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ABSTRACT 
 
 
Death-associated protein kinase 1 (DAPK1) is a multidomain cell signalling macromolecule which 

has been implicated in a plethora of biological processes. The domain topology of this protein 

comprises a calcium/calmodulin dependent serine/threonine kinase, a Ras of complex proteins 

(ROC) GTPase and a number of further protein-protein interaction (PPI) interfaces. The precise 

role and regulation of DAPK1 is unclear although it appears to be complex. Due to the potential 

for targeting this protein for therapeutic intervention, most notably in relation to cancer and 

neurodegeneration, understanding the physiological function of DAPK1 is important. 

Developing our understanding of protein function in the wider cellular context can be achieved 

by defining its proximal interactome. 

 

In this research a PPI network analysis of the human ROCO proteins was performed utilising 

literature-derived PPI data and novel experimental data to shed light on the commonalities and 

distinctions within the interaction and functional profiles of these structurally related proteins. 

This was facilitated by the development of a PPI query resource, termed Protein Interaction 

Network Online Tool (PINOT), for extracting and processing PPI data from a number of major 

molecular interaction data repositories. The pursuit of defining the DAPK1 interactome was then 

translated into the context of the Caenorhabditis elegans proteome for predictive and evidence 

based mapping of the DAPK-1 interactome. This revealed intriguing novel DAPK-1 interactors, 

MEP-1, SYD-9 and UNC-14, for further investigation. In addition, a number of mutant dapk-1 C. 

elegans strains, FLAG-dapk-1, dapk-1 K57W and dapk-1 T715N, were engineered to further 

assess the role and regulation of DAPK-1 in vivo. Initial phenotypic analysis provided insight into 

novel DAPK-1 related functions for future examination.  

 

Collectively, the analyses performed and resources developed throughout the course of this 

research project contribute to our understanding of the DAPK1/DAPK-1 interactomes and will 

guide future investigation into the complex functionality of this protein. 
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1.1 Investigating protein-protein interactions: the rationale, resources and rewards 

 

The subcellular environment is a dynamic interconnected landscape of intricate signalling events 

that regulate cell homeostasis. Much of this signal transduction is driven by physical protein-

protein interactions (PPIs) which convey molecular messages through cells at a systems-level to 

coordinate biological processes. Impairment or alterations to these pathways can lead to 

aberrant signalling and disease states. Therefore, investigating PPI networks is a valued strategy 

for developing a holistic view of the mechanisms which underlie cell function and dysfunction. 

 

Motivation to identify PPIs within the proteome is longstanding and increasingly, high-

throughput approaches, such as yeast two-hybrid (Y2H) and protein microarray, are used to 

detect thousands of PPIs in a single screen [1]. Furthermore, the BioPlex project, led by the Gygi 

and Harper labs at Harvard Medical School, has utilised a traditionally low-throughput 

technique, affinity purification coupled with mass spectrometry (AP-MS), in a high-throughput 

manner to identify PPIs at an almost proteome-wide scale [2,3]. Of note, each PPI detection 

method has inherent limitations and certain types of PPIs, such as transient low-affinity PPIs, 

are challenging to detect, which has led to the development of a diverse toolbox of techniques 

available for detecting PPIs. 

 

To enhance the accessibility of this wealth of PPI data generated, extensive efforts in primary 

database curation are ongoing. Data repositories, such as BioGRID [4] and IntAct [5], have been 

manually cataloguing PPI data entries from published studies for over a decade and increasingly 

encourage data deposits from researchers performing high-throughput experiments. Typically, 

PPI data entries contain gene/protein identifiers (IDs) for both pairwise interactors, species IDs, 

method detection information and related publication records. This curation initiative is 

supported by the International Molecular Exchange (IMEx) consortium [6] which includes 

numerous PPI data providers and promotes standardisation of high quality data curation across 

the major molecular interaction data resources. 

