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Introduction

The root/soil interface is highly complex and 
dynamic, and its study is bedevilled by the fact that 
soil is opaque and any disturbance alters the envi-
ronment leading, in turn, to modifications to plant 
growth, microbial composition and rhizospheric pro-
cesses. During the 30  years that Hans Lambers has 
been Editor in Chief of Plant and Soil, methods for 
studying roots and the rhizosphere have advanced 
substantially. Initially, methodological advances 
tended to focus on either the study of roots and their 
responses to soil properties or the composition and 
activity of microbes and other organisms in proxim-
ity to roots. More recently, attention has increasingly 
focussed on methods that allow characterisation of 
the multiple processes occurring at the rhizosphere/
root interface. Ideally, such methods need to encom-
pass the whole plant and soil system, be non-invasive 
and non-destructive at levels that are realistic, resolv-
able and meaningful for the processes being studied, 
and deliver information in three dimensions and in 
real-time to resolve spatial and temporal dynamics 
(for examples see reviews by Oburger and Schmidt 
(2016), York et  al. (2016) and Vetterlein et  al. 
(2020)).

New methods generally arise as a consequence 
of two interacting processes. First, scientific curios-
ity and specific questions drive the quest for a means 
of answering them. For example, determining how 
much of a crop’s photosynthate supports root growth 
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and the acquisition of nutrients and water drove the 
early development of soil coring and root washing 
methods to measure root dry matter (Mengel and Bar-
ber 1974; Gregory et  al. 1978). Similarly, questions 
about the distribution of roots in soil led to the adop-
tion of trench profiling, radioactive tracer techniques, 
minirhizotron and core break technologies with a 
focus on root length (e.g. Majdi and Persson 1997). 
Second, advances in physics and biology provide new 
technologies that facilitate better means of answering 
old questions and stimulate the study of previously 
unanswerable questions. For example, ground pen-
etrating radar and x-ray computed tomography both 
allow insights into the distribution of roots in soil, 
but the latter also allows study of root interactions 
with pores and particles (Schmidt et al. 2012). Simi-
larly, the emergence of new questions about nutrient 
cycling for sustainable crop production and seques-
tration of soil carbon to mitigate climate change, the 
concept of soil as a holobiont (Finlay et al. 2020) and 
the role of roots as a key element of soil formation 
and functioning (Gregory 2022) have been spurred 
by the development and application of synchro-
tron techniques, high-throughput genomic pipelines 
and metabolomic technologies, and stable isotope 
methods.

The aims of this opinion paper are to: i) review 
recent methodological developments underpinning 
the study of roots, the rhizosphere and interactions 
affecting soil functions; ii) explore new understand-
ing resulting from these methodological advances; 
and iii) suggest remaining issues for which new 
approaches are urgently required and the technologies 
that might facilitate answers.

Recent methodological developments

Root detection

Cabal et al. (2021) characterised techniques to iden-
tify roots of specific plants growing in stands or 
mixed communities as being either extraction, obser-
vation or inference detection methods. The current 
state and recent advances in these methods are out-
lined in Table 1.

In addition to these techniques, rhizoboxes are 
widely used in laboratory and glasshouse studies 
to give measures of roots and their activities (e.g. 

George et al. 2002). This method is still widely used 
to assess root activities such as enzyme reactions 
and biochemical changes, but has the disadvantage 
that only a planar surface is viewed and root growth 
against a surface or mesh may introduce artefacts. In 
the laboratory, root observation has been transformed 
by the development of magnetic resonance imag-
ing and x-ray computed tomography (Mooney et  al. 
2012) which have also imaged root/soil processes 
including root/soil contact, gap formation and the 
development of pores (Schmidt et al. 2012; Carminati 
et  al. 2013; Tracy et  al. 2015; Helliwell et  al. 2017; 
Perelman et  al. 2020). Radiation sources and detec-
tors now allow μm resolution and new software per-
mits root tracing through soil volumes (Phalempin 
et al. 2021).

