dietary intake of fat, protein, and carbohydrate (percentages 
of TEI). Significant interactions between the GRS and the 
total fat intake were analysed in more depth to determine the 
effect of fat subtypes including SFA, monounsaturated fatty 
acids (MUFA), and PUFA. The GRS-nutrient interactions 
that reached statistical significance (p < 0.05) were tested for 
the effects of the GRSs on metabolic traits according to ter-
tiles of dietary intakes (low, medium and high intake) using 
general linear models. All models were adjusted for age, sex 
and BMI (when BMI is not an outcome). Given that insulin 
levels are influenced by both the capacity for insulin secre-
tion and IR [46, 47], analysis of HOMA-B was performed 
with and without adjustment for IR to improve the accuracy 
of pancreatic β‐cell function estimate. All statistical tests 
were two-sided, and analyses were performed using Statisti-
cal Package for the Social Sciences (SPSS) software (version 
24; SPSS Inc., Chicago, IL, USA).

Results

Characteristics of the study participants

Table 1 summarises the characteristics of individuals in this 
study according to sex. Men had higher BMI, WC, fasting 
glucose, and lower fat mass % compared to women (P < 0.05 
for all). Men also reported higher intakes of total energy and 
protein than women (P < 0.05 for all).

Associations between metabolic‑GRS and metabolic 
traits

None of the associations between metabolic-GRS and meta-
bolic-disease related traits was statistically significant except 
for the association with BMI (P = 0.008) (Table 2). 

Interactions of metabolic‑GRS with dietary factors 
on metabolic traits

As shown in Table 3, there were statistically significant 
interactions between the metabolic-GRS and total fat intake 
(% of TEI) on fasting insulin level  (Pinteraction = 0.017), 
insulin-glucose ratio  (Pinteraction = 0.010) and HOMA-B 
 (Pinteraction = 0.002) and a borderline interaction on HOMA-
IR  (Pinteraction = 0.051). Among those in the highest tertile 
of fat intake (37.98 ± 3.39% of TEI), individuals with ≥ 5 
risk alleles had higher fasting insulin level (P = 0.021), 
insulin-glucose ratio (P = 0.010), HOMA-B (P = 0.001) 
and HOMA-IR (P = 0.053), compared to those with < 5 
risk alleles (Figs. 2 and 3). Interaction on HOMA-B was 
still significant after adjusting the analysis for HOMA-
IR  (Pinteraction = 0.016), Figure S1. We further examined 
interactions with fat subtypes on these traits. Significant 
interactions were detected between the metabolic-GRS 
and MUFA intake on fasting insulin  (Pinteraction = 0.021), 
HOMA-IR  (Pinteraction = 0.021) and insulin to glucose ratio 
 (Pinteraction = 0.031), however, none of these interactions was 
statistically significant after tertile analysis. Significant inter-
actions were also observed between the metabolic-GRS and 
intakes of total fat, PUFA and MUFA on percentage of body 
fat mass  (Pinteraction = 0.009, 0.033 and 0.038, respectively).

Discussion

The present study investigated the potential interplay 
between metabolic-GRS and dietary macronutrient intake 
on metabolic traits in a Brazilian young adult population. 
Our results provide evidence of significant GRS-fat intake 
interactions on glucose and insulin-related traits, where 
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individuals with ≥ 5 risk alleles had higher fasting insulin 
level, insulin-glucose ratio, HOMA-IR and HOMA-B than 
those with < 5 risk alleles among those in the high fat intake 
group (37.98 ± 3.39% of TEI). These findings suggest that 
individuals with ≥ 5 risk alleles are sensitive to dietary fat 
with respect to glucose and insulin-related traits and that 
these individuals may derive the most benefit from following 
the Brazilian dietary guidelines which aim at reducing fat 
intake to less than 30% of TEI [48]. This could have signifi-
cant implication for public health in terms of providing early 

intervention to young adults with high genetic risk before 
the onset of disease, which might help halt the development 
of T2D.

In the present study, the metabolic-GRS was found to be 
associated with lower BMI, which contradicts the findings 
of the previous GRS-related studies in European popula-
tions [49–52]. However, the Brazilian population has a 
mixed genetic ancestry that originates from Europeans, 
Africans and Native Amerindians, which might explain the 
discrepancies between our findings and genetic association 

Table 1  Characteristics of study 
participants

Data presented as the mean ± SDs. P values for the differences in the means between men and women were 
calculated using the independent samples t-test. BMI body mass index, WC waist circumference, HbA1c 
glycated haemoglobin, HOMA-IR homeostasis model assessment estimate of insulin resistance, HOMA-B 
homeostasis model assessment estimate of insulin secretion, SFA saturated fatty acids, MUFA monounsatu-
rated fatty acids, PUFA polyunsaturated fatty acids

Parameters Total (n = 200) Women (n = 147) Men (n = 53) p‐Value

Age (years) 21.35 ± 1.67 21.33 ± 1.70 21.40 ± 1.61 0.815
BMI (kg/m2) 23.35 ± 4.42 22.81 ± 3.97 24.86 ± 5.23 0.004
WC (cm) 74.55 ± 13.56 71.10 ± 12.05 84.13 ± 13.01 0.000
Body fat mass (%) 33.91 ± 10.72 37.17 ± 8.77 24.84 ± 10.48 0.000
HbA1c (%) 4.73 ± 0.25 4.71 ± 0.25 4.78 ± 0.26 0.103
Fasting serum glucose (mg/dL) 87.18 ± 6.84 86.43 ± 6.78 89.26 ± 6.60 0.009
Fasting serum insulin (uU/mL) 8.74 ± 3.80 8.69 ± 3.37 8.88 ± 4.82 0.784
HOMA-IR 1.89 ± 0.88 1.86 ± 0.76 1.98 ± 1.15 0.513
HOMA-B 138.32 ± 65.75 142.47 ± 65.65 126.81 ± 65.25 0.137
Insulin to glucose ratio 0.10 ± 0.04 0.10 ± 0.04 0.10 ± 0.05 0.944
Energy (Kcal/day) 1827.81 ± 597.94 1741.52 ± 558.82 2067.15 ± 641.91 0.001
Protein (energy %) 17.11 ± 3.63 16.74 ± 3.33 18.14 ± 4.24 0.016
Carbohydrate (energy %) 51.09 ± 7.11 51.11 ± 7.01 51.05 ± 7.44 0.961
Fat (energy %) 31.66 ± 5.83 32.12 ± 5.69 30.38 ± 6.08 0.061
SFA (%) 9.43 ± 5.43 9.54 ± 6.030 9.14 ± 3.25 0.652
PUFA (%) 5.13 ± 2.27 5.08 ± 2.38 5.26 ± 1.92 0.628
MUFA (%) 7.72 ± 2.63 7.55 ± 2.55 8.19 ± 2.79 0.129

Table 2  Associations of 
metabolic-GRS with metabolic 
traits

Data are Mean ± standard error of the mean (SEM). P values obtained from the linear regression analysis 
adjusted for age, sex and additionally for BMI when BMI is not an outcome. The analysis was performed 
on log-transformed variables. GRS genetic risk score, BMI body mass index, WC waist circumference, 
HbAIc glycated haemoglobin, HOMA-IR homeostasis model assessment estimate of insulin resistance, 
HOMA-B homeostasis model assessment estimate of insulin secretion

Parameters GRS < 5 (n = 93) GRS ≥ 5 (n = 101) p‐Value

BMI (kg/m2) 23.90 ± 0.43 22.60 ± 0.43 0.008
WC (cm) 75.53 ± 1.27 73.93 ± 1.26 0.967
Body fat mass (%) 35.80 ± 1.05 31.91 ± 1.10 0.663
HbA1c (%) 4.72 ± 0.03 4.73 ± 0.03 0.964
Fasting glucose (mg/dL) 87.54 ± 0.68 86.74 ± 0.72 0.419
Fasting insulin (uU/mL) 8.91 ± 0.43 8.52 ± 0.34 0.542
HOMA-IR 1.93 ± 0.10 1.84 ± 0.08 0.663
HOMA-B 138.76 ± 7.15 138.17 ± 6.32 0.234
HOMA-B adjusted for HOMA-IR 138.76 ± 7.15 138.17 ± 6.32 0.235
Insulin to glucose ratio 0.10 ± 0.00 0.10 ± 0.00 0.477
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studies in Europeans [53]. Furthermore, a large GWAS of 
241,258 European adults showed that the risk allele T of 
TCF7L2 rs7903146 was associated with lower BMI com-
pared to the non-risk allele, which may provide a possible 
explanation of our findings [54]. Metabolic diseases are 
complex and multifactorial influenced by both environ-
mental and genetic factors including dozens or even hun-
dreds of genetic variants each contributing small effects on 
these traits [55, 56]. Thus, the effect of unmeasured factors 
on BMI might influence the observed findings.

The present study found that, within the high-fat intake 
category, individuals with higher metabolic-GRS showed 
increased fasting insulin level, insulin-glucose ratio, 
HOMA-IR and HOMA-B, whereas those with lower GRS 
showed a reduction in these traits. Although direct com-
parison of our study with previous gene-diet interaction 
studies is difficult due to differences in the methodology 
related to the construction of GRSs and measurement of 
dietary intake, sample size, study design, and ethnicity, 
our findings are in agreement with some of the previous 
studies in other populations in which fat intake was found 
to interact with GRS on metabolic traits [33–35]. In a 
recent study in 302 Ghanaian adults, a GRS of 4 met-
abolic-related variants was associated with higher WC 
among individuals with high fat intake (34.99 ± 5.54% 
TEI) [57]. Data from an intervention study in 733 Euro-
pean adults also reported that higher total fat intake was 
associated with increased fasting glucose in individuals 
with higher GRS of 14 fasting glucose-associated SNPs 
and with decreased fasting glucose among individuals with 
lower GRS [33]. Taken together, these observations sug-
gest that individuals with higher genetic risk might benefit 

more from reducing fat intake in terms of lowering their 
metabolic risk.

Dietary guidelines have recommended to limit the dietary 
intake of total fat (between 15 and 30% of TEI) to preserve 
overall health and reduce the risk of developing metabolic 
diseases [58]. Previous studies have demonstrated that the 
higher intake of total fat contributes to the development of 
T2D by inducing IR [24, 59]. Lowering total fat intake have 
been reported to improve glycemic control in a systematic 
review of clinical trials of diabetic individuals [60]. Evi-
dence from two previous intervention studies including 
individuals from various ethnic groups (n = 3,234 and 522, 
respectively) and with long follow-up (2.8 and 3.2 years, 
respectively) have also shown that decreasing fat intake 
(from 6.6 ± 0.2% of TEI and to < 30% of TEI, respectively) 
is effective in reducing the incidence of T2D by up to 58% 
[61, 62]. In addition, dietary intervention in 48,835 post-
menopausal women from the US showed that reducing total 
fat intake (by ~ 8% of TEI) and increasing carbohydrate 
intake (by ~ 8% of TEI) through increasing intake of veg-
etable/fruit (five servings per day) and grain (six servings 
per day) were associated with a reduction in glycemia and 
diabetes progression [63]. The dietary intake of Brazilians 
is characterised by unfavourable fat profile with high intakes 
of SFA and trans fatty acids and imbalances in the omega-
6:omega-3 ratio, being compatible with a high risk of meta-
bolic diseases [21]. In our study, the mean fat intake of the 
total sample (31.66 ± 5.8% of TEI) and the high fat intake 
group (37.98 ± 3.39% of TEI) were above the recommended 
dietary guidelines for Brazilian adults (< 30% of TEI) [64].

The mechanisms by which dietary fat influences IR and 
β-cell function are unclear; however, several pathways are 

Table 3  Interactions of the 
metabolic-GRS with dietary 
factors on metabolic traits

Data are P values of interaction which obtained from the linear regression analysis adjusted for age, sex 
and additionally for BMI when BMI is not an outcome. The analysis was performed on log-transformed 
variables. GRS genetic risk score, BMI body mass index, WC waist circumference, HbA1c glycated hae-
moglobin, HOMA-IR homeostasis model assessment estimate of insulin resistance, HOMA-B homeostasis 
model assessment estimate of insulin secretion, SFA saturated fatty acids, MUFA monounsaturated fatty 
acids, PUFA polyunsaturated fatty acids

Protein (%) Carbohydrate (%) Fat
(%)

SFA (%) PUFA
(%)

MUFA
(%)

BMI (kg/m2) 0.255 0.120 0.922 - - -
WC (cm) 0.124 0.303 0.979 - - -
Body fat mass (%) 0.451 0.311 0.009 0.255 0.033 0.038
HbA1c (%) 0.955 0.653 0.632 - - -
Fasting glucose (mg/dL) 0.764 0.142 0.099 - - -
Fasting insulin (uU/mL) 0.898 0.37 0.017 0.233 0.809 0.021
HOMA-IR 0.944 0.561 0.051 0.357 0.837 0.021
HOMA-B 0.797 0.089 0.002 0.079 0.749 0.123
HOMA-B adjusted for HOMA-IR 0.784 0.084 0.016 0.131 0.806 0.952
Insulin to glucose ratio 0.895 0.274 0.010 0.154 0.801 0.031
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biologically plausible. IR is often mediated by increased 
inflammation that has been shown to be induced mostly by 
the effect of the fatty acids composition of the diet [65]. In 
particular, SFA and omega-6 have pro-inflammatory effects, 
and omega-3 fatty acids have anti-inflammatory effects [65]. 
Some of the molecular mechanisms of IR include the lipid-
overload hypothesis in which ceramides or diacylglycerides 
are accumulated leading to the inhibition of insulin signal-
ling and oxidative stress induced by excessive generation 
of free radicals or endoplasmic reticulum stress induced by 
excessive calorie intake [66–68]. In addition to the insulin-
related traits, there was also a significant interaction between 
GRS and intakes of total fat, PUFA and MUFA on the per-
centage of body fat mass in our study. Given that adipose tis-
sue is a central metabolic organ that stores excess fat energy 
in the form of lipid and secretes proinflammatory adipokines 
that can also influence signalling of insulin, our finding is 

biologically plausible [69]. It is worth observing the intake 
of SFA, PUFA and MUFA which were significantly higher 
in the high fat intake category than low and medium intake 
groups; this might be one of the reasons for the observed 
interactions with total dietary fat intake. Evidence suggests 
that different types of dietary fat have differential effects 
on IR and insulin secretion. While a cross-sectional study 
in 538 Spanish individuals suggested that the intake of a 
MUFA-rich diet was associated with increased HOMA-B 
[70], a meta-analysis of randomised controlled feeding tri-
als (n = 4220) demonstrated that PUFA intake showed the 
most consistent favourable effects in relation to improved 
glycaemia and insulin secretion capacity [71].

Several strengths are worth consideration. This study is 
the first to examine whether dietary factors interact with 
metabolic-GRSs on metabolic traits among the Brazilian 

Fig. 2  Interaction between the metabolic-GRS and fat intake (%) on 
fasting insulin levels and insulin: glucose ratio. White bars indicate 
individuals with GRS < 5 risk alleles; the black bars indicate indi-
viduals with GRS ≥ 5 risk alleles; Error bars indicate the standard 
error of the mean. Individuals with ≥ 5 risk alleles had higher fast-
ing insulin (a) and insulin to glucose ratio (b) compared to those 
with < 5 risk alleles, among individuals with a higher total fat intake 
(37.98 ± 3.39% of TEI). GRS genetic risk score, TEI total energy 
intake

Fig. 3  Interaction between the metabolic-GRS and fat intake (%) 
on HOMA-IR and HOMA-B. White bars indicate individuals with 
GRS < 5 risk alleles; the black bars indicate individuals with GRS ≥ 5 
risk alleles; Error bars indicate the standard error of the mean. Indi-
viduals with ≥ 5 risk alleles had higher HOMA-IR (a) and HOMA-B 
(b) compared to those with < 5 risk alleles, among individuals with a 
higher total fat intake (37.98 ± 3.39% of TEI). GRS genetic risk score, 
TEI total energy intake, HOMA‐IR homeostasis model assessment 
estimate of insulin resistance, HOMA‐B homeostasis model assess-
ment estimate of insulin secretion
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young adult population. Early prediction of insulin sensi-
tivity in young adults and effective intervention can be a 
critical factor in terms of delaying or preventing diabetes 
in normoglycemic individuals who are at risk of diabetes 
[72]. Also, a GRS analysis approach was used, which has the 
advantage over single-locus approach [32]. This approach 
is especially important for highly polygenic metabolic traits 
and can identify individuals at risk of metabolic diseases 
who might benefit from targeted interventions [32]. Further-
more, the study outcomes (metabolic traits) were measured 
using validated methods by trained staff which improve the 
accuracy of these estimates. Nevertheless, some limita-
tions need to be acknowledged. A major limitation is the 
small sample size, suggesting that our analysis might be 
underpowered. However, the use of the GRS approach is 
suggested to improve the power and significant gene-diet 
interactions were detected in our study. As with all obser-
vational studies, causality between exposure and outcome 
cannot be inferred and residual confounders might have 
existed. Given the longitudinal dimension of the develop-
ment of T2D and the complexity of gene-diet interactions, 
our cross-sectional study design fails to determine the tem-
porality of the observed findings. Given that dietary intake 
was assessed using self-reported measures, we cannot 
exclude the effect of measurement bias. Another limitation 
is that the effect of different dietary sources of fat (including 
meat, dairy and plant) were not considered in the present 
analysis, which might have provided further explanations to 
our GRS-fat intake interactions [73]. In addition, our GRS 
was constructed based on 10 SNPs, which account for only 
a small proportion of the metabolic disease-related genetic 
variants. As HOMA is a widely validated clinical and epi-
demiological tool for assessing IR and β-cell function [74], 
like many other epidemiological studies [33, 35, 59], we 
also used HOMA-IR and HOMA-B as proxies for IR and 
insulin secretion, respectively. However, these measures 
are calculated only using fasting insulin and glucose values 
which might provide different estimates compared to meth-
ods based on dynamic measurements of insulin and glucose 
responses or those derived from clamp experiments [75]. 
Finally, given that the study was performed with relatively 
healthy overweight/obese young individuals with normal 
glucose tolerance who might have a quicker adaptation to 
changes in fat intake, the findings might not be applicable to 
those with impaired glucose metabolism or diabetes.

In conclusion, our study provides evidence of interac-
tions between genetic predisposition and high fat intake 
on diabetes-related traits among Brazilian young adults. 
These findings encourage identifying Brazilian young 
adults with high genetic risk and tailoring dietary rec-
ommendations of fat intake according to their metabolic 
genetic risk profile for the primary prevention of adult-
onset T2D. In addition, devising polygenic risk score 

could be used to provide more insights on understanding 
the pathophysiology of the genetics of diabetes. However, 
large interventional and follow up studies with a more 
comprehensive and objective assessment of environmen-
tal factors are needed in Brazilians to confirm our find-
ings and to evaluate the clinical benefit of implementing 
precision dietary interventions based on an individual’s 
underlying genetic risk of metabolic diseases.
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Abstract: Obesity is a multifactorial condition arising from the interaction between genetic and
lifestyle factors. We aimed to assess the impact of lifestyle and genetic factors on obesity-related traits
in 302 healthy Ghanaian adults. Dietary intake and physical activity were assessed using a 3 day
repeated 24 h dietary recall and global physical activity questionnaire, respectively. Twelve single
nucleotide polymorphisms (SNPs) were used to construct 4-SNP, 8-SNP and 12-SNP genetic risk scores
(GRSs). The 4-SNP GRS showed significant interactions with dietary fat intakes on waist circumference
(WC) (Total fat, Pinteraction = 0.01; saturated fatty acids (SFA), Pinteraction = 0.02; polyunsaturated
fatty acids (PUFA), Pinteraction = 0.01 and monounsaturated fatty acids (MUFA), Pinteraction = 0.01).
Among individuals with higher intakes of total fat (>47 g/d), SFA (>14 g/d), PUFA (>16 g/d) and
MUFA (>16 g/d), individuals with ≥3 risk alleles had a significantly higher WC compared to those
with <3 risk alleles. This is the first study of its kind in this population, suggesting that a higher
consumption of dietary fatty acid may have the potential to increase the genetic susceptibility of
becoming centrally obese. These results support the general dietary recommendations to decrease
the intakes of total fat and SFA, to reduce the risk of obesity, particularly in individuals with a higher
genetic predisposition to central obesity.

Keywords: genetic risk score; obesity; Ghana; GONG; fat intake; gene–diet interaction

1. Introduction

Obesity is a known risk factor for several health conditions, including type 2 diabetes,
cardiovascular diseases, hypertension and cancer, and hence it is considered as an increasing public
health problem worldwide, including in Africa [1,2]. Obesity prevalence varies widely between African
countries with a range of 5.3% in Uganda to 30% in Nigeria and 45.7% in South Africa [2]. A recent
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systematic review has reported that nearly 43% of Ghanaian adults are either overweight or obese
and that the prevalence of overweight and obesity was higher in women and urban dwellers [3].
While obesity is strongly affected by changes in environmental factors (such as dietary intake, sedentary
lifestyle, and urbanization), the composition of the gut microbiome, the disruption of circadian
rhythms, exposure to endocrine-disrupting chemicals and epigenetic modifications [4–9], it also has
strong genetic determinants with a heritability rate from 40 to 70% [10,11]. Genome-wide association
studies (GWAS) in European populations have revealed more than 100 loci to be associated with
the body mass index (BMI) [12–18]. However, these genetic associations have not been consistently
replicated in African populations [19–23], which could be attributed to differences in lifestyle and
genetic architecture [24].

Given that single nucleotide polymorphisms (SNPs) have relatively small effect sizes on obesity,
several studies have aggregated information from multiple-risk variants into a polygenic genetic
risk score (GRS) [13,15,25–29]. Employing a combined risk allele score is an efficient and effective
approach in maximising statistical power, decreasing the drawback of multiple testing, and widening
the generalisable nature of genetic associations [25,27]. A study among a rural population of Gambia
demonstrated a positive association between a GRS of 28 SNPs and BMI and adult weight, whereas no
association was found with the single SNP analysis [30,31]. Although genetic research in Africans is
increasing in numbers [22], only a few studies have examined the association of GRS with obesity in
Africa [30,32,33], which highlights the need for further research in African populations.

Current evidence has shown that heritability estimates for obesity-related traits can be modified
by lifestyle factors such as diet and physical activity. Several studies have reported significant GRS–diet
interactions on obesity-related traits. Studies in European populations have shown that the genetic
association with BMI was stronger with higher intakes of sugar-sweetened beverages (SSBs) and
fried foods than among those with lower intakes [34,35]. Studies have also shown that genetic
associations with BMI in Europeans can be modified by the levels of physical activity, television
watching, and changes in sleep pattern [36,37]. In addition, higher adherence to healthy eating patterns
have shown to reduce BMI in Europeans despite having increased genetic susceptibility to obesity [38].
Gene–lifestyle interaction studies have largely been conducted in populations of European ancestry,
and the replication of these studies in African populations remains unknown [36,39]. Therefore,
our study aimed to investigate the association of GRS with obesity-related traits and to examine
whether lifestyle factors such as dietary intake and physical activity modified these associations in the
Ghanaian population.

2. Methods

2.1. Study Population

The Genetics of Obesity and Nutrition in Ghana (GONG) study is a cross-sectional study that
was conducted in the Oforikrom Municipality in Kumasi, Ashanti region, Ghana. The GONG
study was conducted as part of the ongoing GeNuIne (Gene–Nutrient Interactions) Collaboration,
the main objective of which is to investigate the effect of gene–nutrient interactions (nutrigenetics)
on metabolic disease outcomes using population-based studies from various ethnic groups [40,41].
The Oforikrom Municipal Assembly is one of the five Municipal Assemblies carved out of the Kumasi
Metropolitan Assembly. There are seventeen recognized communities in this Municipal Assembly,
with an estimated total population of 360,254. Five communities (Ayeduase, Bomso, Ayigya, Oforikrom
and Kotei) were randomly selected from the list of communities in the Oforikrom Municipal Assembly.
In each community, a central point was located (a vehicle station, marketplace or other landmarks).
A fieldworker entered the first house that faced either North, South, East or West of that central point,
and randomly recruited one respondent from each household. Upon exiting a house, the fieldworker
entered the next house, and the house-level selection process was repeated.
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Three hundred and two free-living and healthy (with no physical complaints or prior diagnosis
of cardiometabolic disease) adult volunteers, both men and women, were screened and recruited for
the study by trained researchers. The inclusion criteria included the following: healthy individuals
aged 25 to 60 years old and being Asante (both parents must be Asante). The exclusion criteria
included the following: participants less than 25 years old or older than 60 years, those with existing
cardiovascular complications or disease, those with a previous history of hypertension, type 2 diabetes
or cardiovascular diseases, participants with any communicable or non-communicable chronic diseases,
pregnant women and participants on lipid-lowering drugs, anti-diabetic drugs or anti-hypertensive
drugs. A medical screening questionnaire was developed to screen participants for inclusion or
exclusion from the study.

This study was approved by the Council for Scientific and Industrial Research (CSIR) Institutional
Review Board (IRB) (Ref: RPN 003/CSIR-IRB/2018). In addition, this study was approved by the Metro
Director of Health Services, Kumasi (KMHD/MPHs/13). All participants signed informed consent
prior to their participation.

2.2. Data Collection

Structured questionnaires were used to elicit information about the participants’ demographic
characteristics, dietary intakes, physical activity levels, sleep and sunshine exposure patterns and
medical history. Fieldworkers were trained before the start of data collection. Survey instruments
were also pre-tested on the 10 July 2018 to enhance the field workers’ understanding of questionnaires,
ensure clearness and avoid ambiguity. Data collection took place from July to September 2018.

2.3. Anthropometric Measurements

Height, weight, percentage of body fat and visceral fat, waist circumference (WC) and hip
circumference (HC) were measured. The measurements were taken with respondents wearing light
clothing. Height was measured with a stadiometer (Seca 213 mobile stadiometer, Hamburg, Germany)
to the nearest 0.1 cm with participants standing upright without shoes. Weight was measured using an
OMRON Body Composition Analyzer to the nearest 0.1 kg. The same equipment provided values
for BMI, percentage of body fat and visceral fat. WC and HC measurements were taken using a
non-extensible measuring tape with participants in light clothing. The WC was measured just above
the naval to the nearest 0.1 cm whereas the HC was measured at the level of the greater trochanter to
the nearest 0.1 cm. The waist-to-hip ratio (WHR) was calculated by dividing WC by HC.

2.4. Physical Activity and Dietary Assessments

The health-related physical activity level of participants was measured using the interviewer-
administered Global Physical Activity Questionnaire (GPAQ) version 2 developed by the World Health
Organization (WHO) for physical activity surveillance [42]. This questionnaire contains 16 questions
(P1–P16) which gather information on the respondent’s engagement in physical activities under
three domains or settings (work-related activity, transportation and recreational activities) as well as
sedentary behaviours. The total physical activity per week was calculated in Metabolic Equivalents
(MET- minutes) and the respondents who had total physical activity ≥ 600 MET- minutes/week were
classified as active while those who had < 600 MET- minutes/week were classified as inactive [42].

A three-day repeated (two weekdays and one weekend) 24 h dietary recall method was used
to elicit the information concerning the participants’ dietary intake. Participants were requested to
recollect all the meals taken as well as the times of the meal consumption in the previous day. Common
household measures were used to estimate the actual quantities of foods and drinks consumed by the
participants. The nutritional composition of the foods eaten was then analysed using the Nutrient
Analysis Template (Food Science and Nutrition Department, University of Ghana, Accra, Ghana, 2010).
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2.5. SNP Selection

Fifteen SNPs near or in 8 obesity-susceptibility loci were chosen for the study based on the previous
GWAS for metabolic traits [12–18]. These include Transcription factor 7-like 2 (TCF7L2) (rs12255372,
rs7903146), melanocortin 4 Receptor (MC4R) (rs17782313, rs2229616), fat mass and obesity-associated
(FTO) (rs9939609, rs10163409), adiponectin (ADIPOQ) (rs266729, rs17846866), Potassium voltage-gated
channel subfamily Q member 1(KCNQ1) (rs2237892, rs2237895), Cyclin dependent kinase inhibitor
2A/2B (CDKN2A/2B) (rs10811661), Calpain 10 (CAPN10) (rs3792267, rs5030952, rs2975760) and
Peroxisome proliferator-activated receptor gamma (PPARG) (rs1801282). Three of these SNPs,
KCNQ1 (rs2237895), ADIPOQ (rs17846866) and CAPN10 (rs2975760), reported significant deviations
from Hardy–Weinberg Equilibrium (HWE) (p < 0.05) and were excluded from the current analysis.
The detailed information of the 15 SNPs is shown in Supplementary Table S1.

2.6. Genotyping

Blood samples for the measurement of DNA were transported in dry ice to the United Kingdom
(UK). Genomic DNA was extracted from a 5 mL whole blood sample from each participant and
genotyping was performed at the LGC Genomics (http://www.lgcgroup.com/services/genotyping),
which employs the competitive allele-specific PCR-KASP® assay.

2.7. Construction of the Metabolic GRSs

To evaluate the combined effects of the 12 SNPs on obesity-related traits, an additive model
was used to construct the unweighted metabolic GRSs (Figure 1). We did not weigh the risk alleles
based on their individual effect sizes, because no previously reported effect sizes were available for
these SNPs for the Ghanaian population, and it has been shown that the weighting of risk alleles may
only have limited effects [43]. The unweighted metabolic GRSs were calculated by the summation of
the number of risk alleles across the 12 variants. The risk alleles were defined as alleles previously
associated with an increased risk of obesity in the literature. To reduce the bias caused by the missing
data, only those participants without any missing data were included in our metabolic GRS analysis.
Different metabolic GRSs were constructed including the 12-, 8- and the 4-SNP GRSs. The 12-SNP
GRS included the following SNPs: TCF7L2 (rs12255372, rs7903146), MC4R (rs17782313, rs2229616),
FTO (rs9939609, rs10163409), ADIPOQ (rs266729), KCNQ1 (rs2237892), CDKN2A/2B (rs10811661),
CAPN10 (rs3792267, rs5030952) and PPARG (rs1801282), and the score ranged from 0 to 9 risk alleles.
In the 12-SNP GRS analysis, no significant results were identified which might be because four of the
SNPs had a minor allele frequency (MAF) of less than 5%. Therefore, we excluded the four SNPs:
MC4R (rs2229616), FTO (rs10163409), CDKN2B (rs10811661) and PPAR (rs1801282) and created an
8-SNP GRS. No significant findings were observed using the 8-SNP GRS; this might be because four of
the eight SNPs (ADIPOQ (rs266729), KCNQ1 (rs2237892) and CAPN10 (rs3792267, rs5030952)) have
not shown consistent associations with obesity-related traits in other populations [44–49]. Hence,
these four SNPs were removed and a 4-SNP GRS including the SNPs (TCF7L2 (rs12255372, rs7903146),
MC4R (rs17782313), FTO (rs9939609)) that have shown consistent associations with obesity across
several populations was constructed. The 4-SNP GRS ranged from 0 to 6 risk alleles and significant
results were observed. Based on the median number of each GRS, the individuals were separated into
two groups.

Given that there were no previously reported effect sizes available for these SNPs for the Ghanaian
population, we were unable to perform sample size calculation.

http://www.lgcgroup.com/services/genotyping
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Figure 1. Steps involved in the construction of the metabolic GRS. Fifteen SNPs were genotyped in
our study; however, the GRS analysis was based only on 12 SNPs as 3 SNPs were not in the HWE.
Three different GRSs, including the 12-SNP GRS, 8-SNP GRS and the 4-SNP GRS were constructed.
In the 12-SNP GRS analysis, no significant results were identified, which could be because 4 of the
SNPs had MAF of less than 5%. Therefore, the 4 SNPs were excluded, and an 8-SNP GRS was
created. No significant findings were observed using the 8-SNP GRS; this could be because four of the
eight SNPs have not shown a consistent association with obesity-related traits in other populations.
Hence, these four SNPs were removed and a 4-SNP GRS including those SNPs that have shown
consistent associations with obesity across several populations was constructed. Abbreviations: SNP:
single nucleotide polymorphisms; GRS: genetic risk score; HWE: Hardy–Weinberg equilibrium; MAF:
minor allele frequency.
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Data analyses were performed using Statistical Package for the Social Sciences (SPSS) software
(version 24; SPSS Inc., Chicago, IL, USA). A natural log transformation was used for the
non-normally distributed variables. Unadjusted differences of descriptive characteristics between
the overweight/obese and non-obese participants were calculated using an independent samples
t-test for continuous variables. General linear models were used to examine the association between
the metabolic GRSs and obesity traits. GRS–lifestyle interactions were analysed by including the
interaction terms in these models. Models were adjusted for covariates including sex, age and BMI
(when BMI is not an outcome). Nutrient–GRS interaction analysis was additionally adjusted for total
energy intake. All GRS–lifestyle interactions reaching a nominal level of significance (p < 0.05) were
investigated further using binary analysis. Based on the median intake of total fat—saturated fatty
acids (SFA), monounsaturated fatty acids (MUFA), and polyunsaturated fatty acids (PUFA)—the
individuals were separated into two groups: ‘’below the median group” and ‘’above the median
group”. Within each group, the association between the GRS and the outcome was examined. We also
tested for GRS–sex interactions to test if sex influenced the genetic associations with obesity traits.
The lifestyle factors investigated in our study included physical activity and the total dietary intake of
fat, protein, carbohydrate and fibre. Significant interactions between the GRS and the total fat intake
were further investigated to examine the influence of fat subtypes including saturated fatty acids (SFA),
monounsaturated fatty acids (MUFA), and polyunsaturated fatty acids (PUFA). Two-tailed value of
p < 0.05 was considered statistically significant.

3. Results

3.1. Characteristics of the Study Participants

The anthropometric and dietary characteristics of the study participants are presented in Table 1.
The mean age and BMI of the total sample were 38.17 ± 9.64 years and 26.63 ± 4.99 kg/m2, respectively.
Overweight/obese individuals were older than the non-obese (p < 0.05). Moreover, the dietary
intakes were significantly different between the two groups. Overweight/obese individuals reported
significantly lower intakes of total calories, protein, carbohydrate, total fat, fibre, SFA, MUFA and
PUFA compared to the non-obese (p < 0.05). Women had significantly higher levels of BMI, body fat
percentage and WHR compared to men, despite the men consuming significantly higher levels of
carbohydrate, protein and fat (p < 0.05) (Supplementary Table S2).

Table 1. Characteristics of the study participants.

Total
(N = 302)

Non-Obese *
(N = 126)

Overweight/Obese **
(N = 176) p Value ***

Age (years) 38.17 ± 9.64 35.96 ± 9.55 39.75 ± 9.42 0.001
BMI (kg/m2) 26.63 ± 4.99 22.01 ± 1.79 29.95 ± 3.75 <0.001

WC (cm) 88.48 ± 12.41 77.99 ± 7.13 96.00 ± 9.61 <0.001
WHR 1.45 ± 6.96 1.55 ± 7.76 1.38 ± 6.34 0.84

Visceral fat (%) 8.02 ± 7.39 6.49 ± 10.97 9.12 ± 2.26 0.01
Body fat (%) 33.12 ± 13.90 22.05 ± 12.47 41.05 ± 8.36 <0.001

Total energy intake (%) 1647.93 ± 685.83 1772.17 ± 723.85 1558.99 ± 644.75 0.008
Protein intake (g/day) 53.24 ± 23.73 57.38 ± 24.52 50.28 ± 22.76 0.01
Total fat intake (g/day) 51.17 ± 26.94 55.00 ± 29.29 48.42 ± 24.85 0.04

Carbohydrates intake (g/day) 239.03 ± 95.84 259.44 ± 104.01 224.42 ± 86.94 0.002
Fibre intake (g/day) 21.31 ± 10.84 23.19 ± 11.44 19.96 ± 10.21 0.01

Total SFA intake (g/day) 16.23 ± 10.36 17.41 ± 11.29 15.39 ± 9.58 0.10
Total MUFA intake (g/day) 18.08 ± 10.49 19.63 ± 11.30 16.96 ± 9.74 0.03
Total PUFA intake (g/day) 9.12 ± 5.03 10.20 ± 5.56 8.35 ± 4.47 0.002

Data presented as the means ± standard deviations. * Non-obese individuals refer to the individuals with a
BMI < 25 Kg/m2, according to the WHO classification of BMI. ** Overweight/obese cases refer to individuals with
BMI ≥ 25 Kg/m2, according to the WHO classification of BMI. *** p values for the differences in the means between
the two groups were calculated using the independent samples t-test. Abbreviations: BMI: body mass index; WC:
waist circumference; WHR: waist–hip ratio; SFA: saturated fatty acids; MUFA: monounsaturated fatty acids; PUFA:
polyunsaturated fatty acids; WHO: World Health Organisation.
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3.2. Effect of Metabolic GRSs on Obesity-Related Traits

We first investigated the combined effect of 12 common SNPs on obesity-related traits and no
significant associations were observed (Supplementary Table S3). Similar results were found using an
8-SNP GRS (Supplementary Table S4) and a 4-SNP GRS (Table 2).

Table 2. Associations of the 4-SNP GRS on obesity-related traits.

GRS < 3 Risk Alleles
(N = 123)

GRS ≥ 3 Risk Allele
(N = 172) * p Value

BMI (kg/m2) 26.13 ± 0.45 26.85 ± 0.37 0.24
WC (cm) 87.13 ± 1.15 89.14 ± 0.92 0.19

WHR 2.27 ± 0.98 0.88 ± 0.01 0.18
Visceral fat (%) 7.89 ± 0.71 8.08 ± 0.55 0.43

Body fat (%) 31.75 ± 1.32 33.87 ± 1.02 0.15

* p Values obtained from the linear regression analysis adjusted for age, sex and additionally for BMI when BMI is
not an outcome. The analysis was performed on log-transformed variables. Abbreviations: SNP: single nucleotide
polymorphism; GRS: genetic risk score; BMI: body mass index; WC: waist circumference; WHR: waist–hip ratio.

3.3. GRS–Lifestyle Interactions on Obesity-Related Traits

There was a significant interaction of the 4-SNP GRS with dietary fat intake (g/day) on WC (Total fat,
Pinteraction = 0.01; SFA, Pinteraction = 0.02; PUFA, Pinteraction = 0.01 and MUFA, Pinteraction = 0.01, Table 3).
Individuals with ≥3 risk alleles had a significantly higher WC compared to those with <3 risk alleles,
among individuals with higher intakes of total fat (>47 g/day), SFA (>14 g/day), PUFA (>16 g/day)
and MUFA (>16 g/day), (Figure 2a–d). There was also a significant interaction between 4-SNP GRS
and dietary fibre intake (g/day) on body fat percentage (Pinteraction = 0.04). Individuals with <3 risk
alleles had a significantly lower body fat percentage compared to those with ≥3 risk alleles (p = 0.02),
among individuals with a higher intake of fibre (>19 g/day). In addition, there was a significant
interaction between the 4-SNP GRS and physical activity on WHR (Pinteraction = 0.002). However,
the finding was not significant after stratifying them by physical activity levels. Some significant
interactions were observed between the 12- and the 8-SNP GRSs and lifestyle factors on obesity-related
traits (Supplementary Tables S5 and S6), however, none of these interactions were significant after
binary analysis. Given the significant differences in the dietary intakes and obesity-related outcomes
between men and women, interactions between the 4-SNP GRS and sex were tested but no significant
results were found (Supplementary Table S7).

Table 3. Interactions between the 4-SNP GRS and the lifestyle factors on obesity-related traits.

Protein
(g/day)

Carbohydrate
(g/day)

Fibre
(g/day)

Fat
(g/day)

SFA
(g/day)

MUFA
(g/day)

PUFA
(g/day)

Physical
Activity

BMI (kg/m2) 0.45 0.22 0.12 0.15 - - - 0.76
WC (cm) 0.08 0.21 0.41 0.01 0.02 0.01 0.01 0.24

WHR 0.82 0.88 0.49 0.80 - - - 0.002
Visceral fat (%) 0.50 0.35 0.32 0.38 - - - 0.93

Body fat (%) 0.46 0.11 0.04 0.75 - - - 0.60

Data are p values obtained from the linear regression analysis adjusted for age, sex, total energy intake and
additionally for BMI when BMI is not an outcome. The analysis was performed on log-transformed variables.
Abbreviations: SNP: single nucleotide polymorphism; GRS: genetic risk score; BMI: body mass index; WC: waist
circumference; WHR: waist–hip ratio; SFA: saturated fatty acids; MUFA: monounsaturated fatty acids; PUFA:
polyunsaturated fatty acids.
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Figure 2. Interaction between the 4-SNP GRS and fat intake (g/day) on the log transformed WC. (a) Interaction between the 4-SNP GRS and the log transformed 
total fat intake (g/day) on WC. White bars indicate individuals with a GRS < 3 risk alleles; the black bars indicate individuals with GRS ≥ 3 risk alleles. Individuals 
with ≥3 risk alleles had a significantly higher WC compared to those with <3 risk alleles, among individuals with a higher total fat intake (above median group > 47 

Figure 2. Interaction between the 4-SNP GRS and fat intake (g/day) on the log transformed WC.
(a) Interaction between the 4-SNP GRS and the log transformed total fat intake (g/day) on WC.
White bars indicate individuals with a GRS < 3 risk alleles; the black bars indicate individuals with
GRS ≥ 3 risk alleles. Individuals with ≥3 risk alleles had a significantly higher WC compared to those
with <3 risk alleles, among individuals with a higher total fat intake (above median group > 47 g/day):
71.28 ± 23.68 g/day (34.99 ± 5.54 % TEI); (b) the interaction between the 4-SNP GRS and the log
transformed SFA intake (g/day) on the log transformed WC. White bars indicate individuals with
a GRS < 3 risk alleles; the black bars indicate individuals with GRS ≥ 3 risk alleles. Individuals
with ≥3 risk alleles had a significantly higher WC compared to those with <3 risk alleles, among
individuals with a higher SFA intake: 23.50 ± 10.08 g/day (12.19 ± 3.21% TEI); (c) the interaction
between the 4-SNP GRS and the log transformed MUFA intake (g/day) on the log transformed WC.
White bars indicate individuals with a GRS < 3 risk alleles; the black bars indicate individuals with
GRS ≥ 3 risk alleles. Individuals with ≥3 risk alleles had a significantly higher WC compared to those
with <3 risk alleles, among individuals with a higher MUFA intake: 25.72 ± 9.58 g/day (12.79 ± 2.53%
TEI); (d) the interaction between the 4-SNP GRS and the log transformed PUFA intake (g/day) on the
log transformed WC. White bars indicate individuals with a GRS < 3 risk alleles; the black bars indicate
individuals with GRS ≥ 3 risk alleles. Individuals with ≥3 risk alleles had a significantly higher WC
compared to those with <3 risk alleles, among individuals with a higher PUFA intake: 12.74 ± 4.7 g/day
(6.28 ± 1.08% TEI). Abbreviations: SNP: single nucleotide polymorphisms; GRS: genetic risk score;
WC: waist circumference; SFA: saturated fatty acids; MUFA: monounsaturated fatty acids; PUFA:
polyunsaturated fatty acids; TEI: total energy intake. Error bars indicate the standard error of the mean.

4. Discussion

To our knowledge, this is the first nutrigenetic study investigating the interaction between
metabolic GRSs and lifestyle factors on obesity-related traits in a Ghanaian population. Our study
provides evidence for an interaction between the 4-SNP GRS and fat intake on WC, where individuals
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with ≥3 risk alleles had a significantly higher WC compared to those with <3 risk alleles among those
who consumed a diet high in total fat, SFA, MUFA and PUFA. These results are in accordance with the
general dietary recommendations, which suggest that the population decrease their intakes of total fat
and SFA, to reduce the risk of obesity, and this will be more applicable in individuals with a higher
genetic predisposition to obesity. Our findings are of importance to public health, considering the high
consumption of foods that are rich in SFA and MUFA in the Ghanaian population [50].

Our study is the first study of its kind, investigating the effect of different metabolic GRSs
(the 12-, 8- and the 4-SNP GRS) on obesity-related traits in a Ghanaian population. We found that
none of the metabolic GRSs were significantly associated with obesity-related traits in the Ghanaian
population, which contradicts the findings of the previous GRS-related studies in European and
African populations [15,25–30,32,33]. Efforts to replicate previously reported genetic associations of
individual SNPs with obesity measures in non-African populations have shown limited success among
Africans [23,31,51,52], which is also in line with the findings from the present study. Several factors are
likely to be involved in such discrepancies between our findings and genetic association studies in
Europeans. First, the metabolic GRS in the present study was constructed based on variants strongly
associated with BMI in European populations, which raises the question of the usefulness, applicability
and accuracy of using this metabolic GRS in our African population. Analysing the genetic associations
of such variants with obesity-related traits in African population may not be ideal because of differences
in risk allele frequency and effect size across populations [53,54]. Second, the ‘lead’ SNPs identified
in Europeans might tag smaller regions in Africans [19,20,55] and the ‘true’ causal polymorphisms
might be at different loci [56]. A systematic review of genetic research in African samples has reported
that more than 300 SNPs in 42 loci analysed in relation to obesity, but only a few positive associations
were replicable in Africans [57]. Of the 36 variants previously established by GWAS in non-African
populations, only the SNPs located at the FTO and MC4R loci were significantly associated with
obesity in Nigerians, Ghanaians and black South Africans [58,59]. Furthermore, in a large-scale GWAS
meta-analysis consisting of 71,412 individuals of African ancestry, of the 36 previously identified
BMI-associated SNPs in Europeans, only five variants reached a genome-wide significant level in
Africans [60]. Such inconsistencies in results are likely due, in part, to the variation in the genetic
architecture between populations of different ancestry [61]. African populations are characterised
by greater genetic variation, reduced patterns of linkage disequilibrium (LD) and more haplotype
diversity in comparison with populations of another ancestry, which may cause difficulties in replicating
previously reported genetic associations [61]. Hence, future studies with a larger sample size are
needed to investigate the combined effect of a larger number of genetic variants on obesity-related
traits in the Ghanaian population.

Our study has identified significant interactions between the 4-SNP GRS and intakes of total fat,
SFA, PUFA and MUFA on WC, an indicator of central obesity that has been associated with the increased
risk of morbidity and mortality [62,63]. Our findings suggest that dietary fatty acid consumption
and composition may have the potential to influence the genetic susceptibility of becoming centrally
obese. Evidence is limited concerning the GRS–diet interactions on obesity and its related traits,
and most of the research has focused on the influence of a single locus [64–66], despite the genetic effects
on obesity being polygenic [13]. Our results are consistent with previous findings generated from
single-locus gene–diet interactions on obesity, in which fat intake is considered as an important lifestyle
modulator of genetic associations with obesity-related traits. Two previous studies in 2163 participants
from two independent United States (US) populations and in 28,449 individuals living in Malmö
have shown significant interactions of the FTO SNP rs9939609 with total dietary fat on BMI [64,67],
however, a large-scale meta-analysis of 177,330 individuals (154,439 Whites, 5776 African Americans
and 17,115 Asians) failed to identify this interaction [68]. In addition, studies in 2163 participants
from two US populations, 1754 French individuals and 354 Spanish children and adolescents have
demonstrated a significant interaction of FTO SNP rs9939609 with SFAs [64–66] and MUFAs [64]
on BMI. Furthermore, a study in 305 obese individuals in Finland reported that the high intake of
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MUFA was associated with weight loss among carriers of the risk allele (A) FTO rs9939609 [69].
Additionally, a study in 1680 South Asians has shown a significant interaction of the risk allele ‘T’ of the
TCF7L2 SNP rs12255372 with fat intake on high-density lipoprotein cholesterol (HDL-C) [70]. Studies
on GRS–diet interactions on obesity traits have mainly focused on European populations [71–73].
In agreement with our study, data from UK Biobank [72] and two studies from the US [71] have
reported significant interactions between the GRS and dietary intakes of total fat and SFA on WC;
the GRS was associated with a higher WC among individuals with high intakes of total fat and SFA.
However, the interactions on BMI were not identified in the present study, which contradicts the
previously reported findings [71,72]. Hence, larger studies are required to replicate our GRS–fat intake
interactions on WC in the Ghanaian population.

Several studies have investigated the impact of dietary fat on obesity measures; however,
the findings have been inconsistent [74]. For instance, prospective studies have examined the
relationship between the intake of long-chain omega-3 (LC n−3)-PUFAs and adiposity, but results
have been inconsistent. A study in 124 adults living in the UK found that the plasma levels of n-3
PUFA were negatively associated with anthropometric measures of obesity [75], whereas positive
associations were reported in a study of 79,839 women living in the US [76]. However, no effect of
n-3 LC-PUFA consumption on BMI was found in a 12 year follow-up US cohort of 43,671 men [77].
In a randomised controlled trial (RCT) of 27 women, the intake of a 3 g/d of fish oil (1.8 g n−3 PUFAs)
for 2 months was associated with adiposity reduction [78]. Similar findings were reported in an
RCT of 324 men and women from Iceland, Spain and Ireland, in which the intake of either lean
fish (3 × 150 g portions of cod/week) or fatty fish (3 × 150 g portions of salmon/week), or fish oil
(docosahexaenoic acid/eicosapentaenoic acid capsules) for 8 weeks were associated with weight loss
in men [79]. However, a 6 week RCT in 195 UK adults found no differences in the anthropometric
measures between three intervention diets of specific fatty acid compositions of total energy intake
(TEI) (%TEI SFA:%TEI MUFA:%TEI omega-6 PUFA): SFA-rich diet (17:11:4), MUFA-rich diet (9:19:4) or
omega-6 PUFA-rich diet (9:13:10) [80]. A meta-analysis of 534,906 European individuals revealed that
the higher adherence to the Mediterranean diet, which is rich in MUFA, was associated with a beneficial
effect on WC [81]. However, a recent 4 week intervention found no significant effect of the intake of
50 g/day of olive oil, which is rich in MUFA, on BMI or central obesity in 91 UK adults [82]. Conflicting
evidence exists regarding the effects of dietary fat on obesity-related traits; this could be because of
the genetic heterogeneity and the gene–diet interactions that vary across multiple ethnic groups [83];
hence, the influence of both genetic and lifestyle factors should be considered in understanding the
pathophysiology of obesity.

In 2018, the WHO recommended that the intake of total fat and SFA should not exceed 30% and
10% of TEI, respectively, to avoid weight gain [84]. According to the WHO, the recommended range
for PUFA for the general population is 6–11% of TEI [85]. It has been identified that the average
consumption of SFA in Africa is between 8.9% and 12.5% TEI (North: 9.1%, Central: 12.2, Eastern: 10.7%,
Southern: 8.9% and Western Africa: 12.5%; which is slightly higher than the ≤10% TEI recommended
by the WHO). The intake of PUFA is low in many sub-Saharan African countries, suggesting the
infrequent use of vegetable oils for cooking or preparing foods [86]. The extremely low intake of n-3
long chain PUFA was also identified in Africa, which is explained by the low availability of fish in
sub-Saharan Africa countries [86]. In the present study, the average consumption of total fat intake was
23.04± 9.13% of TEI and the average consumption of SFA, MUFA and PUFA were 8.95± 4.10, 9.86± 3.65
and 4.99 ± 1.61% of TEI, respectively, which are in accordance with general dietary recommendations.
However, nearly one third of the study population had a high consumption of total fat (mean intake:
34.99 ± 5.54 g/day), the group in which the GRS showed a significant association with a higher WC.
Hence, our study suggests that following the general dietary recommendations might be an effective
way to overcome the genetic susceptibility to central obesity.

The strengths of our study include the analysis of gene–lifestyle interactions in a well characterized
Ghanaian population and the use of different metabolic GRSs to maximise statistical power and to
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reduce multiple testing [25,27]. Nevertheless, some limitations need to be acknowledged. First,
our analysis included an only Ghanaian population, which limits the generalisability of our results
to other population groups within Africa. Second, our metabolic GRSs were constructed based
on BMI-associated loci predominantly identified in Europeans, which might not truly reflect the
genetic associations with BMI among Africans. Third, the food intakes were assessed using repeated
24 h dietary recall method, which is prone to reporting bias and this might have contributed to the
discrepancy in the caloric consumption between overweight/obese and non-obese groups [87]. Fourth,
as with any cross-sectional study design, residual confounding might exist, despite adjustments for
several confounding factors. Fifth, our sample size was small; however, our study had sufficient
statistical power to detect significant gene–diet interactions.

5. Conclusions

In conclusion, our study has shown that higher intakes of total fat, SFA, MUFA and PUFA can
increase the genetic risk on WC in Ghanaian adults. We found that the effect of metabolic risk alleles on
WC is stronger among individuals with higher intakes of total fat, SFA, MUFA, PUFA. These results give
important insights into the complex interactions between dietary intake and the genetic predisposition
to central obesity and highlight the importance of personalising dietary advice according to each ethnic
group. Our GRS approach provides insights into cumulative genetic susceptibility; however, studies
with a large sample size will be needed to confirm the findings before public health recommendations
and personalized nutrition advice can be developed for the Ghanaian population.
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Abstract

Background: Cardiometabolic diseases are complex traits which are influenced by several single nucleotide polymorphisms
(SNPs). Thus, analysing the combined effects of multiple gene variants might provide a better understanding of disease risk
than using a single gene variant approach. Furthermore, studies have found that the effect of SNPs on cardiometabolic traits
can be influenced by lifestyle factors, highlighting the importance of analysing gene-lifestyle interactions.

Aims: In the present study, we investigated the association of 15 gene variants with cardiometabolic traits and examined
whether these associations were modified by lifestyle factors such as dietary intake and physical activity.