 

These databases facilitate the construction of PPI networks, an analysis approach based on 

graph theory, which provides a representation of the connectivity between proteins. In a graph 

(or alternatively termed a network), nodes are connected by edges which depict proteins and 

interactions, respectively. In addition, nodes which represent proteins of interest, for example 

proteins queried against a PPI database, are termed seeds. Where nodes and edges form chains 

of connection within a network, potential signal transduction cascades can be inferred.  
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This network analysis approach is often complemented with functional annotation analysis to 

gain biological insight into proteins and PPI networks. Numerous ongoing functional annotation 

projects, for example Gene Ontology (GO) [7], Reactome [8] and WikiPathways [9], assign and 

maintain brief functional descriptions of genes and pathways, which form the basis of analyses 

such as functional enrichment. Furthermore, utilising the guilt-by-association principle [10], 

which hypothesises that proteins which interact are likely involved in the same or similar 

functional pathways, functional inferences can be deduced, a strategy particular useful for 

poorly characterised proteins. 

 

Utilising a PPI network analysis approach is particularly useful for exploring the interactions and, 

in turn, functional profiles of related proteins. For example, structurally related proteins, such 

as those with common domain topologies [11,12] or disease related proteins, for instance those 

which have disease association through nominated genetic loci [13–16]. In these example cases, 

a protein network approach facilitates dissection of structure-function relationships between 

proteins and enables functional insight to be gathered into potential pathological processes 

influencing disease states, respectively. Since these network analysis approaches often utilise 

many data points from multiple seed proteins collectively, it enables the identification of 

common interactors between seed proteins, such observations would be missed if analysing 

individual interactomes. These areas of overlap between interaction profiles suggest functional 

convergence and hence the concept of shared pathways between seed proteins can be 

explored. 

 

To date, the study of PPIs to better understand cellular processes and shed light on the 

complexity of biological systems has been fruitful. For example, the detailed characterisation of 

molecular assembly, mTOR illustrated how the recruitment of different proteins within the 

complex leads to different functional outcomes in relation to downstream signalling events [17]. 

Upon scaling PPI analysis up to a network level, the utility of this approach broadens, including 

attempts at mapping the entire human interactome [1,3], exploring PPI networks related to 

human disease [13,14,16,18] and utilising this approach for tracing protein evolution [19]. The 

future direction of this field is likely to involve data integration across a multitude of omic data 

types to construct in silico models of living systems.  
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1.2 ROCO proteins 

 

The ROCO proteins are a diverse family of large multidomain proteins characterised by a Ras of 

complex proteins (ROC) – C-terminal of ROC (COR) supra-domain [20]. These two domains 

always exist in tandem and in the same orientation (ROC-COR), suggesting they act as a single 

functional unit [21]. The ROC region of this conserved unit resembles a GTPase, similar but 

phylogenetically distinct from small single-domain GTPases such as Ras, Rab, and Rho proteins 

[22]. This protein family was first identified in the amoeba slime mould Dictyostelium discoideum 

in 2003 and has since been mapped in a range of species from prokaryotes to mammals [22]. 

Interestingly from an evolutionary perspective, the distribution and domain topologies of ROCO 

proteins throughout different species is highly variable [21,23]. 

 

1.2.1 Human ROCO proteins: structure, regulation and function 

 

The human ROCO protein family comprises of death-associated protein kinase 1 (DAPK1), 

leucine-rich repeat kinase 1 (LRRK1), leucine-rich repeat kinase 2 (LRRK2) and malignant fibrous 

histiocytoma amplified sequence 1 (MASL1 or MFHAS1) [20]. The ROC-COR tandem domain in 

these proteins is flanked by a diverse range of protein-protein interaction (PPI) interfaces and in 

DAPK1, LRRK1 and LRRK2, an active kinase domain (Figure 1.1A). This arrangement of intrinsic 

dual catalytic activities (kinase and GTPase) is exclusive to these three proteins in the human 

proteome. Of note, the kinase domain in DAPK1 is structurally distinct from the LRRK1 and 

LRRK2 kinase domains. The DAPK1 kinase domain belong to the calcium/calmodulin-dependent 

serine/threonine kinase family with a unique basic loop (residues 45-56) which is a defining 

feature of death-associated protein kinases (DAPKs) [24,25], whereas the LRRK1 and LRRK2 

kinase domains resemble tyrosine kinase-like (TKL) origin and specifically mixed-lineage kinase 

(MLK) homology, yet possess serine/threonine kinase activity [26,27]. The conserved ROC-COR 

region is most similar between the LRRK paralogs, although considerably similarity is apparent 

across all human ROCO proteins (Figure 1.1B and 1.1C). 

