Magnetosphere-ionosphere coupling: implications of nonequilibrium conditions

[thumbnail of Open Access]
Preview
Text (Open Access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.
| Preview
Available under license: Creative Commons Attribution
[thumbnail of 407_Lockwood_Cowley_review_F1.pdf]
Text - Accepted Version
· Restricted to Repository staff only
Restricted to Repository staff only

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Lockwood, M. orcid id iconORCID: https://orcid.org/0000-0002-7397-2172 and Cowley, S. W. H. (2022) Magnetosphere-ionosphere coupling: implications of nonequilibrium conditions. Frontiers in Astronomy and Space Science, 9. 908571. ISSN 2296-987X doi: 10.3389/fspas.2022.908571

Abstract/Summary

The response times of the coupled magnetosphere-ionosphere-thermosphere system are considerably greater than the autocorrelation timescales of solar wind forcing. This means that the system is rarely, if ever, in equilibrium. Departures from equilibrium are a key component of the Expanding-Contracting Polar Cap (ECPC) model of convection excitation in both the magnetosphere and ionosphere, driven by the Dungey reconnection cycle of opening and re-closing magnetospheric field lines. Averaging over sufficiently long timescales reduces data to the equivalent of steady-state conditions, which hides the physical mechanisms involved and allows us to map electric fields from interplanetary space to the ionosphere in a way that is not valid, either physically- or generally-speaking, because of induction effects. Only for transient phenomena on sufficiently short timescales, do the mechanisms associated with non-equilibrium fully manifest themselves. Nevertheless, because of both changing solar wind conditions and Earth’s rotation, the magnetosphere is always tending towards a perpetually-evolving equilibrium configuration and there are important implications of transient events for understanding general behavior of the coupled magnetosphere-ionosphere-thermosphere system and its response to solar wind forcing. We here discuss one example: as a consequence of the importance of departures from equilibrium inherent in the ECPC model, the solar wind dynamic pressure Psw influences the magnetosphere-ionosphere convection response to the generation of open field lines by reconnection in the dayside subsolar magnetopause. We here demonstrate this effect in a statistical survey of observations and show that it is as predicted by the ECPC model and that, through it, Psw has an influence on flux transport in the magnetosphere-ionosphere system.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/105221
Identification Number/DOI 10.3389/fspas.2022.908571
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
Publisher Frontiers
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar