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Model Risk of Volatility Models∗

Emese Lazar†, Ning Zhang‡

Abstract A new model risk measure and estimation methodology based
on loss functions is proposed in order to evaluate the accuracy of volatility
models. The reliability of the proposed estimation has been verified via
simulations and the estimates provide a reasonable fit to the true model
risk measure. An empirical analysis based on several assets is undertaken
to identify the models most affected by model risk, and concludes that the
accuracy of volatility models can be improved by adjusting variance forecasts
for model risk. The results indicate that after crisis situations, model risk
increases especially for badly fitting volatility models.

Keywords: Model Risk, Scoring Functions, Volatility Forecast

JEL Classification: G17, G32, C22, C52, C58.

1. Introduction

Volatility forecasts often constitute a significant input in many finan-
cial applications, for example in risk estimation and investment decision-
making. If the volatility forecast is inaccurate, then the implications can be
widespread (Green and Figlewski, 1999). The existing extensive volatil-
ity modeling literature includes the family of autoregressive conditional
heteroscedasticity (ARCH) models, stochastic volatility models as well as
volatility models based on realized data, in a univariate or multivariate set-
ting (see a detailed overview of volatility models in Bauwens et al., 2012).
From the regulators’ perspective (Federal Reserve, 2011), the term model
refers to a quantitative approach or system that processes inputs and pro-
duces quantitative estimates. Consequently, the use of financial econometric
techniques for volatility forecasting invariably presents model risk. This is
defined as ‘the potential for adverse consequences from decisions based on
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incorrect or misused model outputs and reports’ (Federal Reserve, 2011),
but there is no consensus on the exact definition of model risk in the current
literature. Whilst some interpret it as the model error (relating to the dif-
ference between model output and true or realized value), others interpret
it as the uncertainty about model error (Aven, 2016). In this paper, we de-
fine model risk as model error, because this is closely linked to the expected
level of losses incurred if the model is used for volatility forecasting. For
different applications, there will be a (not necessarily linear) relationship
between losses and volatility model error, and often modelling this relation-
ship introduces an extra layer of model risk. For example, the CAPM model
assumes a linear relationship between returns and volatility; also, many risk
models assume a linear relationship between Value-at-Risk (VaR, as a loss)
and volatility, so a model error in volatility forecasting directly translates
into a loss. However, many applications would have a non-linear relationship
between volatility model error and losses (see Green and Figlewski, 1999).
To keep our framework general and to measure pure volatility model risk,
unaffected by the use of other models (e.g. pricing models), we quantify
model risk as model error. In the aftermath of the 2008 global financial
crisis, the Federal Reserve (2011) raises awareness of assessing model risk
and so does the European Banking Authority (2014). We contribute to the
literature by proposing a generic model risk measurement framework and
estimating the model risk associated with two main sources of model risk:
parameter estimation risk and model misspecification risk, both considered
in Glasserman and Xu (2014) and Gourieroux and Monfort (2021).

Any volatility model exposes itself to the model risk associated with the
distance from the model variance estimates to the true variance. However,
the true variance (denoted by σ2) is unobservable in practice, as discussed
in Hansen and Lunde (2006) and Patton (2011), so the evaluation of the
accuracy of volatility models is non-trivial. This can be addressed by using
a conditionally unbiased variance estimator of the true conditional variance
(hereafter, also called the variance proxy and denoted by σ̂2), namely the
daily squared return, the realized variance, or the range-based variance to
name the main ones (see Alizadeh et al., 2002; Barndorff-Nielsen and Shep-
hard, 2002, Andersen et al., 2003 and Dette et al., 2022).

One strand of the volatility forecasting literature focuses on the accuracy
of models taken in isolation. A simple and well-known approach to evalu-
ate the accuracy of a single volatility model is the Mincer and Zarnowitz
(1969) (MZ) regression (see more details in Section 5). The R2 of the re-
gression equation is considered as a criterion for the accuracy (efficiency)
of the volatility forecasting model. A second strand, focusing on model
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evaluation, considers model comparisons based on scoring (loss) functions.
The pairwise comparisons between two competing forecasts (see Diebold and
Mariano, 1995, West, 1996, as well as a general discussion in Giacomini and
White, 2006) and the multiple comparisons for a set of volatility models
(e.g., Hansen and Lunde, 2005, and Hansen et al., 2011) have been well-
documented. The main drawback of these tests is that the noisy variance
proxy may distort the results, as argued by Hansen and Lunde (2006) and
Patton (2011). To solve this, Patton (2011) proposes a class of robust and
homogeneous scoring functions for the volatility, which leads to a ranking of
competing models which is invariant to the choice of variance proxy. Within
the proposed family, the mean squared error (MSE) and quasi-likelihood
(QLIKE) scoring functions are widely accepted for the evaluation of volatil-
ity models as in Forsberg and Ghysels (2007), Bauwens et al. (2012), Engle
and Siriwardane (2018) and others.

Although extensive studies of volatility forecast comparisons have been
conducted based on the average loss, or distance between the estimated
variances of competing models and variance proxies (e.g., Patton, 2011 and
Hansen and Lunde, 2005), much less is known about the exact magnitude of
model risk of the volatility forecast of individual models. Alternatively, con-
cerning the uncertainty of point forecasts of volatilities, Pascual et al. (2006)
apply a bootstrap procedure to compute the volatility prediction intervals as
a measure of model risk which only allows for parameter estimation risk in a
univariate setting; further, Fresoli and Ruiz (2016) measure the model risk
of multivariate volatility models in a similar vein; Bollerslev et al. (2016)
and Takahashi et al. (2021) improve on the forecasting models based on re-
alized volatility. However, they do not specifically estimate model risk, nor
consider the effects of parameter estimation risk and model misspecification
risk as such. Recently, considerable attention has been devoted to the assess-
ment of model risk of quantile-based risk measures like Value-at-Risk and
Conditional Value-at-Risk (which are also unobservable in practice); this
can be done in two ways: the first approach measures model risk related to
the difference between the estimated risk and a reference risk estimate such
as the upper or lower bound of risk estimates over a set of risk models as in
Barrieu and Scandolo (2015) and Blasques et al. (2021), or as the ratio of the
maximum risk forecast over the minimum within a set of models (Danielsson
et al., 2016); the second approach measures model risk of a single risk model
as the difference between the estimated risk measure and the improved risk
measure that passes given backtests, see e.g. Boucher et al. (2014). Instead
of computing model risk based on a subjective reference model, we measure
the model risk of volatility models taken individually.
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Our model risk estimation framework contributes to the literature in
several ways. First, we expand the model risk literature by proposing a
model risk measure for volatility models; we investigate the effect of using
different objective functions (which are related to the choice of loss func-
tions, i.e. MSE and QLIKE loss functions) and different variance proxies
(i.e. the squared return and the realized variance) in computing model risk;
and we develop an estimation methodology for model risk, considering dif-
ferent lengths of optimization windows and model risk evaluation windows.
Specifically, for a given univariate volatility model we estimate model risk as
the average distance between the raw and improved variance forecasts over
a model risk evaluation window, in which the improved variance forecasts
are obtained by minimizing the expected score of a given robust scoring
function (MSE or QLIKE) over an optimization window.

Second, via Monte Carlo simulations we show the effectiveness of our
proposed model risk estimation framework by comparing different model
risk estimates with the true model risk across different lengths of optimiza-
tion windows and model risk evaluation windows. Our results show that the
proposed QLIKE-based model risk estimate, based on additive adjustments
to the variance forecasts, is a good approximation of true model risk accord-
ing to several measures of similarity. We find that the proposed model risk
estimate has a correlation of at least 0.88 with the true model risk measure
across the model set considered.

Third, considering the desirable coherence properties (Artzner et al.,
1999) of a measure of risk for our proposed QLIKE-based model risk mea-
sure, we find that all desirable properties, specifically the monotonicity, pos-
itive homogeneity and translation invariance properties, are satisfied (except
for subadditivity which is not required). As such, the proposed measure of
model risk can be considered from a regulatory perspective.

Fourth, in an empirical study we compute the proposed QLIKE-based
model risk estimates using different variance proxies (the squared return
and the realized variance) for different asset classes, showing that all else
being equal, the level of the the QLIKE-based model risk using the realized
variance proxy is generally higher than that using the squared return proxy
in small samples. The model risk of volatility models increases when the
market volatility increases, which is in line with the result of Danielsson
et al. (2016). We find that model risk has a negative effect on the predictive
accuracy of volatility models, because the values of R2 of the MZ regressions
increase after adjusting the variance forecasts for model risk. We also dis-
entangle the model risk of volatility models into parameter estimation risk
and model misspecification risk, and conclude that model misspecification
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risk generally plays a more dominant role than parameter estimation risk.
The rest of the paper proceeds as follows: Section 2 introduces our pro-

posed measure of model risk and estimation methodology based on the MSE
and QLIKE loss functions; Section 3 justifies the introduced model risk es-
timates via simulations and compares different subjective choices; Section 4
examines the desirable coherence properties of our proposed measure; Sec-
tion 5 applies the QLIKE-based model risk measure to different asset classes
and distinguishes between different sources of model risk; Section 6 considers
an alternative measure of model risk and Section 7 concludes.

2. Quantifying model risk

2.1. Scoring functions for volatility models

Forecast performances of competing models can be evaluated based on
scoring functions. A scoring (loss) function is defined as a function S :
R+ × H → R+ where H is a compact subset of R++, and R+ and R++

represent the non-negative and positive parts of the real line, respectively.
In terms of model comparisons, the evaluation of volatility forecasting

models depends on the choice of variance proxy σ̂2 and of the scoring func-
tion S. To contrast two sets of competing variance forecasts, {hk} and {hj},
of model k and j, over a period from t to t + τ , we compute and compare

the expected scores of the two models: E
[
S(σ̂2, hk)

]
= 1

τ+1 ·
t+τ∑
i=t

S(σ̂2i , h
k
i )

and E
[
S(σ̂2, hj)

]
= 1

τ+1 ·
t+τ∑
i=t

S(σ̂2i , h
j
i ), given a variance proxy σ̂2 and a

scoring function S. Throughout this paper, we use the population estimate
for average values. A smaller expected score indicates a superior forecast-
ing ability of the volatility model. Also, for a given scoring function and
variance proxy, the optimal variance forecast denoted by h∗t can be obtained
by minimizing the expected score and is defined below, where Ft−1 denotes
the information set at t− 1 (see Patton, 2011; this is further generalized for
point forecasts in Gneiting, 2011):

h∗t ≡ arg min
h∈H

E
[
S(σ̂2t , h)|Ft−1

]
. (1)

We consider the MSE and QLIKE scoring functions (denoted by Smse
or Sqlike) in this paper. The robustness property of scoring functions distin-
guishes these two scoring functions in that the ordering of any two (possibly
imperfect) volatility forecasts by the expected score of MSE or QLIKE is
the same whether the ordering is done using the true conditional variance
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or some conditionally unbiased variance proxy (Patton, 2011). These two
prominent robust scoring functions are listed below, when a conditionally
unbiased variance proxy σ̂2 is used:

MSE : Smse(σ̂
2, h) = (σ̂2 − h)2; QLIKE : Sqlike(σ̂

2, h) = log(h) +
σ̂2

h
(2)

2.2. Measuring model risk of volatility models

In the following, we quantify the model risk of a volatility model j pro-
vided that a time series of out-of-sample daily variance forecasts hjt , ..., h

j
t+T

(computed in our case using rolling windows) as well as a time series of
observed daily variance proxy σ̂2t , ..., σ̂

2
t+T for time t, t + 1,..., t + T are

used. We start with a definition of true model risk of volatility models. In
practice, this cannot be used because the true variance process is unknown.
We then propose a model risk proxy measure using a conditionally unbiased
variance proxy. Then we proceed with proposing measures of model risk of
volatility models, differing via their structure (additive vs. multiplicative).
We discuss how these measures depend on subjective inputs (optimization
window length, model risk evaluation window length, variance proxy as well
as the loss function).

Definition 1. If the sequence of true variances {σ2} is known, and the
volatility forecaster produces a time series of conditional variance forecasts
{hj} with volatility model j, then the true model risk of model j over a
model risk evaluation window of length n + 1 from t to t + n is quantified
by pj[t,t+n]:

pj[t,t+n] =
1

n+ 1
·
t+n∑
i=t

∣∣∣σ2i − hji ∣∣∣ . (3)

This measure is derived based on absolute differences, whereas an alter-
native measure based on squared differences is considered in Section 6.1.

In practice, the true variance σ2 is unobservable but can be replaced by
the observed variance proxy σ̂2 such as the squared return or the realized
variance. Thus, p̂proxy,j[t,t+n] denotes the model risk proxy for true model risk

pj[t,t+n] of model j, using a conditionally unbiased variance proxy σ̂2:

p̂proxy,j[t,t+n] =
1

n+ 1
·
t+n∑
i=t

∣∣∣σ̂2i − hji ∣∣∣ . (4)
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Although the model risk proxy p̂proxy,j[t,t+n] can be readily computed, being the
simplest estimate of model risk, we will show that our proposed model risk
estimates based on scoring functions prove to be superior to this model risk
proxy. The novelty of our proposed measure is that it uses scoring functions
and we consider two different formulations of objective functions. Thus,
we propose (i) an additive structure and (ii) a multiplicative structure as
discussed below:

(i) Additive structure: given a volatility model j, based on (5) we find op-

timized constants cadd,jS,t+τ+m (which, when added to a series of variance fore-

casts {hji}
t+τ+m
i=t+m , minimize the expected score of a scoring function S over

an optimization window from t + m to t + τ + m of length τ + 1), where
m = 0 : T − τ . The constant cadd is restricted so that hji + cadd > 0 is
satisfied for all i in order to ensure the positivity of variance forecasts:

cadd,jS,t+τ+m = arg min
cadd

1

τ + 1
·
t+τ+m∑
i=t+m

S
(
σ̂2i , h

j
i + cadd

)
. (5)

As the optimization window of length τ +1 is rolled forward at every step, a
time series of optimized increments {cadd,jS,i }

t+T
i=t+τ is generated for the variance

forecasts of model j. Subsequently, the model risk estimate of model j over
a model risk evaluation window from t + τ to t + τ + n under an additive
structure is given by p̂add,jS,[t+τ,t+τ+n]:

p̂add,jS,[t+τ,t+τ+n] =
1

n+ 1
·
t+τ+n∑
i=t+τ

∣∣∣(hji + cadd,jS,i )− hji
∣∣∣ . (6)

(ii) Multiplicative structure: we calculate optimized multipliers cmul,jS,t+τ+m

that are assigned to the conditional variance forecasts {hji}
t+τ+m
i=t+m via mini-

mizing the expected score over an optimization window from t+m to t+τ+m
with window length τ + 1, where m = 0 : T − τ and the constant cmul is
constrained to satisfy cmul > 0 for the positivity of variance forecasts. This
is given below:

cmul,jS,t+τ+m = arg min
cmul

1

τ + 1
·
t+τ+m∑
i=t+m

S
(
σ̂2i , h

j
i · c

mul
)
. (7)

Then under a multiplicative structure the model risk estimate of model j is
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given by p̂mul,jS,[t+τ,t+τ+n]:

p̂mul,jS,[t+τ,t+τ+n] =
1

n+ 1
·
t+τ+n∑
i=t+τ

∣∣∣(hji · cmul,jS,i )− hji
∣∣∣ . (8)

In this framework, model risk is computed as the average model error
in terms of volatility forecasting, with the size of model error obtained via
scoring function minimizations. If these minimizations indicate that model
error is small (the volatility forecasts requiring only a small adjustment to
minimize the score), then the volatility model has a low model risk.

A similarity can be drawn between equations (5) and (7) and the Mincer-
Zarnowitz regressions for variance forecast tests (Hansen and Lunde, 2005).
For these, the variance proxy is regressed on the variance forecast, and
the optimality of the forecasts is verified via the parameter values (0 for
the intercept and 1 for the sensitivity). Similarly, in our case one would
expect cadd to be 0 and cmul to be 1, which would lead to zero model risk.
For brevity, we will omit the subscripts for time intervals for pj[t+τ,t+τ+n],

p̂proxy,j[t+τ,t+τ+n], p̂
add,j
S,[t+τ,t+τ+n] and p̂mul,jS,[t+τ,t+τ+n]. In order to detect the similarity

of the model risk proxy (4) and model risk estimates (6) and (8) to the
true model risk measure (3), we compute several measures of similarity and
discuss the results in the following simulation study.

The computation of model risk depends on five subjective choices re-
garding: 1) the optimization framework (additive or multiplicative), 2) the
optimization window length τ , 3) the model risk evaluation window length
n, 4) the loss function (MSE or QLIKE) and 5) the variance proxy. In the
following, we study each of these alternatives via Monte Carlo simulations
and identify the optimal way to estimate model risk.

3. Simulation study

In this section, we verify via simulations how closely the model risk es-
timates are able to capture the size of true model risk for various volatility
models. Considering that the conditional distribution of financial time se-
ries is often fat-tailed and asymmetric, we use the GARCH(1,1) model with
skewed Student’s t distributed innovations (SKTGARCH), allowing for kur-
tosis and skewness, with the data generating process specified as:

rt =
√
htZt, Z ∼ skewed Student’s t (ν, λ), (9)

ht = ω̂ + α̂r2t−1 + β̂ht−1,
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where rt denotes a realization of return and ht denotes the one-step ahead
conditional variance forecast for time t. The density function of the stan-
dardized returns Z is f(z|ν, λ) (see Appendix Appendix A), in which ν is
the degrees of freedom parameter and λ is the skewness parameter. The
model parameter estimates are constrained to satisfy the following condi-
tions ω̂, α̂, β̂ > 0, α̂ + β̂ < 1, 2 < ν̂ <∞ and −1 < λ̂ < 1. We obtain model
parameters by estimating the model on the S&P500 index daily returns
from 2000/01/03 to 2010/12/31 (2869 observations): ω̂ = 7.8183e−07, α̂ =
0.0770, β̂ = 0.9205, ν̂ = 7.1845 and λ̂ = −0.0848.

Table 1: Volatility models for daily conditional variance forecasts ht.

RW250: ht = 1
249

∑t−1
i=t−250

(
ri − 1

250

∑t−1
i=t−250 ri

)2
RW1000: ht = 1

999

∑t−1
i=t−1000

(
ri − 1

1000

∑t−1
i=t−1000 ri

)2
RiskMetrics: ht = (1− λ)r2t−1 + λht−1, where λ = 0.94
ARCH(1): ht = ω + αr2t−1

GACRH(1,1): ht = ω + αr2t−1 + βht−1

EGARCH(1,1): log(ht) = ω + α

[
|rt−1|√
ht−1

− E{ |rt−1|√
ht−1
}
]

+κ(
|rt−1|√
ht−1

) + β log(ht−1)

GJR-GARCH(1,1): ht = ω + αr2t−1 + ξ1{rt−1 < 0}r2t−1 + βht−1

Note. For all (G)ARCH specifications, the daily return rt =
√
htZt. Zt denotes the stan-

dardized return and follows the normal, Student’s t, skewed Student’s t and generalized
error distributions, with details shown in Appendix A.

The steps of the simulation analysis are summarized as follows:
Step 1: Generate a time series of 10000 daily returns using the param-

eter values above.
Step 2: Using the first window of 1000 simulated returns, we esti-

mate 19 volatility models as specified in Table 1 to make one-step ahead
conditional variance forecasts (see Hansen and Lunde (2005) for a compre-
hensive review of volatility models) by using rolling windows with length
1000 (except for the RW250 method for which we use a window length
of 250). More precisely, the models are: 1) historical volatility measures
with window length of 250 and 1000 (RW250 and RW1000), which are non-
parametric; 2) the RiskMetrics model with λ = 0.94, denoted by RiskMet-
rics; 3) the autoregressive conditional heteroscedasticity (ARCH(1)) models
(Engle, 1982) with one lag, combined with four specifications for the stan-
dardized errors following the normal (N), Student’s t (T), skewed Student’s
t (SKT) and generalized error distributions (GED); and 4) generalized au-
toregressive conditional heteroscedasticity (GARCH) models combined with
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the aforementioned four distributional assumptions for the standardized er-
rors, including the symmetric GARCH(1,1) models (Bollerslev, 1986), as
well as the EGARCH(1,1) (Nelson, 1991) and GJR-GARCH(1,1) (Glosten
et al., 1993) models with leverage terms to consider asymmetry in volatil-
ity clustering. The notations for the (G)ARCH specifications are written
as the combination of acronyms for distributional assumptions and ARCH,
GARCH, EGARCH, or GJR; for example, NARCH stands for the ARCH(1)
model with normal innovations.

Step 3: We use the next (up to) 2000 simulated returns as the optimiza-
tion window, obtaining the additive or multiplicative optimized constants
as in equation (5) or (7).

Step 4: Then, using the next (up to) 1000 simulated returns as the
model risk evaluation window, we compute the model risk estimates as in
equations (6) and (8).

Specifically, for each model we use the squared return as the variance
proxy for a given scoring function (Smse or Sqlike) and calculate the model
risk estimates of daily volatility forecasts, considering several optimization
windows of length τ1 = 250, τ2 = 500, τ3 = 1000 and τ4 = 2000 and two
model risk evaluation windows of length n1 = 250 and n2 = 1000.

Step 5: We roll the window one step ahead and repeat steps 2 to 4,
until we reach the end of the simulated series.

As an output, we obtain a series of a length of 6,000 (obtained as 10000−
1000−2000−1000, as described in Steps 1 to 4 above) of time-varying model
risk estimates, and in the following we study these model risk estimates.

To analyze the degree of similarity of the model risk proxy and our pro-
posed model risk estimates to the true model risk, we use Pearson’s linear
correlation coefficient CM = Correl(pM, p̂proxy,M or p̂MS ) between the true
model risk (pM) and model risk proxy (p̂proxy,M) as well as model risk es-
timates (p̂MS ) across the set of volatility models M presented in Table 1,

in which p̂MS refers to p̂add,MS or p̂mul,MS under two different formulations of
objective function. Pearson’s correlation coefficient can only show a linear
relationship between two series, so to consider a possibly nonlinear associa-
tion between true model risk and model risk proxy or model risk estimates,
we compute our second measure of similarity as τMx = τx(pM, p̂proxy,M

or p̂MS ) the rank correlation coefficient of Emond and Mason (2002) that
extends Kendall’s nonparametric measure τb. As the third measure of simi-
larity, we consider the explanatory power of the measures of model risk: for
a volatility model j , ψj = p̂proxy,j/pj or p̂jS/p

j , where p̂jS can be p̂add,jS or

p̂mul,jS .
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3.1. Optimization framework

This subsection compares the performance of the additive and multi-
plicative structures for the model risk given in formulae (6) and (8). Based
on returns simulated with the SKTGARCH model, panel (a) of Figure 1
presents the dynamic correlation CM between the true model risk p in (3)
and the model risk estimates p̂addS in (6) based on the MSE and QLIKE loss
functions under an additive structure across all models considered in this pa-
per, whilst panel (b) shows the dynamic correlation between the true model
risk p and model risk estimates p̂mulS in (8) under a multiplicative structure.
We can conclude that the model risk estimate based on a multiplicative
structure leads to lower correlations between the true and estimated model
risk. Thus, in the remaining part of the paper, we estimate model risk using
an additive structure only and present the corresponding results, and write
this model risk estimate p̂add,jS as p̂jS for brevity, given model j.

3.2. Optimization window length

This subsection studies the effect of the length of the optimization win-
dow on the model risk estimates. Figure 2 juxtaposes the QLIKE-based
model risk (dashed lines) with true model risk (solid line). By fixing the dis-
tributional assumption to the true data generating process (SKTGARCH),
the true model risk is essentially parameter estimation risk which arises due
to inaccurate parameter estimation of volatility models. The QLIKE-based
model risk is computed over multiple optimization windows (τ2 = 500 and
τ3 = 1000) and a fixed model risk evaluation window of length 250, and using
the squared return proxy. As seen in this figure, the effect of optimization
window length is nontrivial in estimating the model risk of variance esti-
mates. Figure 3 shows the quantile plots of the correlations between true
model risk and QLIKE-based model risk estimates across the set of volatility
models. This highlights that, in 95% of the cases, the estimated model risk
has a correlation of 0.75 or higher with the true model risk.

Table 2 reports the average values of Pearson’s correlation, the τx corre-
lation coefficient and the explanatory power, denoted by C̄M, τ̄Mx and ψ̄M

respectively. In panel A, we report the results for the model risk estimates
based on the MSE and QLIKE loss functions, considering the squared re-
turn as the variance proxy. In terms of the length of optimization windows,
the QLIKE-based model risk estimation methodology using a shorter win-
dow can explain a higher proportion of true model risk than that using a
longer window, as seen in the last column. Nevertheless, when the optimiza-
tion window is small (e.g. τ1 = 250), the QLIKE-based model risk tends
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(a) Under an additive structure

(b) Under a multiplicative structure

Figure 1: Dynamic correlation between true model risk p and model risk estimates, p̂addS

or p̂mulS , shown in panel (a) and panel (b) across various volatility models considered
in Table 1, based on returns simulated by the SKTGARCH model. The model risk of
daily volatility forecasts is computed using the scoring function S = Smse or Sqlike, and
the squared return is used as the variance proxy. We consider optimization windows of
τ1 = 250, τ2 = 500, τ3 = 1000 and τ4 = 2000 and model risk evaluation windows of
n1 = 250 and n2 = 1000.

to overestimate the true model risk. Generally, with the optimization win-
dow length increasing, the average Pearson’s linear correlation C̄M between
model risk estimates and true model risk decreases, also seen in Figure 3,
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Figure 2: QLIKE-based model risk, calculated over multiple optimization windows (τ2
and τ3) and a model risk evaluation window fixed at 250 and using a simulated path of
10000 data points by SKTGARCH.

Figure 3: Quantiles of correlations between true model risk and QLIKE-based model risk
estimates computed using different lengths of optimization windows (τ1, τ2, τ3, and τ4)
under an additive structure and model risk windows (n1 and n2). Each line represents a
quantile from 5% to 95% with an increment of 5%.

whilst the average nonlinear rank correlation τ̄Mx increases. Based on the
correlation results, the shorter optimization window is preferred.

3.3. Model risk evaluation window length

This subsection studies the effect of the length of the model risk evalua-
tion window on model risk estimates. We find that the model risk estimates
based on a longer model risk evaluation window (n2 = 1000) have a higher
linear (and nonlinear) correlation with the true model risk, as evidenced by
Figure 3 and Table 2. Figure 4 illustrates the average percentage of true
model risk explained by the QLIKE-based model risk estimate under an ad-
ditive structure, calculated using an optimization window of length τ2 = 500
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Table 2: Similarity of model risk estimates and proxy to the true model risk.

Panel A: Similarity of the MSE and QLIKE-based model risk estimates, p̂smse and p̂sqlike

Model risk estimate optimization
window length

model risk
window length

C̄M τ̄Mx ψ̄M

p̂smse

τ1 = 250 n1 = 250 0.91 0.68 115%
n2 = 1000 0.96 0.67 88%

τ2 = 500 n1 = 250 0.87 0.73 92%
n2 = 1000 0.94 0.88 60%

τ3 = 1000 n1 = 250 0.82 0.79 66%
n2 = 1000 0.91 0.87 44%

τ4 = 2000 n1 = 250 0.73 0.88 41%
n2 = 1000 0.86 0.94 29%

p̂sqlike

τ1 = 250 n1 = 250 0.89 0.65 96%
n2 = 1000 0.98 0.61 85%

τ2 = 500 n1 = 250 0.88 0.81 65%
n2 = 1000 0.97 0.95 50%

τ3 = 1000 n1 = 250 0.92 0.88 43%
n2 = 1000 0.96 0.99 34%

τ4 = 2000 n1 = 250 0.89 0.92 32%
n2 = 1000 0.94 1.00 26%

Panel B: Similarity of the model risk proxy, p̂proxy

p̂proxy
n1 = 250 0.35 1.00 832%
n2 = 1000 0.44 1.00 763%

Note. Calculations are based on daily returns simulated by the SKTGARCH model. C̄M
and τ̄Mx represent average values of linear and nonlinear association between the true and
estimated model risk; ψ̄M shows the average explanatory power of model risk estimates
across the set of volatility models. We consider different optimization windows (τ1, τ2, τ3
and τ4) and model risk evaluation windows (n1 and n2), and use the squared return as
the variance proxy.

and model risk estimation windows of length n1 = 250 and n2 = 1000.
Across all the models considered, the model risk estimate computed over a
shorter model risk estimation window captures a larger part of true model
risk compared with the estimates computed over a longer window. Addi-
tionally, our QLIKE-based model risk estimate explains up to about 80% of
true model risk.
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Figure 4: Average percentage of true model risk p explained by the QLIKE-based model
risk estimate p̂sqlike , computed using an optimization window of length τ2 = 500.

3.4. Choice of scoring function

This subsection discusses the effect of scoring functions on model risk
estimates. In panel A of Table 2, we find that the model risk estimate based
on the QLIKE loss function outperforms the one based on the MSE loss
function, as the former generally has a higher correlation (and τx coefficient)
with the true model risk for a given optimization window and model risk
evaluation window. The QLIKE-based estimate is highly consistent with
the true model risk with a correlation averaging from 0.88 to 0.98.

3.5. Variance proxy

The volatility model risk estimates can be affected by the choice of vari-
ance proxy. To investigate this, the squared return and realized variance
are considered as alternative proxies. The stochastic volatility model with-
out jumps is used to simulate high-frequency returns for the computation of
realized variances, as specified in Huang and Tauchen (2005):

ds (t) = µdt+ exp [β0 + β1v (t)] dWp (t) , and

dv (t) = αvv (t) dt+ dWv (t) . (10)

s(t) represents the log price process and v(t) is a stochastic volatility factor.
The standard Brownian motions Wp and Wv have correl (dWp, dWv) = ρ.
Following the setting in Huang and Tauchen (2005), the model parameters
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are given as: µ = 0.03, β0 = 0, β1 = 0.125, αv = −0.1, and ρ = −0.62. We
use the Euler method to simulate 23,400 intervals for each of 10000 days. The
simulated realized variances are obtained by aggregating the 5-min squared
returns. Based on the simulated data, the model risk of the NARCH model
is calculated using the QLIKE loss function under an additive structure,
varying the optimization window length in Figure 5, when the model risk
evaluation window is fixed at 250. Additionally, we examine the variation of
the estimated model risk against the model risk evaluation window length
in Figure 6, when the optimization window is fixed at 500. Figures 5 and 6
compare the model risk estimated using different variance proxies with the
true model risk and show that, in small samples, the realized variance proxy
works better than the squared return proxy in estimating model risk. The
effect of variance proxy on model risk dampens when the window length
increases.

Figure 5: QLIKE-based model risk estimate of the NARCH model compared with the
true model risk, computed over multiple optimization windows (τ1 and τ2) and a model
risk evaluation window of length n1 = 250, based on data simulated using the stochastic
volatility model.

The model risk proxy measure, denoted by p̂proxy, is computed directly
from the distance between the variance proxy (the squared return proxy
used) and variance estimate as given in (4). This measure is handy but
appears to be flawed as seen in panel B of Table 2. We consider the similarity
of the model risk proxy to the true model risk, and find average correlations
around 0.35 and 0.44 which are less than half of the corresponding values for
the model risk estimates presented in panel A. Also, the model risk proxy
tends to overestimate model risk, leading to values that are multiples of
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Figure 6: QLIKE-based model risk estimate of the NARCH model compared with the
true model risk, computed over multiple model risk evaluation windows (n1 and n2) and
an optimization window of length τ2 = 500, based on data simulated using the stochastic
volatility model.

the true model risk. From a dynamic perspective, Figure 7 compares the
dynamic correlation of the model risk proxy and the QLIKE-based model
risk estimate with the true model risk, where the squared return is used as
the variance proxy and model risk is computed over an optimization window
τ2 = 500 and a model risk evaluation window n1 = 250. Unlike the QLIKE-
based model risk measure, the model risk proxy is unable to give a reliable
approximation of true model risk since it is often negatively correlated with
the true model risk.

Figure 7: Dynamic correlation of the model risk proxy and the QLIKE-based model
risk estimate with the true model risk, computed over a model risk evaluation window
of length n1 = 250, based on daily returns simulated by the SKTGARCH model. The
squared return is used as the variance proxy.

It is common practice to use the R2 of the Mincer and Zarnowitz (1969)
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(MZ) regression to assess the accuracy (efficiency) of volatility forecasting
models, whilst the newly introduced model risk estimates provide a different
perspective on the predictive accuracy. It is worthwhile to compare the
model risk estimates with the MZ regression results. This regresses the
conditionally unbiased proxy (σ̂2t , using the squared returns) on the variance
forecast (ht) of a given model, which is written as σ̂2t = β0 + β1ht + et.
A higher value of R2 indicates a better fit of the volatility model to the
variance proxy. Figure 8 compares the averages of model risk estimates, true
model risk and (1−R2) for different volatility models over a simulated path
of SKTGARCH returns. The level of model risk estimates is comparable
to the (1 − R2) values. However, whilst the proposed model risk measure
successfully identifies the worst performing model RW1000, the MZ method
fails to do so. Also, in addition to providing a ranking of competing models,
our proposed model risk measure provides actual model risk estimates and
it is designed to improve on variance estimates. Furthermore, our measure
offers a decomposition of model risk estimates according to the sources of
model risk as discussed in Section 5.2.

Figure 8: Average QLIKE-based model risk estimated in an optimization window of length
τ2 = 500 and a model risk window of length n1 = 250, compared with (1−R2), for different
volatility models, using data simulated by the SKTGARCH model.

Overall, based on our simulation analysis we find that the scoring function-
based model risk estimation methodology that uses the additive structure
defined in (6) can be an efficient tool in approximating the true model risk
of volatility models. Our results imply that shorter optimization and model
risk evaluation windows are preferred. As such, the optimization windows of
length τ2 = 500 or τ3 = 1000 and a model risk evaluation window of length
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n1 = 250 are chosen. Also, the QLIKE scoring function used for optimiza-
tion provides model risk estimates which are highly correlated with the true
model risk, with a correlation averaging from 0.88 to 0.98. In small samples,
the effect of variance proxy on estimating the model risk is noticeable with
the realized variance proxy outperforming squared returns.