 

The ROC domain of these proteins contains five conserved G-domain sequence motifs which are 

characteristic of GTPases [28]. The ability of these proteins to bind and hydrolyse GTP has been 

tested, demonstrating that all four human ROCO proteins are active GTPases [29–33]. 

Furthermore, intramolecular modulation of the kinase activity by GTP binding (in the ROC 

domain) has been reported for DAPK1, LRRK1 and LRRK2. In GTP binding deficient forms of 

DAPK1, the kinase activity is enhanced, suggesting GTPase activity of the ROC domain negatively 

regulates DAPK1 kinase activity [29,30], whereas in LRRK1 and LRRK2, impairment of GTP 
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binding properties of the ROC domain results in kinase inactivity [31,34]. Therefore, it appears 

that the GTPase activity within the ROC domain of these proteins is acting as a molecular switch 

for kinase activity, and for MASL1 this may be an unknown extrinsic kinase domain.  

 

 
 

 

 

 

 

 

 

 

One area of uncertainty regarding the catalytic activity within the ROC domain of these proteins 

is the GDP/GTP cycle underlying GTPase activity. The conventional nucleotide-state cycle of 

small GTPases, whereby guanine nucleotide exchange factors (GEFs) facilitate the dissociation 

of GDP resulting in the GTPase adopting its GTP-bound active form and GTPase activating 

proteins (GAPs) induce GTP hydrolysis, resulting in the GTPase returning to its inactive GDP-

bound form, may not be the case for ROCO proteins. A recently proposed mechanism, assessed 

in the context of LRRK2 and bacterial ROCO proteins, is that this protein family do not require 

GEFs to induce GTPase activation due to the low affinity and high dissociation rate of GDP/GTP 

in relation to these proteins. Instead, dimerisation of ROCO proteins and consequential 

conformational changes in protein structure results in GDP dissociation [28]. This is an intriguing 

hypothesis, which is supported by evidence of ROCO protein dimerisation [35].  

 

At a functional level, the human ROCO proteins have been associated with a multitude of diverse 

biological processes, positioning them as important signalling modulators. First, DAPK1 has been 

extensively linked to cell death pathways (discussed in detail in ‘1.3.3.1 Cell death and 

1

Kinase Ca/CaM  Ank ROC COR Death Serine-rich tail

Ank LRR ROC COR Kinase

AnkArm LRR ROC COR

LRR ROC COR

Kinase WD40

1430

1052

1 2015 LRRK1

DAPK1

LRRK2

MASL11

1 2527

(A)

Figure 1.1 – Domain organisation and ROC-COR sequence similarity of the human ROCO 

proteins. The human ROCO proteins are characterised by a conserved ROC-COR tandem domain. 

(A) Domain topologies of DAPK1, LRRK1, LRRK2 and MASL1. Amino acid sequence identity (B) 

and similarity (C) of the conserved ROC-COR region. ROC-COR region defined as residues 612–

1225 (DAPK1), 574–1143 (LRRK1), 1271–1790 (LRRK2) and 345–972 (MASL1). Abbreviations: 

Ank, ankyrin repeats; Arm, armadillo repeats; Ca/CaM, calcium/calmodulin regulatory domain; 

COR, C-terminal of ROC; LRR, leucine-rich repeats; ROC, Ras of complex proteins 
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autophagic pathways’). LRRK1 and LRRK2 although structurally very similar (Figure 1.1A), appear 

to be involved in different functions [36]. LRRK1 has been implicated in epidermal growth factor 

receptor (EGFR) trafficking [37,38], spindle orientation during mitosis [39], humoral immunity 

[40] and osteoclast function [41]. Furthermore, mutations in LRRK1 have been reported in 

patients with osteosclerotic metaphyseal dysplasia [42,43]. LRRK2 has functional links to many 

cellular process, including autophagy, inflammation and apoptosis [44]. Moreover, LRRK2 is the 

focus of extensive research efforts in relation to Parkinson’s disease (PD), since mutations in 

LRRK2 are a known to cause familial PD and variants in this gene also contribute to increased 

risk of sporadic PD [45]. Finally, MASL1 is the least studied human ROCO protein and hence little 

is known about its cellular role [46]. Current functional associations relate to macrophage 

polarisation [47] and erythropoiesis [48], and from a clinical perspective, MASL1 is a reported 

oncogene in relation to various cancer types [46]. 