Characterisation of rhizodeposition and impacts on 
microbial communities

A key driver of plant-microbe interactions is the 
release of organic compounds from living roots 
(rhizodeposition), delivering diverse substrate sources 
to the rhizosphere, impacting microbial species 
composition and the magnitude of biogeochemical 
cycling (Kuzyakov and Blagodatskaya 2015). More 
recently, there has been rapid progress in understand-
ing of functional consequences of these interactions, 
driven particularly in the context of research priorities 
to achieve sustainable food production and climate 
change mitigation/ adaptation (Jones and Hinsinger 
2008; Philippot et  al. 2013). These advances have 
been facilitated by rapid development of powerful 
approaches to characterise microbial communities 
in association with roots (high-throughput and lower 
costs of sequencing technologies for metagenomics, 
Schlaeppi and Bulgarelli 2015), functional assays of 
microbial processes (isotopic tracing and transcrip-
tomics, Nkongolo and Narendrula-Kotha 2020) and 
the increasing resolution of analytical methods to 
provide comprehensive quantification of plant and 
microbial metabolites (metabolomics, Kellogg and 
Kang 2020).

Observing the root-soil interface

Use of high-powered X-ray beams has allowed in-situ 
measurement of the intimate relationship between 
roots and soil including interactions between root 
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hairs and rhizosphere microporosity and soil water 
(Fig.  1; Keyes et  al. 2013; Koebernick et  al. 2017). 

However, such high resolution (μm) is accompanied 
by very small (mm) sample size leading to growing 

Fig. 1  High resolution synchrotron imaging of wheat root 
hairs growing in soil: Region selection and classification for 
rhizosphere simulation from synchrotron data. (a) A segment 
was defined, with centreline aligned with the centre axis of the 
root, (b) All other voxels are removed, leaving only the defined 

segment, (c) root hairs, soil, fluid and root surface regions are 
individually defined using different discrete grey-levels, (d) a 
volume mesh is generated, with root hairs, soil, root surface 
and water defined separately. (Used with permission from 
Keyes et al. (2013))
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environments that are unrealistic of natural ecosys-
tems. Moreover, throughput is limited and the cost 
of sample processing and analysis is high. Other 
syncotron techniques such as XANES (K-edge x-ray 
absorption near-edge structure spectroscopy) can 
observe the presence, concentration, and specia-
tion of elements at the root soil interface providing a 
potentially powerful technique for understanding the 
dynamics of nutrients (Gillespie et  al. 2009). Com-
bined use of XANES and X-ray CT has shown the 
impact of soil compaction in the rhizosphere on the 
availability and speciation of elements (van Veelen 
et al. 2020). Similarly, NanoSims (nano-scale second-
ary ion mass spectroscopy) measures the presence of 
a range of elements at fine resolution, using measure-
ment of secondary ionisation (Oburger and Schmidt 
2016; Clode et al. 2009).

Elemental speciation and distributions in the rhizo-
sphere have also been assessed using Scanning Elec-
tron Microscopy (SEM) with Energy-dispersive X-ray 
analysis (SEM-EDX), Time-of-Flight Secondary 
Ion Mass Spectrometry (ToF-SIMS), and confocal 
Raman spectroscopy (μ-Raman; Bandara et al. 2021). 
These techniques can resolve the difference between 
element distribution between root and soil, within 
pore space, root hair zones and zones around and 
within active microorganisms (Oburger and Schmidt 
2016; Kilburn et al. 2010). However, these techniques 
are destructive, and the preparation steps render sam-
ples unavailable for further analysis.

In contrast, neutron radiography, while also being 
used for phenotyping roots systems (Wasson et  al. 
2020) has been used to measure non-destructively the 
dynamics of water at the root soil interface (Carmin-
ati et al. 2010; Holz et al. 2018).

New understanding resulting from methodological 
advances

New and improved methods have enhanced our 
understanding of aspects of root/soil interactions, 
although there is still a pressing need to link mecha-
nistically the many chemical, physical and biological 
processes occurring at different spatial and tempo-
ral levels (Vetterlein et  al. 2020). Here we focus on 
advances in understanding aspects of rhizodeposi-
tion, enzymatic processes and water and nutrient 
acquisition.

Rhizodeposition

Quantification and chemical characterisation of 
rhizodeposition in natural soils has been, and remains 
challenging, as the release of organic compounds 
from roots is affected by microbial communities, and 
rhizodeposits are rapidly transformed by microbes 
in soil (Paterson et al. 2009). Labelling plant assimi-
late with isotopic tracers (13C, 14C) provides a means 
of differentiating root-derived C from that cycling 
through native SOM pools, including microbial bio-
mass and dissolved organic carbon (DOC), and when 
this is done under steady-state conditions (e.g. con-
tinuous, uniform 13CO2 labelling), this allows quanti-
tative partitioning of plant- and SOM-derived sources 
to soil pools and fluxes (Paterson et  al. 2009). This 
has provided new understanding of plant-mediated 
impacts on microbial communities and their functions 
(e.g. priming effects, Kuzyakov 2010), leading to the 
suggestion that plant-microbe interactions affecting 
soil processes may be a route to management directed 
to promotion of beneficial functions for crop produc-
tivity and sustainable soil health.

The recent rapid development of molecular meth-
ods and associated bioinformatic approaches to char-
acterise microbial community composition has facili-
tated recognition that both plant species and genotype 
can have significant influences on rhizosphere micro-
bial community selection and development. This has 
led to the concept of plant-specific microbiomes, and 
that roots in combination with associated microbial 
communities should be considered as ‘holobionts’ 
affecting ecosystem processes and interactions with 
the environment (Vandenkoornhuyse et  al. 2015). 
Initially, genotype-specific microbiome selection was 
demonstrated for Arabidopsis thaliana, and the gener-
ality of this has now been demonstrated for a range of 
species, including crop plants (Kumawat et al. 2022). 
Further, it is now recognised that microbiome struc-
ture varies along root axes and as a function of root 
type/ age, driven by differences in exudation, nutri-
ent uptake, predation and release of signalling com-
pounds (Bonkowski et  al. 2021). However, signifi-
cant challenges remain in establishing the root traits 
responsible for regulating specificity of microbial 
community selection and the functional consequences 
of distinct microbiomes for soil processes, such as 
biogeochemical cycling. In large part, uncertainty 
over the functional consequences of microbiome 
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selection is a result of the very large diversity of 
rhizosphere microbial communities; that understand-
ing of the genetic bases of microbial functions is 
incomplete (Young 2016); and that at any point in 
time, a large proportion of the microbial community 
is inactive (Joegensen and Wichern 2018). These 
considerations mean that it is imperative that charac-
terisation of plant microbiome structure is combined 
with measures of microbial functions to gain mecha-
nistic understanding of plant-specific impacts on soil 
processes (Sokol et al. 2022).

Identification of microbial community compo-
nents active in utilisation of root-derived C (inter-
actome) can be established through 13CO2-labelling 
and tracing of rhizodeposits into microbial biomark-
ers and nucleic acids (stable-isotope probing [SIP], 
Radajewski et  al. 2000; Paterson et  al. 2007). For 
example, phospholipid fatty acid (PLFA) analy-
sis provides relatively coarse-resolution of micro-
bial community structure but has the advantage that 
compound-specific isotope ratio mass spectrometry 
(IRMS) is a highly sensitive analytical approach for 
quantification of incorporation of plant-derived C 
(Paterson et  al. 2009). In contrast, tracing 13C into 
DNA fractions (Radajewski et  al. 2000) has much 
higher taxonomic resolution, but is constrained by the 
requirement to physically separate labelled fractions 
via isopycnic centrifugation. An analogous approach 
is to target RNA rather than DNA, which has the 
advantage that it can be related to overall (rRNA) or 
function-specific (mRNA) activity of microbial pop-
ulations. There is great potential in combining such 
SIP approaches with concurrent measurement of spe-
cific biogeochemical functions (e.g. nutrient cycling 
fluxes), providing opportunities to identify key com-
ponents of microbial communities responsible for 
plant-mediated impacts on soil functions.

Advances in analytical chemistry and approaches 
such as metabolic flux analysis, to trace C-flow 
through biochemical pathways (Dijkstra et  al. 
2011), have greatly increased the resolution at 
which rhizodeposition composition and microbial 
C-processing in the rhizosphere can be resolved. 
Metabolomics, defined as the non-targeted, com-
prehensive analysis of metabolites in biological sys-
tems, has increased the understanding of root exu-
date composition, mobilisation of SOM into DOC, 
and microbial products in the rhizosphere, identify-
ing molecules of low abundance that may have key 

roles in communication and elicitation of functions 
(signalling compounds, Cotton et  al. 2019). Tar-
geted immunefluorescence techniques to image the 
distribution of particular polysaccharide exudates 
around roots (Fig. 2) have increased understanding 
of the role exudates play in modifying soil physical 
conditions. Furthermore, use of position-specific 
13C-labelled compounds provide opportunities to 
characterise microbial metabolic pathways in soil, 
including important community attributes such as 
carbon use efficiency (Apostel et  al. 2013; Geyer 
et al. 2019). These methods have particularly strong 
potential to resolve the mechanistic bases of root-
soil interactions when combined with metagenomic, 
transcriptomic, proteomic and bioinformatic pipe-
lines in systems analysis, but requires co-devel-
opment of novel statistical approaches to robustly 
identify significant relationships.

Enzymatic processes

Developments in zymography, where membranes 
impregnated with enzyme substrates are placed 
(with a diffusive barrier separating soil and mem-
brane) on the soil surface at the root soil interface 
capture an enzyme imprint of the rhizosphere in 2D 
(Razavi et al. 2019). A key advantage of this tech-
niques is that a sequence of imprints can be captured 
and correlated with other 2D imaging techniques 
to build a comprehensive picture of dynamics and 
functionality (Fig.  3). For example, such studies 
have demonstrated the importance of root hairs 
in the distribution of phosphatase enzymes in the 
rhizosphere (Giles et al. 2018). When coupled with 
microbial molecular (Liu et  al. 2021b) and imag-
ing approaches such as FISH (Fluorescent In-situ 
Hybridisation; Spohn et  al. 2015), the timing and 
longevity of hot spots and hot moments of micro-
bial activity in the rhizosphere can be defined (Song 
et  al. 2019). Similarly, when zymography is com-
bined with planar optodes (which measure the spa-
tial distribution of pH [Ma et  al. 2019, 2021]) and 
redox or DGT (Diffusive Gradient in Thin films) 
optodes (which measure depletion of nutrients from 
the rhizosphere [Hummel et  al. 2021; Fang et  al. 
2021]) information about the impact of the enzymes 
on soil chemical properties and vice versa can be 
elucidated.
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Water and nutrient acquisition

Extraction and observation of roots in the field has 
increased knowledge of the depth of rooting of native 
species (Canadell et  al. 1996) and the role of deep 
roots in water and nutrient acquisition by crops. For 
example, White and Kirkegaard (2010) observed that 
while wheat roots penetrated to 1.6 m, 30-40% were 
clumped in pores and cracks in surface layers increas-
ing to 85-100% below 60 cm where 44% of roots were 
in pores occupied by at least three other roots. These 
observations fed into models exploring the effects of 
seasonal rainfall distribution, and deeper and denser 
root systems on water use and demonstrated the 
multi-faceted nature of water use by rainfed crops 
(Lilley and Kirkegaard 2011). Similarly, extraction of 
roots coupled with soil chemical analysis has demon-
strated that differences in crop rooting patterns can be 

exploited to improve nitrogen use efficiency (Thorup-
Kristensen 2006). Deep-rooted and ‘catch’ crops can 
recover nitrate leached during the growing season 
from cereal crops and raise nutrients such as potas-
sium and phosphorus from subsoil to topsoil benefit-
ting both yields and the wider environment (Thorup-
Kristensen et al. 2020; Han et al. 2021).

X-ray CT imaging has led to insights into the pro-
cesses affecting root water uptake and the influence 
of physical changes in the rhizosphere. Growing roots 
release mucilage and change the bulk density of the 
soil adjacent to the root thereby altering both the 
water retention characteristics and hydraulic conduc-
tivity of the rhizosphere (Moradi et al. 2011; Ahmed 
et  al. 2014; Carminati et  al. 2016). Several studies 
have shown decreased bulk density in the immedi-
ate vicinity of roots (e.g. Landl et al. 2021) but oth-
ers have indicated an increase (e.g. Koebernick et al. 

Fig. 2  Immunoblotting 
analysis of root exuded 
polysaccharides (glycan 
epitopes) at the wheat root 
surface: Imaging of glycan 
epitopes in high-molecular-
weight (HMW) exudates 
released from large wheat 
roots grown hydroponically 
for 2 weeks and then lain 
on sheets of nitrocellulose 
for 10 min prior to probing 
with monoclonal antibodies 
(MAbs). Reproduced with 
permission from Galloway 
et al (2020)
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2017). Decreased density could result from the loose 
packing of incompressible mineral particles displaced 
by the root but if particle displacement is constrained 
for whatever reason, then bulk density will increase 
because the volume occupied by the root is not 
matched by a decreased pore volume of the surround-
ing soil. When both mucilage and bulk density effects 
were allowed for, modelling showed that the rate of 
water uptake was reduced but duration was increased 
(Landl et al. 2021).

Spatial and temporal dynamics of element avail-
ability in the rhizosphere captures using DGT have 
been quantified using laser ablation ICP-MS; the laser 
destructively samples the imprint and transfers the 
material into a spectrometer for quantification (Sant-
ner et al. 2012; Fang et al. 2021; Bilyera et al. 2022). 
This combined technique also permits measurements of 
elements on, and in, live tissue such as roots and bio-
logical materials in the rhizosphere, allowing the poten-
tial production of maps of element distribution, or the 
rhizosphere ionome, at the soil root interface (Zaeem 
et al. 2021). Recently, this approach has measured the 

dynamics of nano-sized fertiliser particles (Szameitat 
et al. 2021) and the impact of liming on nutrient availa-
bility (Smolders et al. 2020) in the rhizosphere and may 
assist the development of improved fertiliser practices. 
Such approaches when coupled with novel phenotyp-
ing tools used for screening crop genotype populations 
for root ion uptake and respiration (Griffiths and York 
2020; Griffiths et al. 2021; Guo et al. 2021) will have 
profound affects on our ability to select crop genotypes 
that are best able to utlilise the homogenously distrib-
uted resources in the rhizosphere.

What is still required

We have described methods currently used, but 
the future must focus on methods that provide an 
integrated understanding of the chemical, physi-
cal and biological changes in the rhizosphere and 
their consequences for plant growth. Here we focus 
on three issues that limit progress and need to be 
resolved to realise this ambition: the opacity of soil, 

Fig. 3  Zymogrpahy image of root exuded acid phosphatase 
from barley and medicago roots: Comparison between a visible 
light image and a zymography image taken on the window of 
roots of barley (Hordeum vulgare L.) and barrel clover (Med-

icago truncatula L.) growing on a thin layer of soil between 
two panes of Perspex. Image shows much greater acid phos-
phatase activity associated with the barley roots. Bar = 1 cm
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spatiotemporal scaling and integration of data and 
knowledge.

Opacity

Roots have been widely refered to as ‘The Hidden Half’. 
X-ray CT has allowed visualisation of seedling roots 
in small soil samples in the laboratory, but the issue 
remains in studying root systems in the field. There is 
an urgent need for a non-destructive field technique.

Even in laboratory studies, many of the techniques 
(including neutron radiography) require a simplification 
of the growing system into two dimensions, by growing 
plants in thin layers of soil between plates. This require-
ment is generally a response to the need to get easy 
access to the root surface soil interface and can also 
be achieved in field soils using root access windows 
(Neumann et  al. 2009). A method that usefully over-
comes issues of both opacity and 2-D is the combina-
tion of light sheet microscopy with fluorescent labelled 
plants and microorganisms grown in transparent ‘soil’ 
(Fig. 4; Liu et al. 2021a; Jones et al. 2021). This novel 
development has allowed observation of the dynamics 
of microbial colonization of roots including dynamic 
waves of microbial growth at the root soil interface It 
has shown previously unseen extremely dynamic hot 
spots and hot moments associated with root growth. 
Of course, a limitation is that although the transparent 
‘soil’ has been shown to behave like true soil in many 
respects, it is still an artificial system.

Spatiotemporal scaling

While great progress has been made in characteris-
ing the mechanistic bases of plant-soil interactions, 
scaling these to the level of ecosystem processes 
remains a significant interdisciplinary challenge 
(Schnepf et  al. 2022). The recognised heterogeneity 
of soil properties and processes, over different scales 
of space and time, mean that quantitative transla-
tion of rates of processes at the rhizosphere scale to 
landscapes, or indeed globally, is highly complex 
(Vetterlein et al. 2020). A consequence of this is that 
modelling approaches, for example applied to the 
soil carbon cycle, have tended to greatly simplify 
the complexity of plant-soil interactions, favour-
ing approaches that use environmental parameters 
as drivers of biologically-mediated processes in lin-
ear first-order models. However, many biological 

processes are characterised by non-linear functions 
(e.g. Michaelis-Menten enzyme kinetics), and rhizo-
sphere research has consistently demonstrated the 
importance of biological diversity and context-spec-
ificity in rhizosphere functions. Theoretical advances 
in quantifying the consequences of non-linearity and 
heterogeneity of soil processes for upscaling have 
been made (e.g. Wilson and Gerber 2021), allow-
ing some progress on these issues. In addition, the 
use of established field-to-catchment scale instru-
mented sites (experimental platforms) facilitate study 
of processes at different scales (e.g. combined use 
of soil flux chambers and eddy-covariance towers), 
while satellite remote sensing is increasingly a means 
to infer soil properties and plant growth at global 
scales. Such appoaches are also supported by the 
increasing availability of molecular microbial data 
for soils across the globe. These provide an invalu-
able resource with which to identify patterns of com-
munity structures across scales and are a potentially 
powerful means to relate biogeochemical processes 
with the agents that mediate them (Vereeken et  al. 
2016).

Integration of methods

Many of the key global challenges facing society, includ-
ing climate change, agricultural sustainability, food secu-
rity and the biodiversity crisis all require understanding 
of the dynamic zone where roots and soil intereact. They 
are also influenced by extremely complex systems where 
interactions, integration and competition between mech-
anisms, individuals and trophic levels are paramount. 
Methods and techniques are required which can capture 
this complexity and identify the most important interac-
tions. We can no longer rely on reductionist approaches 
where the belief that understanding of one plant, one pro-
cess, one microorganism or one gene will resolve these 
complex problems. This suggests the types of methods 
we need in the future. Besides dealing with opacity and 
spatial and temporal variation in the system, our opinion 
is that the prime need is to intergrate methods to study 
simultaneously multiple processes and their interac-
tions. We have described several powerful methods for 
imaging, measuring and quantifying processes at the 
root soil interface. In combination, many of these tech-
niques could become extremely powerful. Such combi-
nations are starting to be used and have already provided 
insightful observations. For example, the combination of 
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NanoSims and pulse-chase isotope labelling has helped 
resolve the dynamics of nutrient uptake and transfer of 
rhizosphere bacteria (Clode et al. 2009) and mycorrhizal 

fungi (Kaiser et al. 2015). This hybrid technique is now 
being termed NanoSIP (Pett-Ridge and Weber 2022). 
Similarly, the combination of several element imaging 

Fig. 4  Quantification of root-soil-bacteria interactions using 
transparent soil and light sheet microscopy. Image data from 
lettuce root (A), transparent soil particles (B), and GFP-
labelled Bacillus subtilis (C). Processing of the data follows 3 
steps. Raw data is acquired from the microscope (left). Cross 
sections are assembled into volume data through stitching and 

stacking (middle). Image processing is subsequently performed 
to quantify temporal and spatial patterns of biological activity 
in the pore space (right). The metrics obtained from the data 
include distance from the root surface (A), pore size (B) and 
bacterial cell density (C). The scale bar represents a distance 
of 2 mm. (Used with permission from Liu et al. 2021a, b)
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techniques correlated with FISH have been shown to 
resolve the relationships between the rhizosphere micro-
biome and its chemical environment (Bandara et  al. 
2021). We earlier showed that the combined methods of 
DGT and ICP-MS are powerful, but further combination 
of these techniques with laser ablation, planar optodes, 
zymography and single cell transcription analysis opens 
the possibility for comparison of multiple chemical and 
biological parameters on the same sample. In the not-too-
distant future, it should be possible to generate maps of 
the allied transcriptional response of the microbiome and 
root cells at the root soil interface at the same resolution 
as the distribution of the ionome. With such approaches, 
the opportunity will arise to contribute significant under-
standing in responding to the global grand challenges 
facing our society.
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