Methods: The study included 110 Minangkabau women [aged 25–60 years and body mass index (BMI) 25.13 ± 4.2 kg/m2]
from Padang, Indonesia. All participants underwent a physical examination followed by anthropometric, biochemical and
dietary assessments and genetic tests. A genetic risk score (GRS) was developed based on 15 cardiometabolic disease-
related SNPs. The effect of GRS on cardiometabolic traits was analysed using general linear models. GRS-lifestyle interactions
on continuous outcomes were tested by including the interaction term (e.g. lifestyle factor*GRS) in the regression model.
Models were adjusted for age, BMI and location (rural or urban), wherever appropriate.

Results: There was a significant association between GRS and BMI, where individuals carrying 6 or more risk alleles had
higher BMI compared to those carrying 5 or less risk alleles (P = 0.018). Furthermore, there were significant interactions of
GRS with protein intake on waist circumference (WC) and triglyceride concentrations (Pinteraction = 0.002 and 0.003,
respectively). Among women who had a lower protein intake (13.51 ± 1.18% of the total daily energy intake), carriers of six
or more risk alleles had significantly lower WC and triglyceride concentrations compared with carriers of five or less risk
alleles (P = 0.0118 and 0.002, respectively).

Conclusions: Our study confirmed the association of GRS with higher BMI and further showed a significant effect of the
GRS on WC and triglyceride levels through the influence of a low-protein diet. These findings suggest that following a lower
protein diet, particularly in genetically predisposed individuals, might be an effective approach for addressing
cardiometabolic diseases among Southeast Asian women.
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Introduction
Cardiometabolic diseases such as cardiovascular diseases
(CVD), obesity, hypertension and type 2 diabetes are a major
cause of mortality, morbidity and healthcare spending world-
wide [1, 2]. The prevalence of these diseases has significantly
increased and has become a major problem given the signifi-
cant economic burden that these diseases impose on low-
and middle-income countries. Indonesia has the seventh lar-
gest number of diabetic patients (7.6 million), despite rela-
tively low prevalence worldwide (4.8%) in 2012 [3]. In 2013,
it was estimated that there were more than 132.8 million
people with diabetes in the Western Pacific (more people
than in any other region), and the number is expected to rise
to 201.8 million by 2035 [4]. Furthermore, obesity is sug-
gested to play a critical role in the development of chronic
and non-communicable diseases (NCDs) in the Southeast
(SE) Asia [5]. In Indonesia, NCDs are estimated to account
for 73% of all deaths [6] of which, CVD contributed to 35%
followed by cancers (12%) and diabetes (6%) [6].
Indonesia is the largest island country in the

world, consisting of various ethnic groups distributed
over 33 provinces [7]. Minangkabau community is
the world’s largest matrilineal society which resides
mostly in West Sumatra, where the prevalence of
low level of high-density lipoprotein cholesterol
(HDL-C), hypertension and central obesity is more
than 50% [7]. It is reported that the Minangkabau
ethnic group had a high risk of dyslipidemia, which
is suggested to be driven mainly by the high intake
of dietary fat from poor quality sources [8]. A study
comparing lipid profiles among four ethnic groups
reported that the Minangkabau ethnic group has the
highest levels of plasma total cholesterol and low-
density lipoprotein cholesterol (LDL-C) compared to
other larger ethnicities including Sundanese, Javanese
and Buginese [9]. Furthermore, it has been reported
that the prevalence of central obesity is high among
Minangkabau women [10]. Many environmental ex-
posures contribute to the increasing prevalence of
cardiometabolic diseases, but one key factor is ur-
banisation [11]. Countries in SE Asia have under-
gone rapid epidemiological and nutritional
transitions over the past few decades. Furthermore,
it has been reported that dietary risks, high blood
pressure and tobacco smoking are the three major
risk factors contributing to disease burden in
Indonesia [12]. However, genetic factors also play an
important role in the development of cardiometa-
bolic diseases.
Candidate gene studies and genome-wide association

studies (GWAS) have identified several single nucleotide
polymorphisms (SNPs) relating to cardiometabolic dis-
eases and traits in the Asian populations [13–16]. Most
cardiometabolic traits are influenced by thousands of

SNPs each having a relatively small effect on the trait
when present alone. Thus, analysing the combined ef-
fects of multiple gene variants might provide a better
understanding of trait variability of an individual and im-
prove risk prediction of cardiometabolic diseases than
using a single variant approach [17]. Furthermore, stud-
ies have found that the effect of genetic variants on car-
diometabolic traits can be influenced by lifestyle factors
[18]. It has been confirmed that using genetic risk score
(GRS) approaches increases the power to detect gene-
lifestyle interactions compared to the common single
variant methods [19]. Therefore, our study aimed to in-
vestigate the association of a novel GRS with cardiomet-
abolic traits and to examine whether lifestyle factors
such as dietary intake and physical activity modified
these associations in 110 Minangkabau women.

Methods
Study participants
The study included healthy women who were enrolled
in the Minangkabau Indonesia Study on Nutrition and
Genetics (MINANG) study, a cross-sectional pilot study
conducted in the city of Padang, West Sumatra,
Indonesia, between December 2017 and January 2018.
This study is a part of the ongoing GeNuIne (gene-nutri-
ent interactions) Collaboration, which aims to examine
the interactions between genetic and dietary factors
(nutrigenetics) on cardiometabolic disease and its related
traits using population-based studies from several ethnic
groups [20]. The methodology of the study has been
published elsewhere [21]. In brief, 133 women were re-
cruited from community health centres in two sub-
districts in Padang City including Padang Timur and
Kuranji districts to represent both urban and rural areas
of Padang population, respectively. The inclusion criteria
included healthy women, aged 25–60 years old and with
Minangkabau ethnicity. Of the 133 enrolled women, 10
were excluded from the study according to the following
exclusion criteria: being pregnant or lactating (N = 0) and
taking dietary or vitamin supplements (N = 0); have a pre-
vious history of hypertension, CVD or type 2 diabetes (N
= 6); have a body mass index (BMI) of more than 40 kg/
m2 or being classified as morbidly obese by a practitioner
(N = 0); being blood related to other participants in the
study (N = 0); have any communicable disease (N = 4). Of
the remaining 123 participants, we excluded another 5
women who did not undergo blood sampling. Thus, the
final sample consisted of 118 participants, of whom seven
women did not have complete genetic information about
all the investigated SNPs and were excluded from the GRS
analysis (N = 111). Additionally, one participant with no
dietary information available was excluded from the GRS
interaction analysis (N = 110).
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The MINANG study was conducted according to the
principles of the Declaration of Helsinki and was ap-
proved by the Ethical Review Committee of the Medical
Faculty, Andalas Univesity (No.311/KEP/FK/2017). All
participants gave their written informed consent before
participating and had the right to withdraw from the
study at will and opt-out from any of the procedures.

Anthropometric measures
Body weight (to the nearest 100 g) and height (to the near-
est mm) were measured using an electronic scale (Seca
803, Seca GmbH. Co. kg, Hamburg, Germany) and a wall-
mounted stadiometer (OneMed Medicom stature meter,
YF.05.05. V.A.1022, Indonesia), respectively. BMI was cal-
culated as weight (kg)/height (m)2 and categorised accord-
ing to the Asia-Pacific classification of BMI [22]. Waist
circumference (WC) was measured in centimetre using a
metal tape (Medline-OneMed Medicom, Jakarta,
Indonesia) midway between the 12th rib and the superior
border of the iliac crest at the end of normal expiration.

Biochemical and clinical measures
After 12 h of fasting, blood samples (5 ml) were taken to
measure the concentrations of glucose, insulin, glycated
haemoglobin A1c (HbA1c), total cholesterol, triglycer-
ides, LDL-C and HDL-C. Samples were assayed using
the xMark Microplate Spectrophotometer (Bio-Rad La-
boratories Inc, Hercules, California, USA). Fasting glu-
cose, insulin and HbA1c were measured using enzyme-
linked immunosorbent assay (ELISA) kits from Bioassay
Technology Laboratory (Shanghai, China). Blood lipids
were analysed using enzymatic colorimetric procedures,
namely GPO-PAP for triglycerides and CHOD-PAP for
total cholesterol, LDL and HDL. A sphygmomanometer
was used to measure systolic and diastolic blood pres-
sures (SBP and DBP). Measurements were taken twice at
5-min intervals, and the average was recorded.

Assessment of dietary intake and physical activity
Information about dietary intake and physical activity was
collected by a well-trained nutritionist in the home or in
an integrated health service post. Diet was assessed using
a previously validated and published semi-quantitative
food frequency questionnaire (SQ-FFQ) consisting of a list
of 223 food items [23]. Briefly, participants were asked to
report the frequency of consumption (number of times
per day, week or month) and portion size of various food
items. Participants were provided with portion size images
of all relevant foods to enhance reporting accuracy while
completing the SQ-FFQ [24]. All collected data were
double-checked for accuracy and analysed with the Indo-
nesian Food Database and Nutrisurvey (EBISpro,
Germany) to estimate total energy and macronutrient in-
take. Values of nutrient intake were adjusted for total

energy intake using the nutrient (energy-adjusted) residual
method, wherever appropriate [25].
“The Global Physical Activity Questionnaire” (GPAQ)

was used to calculate an individual’s level of physical ac-
tivity in 3 areas (work, transport and leisure-time) and
time spent in sedentary behaviour [26]. Total time spent
in moderate-to-vigorous physical activity was estimated
using to the World Health Organization (WHO) STEP-
wise method and was expressed as metabolic equivalent
minutes per day (METmins/day). Participants were de-
fined as “active” if they did ≥ 600 METmins/week or “in-
active” if they accumulated < 600 METmins/week.

SNP selection and genotyping
Fifteen genetic variants located at 8 different genes were
selected for the present study based on its consistent asso-
ciations with cardiometabolic traits in candidate gene
studies and GWAS in Asian populations [13–16, 27–36].
The selected genetic variants were Calpain 10 (CAPN10)
rs3792267 and rs5030952; fat mass and obesity-associated
(FTO)- rs9939609, rs10163409 and rs8050136; melanocor-
tin 4 Receptor (MC4R)- rs17782313 and rs2229616; tran-
scription factor 7-like 2 (TCF7L2)- rs12255372 and
rs7903146; potassium voltage-gated channel subfamily Q
member 1 (KCNQ1)- rs2237895 and rs2237892; cyclin-
dependent kinase inhibitor 2A/2B (CDKN2A/2B)-
rs10811661; peroxisome proliferator-activated receptor
gamma (PPARG)- rs1801282; and adiponectin (ADIPOQ)-
rs266729 and rs17846866.
Genomic DNA was extracted from peripheral

blood leukocytes using the PureLink Genomic DNA
Mini Kit (Invitrogen, Carlsbad, USA). Furthermore, a
NanoDrop spectrophotometer was used to determine
DNA concentration. The SNPs were genotyped using
the competitive allele-specific PCR-KASP® assay at
LGC Genomics (http://www.lgcgroup.com/services/
genotyping).

Statistical analysis
Statistical analysis was performed using the SPSS soft-
ware (version 23). Common obesity was defined based
on the Asia-Pacific classification of BMI for Asians,
where non-obese individuals (BMI < 23 kg/m2) and
obese individuals (BMI ≥ 23 kg/m2) were classed accord-
ingly [37]. Central obesity was defined based on WHO
classification of WC (WC > 80 cm for women) [38]. The
Hardy-Weinberg equilibrium (HWE) was assessed using
the x2 goodness-of-fit test, and the 15 SNPs were in
HWE (P > 0.05). Normality of distribution of all con-
tinuous variables was tested using the Shapiro-Wilk test
and those that were not normally distributed were nat-
ural log-transformed before the analysis, including glu-
cose, insulin, HbAC1, HDL-C, LDL-C, total cholesterol,
triglyceride concentrations and total dietary protein

Alsulami et al. Genes & Nutrition           (2020) 15:19 Page 3 of 10

http://www.lgcgroup.com/services/genotyping
http://www.lgcgroup.com/services/genotyping


intake (%). Continuous variables are expressed as means
and standard deviations (SD), and comparisons between
groups were made using the independent t test. The de-
scriptive statistics for categorical variables, such as phys-
ical activity level, were obtained by determining
frequency distributions and compared between individ-
uals with and without central obesity using Pearson’s
chi-squared test. The association between individual
SNPs and cardiometabolic traits was analysed using gen-
eral linear models adjusted for age, residential area (rural
or urban) and BMI when BMI is not an outcome. As the
number of individuals with rare homozygous genotypes
was low, a dominant model was used, where common
homozygous genotypes were compared against com-
bined rare homozygous and heterozygous genotypes.
A GRS was constructed based on 15 SNPs from 8

genes. An additive genetic model was assumed for each
gene variant, assigning a score of 0, 1 and 2 to genotypes
containing 0, 1 or 2 risk alleles, respectively. The GRS
was then calculated for each individual by summing the
number of risk alleles in the genetic variants. The count
method assumed that each risk allele contributes equally
and independently to the development of cardiometa-
bolic traits. The average number of risk alleles per indi-
vidual for the GRS was 5.12 (SD = 2.06), which ranged
from 2 to 10. The GRS variable was then categorised
into two groups based on the median of risk alleles: “low
genetic risk group”—individuals with a GRS ≤ 5 risk al-
leles (N = 69) and “high genetic risk group”—individuals
with GRS > 5 risk alleles (N = 42). The effects of GRS
on cardiometabolic traits were analysed using general
linear models. Furthermore, GRS-lifestyle interactions
on continuous outcomes were tested using linear regres-
sion models by including the interaction terms (e.g.
diet*genotype) in these models. Models were adjusted
for age, residential area and additionally for BMI when it
is not an outcome. Lifestyle factors that were investi-
gated in our study included dietary intake and physical
activity. Carbohydrate, protein and fat intakes were
expressed as a percentage of total energy intake, and fibre
intake was expressed in grammes. Furthermore, statisti-
cally significant interactions were investigated in more
depth, where individuals were stratified by the tertiles of
dietary intake and the levels of physical activity. A P value
of < 0.05 was considered statistically significant. Multiple
testing correction was not applied given that we had ex-
amined only one genetic instrument (i.e. GRS).

Results
Characteristics of the study participants according to the
central obesity status
In the present study, 71 women (64.0%) were centrally
obese and 39 (35.1%) were not. The characteristics of the
participants are shown in Table 1. In general, centrally

obese participants were older and had higher SBP (P =
0.006), fasting plasma glucose (P = 0.039), serum triglycer-
ides (P < 0.001), serum total cholesterol (P < 0.001) and
LDL-C (P < 0.001) concentrations compared to partici-
pants without central obesity. There were no significant
differences in fasting HDL-C, serum insulin, HbA1c, DBP,
dietary intake and physical activity levels and the distribu-
tion of GRS between the two groups (P > 0.05).

Associations between GRS and cardiometabolic traits
To explore the combined effect of the 15 SNPs on vari-
ous cardiometabolic traits, a GRS was calculated. There
was a significant association (P = 0.018) between the
GRS and BMI where individuals carrying 6 or more risk
alleles of the SNPs had higher BMI compared with those
carrying 5 or less risk alleles (Table 2).

Interactions between GRS and dietary intake on
cardiometabolic traits
There were significant interactions between the GRS and
protein intake (%) on WC and triglyceride concentrations
(Pinteraction = 0.002 and 0.003, respectively) (Table 3). With
low protein intake (13.51 ± 1.18%), carriers of 6 or more
risk alleles of SNPs had lower WC and triglyceride con-
centration compared to carriers of 5 or less risk alleles (P
= 0.0118 and 0.002, respectively) (Figs. 1 and 2). A signifi-
cant interaction between protein intake and GRS was also
detected on cholesterol levels (Pinteraction = 0.021). More-
over, there were no other interactions between nutrient
intake and GRS on cardio-metabolic traits.

Associations between individual SNPs and
cardiometabolic traits
As shown in supplementary Table 1, Additional File 1,
we found that the risk alleles of the three FTO SNPs
rs9939609, rs8050136 and rs10163409 were associated
with higher BMI (P = 0.006, 0.007 and 0.047, respect-
ively). Furthermore, SNPs rs12255372 (TCF7L2),
rs2237892 (KCNQ1) and rs5030952 (CAPN10) were as-
sociated with increased fasting serum LDL-C concentra-
tions (P = 0.032, 0.039 and 0.04, respectively). A
significant association was also found between the risk
allele of the SNP rs17782313 (MC4R) and higher insulin
level (P = 0.036). No significant association was observed
between the remaining SNPs and cardiometabolic traits
in this population (P > 0.05).

Discussion
The present study aimed to investigate the effects of
genetic predisposition and lifestyle factors on cardiomet-
abolic traits in Minangkabau women. In agreement with
other studies [39], we have shown that the GRS based
on 8 susceptible genes for cardiometabolic diseases is a
significant risk factor for higher BMI in our study
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sample and might be a useful tool in characterising Mi-
nangkabau women at high risk for obesity. We found
that women carrying 6 or more alleles had significantly
higher BMI compared to those carrying 5 or less risk al-
leles. Furthermore, we found a significant interaction be-
tween the GRS and dietary protein intake (%) on WC
and triglyceride levels, where, among those who con-
sumed a low protein diet (mean intake ± SD 13.51 ±
1.18%), individuals, despite carrying more than 6 risk al-
leles, had significantly lower WC and triglyceride levels.
Given that Minangkabau women have a high risk of dys-
lipidemia [9] and the prevalence of common and central
obesity is high among this ethnic group [10], it is

important to develop effective strategies targeting these
conditions to improve public health.
It has been suggested that centrally obese participants

defined as normal weight based on BMI had the worst
long-term survival even when compared with their over-
weight and obese counterparts [40]. In addition, recent
data from 42,702 European participants reported that
central obesity is associated with higher mortality risk
even in normal-weight individuals [41]. This is of con-
cern for Asian populations, where increased levels of vis-
ceral adiposity are observed in those with normal BMIs
[42–44]. Furthermore, the combination of increased WC
along with elevated triglyceride levels has been

Table 1 Anthropometric and biochemical characteristics of the study participants

N Total (N = 111) N Non-centrally obese (WC ≤ 80 cm) (N =
39)

N Centrally obese (WC > 80 cm) (N =
71)

P
value*

Age (years) 111 40.49 ± 10.18 39 37.08 ± 11.68 71 42.58 ± 8.62 0.012

BMI (kg/m2) 111 25.13 ± 4.2 39 21.85 ± 3.71 71 26.99 ± 3.24 < 0.001

WC (cm) 110 83.85 ± 10.27 39 72.79 ± 6.03 71 89.92 ± 6.26 < 0.001

Glucose (mg/dl) 111 92.53 ± 20.67 39 87.21 ± 9.78 71 95.69 ± 24.29 0.039

Insulin (mIU/L) 111 32,428.5 ± 25,
706.13

39 31,073.79 ± 28,460.35 71 33,374.28 ± 24,368.83 0.657

HbA1c (ng/ml) 111 655.59 ± 601.59 39 629.22 ± 671.07 71 666.42 ± 568.14 0.759

Triglycerides (mg/dl) 111 98.8 ± 43.47 39 78.26 ± 34.19 71 109.72 ± 44.38 < 0.001

Cholesterol (mg/dl) 111 209.31 ± 44.02 39 188.26 ± 30.04 71 221.77 ± 45.74 < 0.001

HDL-C (mg/dl) 111 59.12 ± 10.29 39 60.9 ± 10.45 71 58.14 ± 10.22 0.182

LDL-C (mg/dl) 111 128.12 ± 39.85 39 111.49 ± 25.55 71 138.2 ± 42.65 < 0.001

SBP (mmHg) 111 113.37 ± 9.07 39 110.14 ± 8.83 71 115.05 ± 8.81 0.006

DBP (mmHg) 111 77.44 ± 6.39 39 76.26 ± 8.35 71 78.06 ± 5.01 0.223

Total energy (kcal/
day)

110 1776.24 ± 611.43 39 1789.55 ± 604.31 70 1755.6 ± 613.59 0.781

Carbohydrate intake
(%)

110 53.97 ± 9.44 39 52.67 ± 7.86 70 54.91 ± 10.1 0.235

Protein intake (%) 110 16.93 ± 3.32 39 17.13 ± 2.93 70 16.76 ± 3.54 0.579

Fat intake (%) 110 28.95 ± 7.99 39 30.05 ± 6.87 70 28.16 ± 8.45 0.235

Dietary fibre (g) 110 8.78 ± 4.29 39 9.11 ± 4.52 70 8.56 ± 4.19 0.521

SFA (g) 110 20.84 ± 11.22 39 21.77 ± 10.81 70 20.07 ± 11.35 0.447

MUFA (g) 110 8.18 ± 4.6 39 9.00 ± 5.08 70 7.62 ± 4.18 0.129

PUFA (g) 110 6.32 ± 3.5 39 6.67 ± 3.06 70 6.14 ± 3.76 0.541

MET (min/week) 111 1311.89 ± 1877.78 39 1114.87 ± 1625.95 71 1428.45 ± 2016.27 0.407

GRS 110 5.09 ± 2.07 39 4.77 ± 2.01 71 5.31 ± 2.03 0.189

Physical activity levels 44 Sedentary
(39.64%)

18 Sedentary (46.15%) 26 Sedentary (36.62%) 0.616

55 Moderate
(49.55%)

17 Moderate (43.59%) 37 Moderate (52.11%)

12 Vigorous (10.81%) 4 Vigorous (10.26%) 8 Vigorous (11.27%)

Data presented as means ± SD for continuous variables and as percentages for categorical variables
BMI body mass index, WC waist circumference, HbA1C glycated haemoglobin A1c, HDL-C high-density lipoprotein cholesterol, LDL-C low-density lipoprotein
cholesterol, SBP systolic blood pressure, DBP diastolic blood pressure, SFA saturated fatty acids, MUFA monounsaturated fatty acids, PUFA polyunsaturated fatty
acids, MET metabolic equivalent of task, GRS genetic risk score
*P values for the differences in the means and proportions between non-centrally obese and centrally obese individuals were calculated using the independent t
test and the Chi-squared test, respectively
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previously defined as the ‘hypertriacylglycerolaemic
waist’ phenotype [45]. Studies have shown that individ-
uals with this phenotype have an increased risk of higher
visceral adiposity, CVD, insulin resistance and other re-
lated outcomes [45]. Therefore, targeting this phenotype
will have significant public health implications in terms
of reducing NCD mortality in Asian populations.
In the present study, the average protein intake was 77

± 37 g/day, which exceeded the recommended dietary
protein daily allowance of 57–59 g/day for Indonesian
women [46, 47]. Observational studies have shown that
higher protein intake was significantly associated with
increases in body weight, BMI and fat mass [48–50].
These results are in contrast to the finding from

intervention studies, which have shown that high protein
intake enhances weight loss and provides a better long-
term maintenance of reduced intra-abdominal fat stores
[37, 51]. These inconsistencies might be attributed to
the sample size, genetic heterogeneity and gene-lifestyle
interactions. Cross-sectional studies have demonstrated
the association of several SNPs with obesity-related traits
[52–55], and interaction of these SNPs with dietary in-
take of protein on weight change [56–58]. It has been
shown that high protein diets can modulate the genetic
effect of FTO variants on body weight, BMI and WC
[59–61]. According to a 2-year weight loss intervention
programme, carriers of the risk allele ‘A’ of the FTO
SNP rs1558902 had a greater reduction in weight and

Table 2 Associations between GRS and cardiometabolic traits

GRS ≤ 5 (N = 69) GRS > 5 (N = 42) P value*

N Mean ± SE N Mean ± SE

BMI (kg/m2) 69 24.52 ± 0.52 42 26.14 ± 0.6 0.018

WC (cm) 68 84.28 ± 1.22 42 83.16 ± 1.66 0.334

Log glucose (mg/dl) 69 93.65 ± 2.98 42 90.69 ± 1.72 0.327

Log insulin (mIU/L) 69 32,365.29 ± 3199.95 42 32,532.33 ± 3782.96 0.196

Log HbA1C (ng/ml) 69 650.58 ± 71.1 42 663.81 ± 96.65 0.527

Log triglycerides (mg/dl) 69 101.07 ± 5.27 42 95.07 ± 6.67 0.142

Log cholesterol (mg/dl) 69 212.88 ± 5.59 42 203.43 ± 6.11 0.228

Log HDL-C (mg/dl) 69 58.55 ± 1.26 42 60.05 ± 1.56 0.404

Log LDL-C (mg/dl) 69 131.84 ± 4.97 42 122 ± 5.73 0.197

Log SBP (mmHg) 69 113.12 ± 1.08 42 113.77 ± 1.43 0.679

Log DBP (mmHg) 69 77.59 ± 0.86 42 77.2 ± 0.76 0.535

BMI body mass index, WC waist circumference, HbA1C glycated haemoglobin A1c, HDL-C high-density lipoprotein cholesterol, LDL-C low-density lipoprotein
cholesterol, SBP systolic blood pressure, DBP diastolic blood pressure
*P values obtained from linear regression analysis adjusted for age, residential area and additionally for BMI when BMI is not an outcome. The analysis was
performed on log-transformed variables

Table 3 Interactions between GRS and lifestyle factors on cardio-metabolic traits

Carbohydrate (%) Protein (%) Fat (%) Fibre (g) Physical activity

BMI (kg/m2) 0.961 0.282 0.721 0.876 0.362

WC (cm) 0.224 0.002 0.577 0.614 0.297

Log glucose (mg/dl) 0.882 0.751 0.732 0.833 0.106

Log insulin (mIU/L) 0.336 0.341 0.48 0.216 0.909

Log HbA1C (ng/ml) 0.766 0.638 0.935 0.162 0.626

Log triglycerides (mg/dl) 0.066 0.003 0.355 0.262 0.479

Log cholesterol (mg/dl) 0.081 0.021 0.261 0.583 0.308

Log HDL-C (mg/dl) 0.978 0.905 0.984 0.323 0.540

Log LDL-C (mg/dl) 0.266 0.337 0.431 0.896 0.721

Log SBP (mmHg) 0.156 0.291 0.208 0.872 0.644

Log DBP (mmHg) 0.966 0.815 0.732 0.292 0.743

Data are P values obtained from linear regression analysis adjusted for age, residential area and BMI when BMI is not an outcome. The analysis was performed on
log-transformed variables
BMI body mass index, WC waist circumference, HbA1C glycated haemoglobin A1c, HDL-C high-density lipoprotein cholesterol, LDL-C low-density lipoprotein
cholesterol, SBP systolic blood pressure, DBP diastolic blood pressure
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regional fat compared to non-carriers when high protein
diets were consumed, whereas an opposite genetic effect
was found on changes in fat distribution in response to a
low-protein intake [60]. However, studies investigating
the joint effect of genetic variants have reported conflict-
ing results [62–64], indicating that the influence of gen-
etic predisposition on changes in body weight and WC
does not seem to be modulated by protein intake. In

contrast, the present study provides evidence for GRS-
protein intake interactions on WC and triglyceride con-
centrations, and these interactions were independent of
potential confounding effects. We found that partici-
pants with 6 or more risk alleles who consumed a low
protein diet (mean intake ± SD 13.51 ± 1.18%) had sig-
nificantly lower WC and triglyceride concentrations
compared to those with 5 or less risk alleles. This

Fig. 1 Interaction between genetic risk score (GRS) and log protein intake (%) on waist circumference (WC). White bars indicate “low genetic risk
group”: individuals with a GRS ≤ 5 risk alleles; black bars indicate “high genetic risk group”: individuals with GRS > 5 risk alleles. Carriers of 6 or
more risk alleles had lower WC compared to carriers of 5 or less risk alleles, among individual with lower protein intake (13.51 ± 1.18%)

Fig. 2 Interaction between genetic risk score (GRS) and log protein intake (%) on log triglyceride levels. White bars indicate “low genetic risk
group”: individuals with a GRS ≤ 5 risk alleles; black bars indicate “high genetic risk group”: individuals with GRS > 5 risk alleles. Carriers of 6 or
more risk alleles had lower triglyceride level compared to carriers of 5 or less risk alleles, among individual with lower protein intake (13.51 ± 1.18%)
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difference in the findings across the studies might be
due to differences in the sample size, methods used to
construct GRSs (weighted vs. unweighted) and the num-
ber of SNPs included in the GRSs.
The observed interaction between GRS and dietary

protein on WC and triglyceride concentrations might be
driven by the source of protein consumed, which has
not been analysed in our study. Different protein
sources have different effects on body weight and fat
mass, and the mechanisms behind this are still very
speculative and need more investigation. The higher in-
take of protein from animal sources (protein from red
and processed meat and poultry) was found to be asso-
ciated with an increase in body weight in both genders,
with a stronger association in women [49]. Diet rich in
animal protein might reflect the western pattern diet
characterised by high red meat consumption, which has
shown to be associated with weight gain [65]. In con-
trast, a study has shown that protein from meat is asso-
ciated with lower weight gain because it produces a
higher 24-h energy expenditure compared to soy protein
[66]. This hypothesis is, however, based on a mechanis-
tic study, and it is still unknown whether this applies in
the long run to individuals of the free-living popula-
tions. Furthermore, it has been suggested that consum-
ing protein from dairy sources may prevent weight gain
and promote abdominal fat loss [67]. Here, the sug-
gested mechanism primarily relates to the high content
of calcium, which may function synergistically in com-
bination with bioactive compounds, such as
angiotensin-converting enzyme inhibitors and the rich
concentration of branched-chain amino acids [67].
While the above-mentioned studies failed to explore the
genetic aspects, our study did not investigate the type of
protein that was consumed by the participants; hence,
future studies examining the effect of both factors are
required.
In agreement with some studies [62, 63], no inter-

actions were detected between GRS and dietary in-
take of protein, fat and carbohydrate on BMI in the
present study. However, a study in the European
population (N = 48,170 adults) has shown that the
joint effect of 93 obesity-related SNPs on BMI might
be modulated by the intake of total energy, fat and
saturated fat [64]. Furthermore, studies have shown
that an obesogenic diet and physical inactivity with
relatively high intake of sugar-sweetened beverages
and prolonged television watching might exaggerate
the effect of genetic factors on adiposity [18, 68].
Even though several studies have demonstrated that
physical activity could attenuate the combined gen-
etic influence of multiple SNPs on BMI and obesity
risk [18, 69, 70], no such interactions were detected
in the present study.

The strengths of our study include the use of a
well-defined population, a validated SQ-FFQ [23]
and a genetic risk score generated from the 15 gen-
etic variants associated with cardiometabolic traits.
Also, the main exposures investigated in our study
were collected by well-trained staff and using vali-
dated and standardised operating procedures. How-
ever, there are limitations that need to be
acknowledged. Although our analysis was adjusted
for several factors, the potential for confounding by
unmeasured or unknown factors exist. Even though
our study has a small sample size, we were still able
to find significant associations and interactions sug-
gesting that our study is well powered. Even though
food intake was assessed using validated methods,
recall bias and measurement errors in these self-
reported FFQs cannot be fully eliminated, which
could alter the true underlying interactions between
dietary and genetic factors on cardiometabolic traits
[71, 72]. Finally, our study was restricted to Mi-
nangkabau women, and it is unknown whether our
findings could be generalised to men or other
demographic or ethnic groups.

Conclusion
In the present study, we have shown a significant
effect of the GRS on WC and triglyceride levels
through the influence of a low protein intake,
where individuals with a high genetic susceptibility
can overcome the risk of higher WC and triglycer-
ide levels by consuming a low protein diet. These
findings are potentially relevant for public health;
however, future trials in both genders with larger
sample size and objective measures of protein in-
take, such as urinary nitrogen, are needed to con-
firm these findings.
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ABSTRACT
The aim of the study was to investigate whether lifestyle factors modify the association between
fat mass and obesity-associated (FTO) gene single nucleotide polymorphisms (SNPs) and obesity
in a Turkish population. The study included 400 unrelated individuals, aged 24-50 years recruited
in a hospital setting. Dietary intake and physical activity were assessed using 24-hour dietary
recall and self-report questionnaire, respectively. A genetic risk score (GRS) was developed using
FTO SNPs, rs9939609 and rs10163409. Body mass index and fat mass index were significantly
associated with FTO SNP rs9939609 (p¼ 0.001 and p¼ 0.002, respectively) and GRS (p¼ 0.002
and p¼ 0.003, respectively). The interactions between SNP rs9939609 and physical activity on
adiponectin concentrations, and SNP rs10163409 and dietary protein intake on increased waist
circumference were statistically significant (Pinteraction¼ 0.027 and Pinteraction¼ 0.044, respectively).
Our study has demonstrated that the association between FTO SNPs and central obesity might
be modified by lifestyle factors in this Turkish population.
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Introduction

Obesity has been recognised as a worldwide public
health problem due to its rising prevalence and con-
comitant health problems. The prevalence of over-
weight and obesity in Turkey were reported as 64.4%
and 28.8%, respectively, by WHO (2018). Obesity can
lead to other chronic diseases including type 2 dia-
betes (T2D), cardiovascular diseases (CVD), hyperten-
sion, cancer and osteoarthritis (Forse et al. 2020). A
combination of interactions between genetic and
environmental factors is required for the development
of a complex disease such as obesity (Franks and
McCarthy 2016; Milagro et al. 2020). Studies have
identified approximately 140 genes to be associated
with obesity, and the fat mass and obesity-associated
(FTO) gene has been reported to be the strongest

susceptibility gene for human obesity (Pigeyre
et al. 2016).

The FTO gene is located on chromosome 16q12.2
and codes for a protein with 2-oxoglutarate dependent
nucleic acid demethylase activity which is involved in
DNA repair and the accumulation of fat in the body
(Clifton et al. 2006; Chen and Du 2019). FTO is
highly expressed in the brain, including the hypothal-
amus, adipocytes, pancreatic islet cells, and adrenal
glands (Frayling et al. 2007). FTO gene has been sug-
gested to control energy homeostasis and food intake
(Abete et al. 2020). Previous studies have shown that,
of the various obesity susceptibility genes, single-
nucleotide polymorphisms (SNPs) located in the first
intron of FTO gene has provided the strongest evi-
dence for genetic predisposition to obesity (Frayling
et al. 2007; Scuteri et al. 2007; Speliotes et al. 2010;

CONTACT Zehra Buyuktuncer zbtuncer@hacettepe.edu.tr Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University,
06230, Ankara, Turkey; Vimaleswaran Karani Santhanakrishnan v.karani@reading.ac.uk Department of Food and Nutritional Sciences, University of
Reading, PO Box 226, Whiteknights, ReadingRG6 6AP, UK.�These authors contributed equally to this work.
� 2020 Taylor & Francis Group, LLC

INTERNATIONAL JOURNAL OF FOOD SCIENCES AND NUTRITION
https://doi.org/10.1080/09637486.2020.1802580

http://crossmark.crossref.org/dialog/?doi=10.1080/09637486.2020.1802580&domain=pdf&date_stamp=2020-08-03
http://orcid.org/0000-0002-1466-5746
http://www.tandfonline.com


Loos and Yeo 2014; Babenko et al. 2019; Fonseca
et al. 2020). The minor allele “A” of the FTO SNP
rs9939609 has been consistently associated with higher
BMI in various populations (Frayling et al. 2007;
Hertel et al. 2011; Peng et al. 2011; Corella et al. 2012;
Li et al. 2012; Qi et al. 2014; Wang et al., 2020;
Schlauch et al. 2020). Furthermore, a meta-analysis
reported that the association between the SNP
rs9939609 and BMI was replicated in 13 cohorts with
38,759 participants, where individuals with the “AA”
genotype had 1.67-time higher odds of obesity than
those with the “TT” genotype (Frayling et al. 2007).
In the Turkish population, the risk alleles of the FTO
rs1421085 and rs9939609 polymorphisms were shown
to have significant associations with the risk of obesity
in women and metabolic syndrome (MetS) in men
(Guclu-Geyik et al. 2016).

Turkish adults are characterised with low levels of
total and high-density lipoprotein cholesterol, and
high risk of CVD, that distinguish them from
Europeans (Onat 2001). They have also increased sus-
ceptibility to impaired glucose tolerance and MetS pri-
marily driven by obesity (Onat and Can 2014).
Among the non-communicable diseases (NCDs) that
accounted for 88.0% of deaths in Turkey, CVD has
shown to contribute to 47.73% of overall deaths
(WHO, 2018). Targeting modifiable risk factors for
NCDs including obesity could prevent many deaths.
Therefore, several health promotion campaigns such
as “Reducing Portion Sizes” and “Move for Health”
have been implemented for the prevention of obesity
in Turkey (WHO 2016; OECD 2017). However, obes-
ity is a multifactorial disorder, and identifying gene-
environment interactions are needed to understand
the aetiology and pathophysiology of obesity and also
to develop more effective personalised preventative
strategies (Castillo et al. 2017; Dahlman and Ryd�en
2020). To date, several FTO-dietary intake interactions
on obesity-related outcomes have been examined in
different populations (Grau et al. 2009; Sonestedt
et al. 2009; Lappalainen et al. 2012; Ortega-Azorin
et al. 2012; Phillips et al. 2012; Vimaleswaran et al.
2012; Qi et al. 2014; Merritt et al. 2018; Saber-Ayad
et al. 2019); however, there are no such studies to
date in a Turkish population. The investigations of
the gene-diet interactions in different ethnic groups
are crucial to develop personalised nutrition strategies
for each ethnic group due to the genetic heterogeneity
(Vimaleswaran 2017). The FTO SNP rs9939609 has
been associated with several dietary components
including dietary protein intake (Lappalainen et al.
2012; Qi et al. 2014; Merritt et al. 2018) and the SNP

rs10163409 in FTO was among the top associations in
a large genome-wide meta-analysis study (GWAS) for
total caloric intake (Chu et al. 2013). Therefore, this
study aimed to assess whether FTO variants,
rs9939609 and rs10163409, are associated with obesity
in 400 Turkish individuals and to determine whether
these SNPs interact with dietary intake and physical
activity on obesity outcomes.

Materials and methods

Study population

A total of 400 unrelated individuals, aged 24–50 years,
were recruited from the outpatient clinic of
Department of Endocrinology and Metabolism at the
Hacettepe University Hospitals, Ankara, Turkey. This
study was conducted as part of the GeNuIne
Collaboration that investigates the interactions
between genetic and dietary factors on metabolic dis-
eases in different ethnic groups (Vimaleswaran 2017).
The study participants were screened based on the fol-
lowing inclusion criteria: (1) routine visits to the out-
patient clinic, (2) aged 18–50 years, and (3) having a
BMI � 18.50 kg/m2. The exclusion criteria were: (1)
having specific health problems including, liver and
kidney diseases, mental and psychological disorders,
history of cancer, and serious endocrine disorders
(hypothyroidism, hyperthyroidism or hypopituitar-
ism), (2) history of bariatric surgery, (3) being preg-
nant or lactating, (4) using drugs that affect body
weight. Researchers informed and invited the eligible
participants for their participation in to the study.
The study was approved by the local ethics committee
of Hacettepe University (GO 15/612-11), and all the
participants provided the signed written consent.

Study design

A cross-sectional case-control study design was used,
where participants were divided into two groups:
obese (BMI �25.00 kg/m2, n¼ 200) and non-obese
(BMI¼ 18.50–24.99 kg/m2, n¼ 200). All participants
underwent a physical examination by the research
endocrinologists, followed by clinical, biochemical and
lifestyle assessments, and genetic analysis of FTO
SNPs rs9939609 and rs10163409.

Anthropometrical measurements

Body weight and height were measured by standard
methods using a calibrated digital scale (Seca 220
Scale, Germany). BMI calculation was based on the

2 K. ISGIN-ATICI ET AL.



body weight (in kilograms) divided by the square of
height (in meter) (WHO 2020). BMI classification of
the WHO was used to classify the individuals as non-
obese (BMI < 25.00 kg/m2) and obese (BMI
�25.00 kg/m2) (WHO 2005). The waist circumference
(WC) was measured by a standard method (WHO,
2011). Increased WC (central obesity) was defined
based on cut-points established for Turkish adults
(WC � 90 cm for men / � 80 cm for women)
(Sonmez et al. 2013). Body composition was analysed
by bioelectrical impedance using the Tanita MC-
980MA Multi Frequency Segmental Body
Composition Analyser (USA). Fat mass index (FMI)
was calculated based on the fat mass (kg) divided by
the square of height (in meter) (Peltz et al. 2010). All
anthropometrical measurements were taken by the
research dieticians.

Biochemical and clinical measures

Serum adiponectin was analysed by ELISA kits
(Ebioscience, Austria) at Hacettepe University
Hospitals, Clinical Pathology Laboratory. The physical
examination included the measurement of systolic
(SBP) and diastolic blood pressure (DBP) using a
stethoscope and sphygmomanometer in the right arm
of the participants after sitting in a comfortable pos-
ition in a quiet room for at least 15min. Both blood
pressures were measured twice at 5-minute intervals
and recorded on average (Frese et al. 2011).

Dietary assessment

Dietary intake was assessed using 24-hour dietary
recall method that was carried out by trained research
dieticians. A photographic atlas of food portion sizes
and common household measures were used to facili-
tate the quantification of the amount of food con-
sumed. Total energy, macro- and micronutrient
intakes of participants were analysed from the records
using BeBIS software (BeBIS, Nutrition Information
System, Version 8).

Other lifestyle factors

The socio-demographic characteristics, family and
medical history, smoking and alcohol consumption
were recorded. The physical activity level was assessed
using the Turkish version of the International Physical
Activity Questionnaire (IPAQ) (Saglam et al. 2010).

SNPs selection and genotyping

FTO gene was selected based on its consistent and
strong associations with obesity traits in large-scale
GWASs (Frayling et al. 2007). The SNP rs9939609 is
the most commonly studied variant and consistently
associated with obesity phenotypes across multiple
ethnicities (Frayling et al. 2007; Hertel et al. 2011;
Peng et al. 2011; Corella et al. 2012; Li et al. 2012;
Loos and Yeo 2014; Qi et al. 2014) and SNP
rs10163409 has been shown to be associated with diet-
ary energy intake from macronutrients (Chu et al.
2013). Therefore, FTO SNPs, rs9939609 and
rs10163409, which have been shown to be associated
with obesity traits and dietary intake in large GWASs,
were genotyped. The genotype frequencies of the FTO
SNPs, rs9939609 and rs10163409, were in
Hardy–Weinberg equilibrium (p> 0.05).

The genomic DNA was extracted from the whole
blood in K2EDTA containing tubes by the salting out
method. Genotyping of the SNPs, rs9939609 and
rs10163409, were performed using KASP assay (a
competitive allele-specific polymerase chain reaction
that incorporates a fluorescent resonance energy
transfer quencher cassette), and the KASP primers
were designed using Kraken software system (LGC,
https://www.lgcgroup.com). Genotyping assays were
carried out according to the manufacturer’s instruc-
tions with a 7500 Real time PCR System (Applied
Biosystems). The following thermal cycling profile
were used: 15min at 94 �C; 10 cycles of 20 s at 94 �C,
60 s at 61 �C with decrement �0.6 �C/per cycle and 26
cycles of 20 s at 94 �C, 60 s at 55 �C; 60 s at 37 �C.

Statistical analysis

SPSS software (version 23.0) was used for statistical
analysis. The Hardy–Weinberg equilibrium was
assessed using the v2 goodness-of-fit test. Genotype
frequencies and distribution in groups were compared
using Pearson’s chi-squared test. Continuous variables
are presented as means and standard deviations (SD),
and groups were compared using the independent
t-test.

As the number of individuals with rare homozy-
gous genotypes was low, a dominant model was used,
where common homozygous genotypes were com-
pared to combined rare homozygous and heterozy-
gous genotypes. A genetic risk score (GRS) was
created from both the FTO SNPs where the presence
of one risk allele of any of the variants was scored as
one point. This GRS ranged from 0 (homozygous
individuals for non-risk alleles) to 4 points
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(homozygous individuals for the risk alleles of both
FTO polymorphisms). The GRS variable was then cat-
egorised into two groups based on the number of
points; 1st group: individuals with scores of <2
points; 2nd group: individuals with scores of
�2 points.

The independent and joint effects of FTO SNPs on
the risk of obesity were assessed using the odds ratios
(ORs) and 95% confidence intervals (CIs) that were
calculated by logistic regression models. Also, the
associations between FTO polymorphisms (separately
and joint) and the continuous outcomes were tested
using general linear models. Models were adjusted for
age, gender, hypertension, CVD and obesity status
wherever appropriate. Furthermore, FTO gene-envir-
onment interactions on continuous and categorical
outcomes were tested using linear and logistic regres-
sion models, respectively. Interactions were investi-
gated by including the interaction terms (e.g.
carbohydrate�genotype) in the regression models.
Environmental factors that were investigated included
dietary intake (carbohydrate, protein, fibre and fat
intakes in grams/day) and physical activity.
Furthermore, statistically significant interactions were
investigated in more depth, where individuals were
stratified by the tertiles of the lifestyle factor.

Results

Characteristics of the participants

Obese individuals were older, and had higher BMI,
WC and FMI and lower adiponectin levels than the
controls (p< 0.001, for each). The cases and controls
were not statistically different in terms of their food
intake and physical activity levels (p> 0.05) (Table 1).

Associations between FTO variants and obesity-
related traits

Genotype distributions and minor allele frequencies
(MAFs) for both SNPs are shown in Table 2. The
MAFs of the SNPs, rs10163409 and rs9939609, were
T¼ 0.37 and A¼ 0.39, respectively. The associations
between SNP rs9939609 and BMI (p¼ 0.001) and FMI
(p¼ 0.002) were found significant where the “A” (AT/
AA) allele carriers had significantly higher BMI and
FMI than “TT” homozygotes (Table 3). Furthermore,
“A” allele carriers had significantly higher WC
(p¼ 0.007) and lower adiponectin levels (p¼ 0.031)
compared to non-carriers. The FTO SNP rs10163409
did not show any significant association with obesity
traits (Table 3).

Interactions between FTO variants and dietary
intake on obesity-related traits

FTO gene-dietary protein intake interactions
The significant interactions between SNP rs10163409
and protein intake on the risk of increased WC
(Pinteraction¼ 0.044) and WC as a continuous variable
(Pinteraction¼ 0.007) were observed. Stratification of the
dietary protein intake into tertiles showed that, in
the highest tertile group with a mean ± SD of
138 ± 38 g/day protein intake, “T” allele carriers of the
SNP rs10163409 had a significantly higher risk of cen-
tral obesity [OR¼ 3.3 (95% CI: 1.149–9.478),
p¼ 0.027] than those with “AA” genotype (Figure 1).

Interactions between FTO variants and physical
activity on obesity-related traits

The interaction between the SNP rs9939609 and phys-
ical activity levels on adiponectin concentrations was
statistically significant (Pinteraction¼ 0.027), where,
among those with lowest levels of physical activity,
the adiponectin concentrations were significantly
lower in the allele “A” carriers compared to individu-
als with “TT” genotype (p¼ 0.006) (Figure 2).

Associations between GRS and obesity-
related traits

The GRS was significantly associated with BMI
(p¼ 0.002), FMI (p¼ 0.003) and increased WC
(p¼ 0.02) (Figures 3(a–c)). However, the interactions
between GRS and lifestyle factors on obesity traits
were not found statistically significant.

Discussion

To our knowledge, this is the first study that has
investigated the interaction between FTO SNPs and
dietary intake on obesity traits in a Turkish popula-
tion. This study has identified the associations of the
FTO SNP rs9939609 and GRS with obesity traits, and
also showed that the physical activity level can modify
the effect of the minor allele “A” of the FTO SNP
rs9939609 on adiponectin concentrations, a biomarker
of metabolic syndrome (Stojanovic et al. 2015).
Furthermore, our study has demonstrated that the
higher protein intake was associated with a higher risk
of central obesity among the “T” allele carriers of the
FTO SNP rs10163409 compared to non-carriers. Since
Turkish adults have a sedentary lifestyle (WHO 2018),
our findings contribute to the development of effective
public health strategies focussing on the prevention
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and management of central obesity and CVD in the
Turkish population (IHME 2017).

This study has shown that the risk allele “A” of the
FTO SNP rs9939609 was significantly associated with
higher BMI and FMI, in agreement with the findings
from other populations (Frayling et al. 2007; Do et al.
2008; Hertel et al. 2011; Peng et al. 2011; Corella et al.
2012; Li et al. 2012; Muc et al. 2015; Merra et al.
2020). A meta-analysis performed on 177,330 individ-
uals from multiple ethnicities have demonstrated an
association between FTO rs9939609 genotype and
BMI, suggesting a higher BMI in “A” allele carriers
(effect per allele ¼ 0.30 [0.30, 0.35] kg/m2,
P¼ 3.6� 10�107) (Qi et al. 2014). The reported FTO-
related genetic associations with BMI have also been
confirmed in a study in the Turkish population
(Guclu-Geyik et al. 2016), where the FTO risk allele,
“C”, carriers of the SNP rs1421085, which is in a
high-linkage disequilibrium (LD) (D0 ¼ 0.967,
r2¼ 0.85) with the SNP rs9939609, had significantly
increased BMI. Furthermore, parallel to the findings
of other studies (Vimaleswaran et al. 2012; De Luis
et al. 2016; Saucedo et al. 2017), we have also found
that the FTO SNP rs9939609 was significantly associ-
ated with higher WC and lower adiponectin concen-
trations. On the contrary, there was no significant
association between SNP rs10163409 and obesity. This
could be explained by the fact that the SNP
rs10163409 is not in LD with other FTO variants that
have shown significant associations with BMI (Chu
et al. 2013).

Our study has provided evidence for gene–diet
interaction in the Turkish population. We have dem-
onstrated that, among those in the highest tertile of
dietary protein intake, the risk of increased WC/cen-
tral obesity was higher for the minor allele, “T”, car-
riers of the FTO SNP rs10163409 compared to those
with AA genotype. To date, this is the first study ana-
lysing gene-diet interactions of the SNP rs10163409,
suggesting that high intake of dietary protein might
negatively affect WC in genetically susceptible individ-
uals. However, studies investigating other FTO SNPs
(rs1558902 and rs9939609) have reported conflicting
results (Zhang et al. 2012; de Luis et al. 2015; Merritt
et al. 2018). It has been suggested that following a
high protein diet can modulate the genetic effect of
FTO variants on obesity traits (Zhang et al. 2012; de
Luis et al. 2015; Merritt et al. 2018). According to a 2-
year weight loss intervention programme, carriers of
the risk allele “A” of the FTO rs1558902 had a greater
weight loss compared to non-carriers when high pro-
tein diets were consumed, whereas a negative geneticTa
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effect was found in response to a low-protein intake
(Huang et al. 2014). The potential mechanism of FTO
variants – protein intake interaction is still unclear,
however, the regulation of food intake and appetite
could be influenced. It has been found that the risk
allele “A” of the SNP rs9939609 was significantly asso-
ciated with a greater reduction in food cravings and
appetite scores among individuals who consumed
high-protein diet but not in those in the low-protein
diet (Huang et al. 2014). Regarding the SNP
rs9939609, there were no significant interactions
between the FTO variants and any of the dietary com-
ponents on obesity traits. In agreement with our find-
ings, a study of 11,091 adults from five Europeans
countries have found no interactions between the
rs9939609 variant and the dietary intake of carbohy-
drate, glycaemic index, protein or fat on BMI, WC,
weight gain and risk of obesity (Vimaleswaran et al.
2012). Furthermore, a meta-analysis of 40 population-
based studies reported that the total energy or macro-
nutrient intakes had no effect on the association
between the SNP rs9939609 and BMI (Qi et al. 2014).
In contrast to our finding, a few large-scale studies

demonstrated significant interactions between dietary
macronutrient intakes and FTO variants in determin-
ing BMI (Grau et al. 2009; Sonestedt et al. 2009;
Corella et al. 2011; Lappalainen et al. 2012; Ortega-
Azorin et al. 2012; Phillips et al. 2012). A cross-sec-
tional study conducted on 4839 Swedish participants
reported an association between the risk allele of the
SNP rs9939609 and higher BMI only in individuals
with high fat and low carbohydrate consumption
(Sonestedt et al. 2009). A similar interaction between
the rs9939609 variant and saturated fatty acids (SFA)
intake has been detected in 2163 individuals from two
independent populations of the United States, where
individuals homozygous for the risk allele “AA” had a
higher BMI compared to other genotypes, only when
the intake of SFA was high (Corella et al. 2011).
Furthermore, the FTO SNP rs8050136, in LD with
rs9939609, significantly interacted with carbohydrate

Table 2. Genotype frequencies of FTO SNPs among cases
and controls.

Non-obese Obese Total �p value

FTO rs9939609 SNP
Additive n (%) 0.217
TT 77 (38.5) 61 (30.5) 138 (34.5)
AT 99 (49.5) 115 (57.5) 214 (53.5)
AA 24 (12) 24 (12) 48 (12)

Dominant n (%) 0.092
TT 77 (38.5) 61 (30.5) 138 (34.5)
ATþAA 123 (61.5) 139 (69.5) 262 (65.5)
HWE 0.36 0.007 0.011
MAF 0.37 0.41 0.39

FTO rs10163409 SNP
Additive n (%) 0.772
AA 85 (42.5) 79 (39.5) 164 (41)
AT 88 (44) 90 (45) 178 (44.5)
TT 27 (13.5) 31 (15.5) 58 (14.5)

Dominant n (%) 0.542
AA 85 (42.5) 79 (39.5) 164 (41)
TAþ TT 115 (57.5) 121 (60.5) 236 (59)
HWE 0.58 0.525 0.392
MAF 0.36 0.38 0.37

MAF: Minor Allele Frequency; HWE: Hardy–Weinberg Equilibrium.�p values obtained from Pearson’s chi-squared test comparing genotype
frequencies between cases and control.