4. Properties of model risk estimates

To facilitate model risk management from the regulators’ perspective, a
reasonable positive measure ρ(·) of risk should satisfy the coherence prop-
erties (McNeil et al., 2015): 1) Monotonicity: for returns r1 and r2 with
r1 ≤ r2, we have that ρ(r1) ≥ ρ(r2); 2) Positive homogeneity: for any pos-
itive number a ∈ R+, we have that ρ(a · r) = a · ρ(r) where r denotes the
returns; 3) Translation invariance: for any a ∈ R, ρ(r + a) = ρ(r) − a; and
4) Subadditivity: for any returns r1 and r2, ρ(r1 + r2) ≤ ρ(r1) + ρ(r2).

In a similar vein, we focus on the properties of the QLIKE-based model
risk measure, denoted by p̂jSqlike(r, h

j), that assumes an additive structure

and uses the squared returns r2 as the variance proxy. r denotes the daily
returns of an asset and hj denotes the one-step ahead variance forecasts of
a model j. Consider the following properties that a reasonable measure of
model risk of volatility models should satisfy:

i) Monotonicity : If σ2 < hi < hj or σ2 > hi > hj for all t, then p̂iSqlike(r, h
i) <

p̂jSqlike(r, h
j), assuming that two different volatility models i and j produce

variance forecasts hi and hj respectively.
This property states that if the variance forecasts of a certain model are
closer to the true variances σ2, then this model will carry a lower level of
model risk.

ii) Positive homogeneity : For a ∈ R+ and a model j, p̂jSqlike(a · r, a
2 · hj) =

a2 · p̂jSqlike(r, h
j), given variance forecasts hj of volatility model j.

This states that if the return data is rescaled by a positive constant a and
correspondingly the variance forecasts are rescaled by a2, then the model
risk will be resized by a2 as well.

iii) Translation invariance: For a model j, if a constant a with a > max
t

(σ2t−

hjt ) conditioning on hjt > σ2t for all t, or with −min
t

(hjt ) < a < min
t

(σ2t − h
j
t )

conditioning on hjt < σ2t for all t, p̂jSqlike(r, h
j+a) = p̂jSqlike(r, h

j)+a·sgn(hj−
σ2).
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Figure 9: Subadditivity violation rates for RW1000 that produces daily variance forecasts
based on simulated returns of assets X and Y and an equally weighted portfolio (X +Y ).
Assuming that assets X and Z are independent but follow the same Student’s t distribution
with degrees of freedom ν, asset Y is defined as Y = aX +

√
1− a2Z with a = a1 or a2.

The QLIKE-based model risk is computed over an optimization window of τ2 = 500 and
a model risk evaluation window of n1 = 250, using the squared returns as the variance
proxy.

This property says that when the variance forecasts are shifted by a constant
a that satisfies the conditions above, then the model risk of model j will
change with the value of a · sgn(hj − σ2).

iv) Subadditivity : p̂jSqlike(r(X+Y ), h
j
(X+Y )) < p̂jSqlike(rX , h

j
X)+p̂jSqlike(rY , h

j
Y ),

considering that a model j produces the variance forecasts hjX , hjY and

hj(X+Y ) when applied to individual assets X and Y , and an equally weighted

portfolio (X + Y ) consisting of these two assets.
This states that for a given volatility model, the model risk for an equally
weighted portfolio comprised of assets X and Y is lower than the sum of
model risk for the constituent assets. This property should not be required
for measures of model risk of volatility models, as it does not follow the
expected behavior of model risk measures.

These properties are difficult to prove theoretically because the esti-
mated model risk depends on the variance proxy used. However, via Monte
Carlo simulations, we find that the properties of monotonicity, positive ho-
mogeneity and translation invariance hold for the QLIKE-based model risk
estimated using the squared return as the variance proxy, whilst, as ex-
pected, the subadditivity property does not hold. It must be noted that the
properties which hold in our simulation settings are not guaranteed to hold
for other data generating processes.

In Figure 9, we revisit the subadditivity of our proposed model risk
measure in simulated cases as in Dańıelsson et al. (2013), and report the
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subadditivity violation rates. Specifically, assuming that assets X and Z
are independent but follow the same Student’s t distribution with degrees
of freedom ν = 2, 4, 10, and 50, we consider asset Y correlated with asset
X with correlation coefficient a, given by Y = aX +

√
1− a2Z. We con-

sider two cases: in the first one X and Y are independent (a1 = 0); in the
second case X and Y are correlated (a2 = 0.5). We simulate 500 paths of
1750 returns for X and Y , and build an equally weighted portfolio (X+Y ).
Subsequently, we make one-step ahead variance forecasts of the RW1000
model and compute the QLIKE-based model risk estimates over an opti-
mization window of length τ2 = 500 and a model risk evaluation window of
length n1 = 250 for the individual assets and the portfolio. If the model
risk estimate of the portfolio is larger than the sum of individual model risk
estimates of the component assets, the subadditivity property is violated for
this simulated path. As the results show, the subadditivity violations are
very high as expected.

5. Empirical application

Since our model risk estimation framework for volatility models is proved
to be efficient via Monte Carlo Simulations, it is of interest to perform an em-
pirical analysis to measure model risk and further dissect model risk into two
major sources of risk: model misspecification risk and parameter estimation
risk. In this section, we estimate the QLIKE-based model risk under the ad-
ditive structure using multiple optimization windows. A shorter model risk
evaluation period with n1 = 250 is used, since it is in line with the backtest-
ing period of market risk models (Basel Committee on Banking Supervision,
2019), and based on this, the proposed model risk estimate captures a higher
proportion of true model risk than using a longer evaluation period of length
n2 = 1000.

5.1. Measuring model risk across various assets

We apply the QLIKE-based model risk estimation methodology for sev-
eral asset classes with daily data (30/12/1983 - 21/10/2019), downloaded
from DataStream: 1) FTSE100 index close prices (FTSE100); 2) JP Mor-
gan Chase close prices (JPM); 3) Europe Brent spot prices (dollars per
barrel) for Crude Oil (Crude Oil); and 4) Foreign exchange USD/GBP rates
(USD/GBP). To consider an alternative variance proxy for the conditionally
unbiased variance estimator, we also download the 5-min realized variances
of the FTSE100 index (04/01/2000 to 10/10/2019) from the realized li-
brary of Oxford-Man Institute of Quantitative Finance, for which Li and
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Xiu (2016) provide an empirical justification compared with alternative re-
alized variance estimators. We compute daily log-returns of different assets
and then produce out-of-sample daily variance forecasts in a rolling window
scheme of length 1000 (except estimates for RW250), given the set of models
detailed in Table 1.

Table 3: Average ratios of the QLIKE-based model risk estimates, based on different
variance proxies (squared returns and 5-min realized variances), to estimated variances.

The volatility proxy σ̂2 is
squared returns 5-min realized variances

Models τ1 = 250 τ2 = 500 τ3 = 1000 τ4 = 2000 τ1 = 250 τ2 = 500 τ3 = 1000 τ4 = 2000

RiskMetrics 49.5% 43.6% 31.5% 27.0% 46.9% 42.2% 36.6% 20.9%
RW1000 52.8% 46.3% 30.7% 32.2% 48.9% 43.3% 34.7% 30.1%
RW250 28.8% 14.8% 8.8% 15.6% 25.4% 14.0% 4.6% 7.4%
NARCH 39.3% 35.1% 23.8% 24.2% 39.3% 35.6% 28.2% 17.7%
TARCH 39.7% 35.9% 30.8% 22.8% 40.1% 36.8% 31.9% 16.9%
SKTARCH 39.8% 36.0% 31.1% 22.4% 40.2% 36.9% 32.1% 16.1%
GEDARCH 38.5% 34.5% 24.4% 25.7% 39.5% 35.7% 27.8% 19.6%
NGARCH 11.0% 8.7% 4.2% 2.7% 14.1% 12.2% 10.9% 7.3%
TGARCH 9.5% 7.9% 4.5% 2.8% 13.7% 12.1% 11.2% 7.3%
SKTGARCH 9.2% 7.7% 4.4% 2.4% 13.3% 11.8% 10.9% 7.4%
GEDGARCH 10.1% 8.3% 4.7% 2.6% 13.8% 12.1% 10.9% 7.2%
NEGARCH 10.5% 5.8% 2.5% 4.3% 12.1% 8.0% 2.7% 2.6%
TEGARCH 10.7% 6.6% 2.6% 5.1% 11.6% 7.9% 2.9% 2.4%
SKTEGARCH 10.8% 6.7% 2.8% 5.3% 11.6% 8.0% 3.1% 2.4%
GEDEGARCH 10.3% 5.8% 2.2% 4.4% 11.7% 7.9% 2.6% 2.5%
NGJR 10.1% 8.0% 6.0% 4.3% 13.3% 10.4% 7.0% 3.5%
TGJR 8.8% 7.1% 5.4% 4.1% 12.3% 9.7% 6.4% 3.3%
SKTGJR 8.9% 7.2% 5.4% 3.7% 12.2% 9.6% 6.4% 3.2%
GEDGJR 9.4% 7.5% 5.7% 4.1% 12.8% 10.0% 6.6% 3.3%

Note. The daily prices and the 5-min realized variances of the FTSE100 index range
from 04/01/2000 to 10/10/2019. The optimization window length is τ1 = 250, τ2 = 500,
τ3 = 1000 and τ4 = 2000; the model risk evaluation window length is n1 = 250.