Table 3. Associations between FTO polymorphisms and anthropometric and biochemical parameters of obesity.
FTO rs9939609 FTO rs10163409

TT ATþAA �p value AA TAþ TT �p value

(n¼ 138) (n¼ 262) (n¼ 164) (n¼ 236)
BMI (kg/m2) 24.81 ± 3.65 26.33 ± 4.41 0.001 25.49 ± 4.03 26.02 ± 4.34 0.212
FMI 6.23 ± 2.61 7.29 ± 3.02 0.002 6.72 ± 2.57 7.06 ± 3.15 0.251
WC (cm) 86.08 ± 10.62 89.14 ± 11.99 0.007 87.26 ± 11.47 88.66 ± 11.7 0.234
Adiponectin (ng/ml) 11,306.18 ± 7130.97 10,072.14 ± 6059.63 0.031 10,865.59 ± 6526.36 10,242.35 ± 6427.19 0.377

BMI: Body Mass Index; WC: Waist Circumference; FMI: Fat Mass Index. Values are presented as mean ± SD.�p values obtained from linear regression analysis adjusted for gender, age, hypertension, cardiovascular diseases and obesity status.

Figure 1. Interactions of the FTO rs10163409 with tertiles of
protein intake (g) on increased WC. Black bars implicate the
“T” allele carriers (TAþ TT). FTO SNP rs10163409 showed a sig-
nificant interaction with protein intake (g) on the risk of
increased WC (Pinteraction¼ 0.044). Among those in the highest
tertile of protein intake (mean± SD: 138± 38 g/day), the minor
‘T’ allele carriers of the SNP rs10163409 had a significantly
higher risk of increased WC [OR¼ 3.3 (95% CI: 1.149–9.478),
p¼ 0.027] than those carrying ‘AA’ genotype. WC: Waist
Circumference. �Odds ratio adjusted for age, gender, hyperten-
sion, cardiovascular diseases, total energy intake and obes-
ity status.
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intake on obesity risk among Asian Indian population
(Vimaleswaran et al. 2016).

Regarding genetic interactions with physical activ-
ity, a previous study conducted among 200 Turkish
adults found that BMI was higher in homozygous risk
allele “A” carriers of the SNP rs9939609 than the
homozygote the “T” allele carriers among physically
inactive individuals (Kirac et al. 2016). The same
interaction but on a biochemical measure of obesity

(i.e., adiponectin level), rather than BMI, was repli-
cated in our study using a larger sample size. We
found that, among those with lowest levels of physical
activity, the adiponectin concentrations were signifi-
cantly lower in the carriers of the risk allele “A” of
the FTO rs9939609 than “TT” homozygotes.
Adiponectin is a hormone produced and secreted by
adipose tissue and commonly known for its antihyper-
glycemic, anti-inflammatory, antiatherogenic, and car-
dioprotective effects (Richard et al. 2020; Esmaili et al.
2020; Lee and Shao 2014). Studies have reported a
strong correlation between the dysregulation of adipo-
kine production and the onset of several metabolic
abnormalities including CVD and cancer (Avogaro
and de Kreutzenberg 2005; De Pergola and Silvestris
2013; Xiang et al. 2019). The positive correlation
between adiponectin levels and physical activity has
been demonstrated in several studies (St-Pierre et al.
2006; Jurimae et al. 2010; Sirico et al. 2018), where
higher levels of physical activity have been shown to
reduce adiposity which decreases the production of
insulin and leptin, and increases adiponectin produc-
tion (Nurnazahiah et al. 2016). Indeed, it has been
reported that serum concentrations of adiponectin are
inversely related to BMI, visceral body fat and blood
concentrations of glucose, insulin, and triglycerides
(De Rosa et al. 2013; Frithioff-Bøjsøe et al. 2020). An
intervention study conducted in 400 obese women
showed that a weight reduction programme resulted
in a significant increase in adiponectin levels (Mavri
et al. 2011). Given that this is the first study to report
an interaction between FTO variant and physical

Figure 2. Interactions between FTO rs9939609 variant and
physical activity on adiponectin levels. White bars indicate car-
riers of “TT” genotype. Black bars implicate the risk allele, “A”,
carriers (ATþAA). The regression model was adjusted for age,
gender, hypertension, cardiovascular diseases and obesity sta-
tus. There was a significant interaction between the FTO SNP
rs9939609 and physical activity on adiponectin levels
(Pinteraction¼ 0.027), where, among those with low physical
activity levels, carriers of the “A” allele had significantly lower
adiponectin levels compared to those with “TT” geno-
type (p¼ 0.006).

Figure 3. Association between the genetic risk score of the FTO SNPs, rs9939609 and rs10163409s and anthropometric measures
of obesity. BMI: Body Mass Index; FMI: Fat Mass Index; WC: Waist Circumference. White bars: means of individuals with genetic risk
score (GRS) of <2 risk alleles. Black bars: means of individuals with GRS of �2 risk alleles. The GRS was significantly associated
with BMI (a), FMI (b) and WC (c). (a) Carriers of �2 risk alleles of the FTO variants (rs9939609 and rs10163409) had higher BMI
(P¼ 0.002) compared to individuals carrying <2 risk alleles. (b) Carriers of �2 risk alleles of the FTO variants (rs9939609 and
rs10163409) had higher FMI (P¼ 0.003) compared to individuals carrying <2 risk alleles. (c) Carriers of �2 risk alleles of the FTO
variants (rs9939609 and rs10163409) had higher WC (P¼ 0.020) compared to individuals carrying <2 risk alleles. p values were
obtained from linear regression analysis and adjusted for age, gender, hypertension, cardiovascular diseases and obesity status.
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activity on adiponectin concentrations, the findings
need to be replicated in a larger Turkish cohort.

The main strengths of this study include the use of
a biochemical marker of obesity (i.e., adiponectin) and
a well-characterised population. Nevertheless, there are
some limitations which include the small sample size
and the use of self-reported measurements in the
assessment of dietary intake and physical activity.
However, this study has still confirmed the associations
between FTO SNP rs9939609 and obesity traits
which were also reported in previous studies (Frayling
et al. 2007; Hertel et al. 2011; Peng et al. 2011; Corella
et al. 2012; Li et al. 2012; Merra et al. 2020; Schlauch
et al. 2020). Given that obesity is a multifactorial con-
dition, several genetic factors and lifestyle behaviours
provide a predisposition to obesity; even though we
have focussed on the two important lifestyle factors,
diet and physical activity, only two genetic variants
were examined. However, to date, the FTO gene has
been shown to be the strongest susceptibility gene for
common obesity (Frayling et al. 2007; Scuteri et al.
2007; Speliotes et al. 2010; Loos and Yeo 2014).
Furthermore, the cross-sectional design of this study
limits the proof of causality. Even though our analysis
was adjusted for several confounders, we cannot rule
out the residual confounding caused by unknown fac-
tors. Therefore, the observed interactions needed to be
confirmed in further studies with larger sample sizes.

Conclusion

In summary, this study has confirmed the associations
between the risk allele “A” of the FTO rs9939609 and
GRS, with obesity-related traits including BMI and
FMI in this Turkish population. Our study suggests
that the impact of the FTO polymorphisms,
rs10163409 and rs9939609, on obesity among Turkish
adults might be affected by dietary protein intake and
physical activity levels, respectively, suggesting that
increased consumption of protein-rich foods and sed-
entary lifestyle could possibly increase the genetic risk
of central obesity. Our results provide significant pub-
lic health implications, given that the rising prevalence
of central obesity is a major public health problem in
Turkey (Pekcan et al. 2018; WHO 2018). Further
studies with large sample size and objective measures
of environmental factors are required to provide a
better understanding of how these variants interact
with lifestyle factors to develop effective prevention
and treatment strategies for obesity.
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Abstract
Background Observational studies in South Asian populations have suggested an association between vitamin B12 status and
metabolic traits; however, the findings have been inconclusive. Hence, the aim of the present study was to use a genetic approach
to explore the relationship between metabolic traits and vitamin B12 status in a Sri Lankan population and to investigate whether
these relationships were modified by dietary intake.
Methods A total of 109 Sinhalese adults (61 men and 48 women aged 25–50 years) from Colombo City underwent anthropo-
metric and biochemical measurements, dietary intake analysis, and genetic tests. Genetic risk scores (GRS) based on 10 meta-
bolic single nucleotide polymorphisms (SNPs) (metabolic-GRS) and 10 vitamin B12 SNPs (B12-GRS) were constructed.
Results The B12-GRS was significantly associated with serum vitamin B12 (p = 0.008) but not with metabolic traits (p > 0.05),
whereas the metabolic-GRS had no effect on metabolic traits (p > 0.05) and vitamin B12 concentrations (p > 0.05). An interaction
was observed between B12-GRS and protein energy intake (%) on waist circumference (p = 0.002). Interactions were also seen
between the metabolic-GRS and carbohydrate energy intake (%) on waist-to-hip ratio (p = 0.015).
Conclusion Our findings suggest that a genetically lowered vitamin B12 concentration may have an impact on central obesity in
the presence of a dietary influence; however, our study failed to provide evidence for an impact of metabolic-GRS on lowering
B12 concentrations. Given that our study has a small sample size, further large studies are required to confirm our findings.

Keywords SNP . Bodymass index . Obesity . Metabolic traits . Vitamin B12 pathway . Sinhalese . Sri Lanka . Nutrigenetics
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TCN2 Transcobalamin 2
CLYBL Citrate lyase beta like
FUT2 Fucosyltransferase 2
TCN1 Transcobalamin 1
FUT6 Fucosyltransferase 6
MUT Methylmalonyl-CoA mutase
CAP10 Calpain 10
KCNJ11 Potassium voltage-gated channel

subfamily J member 11
TCF7L2 Transcription factor 7-like 2
FTO Fat mass and obesity-associated
MC4R Melanocortin 4 receptor
BMI Body mass index
SD Standard deviations
WC Waist circumference
WHR Waist-to-hip ratio

Introduction

In recent years, the incidence of obesity in Sri Lanka has
increased markedly [1]. The prevalence of being overweight
or obese in Sri Lankan adults is 34.4% (25.2% and 9.2% in
2005 and 2006, respectively), with an upward trend being
observed [1, 2]. Obesity increases the risk for certain health
conditions, such as insulin resistance, diabetes mellitus, and
hypertension [3]. South Asians have been observed to exhibit
increased visceral fat and waist circumference (WC),
hyperinsulinemia, and insulin resistance; this has been termed
the BSouth Asian phenotype^ [4]. Despite a known genetic
contribution, the increase in obesity has been largely associat-
ed with changes in lifestyle habits [5, 6]. It is imperative that
modifiable risk factors for obesity and associated metabolic
problems are identified, especially if they can be easily
addressed.

Vitamin B12 is a micronutrient that has been identified as a
modifiable risk factor associated with the progression of met-
abolic disorders. In humans, vitamin B12 acts as an essential
coenzyme involved in DNA synthesis and cellular energy
production [7]. Subclinical deficiency of vitamin B12 has been
linked to higher levels of homocysteine; this may have impor-
tant consequences in the progression of chronic diseases, by
inducing oxidative stress and inflammation [8]. Vitamin B12

deficiency has also been linked to many other complications
including an increased risk of obesity [9–11], diabetes
[12–14], and cardiovascular disease [15]. Currently, one study
has investigated the effect of genetically instrumented vitamin
B12 concentrations on body mass index (BMI) in individuals
with European ancestry; however, there were no associations
between the vitamin B12 genetic risk score (GRS) and BMI
[16].

Genetic studies have implicated several gene loci in the
predisposition to vitamin B12 deficiency, but no study has

yet been carried out in the Sri Lankan population [17]. The
mechanisms bywhich obesity and its comorbidities are related
to vitamin B12 deficiency are poorly understood. Hence, we
conducted a gene-based approach to explore the relationship
between metabolic traits and vitamin B12 status in a Sinhalese
cohort and investigated whether these relationships were mod-
ified by dietary intake in the Genetics Of Obesity and Diabetes
(GOOD) study.

Study participants

The GOOD study is a cross-sectional study that was con-
ducted in the city of Colombo, Sri Lanka, between April
and August 2017. Healthy adults between the ages of 25
and 50 years were enrolled into the study. Exclusion
criteria were having a previous history of type 2 diabetes,
cardiovascular disease, or hypertension, having a BMI of
more than 40 kg/m2 or being classed morbidly obese by a
physician, being blood related to other participants in the
study, having any communicable disease, being pregnant
or lactating, taking dietary or vitamin supplements, and
taking medications that affect lipid metabolism or hyper-
tension (Fig. 1).

Anthropometric measures

Body weight was measured to the nearest 100 g using an
electronic scale (Seca 815, Seca GmbH. Co. kg, Germany)
and height was measured to the nearest millimeter using a
stadiometer (Seca 217, Seca GmbH. Co. kg, Germany). The
BMI calculation was based on the body weight (kg) divided
by the square of body height (m).Waist circumference and hip
circumference were measured using a metal tape (Lufkin
W606PM®, Parsippany, NJ, USA). Body fat percentage was
estimated using a handheld bioelectrical impedance analysis
technique (Omron Body Fat Monitor BF306, Omron, Milton
Keynes, UK).

Biochemical analysis

Blood samples (10 ml) were collected by a trained phleboto-
mist in the morning, after a 12-h overnight fast. Fasting serum
insulin and vitamin B12 levels were determined using the
chemiluminescent microparticle immunoassay method on an
Architect i1000 analyzer (Abbott Laboratories, IL, USA).
Fasting plasma glucose concentrations were measured using
the glucose hexokinase method using the Beckman Coulter
AU5800 analyzer (Beckman Coulter®, California, USA).
Glycated hemoglobin (HbA1c) was estimated by high-
performance liquid chromatography using the BioRad D10
HPLC analyzer (BioRad, Hercules, CA, USA).
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Dietary intake analysis

Dietary intakes were assessed using a previously vali-
dated and published [18] interviewer-administered food
frequency questionnaire (FFQ) containing 85 food items.
In brief, participants were asked to estimate the usual
frequency (number of times per day, week, or month/
never) and the portion sizes of various food items. The
recorded data was analyzed with the NutriSurvey 2007
database (EBISpro, Germany) to estimate energy as well
as macro- and micronutrient consumption [19].

BThe Global Physical Activity Questionnaire^
(GPAQ), developed by the World Health Organization
(WHO), was used to measure physical activity [20].
Individuals were classified as vigorously active, when
they both exercised and engaged in demanding work
activities, and moderately active, when the participants
either exercised or carried out heavy physical work. The

remaining study participants were classified into the
sedentary group.

SNP selection and genotyping

We selected 10 metabolic disease-related single nucleotide
polymorphisms (SNPs) (associated with obesity and diabetes)
(fat mass and obesity-associated [FTO], rs9939609 and
rs8050136; melanocortin 4 receptor [MC4R], rs17782313
and rs2229616; transcription factor 7-like 2 [TCF7L2],
rs12255372 and rs7903146; potassium voltage-gated channel
subfamily J member 11 [KCNJ11], rs5219; calpain 10
[CAPN10], rs3792267, rs2975760, and rs5030952) for our
analysis based on previously published candidate gene asso-
ciation and genome-wide association (GWA) studies for met-
abolic disease-related traits [21–29].

The 10 vitamin B12-related SNPs (methylenetetrahydrofo-
late reductase [MTHFR], rs1801133; carbamoyl-phosphate

Fig. 1 Flow chart of the subject recruitment process
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synthase 1 [CPS1], rs1047891; cubulin [CUBN], rs1801222;
CD320 molecule [CD320], rs2336573; transcobalamin 2
[TCN2], rs1131603; citrate lyase beta like [CLYBL],
rs41281112; fucosyltransferase 2 [FUT2], rs602662;
transcobalamin 1 [TCN1], rs34324219; fucosyltransferase 6
[FUT6], rs778805 and methylmalonyl-CoA mutase [MUT],
rs1141321) were chosen on the basis of the recent review
article by Surendran et al. [17].

Blood samples for the measurement of DNA were
transported in dry ice to the UK. Genomic DNAwas extracted
from a 5-ml whole blood sample from each participant and
genotyping was performed at LGC Genomics (http://www.
lgcgroup.com/services/genotyping), which employs the
competitive allele-specific PCR-KASP® assay.

The Hardy-Weinberg equilibrium (HWE) p values were
computed for the following 20 SNPs. The SNP FUT2
rs602662 and calpain 10 (CAP10) rs3792267 deviated from
the HWE; however, these SNPs were not excluded from anal-
ysis. The FUT2 SNP rs602662 previously departed from
HWE in a GWA study conducted in India; the authors ruled
out that the deviation was not due to a genotyping error and
still used this SNP for analysis in their study [30]. In addition,
the KASP™ genotyping technology used in our study has
been independently assessed to be over 99.8% accurate.
Validation of the KASP™ genotyping was conducted at

LGC genomics, where the genotyping results were assessed
by two project managers separately to confirm that the data
was accurate, and this ruled out genotyping artifacts as possi-
ble reasons for deviation from HWE. The reasons for devia-
tion from HWE could be due to population or racial grouping
substructure (subgrouping), non-random mating, linkage dis-
equilibrium (incomplete mixing of different ancestral popula-
tion), or chance findings [31].

Statistical analysis

The SPSS statistical package (version 22; SPSS Inc., Chicago,
IL, USA) was used for the statistical analysis. Allele frequen-
cies were estimated by gene counting (Table 1). The normality
of variable distribution was verified by the Shapiro-Wilk test,
and data not normally distributed were log transformed prior
to analysis.We performed an independent t test to compare the
means of the quantitative variables between men and women.
Comparison of the means between the two groups was ana-
lyzed by the chi-square test for categorical outcomes.

A schematic representation of the study design is presented
in Fig. 2. The unweighted, risk allele GRS method was calcu-
lated for each participant as the sum of risk allele counts across
each SNP which predicted vitamin B12 status or metabolic
disease risk. The B12-GRS was generated from the SNPs in

Table 1 Genotype distribution of vitamin B12-related SNPs and metabolic disease-related SNPs

Gene rs number Major
allele

Minor
allele

Common Homozygotes
(%)

Heterozygotes
(%)

Rare Homozygotes
(%)

Minor allele
frequency

HWE p
value

MTHFR rs1801133 C T 89 (81.7) 19 (17.4) 1 (0.9) 0.100 0.990

CPS1 rs1047891 C A 56 (51.9) 44 (40.7) 8 (7.4) 0.278 0.873

CUBN rs1801222 C T 78 (72.2) 29 (26.9) 1 (0.9) 0.144 0.338

CD320 rs2336573 C T 99 (90.8) 10 (9.2) 0 (0) 0.046 0.616

TCN2 rs1131603 T C 107 (98.2) 2 (1.8) 0 (0) 0.009 0.923

CLYBL rs41281112 C T 105 (96.3) 4 (3.7) 0 (0) 0.018 0.845

FUT2 rs602662 G A 60 (55.6) 30 (27.8) 18 (16.7) 0.306 0.000

TCN1 rs34324219 C A 107 (98.2) 2 (1.8) 0 (0) 0.009 0.923

FUT6 rs778805 C T 29 (26.6) 53 (48.6) 27 (24.8) 0.491 0.776

MUT rs1141321 G A 28 (25.7) 60 (55.0) 21 (19.3) 0.470 0.271

CAPN10 rs3792267 G A 79 (72.5) 24 (22.0) 6 (5.5) 0.165 0.035

CAPN10 rs2975760 T C 66 (60.6) 38 (34.9) 5 (4.6) 0.220 0.874

CAPN10 rs5030952 C T 101 (92.7) 8 (7.3) 0 (0) 0.037 0.691

KCNJ11 rs5219 C T 49 (45.0) 45 (41.3) 15 (13.8) 0.344 0.373

TCF7L2 rs12255372 G T 57 (52.3) 45 (41.3) 7 (6.4) 0.271 0.633

TCF7L2 rs7903146 C T 45 (41.3) 54 (49.5) 10 (9.2) 0.340 0.274

FTO rs9939609 T A 48 (44.0) 47 (43.1) 14 (12.8) 0.344 0.641

MCR rs17782313 T C 48 (44.0) 50 (45.9) 11 (10.1) 0.330 0.700

FTO rs8050136 C A 48 (44.0) 47 (43.1) 14 (12.8) 0.340 0.641

MC4R rs2229616 G A 99 (91.7) 9 (8.3) 0 (0) 0.042 0.651

MAF minor allele frequency, HWE Hardy-Weinberg equilibrium, χ2 chi-squared value

Int J Diabetes Dev Ctries

http://www.lgcgroup.com/services/genotyping
http://www.lgcgroup.com/services/genotyping


the genes MTHFR, CPS1, CUBN, CD320, TCN2, CLYBL,
FUT2, TCN1, FUT6, and MUT, which have been shown to
be associated with vitamin B12 concentrations. Furthermore,
another unweighted GRS was created using allele markers
previously reported to be associated with metabolic disease
traits. The metabolic-GRS was generated from the SNPs in
the genes CAP10, KCNJ11, TCF7L2, FTO, and MC4R. A
value of 0.1 or 2 was assigned to each SNP, which denotes
the number of risk alleles on that SNP. These values were then
calculated by adding the number of risk alleles across each
SNP. The average number of risk alleles per person for the
B12-GRS was 8.69 (SD = 1.70), which ranged from 5 to 15.
The sample was stratified, by the median, into a Blow genetic
risk group,^ for those with a GRS ≤ 9 risk alleles (n = 79), and
into a Bhigh genetic risk group,^ for those with a GRS ≥ 10
risk alleles (n = 30). For the metabolic-GRS, the average num-
ber of risk alleles per person was 7.00 (SD = 2.28), which
ranged from 1 to 13. The sample was stratified, into a Blow
genetic risk group,^ for those with a GRS ≤ 8 risk alleles (n =
88), and into a Bhigh genetic risk group,^ for those with a GRS
≥ 9 risk alleles (n = 21). Linear regression was used to exam-
ine the association of the two GRS scores with the biochem-
ical and anthropometric outcomes (glucose, insulin, HbAC1,
vitamin B12, body fat %, BMI, WC, and waist-to-hip ratio
(WHR)). The interaction between the two GRS scores and
dietary factors on biochemical and anthropometric outcomes
was determined by including interaction terms (GRS × diet) in

the regression model. Models were adjusted for age, sex,
BMI, and total energy intake, wherever appropriate.

Correction for multiple testing was applied using
Bonferroni correction [adjustment p value for association
analysis was < 0.00313 [2 GRS × 8 biochemical and anthro-
pometric outcomes (Fasting blood glucose, fasting insulin,
glycated hemoglobin, vitamin B12, fat %, BMI, WC, and
WHR) = 16 test)] and for interaction < 0.00078 [2 GRS × 8
biochemical and anthropometric × 4 lifestyle factors (dietary
carbohydrate energy %, dietary protein energy %, dietary fat
energy%, and physical activity levels)) = 64]. Given that there
are no studies on GRS and no previously reported effect sizes
for the South Asians, we were unable to perform a power
calculation.

Results

Characteristics of the participants

In this study, 109 participants (mean age, 38.34 ± 6.92 years;
BMI, 24.58 ± 4.12 kg/m2) were included. Table 2 illustrates
the main characteristics of the study participants stratified ac-
cording to sex. No significant difference between men and
women was observed in the levels of fasting glucose, insulin,
HbAC1, and plasma vitamin B12 (p > 0.05).

Fig. 2 Diagram representing the study design. The diagram shows four
possible associations and four possible interactions. One-sided arrows
with unbroken lines represent genetic associations and one-sided arrows
with broken lines represent interactions between a lifestyle factor and
GRS on serum vitamin B12/metabolic traits. We tested the association

between the metabolic-GRS and vitamin B12 concentrations and meta-
bolic disease-related traits. We then tested the associations between the
B12-GRS and vitamin B12 status and metabolic disease-related traits.
Lastly, we tested whether these genetic associations were modified by
lifestyle factors (macronutrient intake and physical activity levels)
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Association between B12-GRS and obesity GRS
with biochemical and anthropometric measurements

A significant association between B12-GRS and serum vita-
min B12 was observed (p = 0.008) (Supplementary Table 1
and Fig. 3). However, this finding was not significant after
correction for multiple testing. No associations between the
B12-GRS and metabolic traits (p > 0.05) were observed
(Supplementary Table 1). Furthermore, no associations be-
tween the metabolic-GRS and vitamin B12 or metabolic traits
(p > 0.05) were observed (Supplementary Table 2).

Interaction between the B12-GRS and dietary factors
on biochemical and anthropometric measurements

An interaction was found between the B12-GRS and protein
energy (%) on log transformed WC (p = 0.002). However,
further stratification of participants based on their consump-
tion of low, medium, and high dietary protein (energy %) did
not show statistically significant associations between the
GRS and the outcome in any of the tertiles, which could ac-
count for the small sample size (Supplementary Table 3).

Table 2 Anthropometric and biochemical characteristics of men and women participants (n = 109; men 61, women 48)

Total (n = 109) Men (n = 61) Women (n = 48) p value*
Mean ± SD Mean ± SD Mean ± SD

Age (years) 38.24 ± 6.92 37.34 ± 6.97 39.38 ± 6.77 0.129

Height (cm) 164.97 ± 9.15 170.95 ± 6.18 157.36 ± 6.16 < 0.0001

Weight (kg) 67.07 ± 13.05 71.76 ± 11.81 61.11 ± 12.17 < 0.0001

BMI (kg/m2) 24.58 ± 4.12 24.51 ± 3.52 24.68 ± 4.80 0.844

Waist circumference (cm) 83.73 ± 17.97 89.83 ± 14.04 75.99 ± 19.52 < 0.0001

Hip circumference (cm) 91.16 ± 17.78 92.27 ± 13.83 89.75 ± 21.87 0.488

WHR 0.92 ± 0.11 0.98 ± 0.08 0.85 ± 0.11 < 0.0001

Fat (%) 27.25 ± 7.37 23.52 ± 5.12 32.00 ± 7.08 < 0.0001

Obesity casesa 40.37% 37.70% 43.75% 0.523

Fasting blood glucose (mg/dL) 85.64 ± 12.64 87.41 ± 15.41 83.40 ± 7.40 0.100

Fasting blood insulin (pmol/L) 68.55 ± 49.97 71.77 ± 59.12 64.46 ± 35.28 0.451

Fasting blood HbA1C (mmol/mol) 35.62 ± 5.91 35.20 ± 5.99 36.16 ± 5.84 0.402

Fasting blood B12 (pmol/L) 380.65 ± 132.83 389.80 ± 135.00 369.02 ± 130.52 0.420

Physical activity levels (low %/moderate%/high%) 72.5/19.3/8.3 70.5/19.7/9.8 75.0/18.8/6.3 0.777

Total energy (kcal/day) 2097.92 ± 456.01 2173.68 ± 427.82 2001.65 ± 476.72 0.050

Protein (energy %) 11.29 ± 2.31 11.25 ± 2.41 11.33 ± 2.20 0.853

Fat (energy %) 21.87 ± 5.31 21.64 ± 5.22 22.16 ± 5.45 0.613

Carbohydrate (energy %) 69.62 ± 8.80 69.89 ± 10.29 69.28 ± 6.52 0.721

Dietary fiber (g) 16.78 ± 8.18 17.24 ± 8.46 16.20 ± 7.85 0.513

Polyunsaturated fatty acids (g) 3.32 ± 1.69 3.36 ± 1.66 3.27 ± 1.75 0.779

Data presented as mean ± SD

BMI body mass index, SD standard deviations, WHR waist-to-hip ratio

*p < 0.05, statistically significant differences in mean values between men/women, unadjusted
bObesity cases refer to the percentage of individuals with a BMI of over 25

Fig. 3 Association between the B12-GRS and serum vitamin B12 levels.
Vitamin B12 decreasing alleles ranged from 5 to 15. Individuals with ≤ 9
or ≥ 10 alleles were grouped to obtain a reasonable number of individuals
in each group
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Interaction between the metabolic-GRS and dietary
factors on biochemical and anthropometric
measurements

We observed a significant interaction between the
metabolic-GRS and carbohydrate energy intake (%) on
waist-to-hip ratio (P interaction = 0.015) (Fig. 4 and
Table 3). Individuals who carried eight or less risk al-
leles for metabolic disease had 7.47% lower WHR mea-
surements (cm) in the highest tertile of carbohydrate
energy intake (%) (mean ± SD = 78.00 ± 7.90%) com-
pared to those with nine or more risk alleles (p =
0.035) (Table 3).

Interactions were also seen between the metabolic-GRS
and carbohydrate energy (%) on log fasting insulin con-
centrations (p = 0.011) and log WC (p = 0.031) and the
metabolic-GRS and protein energy (%) on log fasting in-
sulin levels (p = 0.032) and log WC (p = 0.011) (Table 3
and Supplementary Table 3).

Interaction between the B12-GRS and physical
activity on biochemical and anthropometric
measurements

No statistically significant interactions were observed be-
tween the two GRSs (vitamin B12 and metabolic) and
physical activity on biochemical and anthropometric mea-
surements (Table 3 and Supplementary Table 3). After
correction for multiple testing, none of these gene-diet
and gene-physical activity interactions remained statisti-
cally significant.

Discussion

To our knowledge, this is the first study to use a genetic ap-
proach to explore the relationship between metabolic traits
and vitamin B12 status in a South Asian population. Our study
confirmed the strength of the association between B12-GRS
and B12 concentrations and demonstrated the impact of genet-
ically instrumented B12 concentrations on waist circumfer-
ence, an indicator of central obesity, through the influence of
dietary protein intake. Furthermore, our study has also showed
a significant effect of metabolic-GRS on waist-to-hip ratio
through the influence of high carbohydrate intake. Given that
the total daily intake of protein is low and carbohydrate is high
in Sri Lankan adults [32], our findings, if replicated in future
studies, might carry significant public health implications in
terms of revising the food-based dietary guidelines which
could prevent central obesity and the associated CVD-
related outcomes.

In this study, we constructed a GRS consisting of ten vita-
min B12 decreasing SNPs in genes involved in vitamin B12

metabolism [17]. The B12-GRS was associated with vitamin
B12 levels, suggesting that it would be an ideal instrument for
vitamin B12 status. Given the lack of association between the
B12-GRS and metabolic disease traits in our study, we were
unable to provide evidence for linear decreases in vitamin B12

concentrations having substantive effects on metabolic dis-
ease traits. However, we found a significant interaction be-
tween the B12-GRS and protein energy (%) on log WC.
Interestingly, individuals who carried nine or less alleles had
lower WC when consuming a high protein diet compared to
those consuming a low protein diet. Although no statistically
significant differences in WC were observed between the

Fig. 4 Interaction between the
metabolic-GRS and carbohydrate
energy intake (%) on waist-to-hip
ratio (cm) (Pinteraction = 0.015).
Among those who consumed a
high carbohydrate diet, individ-
uals who carried nine or more risk
alleles had significantly higher
levels of waist-to-hip ratios com-
pared to individuals carrying
eight or less risk alleles (p =
0.035)
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alleles of the B12-GRS, the impact of the B12-GRS on WC
was observed only under the influence of a high protein diet.
Further investigations are required to confirm this finding to
determine the clinical significance and potential applications
as part of weight management interventions.

At present, carbohydrates constitute the majority of the
energy intake among South Asian countries such as Sri
Lanka (~ 71.2%) [32]; in contrast, the consumption of carbo-
hydrates is lower in Western countries (~ 45%) [33].
Furthermore, high carbohydrate intake has been associated
with an increased risk of diabetes in a South Indian population
[34] and an increase in WC among premenopausal (20–
45 years) Sri Lankan women [35]. In the present study, we
found a significant interaction between the metabolic-GRS
and carbohydrate energy percentage on waist-to-hip ratio,
where the individuals carrying more than nine risk alleles
had a higher waist-to-hip ratio among those in the highest
tertile of carbohydrate energy percentage. There are no previ-
ous reports of the risk variants used in our GRS, but Goni et al.
[36] found that carbohydrates (total and complex) interacted
with a GRS of 16 obesity/lipid metabolism polymorphisms to
modify the effect on body fat mass in 711 individuals of
Caucasian ancestry. In our study, we only observed interac-
tions of the metabolic-GRS on WC and waist-to-hip ratio,
which suggests that effects are likely to be on central obesity
as opposed to common obesity.

South Asians have a higher risk of developing obesity-
related non-communicable diseases relative to white
Caucasians despite lower BMI levels; this has been termed
the BSouth Asian phenotype.^ The distinctive features of this
phenotype include a higher WC, abdominal adiposity com-
bined with insulin resistance, and a greater predisposition to
diabetes [4]. The role of vitamin B12 in promoting this adverse
phenotype has been suggested by Yajnik et al., who demon-
strated that offspring born to mothers with a low vitamin B12

and high folate status had a greater risk of developing insulin
resistance during childhood [12]. According to Yajnik et al.,
vitamin B12 deficiency prevents the generation of tetrahydro-
folate from 5-methyltetrahydrofolate in the one-carbonmetab-
olism cycle; as a result, homocysteine levels accumulate lead-
ing to altered lean tissue deposition and reduced protein syn-
thesis [12]. Furthermore, vitamin B12 is involved in the con-
version of methylmalonyl-CoA to succinyl-CoA by the en-
zyme methylmalonyl-CoA mutase (adenosyl-B12 as a cofac-
tor). Subsequently, vitamin B12 deficiency results in elevated
methylmalonyl-CoA, inhibiting the mitochondrial enzyme
carnitine palmitoyltransferase, which may promote lipogene-
sis and insulin resistance [12, 37].

No studies to date have investigated interactions between
the two GRSs and physical activity onmetabolic traits and B12

concentrations in Asian Sri Lankans. Although 60% of Sri
Lankan adults are reported to be highly physically active
[38], no significant interactions were found between the two

GRSs and physical activity on metabolic traits, which could
be due to a small sample size andmeasurement bias associated
with self-reported physical activity questionnaire. The
strengths of our study include the use of a validated food
frequency questionnaire [18] to measure macronutrient intake,
the comprehensive measurements of lifestyle factors, and the
use of GRSs which increased the statistical power of our study
[39]. Nevertheless, some limitations need to be acknowl-
edged. The first limitation concerns the relatively small sam-
ple size of the study; however, we were still able to identify
significant gene-diet interactions. Furthermore, we used
Bonferroni correction to correct for multiple testing and this
can often lead to larger power, specifically where studies have
a small sample size and a small number of disease-associated
markers. This is also true for when studies have a large allele
frequency difference due to a small sample size [40].
Secondly, information about the type of oil used for frying,
the estimation of different dietary fat components (monoun-
saturated or saturated fatty acids), and vitamin B12 intake was
not collected. This could have limited our in-depth analysis of
interactions of specific macronutrients and vitamins with the
two GRSs. Furthermore, the study was limited to Sinhalese
adults in Colombo, and the conclusions may not be applicable
to other ethnic groups in Sri Lanka. Finally, none of the ge-
netic associations or gene-lifestyle interactions were statisti-
cally significant after correction for multiple testing; however,
given that this is the first study using a genetic approach to
establish a relationship between vitamin B12 status and meta-
bolic disease outcomes in South Asians, we have taken into
consideration the significant findings; hence, further large
studies are required to replicate our findings.

In summary, our study suggests that a genetically lowered
vitamin B12 concentration may have an impact on central
obesity in the presence of a dietary influence; however, our
study failed to show an impact of the metabolic-GRS on low-
ering B12 concentrations through a dietary influence. Our
study also showed a significant effect of the metabolic-GRS
on waist-to-hip ratio, another indicator of central obesity,
through the influence of a high carbohydrate intake.
However, after correction for multiple testing, none of these
findings were statistically significant. Hence, further replica-
tion studies are highly warranted on large samples to confirm
or refute our findings.
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