Table 3 reports average ratios of the QLIKE-based model risk estimates
computed based on two variance proxies, namely the squared returns and
5-min realized variances, to estimated variances. The purpose of comput-
ing the ratio of model risk to the variance forecast of a given model is to
make an easy comparison across various volatility models and assets. The
model risk estimates are calculated using daily returns and 5-min realized
variances of the FTSE100 index from 04/01/2000 to 10/10/2019. When
the proposed QLIKE-based model risk is estimated over small optimization
windows, the average ratio of model risk over variances, estimated using
the realized variance proxy, is in general higher than that using the squared
return proxy.

Regardless of the variance proxy used for the computation of the QLIKE-
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(a) Optimization window τ2 = 500

(b) Optimization window τ2 = 1000

Figure 10: Dynamic additive adjustments made to variance estimates of selected mod-
els, obtained based on the QLIKE loss function, for the FTSE100 index returns from
04/01/2000 to 10/10/2019. The variance proxy is the squared return.

based model risk estimates, it is interesting to notice in Table 3 that the
model risk estimation method based on a shorter optimization window gen-
erally gives higher ratios of model risk estimates than the method based on
a longer optimization window. To get a better understanding of this phe-
nomenon, in Figure 10 we compare the additive adjustments with respect
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to the optimization windows τ2 = 500 and τ3 = 1000, and show the time
series of adjustments, obtained based on the QLIKE loss function and the
squared return used as the variance proxy, made to volatility estimates of
selected models. Clearly, the QLIKE-based model risk estimate computed
with τ2 = 500 in panel (a) responds to market events in a more timely
and effective manner and allows for a higher level of additive adjustments,
which also supports its higher explanatory power in the simulation study,
as compared with the estimate computed over τ3 = 1000 days presented in
panel (b) of Figure 10. Therefore, in terms of the QLIKE-based model risk
estimates, an optimization window of length τ2 = 500 is recommended to
warrant effective adjustments for model risk and high consistency with true
model risk.

Figure 11 shows the time-varying ratios of the QLIKE-based model risk
estimates of various models to variance forecasts where the variance proxy
used is the squared return. Model risk is estimated over n1 = 250 trading
days with an optimization window of length τ2 = 500, for FTSE100. Within
the sample period, the RiskMetrics method, RW1000 and the ARCH(1)-type
models are characterised by higher ratios of model risk over the variance fore-
casts, compared with the rest of the models considered. Noticeably, when
the market is highly volatile, the model risk of volatility models generally
increases. For example, the FTSE100 index experiences its most uncertain
period around 2009, following which the ratios of estimated model risk to
estimated variances reach their peak level around 2010 due to the length of
the evaluation period for model risk n1 = 250 (one year).

In the Mincer and Zarnowitz (1969) regression (σ̂2t = β0 +β1ht+et), the
intercept β0 and the slope β1 are estimated (alternatively, see other similar
regressions using transformations of latent variables, discussed by Jorion,
1995, Bollerslev and Wright, 2001, and Hansen and Lunde, 2006). The null
hypothesis of the forecast optimality is that H0 : β0 = 0 and β1 = 1. The
R2 of the regression equation is considered as a criterion for the accuracy
(efficiency) of the volatility forecasting model. A higher value of R2 indicates
a better forecasting accuracy of the volatility model.

We use the 5-min realized variance as the endogenous variable, and the
variance forecast adjusted for model risk (computed using different variance
proxies) as the explanatory variable in the MZ regression. In order to analyze
the performance of model risk adjustments, Figure 12 presents the change in
the R2 of the MZ regressions (displayed with bars) when the forecasted vari-
ance is replaced by the model risk-adjusted variance forecast in the regres-
sion. The change in the R2 shows a very similar pattern to the average ratio
(displayed with lines) of model risk estimate over estimated variance. The
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Figure 11: Time-varying ratios of the QLIKE-based model risk estimates to estimated
variances, based on the FTSE100 index from 04/01/2000 to 10/10/2019. The squared
return is used as the variance proxy. Model risk is computed over n1 = 250 trading days
using an optimization window of length τ2 = 500.

model risk estimates are computed over an optimization window of length
τ2 = 500 and a model risk evaluation window of length n1 = 250, based
on the QLIKE loss function, and using the squared return or the realized
variance as variance proxy, for the FTSE100 index returns from 04/01/2000
to 10/10/2019. After taking model risk into account, the volatility models
have an improved predictive ability as evidenced by an increase in the R2

across the set of models considered. In general, the higher the model risk,
the larger the improvement in the R2 of the MZ regressions after adjusting
for model risk.
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(a) Using the squared return as the variance proxy

(b) Using the 5-min realized variance as the variance proxy

Figure 12: Change in the R2 of the MZ regressions shown in bars after adjusting the
variance forecasts for the QLIKE-based model risk of different volatility models using
different variance proxies. This is compared to the average ratio of model risk over variance
forecasts h, displayed with lines, based on the FTSE index data from 04/01/2000 to
10/10/2019. An optimization window of length τ2 = 500 and a model risk estimation
window of length n1 = 250 are considered.

Results for a second application based on several asset classes from
30/12/1983 to 21/10/2019 are shown in Table 4 which presents average
ratios of the QLIKE-based model risk estimates to variance forecasts for the
set of models in Table 1. Here we use squared returns as the variance proxy
and compute the model risk estimates based on optimization windows of
length τ1 = 250, τ2 = 500, τ3 = 1000 and τ4 = 2000, and a model risk eval-
uation window of length n1 = 250. Noticeably, the longer the optimization
window, the lower the level of estimated model risk over variance estimates.
For all assets considered, the RW1000 method carries the highest level of

26



Table 4: Average ratios of the QLIKE-based model risk estimates, with squared returns
as the variance proxy, to estimated variances of various models for different assets.

FTSE100 JPM
Models τ1 = 250 τ2 = 500 τ3 = 1000 τ4 = 2000 τ1 = 250 τ2 = 500 τ3 = 1000 τ4 = 2000

EWMA 56.8% 46.8% 30.1% 19.2% 59.1% 47.2% 37.0% 22.5%
RW1000 62.7% 51.8% 32.9% 23.2% 67.5% 53.1% 40.8% 31.1%
RW250 27.9% 15.8% 10.4% 9.4% 28.7% 16.9% 11.3% 9.1%
NARCH 43.1% 37.1% 25.3% 17.1% 45.2% 39.7% 34.1% 23.0%
TARCH 42.7% 36.4% 25.9% 15.4% 43.0% 37.4% 32.0% 21.0%
SKTARCH 42.4% 36.1% 25.7% 15.2% 43.1% 37.5% 32.1% 21.0%
GEDARCH 42.9% 37.2% 25.9% 17.6% 43.2% 39.6% 36.0% 28.8%
NGARCH 9.4% 7.6% 5.3% 2.6% 12.4% 8.3% 6.1% 3.2%
TGARCH 9.1% 7.5% 5.4% 2.4% 10.6% 7.0% 5.1% 3.6%
SKTGARCH 8.6% 7.0% 5.1% 2.4% 10.6% 7.0% 5.1% 3.6%
GEDGARCH 9.2% 7.6% 5.5% 2.5% 11.0% 7.2% 5.3% 3.3%
NEGARCH 11.2% 8.1% 4.6% 4.1% 12.3% 9.2% 7.4% 5.2%
TEGARCH 11.4% 8.6% 4.8% 4.5% 11.3% 8.4% 6.7% 6.1%
SKTEGARCH 11.4% 8.6% 4.9% 4.5% 11.3% 8.3% 6.7% 5.9%
GEDEGARCH 11.3% 8.3% 4.6% 4.3% 11.5% 8.6% 7.0% 5.8%
NGJR 9.8% 8.0% 6.0% 3.2% 12.9% 9.9% 7.4% 3.9%
TGJR 9.2% 7.5% 5.6% 2.9% 11.6% 8.5% 6.3% 4.2%
SKTGJR 8.9% 7.3% 5.4% 2.7% 11.6% 8.6% 6.5% 4.1%
GEDGJR 9.6% 7.8% 5.8% 3.1% 11.9% 8.8% 6.5% 3.9%

Crude oil USD/GBP
Models τ1 = 250 τ2 = 500 τ3 = 1000 τ4 = 2000 τ1 = 250 τ2 = 500 τ3 = 1000 τ4 = 2000

EWMA 43.4% 35.1% 22.6% 12.4% 39.0% 32.4% 22.4% 9.5%
RW1000 47.7% 38.7% 25.4% 14.9% 42.7% 35.6% 24.6% 11.6%
RW250 23.7% 15.5% 12.1% 8.6% 23.0% 14.4% 10.9% 7.6%
NARCH 39.9% 32.8% 22.2% 12.2% 33.5% 29.5% 21.6% 9.7%
TARCH 37.9% 30.7% 20.1% 9.8% 36.5% 31.2% 22.6% 11.0%
SKTARCH 38.2% 30.9% 20.2% 10.1% 36.5% 31.3% 22.7% 11.1%
GEDARCH 40.3% 33.0% 22.5% 12.9% 35.7% 31.0% 22.1% 10.3%
NGARCH 9.4% 7.4% 4.7% 3.1% 9.7% 6.9% 4.4% 2.5%
TGARCH 9.1% 6.8% 4.1% 2.9% 9.3% 6.5% 4.3% 2.5%
SKTGARCH 9.2% 6.8% 4.2% 3.1% 9.3% 6.5% 4.2% 2.5%
GEDGARCH 9.3% 7.1% 4.4% 2.9% 9.6% 6.8% 4.6% 2.9%
NEGARCH 13.5% 10.7% 6.7% 4.4% 12.3% 8.9% 5.9% 3.8%
TEGARCH 12.2% 9.3% 5.9% 3.6% 11.8% 8.3% 5.0% 2.9%
SKTEGARCH 12.3% 9.3% 5.9% 3.6% 11.8% 8.2% 4.8% 2.8%
GEDEGARCH 12.9% 10.1% 6.3% 4.0% 11.8% 8.5% 5.5% 3.8%
NGJR 10.7% 8.6% 6.0% 4.7% 11.3% 8.4% 5.3% 3.1%
TGJR 10.3% 7.8% 5.1% 3.9% 10.7% 8.0% 5.0% 2.9%
SKTGJR 10.3% 7.8% 5.1% 3.9% 10.7% 8.0% 4.9% 2.9%
GEDGJR 10.6% 8.2% 5.6% 4.4% 11.0% 8.4% 5.3% 3.4%

Note. Calculations are based on empirical data from 30/12/1983 to 21/10/2019. The
model risk is computed over n1 = 250 trading days and multiple optimization windows.

model risk among the set of volatility models, followed by the RiskMetrics
method as well as the ARCH(1)-type models. Interestingly, the volatility
models have the highest model risk when applied to the JP Morgan Chase
stock in general, as compared to the other assets.
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(a) SKTGARCH

(b) RiskMetrics

Figure 13: Time-varying ratios of the QLIKE-based model risk estimates to estimated
variances, when the SKTGARCH or RiskMetrics model is applied to various assets. The
variance proxy is the squared return and model risk is computed over n1 = 250 trading
days using an optimization window of length τ2 = 500, based on data from 30/12/1983 to
21/10/2019.

In Figure 13 we plot the time-varying ratios of the QLIKE-based model
risk estimates over variance forecasts of two models: SKTGARCH in panel
(a) and RiskMetrics in panel (b), which are applied to various assets from
30/12/1983 to 21/10/2019. We estimate model risk based on a model risk
window of length n1 = 250 and an optimization window of length τ2 = 500,
using the squared return as the variance proxy. Comparing the models, SK-
TGARCH and RiskMetrics, we notice that the ratios of estimated model
risk over the variance forecasts fluctuate between 1% and 115% for different
assets. Particularly for the returns of equity JP Morgan Chase, the high-
est ratio of model risk estimates for the RiskMetrics model is around four
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times higher than for the SKTGARCH model (about 30%). As such, in-
vestors need to be aware of the level of model risk of volatility models that
particularly increases in uncertain times across various assets.

5.2. Dissecting model risk

(a) Average model risk across various models

(b) Time-varying components of model risk of GEDARCH

Figure 14: Decomposition of the QLIKE-based model risk estimates for various models
in panel (a) and for the GEDARCH model in panel (b), based on the FTSE100 returns
from 30/12/1983 to 21/10/2019. An optimization window of length τ2 = 500 and a model
risk evaluation window of length n1 = 250 are considered and the variance proxy is the
squared return.

The components of model risk are of much interest for the regulatory au-
thorities, practitioners and academics. The major sources of model risk are
parameter estimation risk and model misspecification risk (Kerkhof et al.,
2010): parameter estimation risk refers to the uncertainty of parameter esti-
mation; model misspecification risk occurs when the specified model deviates
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from the true model. Figure 14 disentangles the QLIKE-based model risk
estimates of volatility models into these two types of risk for the FTSE100
index from 30/12/1983 to 21/10/2019: panel (a) decomposes the model risk
across various models; whilst panel (b) shows the time-varying values of
the components of model risk for the GEDARCH model. The calculation of
model risk estimates is done over an optimization window of length τ2 = 500
and a model risk evaluation window of length n1 = 250, and the squared
return is used as the variance proxy. For a given volatility model, we com-
pute the parameter estimation risk via simulations of this model with model
parameters estimated on the FTSE100 index. Model misspecification risk
generally contributes more to the total model risk than parameter estimation
risk across various models and over time, as illustrated in panel (a) and panel
(b) respectively, though a few exceptions appear when GARCH(1,1) models
are considered. When the market becomes volatile, model misspecification
risk is aggravated, as seen in panel (b). After the 2008 global financial crisis,
the estimate of model misspecification risk noticeably peaks. This empirical
evidence calls for the need for model risk management.

In an additional exercise, we investigate the relationship between the
constituents of model risk estimates and model-dependent variance fore-
casts. Based on the daily prices and the 5-min realized variances of the
FTSE100 index from 04/01/2000 to 10/10/2019, the QLIKE-based model
risk of the set of volatility models is decomposed into model misspecification
risk (denoted by p̂MSR) and parameter estimation risk (denoted by p̂PER).
We regress the model misspecification risk estimates p̂MSR and parameter
estimation risk estimates p̂PER on explanatory variables related to the fol-
lowing: RET represents the daily return, RV 5 the 5-min realized variance
and V ar the variance forecast, all averaged over the previous 250 days; The
Skewness and Kurtosis of daily returns are also computed over 250 days.
The panel regression equations are written as below:

p̂add,MSR
it or p̂add,PERit = Xit·β+αi+εit, for all t = 1, ..., T and model i ∈M.

(11)
Xit is the time-variant 1× 8 regressor vector for all t = 1,..., T and it has 8
independent variables shown in panel A including RET , RV 5, Skewness ·
10−4, Kurtosis · 10−4, V ar − RV 5, RET · RV 5, RET · (V ar − RV 5), and
RV 5 · (V ar − RV 5). β represents the 8 by 1 vector of coefficients. αi is
the unobserved individual effect for model i, and εit is the error term. M
represents the set of volatility models discussed in Table 1.

The regression results are reported in Table 5; these show an increase of
about 18% in the values of adjusted R2 after adding model specific informa-
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Table 5: Panel regression results.

Model misspecification risk Parameter estimation risk

RET 0.013*** 0.025*** 0.022*** -0.001* 0.000 0.000
(14.055) (4.504) (4.353) (-1.926) (0.895) (0.037)

RV 5 0.165*** 0.159*** 0.149*** 0.003* -0.001 -0.002
(5.003) (4.527) (4.868) (1.885) (-0.278) (-1.222)

Skewness · 10−4 -0.007*** 0.000
(-3.142) (-0.339)

Kurtosis · 10−4 -0.001* -0.001***
(-1.817) (-3.389)

V ar −RV 5 0.351*** 0.075***
(6.445) (7.236)

RET ·RV 5 37.845** 8.245*** 6.111** 2.004
(2.330) (4.381) (2.798) (1.237)

RET · (V ar −RV 5) 221.177*** -2.213
(3.637) (-0.388)

RV 5 · (V ar −RV 5) -447.549 -160.78***
(-1.6741) (-5.331)

Adj.R2 0.516 0.343 0.339 0.221 0.046 0.025

Note. Panel regression results of equation (10) are based on the daily returns and the
5-min realized variances of the FTSE100 index from 04/01/2000 to 10/10/2019. The
model risk of the set of volatility models is computed based on the QLIKE loss function
over an optimization window of length τ2 = 500 and a model risk evaluation window of
length n1 = 250, using the squared return as the variance proxy. This table shows the
coefficients of model misspecification risk and parameter estimation risk on the variables
shown in the first column, associated t-statistics with White (1980)’s standard errors
robust to heteroscedasticity adjusted for clusters presented in parentheses and adjusted
R2 reported in the last row of each panel. RET represents the daily return, RV 5 the 5-min
realized variance and V ar the variance forecast, averaged over 250 days; the Skewness
and Kurtosis of daily returns are computed over 250 days. *, **, *** indicate statistical
significance at 10%, 5% and 1% levels, respectively.

tion when explaining model misspecification risk and parameter estimation
risk. Model misspecification risk can be explained with an R2 of about 50%,
but parameter estimation risk is more difficult to explain, having an R2

of less than 25%. To this end, our QLIKE-based model risk estimate pro-
vides a measure of the (in)efficiency of volatility models in making volatility
forecasts, so provides a practical and reliable measure of model risk.

6. Robustness checks

6.1. Alternative measure of model risk

We consider an alternative definition of model risk measure, i.e. the
RMSE formulation based on squared differences instead of the MAE formu-
lation based on absolute differences in Section 2. For example, an alternative
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definition of model risk is below, rather than using (3):

pj[t,t+n] =

√√√√ 1

n+ 1
·
t+n∑
i=t

(
σ2i − h

j
i

)2
. (12)

In a similar manner, we can derive RMSE formulations for the model risk
proxy and the model risk estimates based on the MSE and QLIKE loss
functions to replace (4), (6) and (8).

Table 6: Similarity of the QLIKE-based model risk estimate to the true model risk, using
RMSE-based formulations.

Model risk estimate optimization
window length

model risk win-
dow length

C̄M τ̄Mx ψ̄M

p̂sqlike

τ1 = 250 n1 = 250 0.90 0.66 126%
n2 = 1000 0.97 0.61 115%

τ2 = 500 n1 = 250 0.88 0.83 71%
n2 = 1000 0.95 0.92 56%

τ3 = 1000 n1 = 250 0.92 0.92 51%
n2 = 1000 0.94 1.00 42%

τ4 = 2000 n1 = 250 0.89 0.96 44%
n2 = 1000 0.93 1.00 36%

Note. Calculations are based on data simulated by the SKTGARCH model. The squared
return is used as the variance proxy. We consider optimization windows of length τ1, τ2,
τ3 and τ4, and model risk windows of length n1 and n2.

Table 6 reports the degree of similarity of the QLIKE-based model risk
estimate to the true model risk, in which model risk is computed using
RMSE formulations, based on daily returns simulated by the SKTGARCH
model. We consider different lengths of optimization windows and model
risk windows and use the squared return as the variance proxy. Comparing
with Panel A of Table 2, we find that the model risk estimates based on
RMSE formulations in Table 6 have similar values of correlations but tend
to overestimate the magnitude of model risk, compared with the model
risk estimates based on MAE formulations. Thus, our proposed model risk
measures based on the MAE formulation are preferable over the alternatives
based on an RMSE formulation.
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6.2. Alternative formulation of objective function

Alternatively, we propose a formulation of objective function combining
additive and multiplicative components, based on two constants cadd and
cmul, as shown below, which combines the additive structure in (5) and the
multiplicative structure in (7), for a given volatility model j:

(cadd,jS,t+τ+m, c
mul,j
S,t+τ+m) = arg min

(cadd,cmul)

1

τ + 1
·
t+τ+m∑
i=t+m

S(σ̂2i , c
add + hji · c

mul). (13)

Conditioning on the non-negativity of variance, we require that cadd + hji ·
cmul > 0 with cmul ≥ 0. Consequently, the corresponding model risk esti-
mate of model j is given by p̂com,jS,[t+τ,t+τ+n]:

p̂com,jS,[t+τ,t+τ+n] =
1

n+ 1
·
t+τ+n∑
i=t+τ

∣∣∣(cadd,jS,i + hji · c
mul,j
S,i )− hji

∣∣∣ . (14)

Table 7: Similarity of model risk estimates computed using an alternative formulation of
objective function to the true model risk.

Model risk estimate optimization
window length

model risk win-
dow length

C̄M τ̄Mx ψ̄M

p̂comSmse

τ2 = 500 n1 = 250 0.94 1.00 7446%
n2 = 1000 0.96 1.00 1155%

τ3 = 1000 n1 = 250 0.94 1.00 5224%
n2 = 1000 0.96 1.00 789%

τ4 = 2000 n1 = 250 0.89 1.00 4223%
n2 = 1000 0.91 0.99 717%

p̂comSqlike

τ2 = 500 n1 = 250 0.92 1.00 9923%
n2 = 1000 0.94 1.00 1579%

τ3 = 1000 n1 = 250 0.91 1.00 5430%
n2 = 1000 0.93 1.00 844%

τ4 = 2000 n1 = 250 0.93 1.00 2372%
n2 = 1000 0.96 0.99 428%

Note. Calculations are based on data simulated with the SKTGARCH model with pa-
rameter values given in Section 3. The squared return is used as the variance proxy. We
consider optimization windows τ2, τ3 and τ4, and model risk windows n1 and n2.
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In Table 7, we present several measures of similarity (the same measures
as detailed in Section 3) of model risk estimates, computed using (14), to
the true model risk in (3). We find that this alternative model risk measure,
though highly correlated with the true model risk, tends to overestimate
the true model risk as shown by the explanatory power averaging beyond
100%. This also reenforces us that looking at the correlations solely can
be misleading. In this table, the model risk estimate is at least four times
higher than the true model risk, leading to too large protection for model
risk being set aside compared to how much is needed, when model risk
management is performed. This comes with large opportunity costs, which
is not favorable. Therefore, this alternative formulation of objective function
that combines the additive and multiplicative structure is not recommended
for the quantification of model risk of volatility models.

7. Conclusions

In order to assess the accuracy of volatility models, which are of much
importance in the financial world, we propose a new model risk measurement
framework based on scoring functions, which enables the estimation of model
risk of volatility models. This gives a clear indication of the size of model risk
of volatility models, directly comparable with the magnitude of the variance
estimates given by the models. This is a big advantage because quantifying
model risk in this way allows model risk management to be performed.

In a simulation analysis, we consider the effect of using different opti-
mization frameworks, objective functions and alternative variance proxies
to compute model risk and compare different lengths of optimization win-
dows and model risk evaluation windows. We recommend the QLIKE-based
model risk estimate under an additive structure as a practical and effective
measure of true model risk, as we find that this model risk estimate leads to
high correlations, averaging from 0.88 to 0.98, between the estimated and
true model risk. Particularly the QLIKE-based estimate based on an op-
timization window of length τ2 = 500 and a model risk evaluation window
of length n1 = 250 is highly consistent with the true model risk, and can
explain around 65% of the true model risk across the models. We exam-
ine the desirable properties of a reasonable measure of model risk, showing
that for the measure of QLIKE-based model risk the required properties are
satisfied.

In an empirical study, we explore the effect of different variance proxies
on the proposed QLIKE-based model risk estimate, concluding that all else
being equal, the level of the the QLIKE-based model risk using the realized
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variance proxy is generally higher than that using the squared return proxy.
Also, after adjusting the variance forecasts for model risk, the degree of
predictability of volatility models improves as evidenced by an increase in
the values of adjusted R2 of the MZ regressions.

In addition, applying our proposed methodology to several asset classes,
we identify the models which are most affected by model risk, and find that
volatility models carry a higher level of model risk during stressed market
states, as expected. We also show that model misspecification risk generally
contributes more to the total model risk than parameter estimation risk.
It would be of interest to consider the model risk of volatility models in a
multivariate setting as well as the model risk of market risk models.

Appendix A. Density functions for error distributions

Normal density function: For mean µz and standard deviation σz of z,
this is given as:

f(z|µz, σz) =
1

σz
√

2π
e−(z−µz)

2/2σ2
z .

Student’s t density function: It is written as, where ν denotes the de-
grees of freedom and Γ(·) denotes the Gamma function:

f(z|ν) =
Γ(ν+1

2 )

Γ(ν2 )

1√
νπ

1

(1 + z2

ν )
ν+1
2

.

Skewed Student’s t density function: Following Hansen (1994), it is
given as:

f(z|ν, λ) =


bc

(
1 + 1

ν−2

(
bz+a
1−λ

)2)−(ν+1)/2

, if z < −a/b,

bc

(
1 + 1

ν−2

(
bz+a
1+λ

)2)−(ν+1)/2

, if z ≥ −a/b,

where the degree of freedom parameter ν with 2 < ν < ∞ controls the
kurtosis and the skewness parameter λ is −1 < λ < 1. The constants a, b
and c are given by:

a = 4λc

(
ν − 2

ν − 1

)
, b2 = 1 + 3λ2 − a2, and c =

Γ
(
ν+1
2

)√
π(ν − 2)Γ(ν2 )

.

Generalized error distribution (GED) density function: The proba-
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bility density function of the generalized error distribution of the standard-
ized residuals z beyond the threshold u is shown as below, where ξ and β
are the shape and scale parameters with β > 0, respectively:

f(z|ξ, β) =

{
1− (1 + ξz/β)−1/ξ, if ξ > 0,

1− e−z/β, if ξ = 0,
for all z ≥ u.
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