 
1.3 Death-associated protein kinase 1 (DAPK1) 
 

DAPK1 is a 160kDa calcium/calmodulin regulated kinase with extensive functional connections 

to cell death pathways and tumour suppression [49] in addition to a plethora of other proposed 

functions. As described in ‘1.2.1 Human ROCO proteins’, DAPK1 belongs to the ROCO protein 

family due to structural homology in the ROC-COR supra-domain, a GTPase functional unit 

within the centre of the protein (Figure 1.1A) and is also a member of the death-associated 

protein kinase (DAPK) family, based on kinase homology. This introductory section will provide 

an overview of DAPK1 from its identification to targeting this complex protein for therapeutic 

intervention. 

 

1.3.1 Identification, transcription and splicing of DAPK1 

 

DAPK1 was discovered through an unbiased screen for genes upregulated upon interferon-g 

stimulation, using an antisense cDNA library and growth of HeLa cells as a positive readout, 

approximately 25 years ago [50]. This cytokine insult induces apoptosis and hence from the 

discovery of DAPK1, it was hypothesised that this gene positively regulates programmed cell 

death. The DAPK1 gene was subsequently mapped to chromosome 9 and spans 211.4kb [51]. 

Its transcription is tightly regulated by a number of epigenetic modifications and transcription 

factors. The promoter region of DAPK1 is densely distributed with CpG islands which are prone 

to methylation [52], a modification which represses gene transcription. In addition, several 

transcriptional regulatory elements have been mapped upstream of and within the DAPK1 gene, 

these include SP1, AP1, AP2, E2F and NFkB binding sites, a CAAT box and an E box [53]. 
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Functional characterisation of DAPK1 transcription has identified two transcription factors, CP2 

and HNF3B/FOXA2, which initiate transcription of DAPK1 from two distinct promotor regions. 

Interestingly, DAPK1 transcription from these two promoter regions result in distinct transcripts, 

yet a single protein [53]. Additional transcriptional regulation of DAPK1 has been reported, 

whereby p53, C/EBP-b and SMAD induce transcription, whereas STAT3 and p52NF-kB suppress 

transcription [52]. Post-transcriptionally, miRNAs (specifically miRNA-103 and miRNA-107) 

target the 3’ UTR of DAPK1 mRNA and suppress protein expression [54]. Furthermore, multiple 

splice variant forms of DAPK1 have been discovered: DAPK1-a which is considered the full-

length transcript results in translation of a 1430 amino acid (aa) protein; DAPK1-b which results 

in the translation of a slightly larger 1440 aa protein which is particularly interesting from a 

functional perspective, since the murine ortholog appears to have cytoprotective properties 

[55,56]; and a much smaller splice variant, s-DAPK1, which encodes a 337 aa protein which lacks 

the kinase and death domains, and has a novel C-terminus [57]. 

 

1.3.2 Structure and regulation of DAPK1 

 

The primary structure of DAPK1 is well defined into a number of domains. From N-terminus to 

C-terminus, the protein consists of a kinase domain, a calcium/calmodulin regulatory domain, a 

series of ankyrin repeats, ROC-COR domains, a death domain and a serine rich tail  (Figure 1.1A). 

This primary structural organisation will influence the three-dimensional (3D) conformations 

that DAPK1 is likely to adopt and ultimately the structure-function relationship of the protein. 

Currently, crystal structures for the kinase and calcium/calmodulin regulatory domains have 

been determined [24][58], however a full-length DAPK1 3D structure is yet to be solved. 

 

The kinase domain of DAPK1 harbours serine/threonine kinase activity which is dependent on 

residue K42 within the ATP binding site [29,30]. The 1.5 Å structural resolution of this domain 

[24] has shed light on key motifs within this region. These include a basic loop which is a 

characteristic motif of the DAPK family, these 12 residues are thought to be involved in 

homodimerisation of DAPK1 and potential heterodimerisation with DAPK3 (or ZIPK) which is a 

reported substrate of DAPK1 [59,60]. Further elucidation from structural analysis revealed that 

the kinase domain maintains a closed active conformation and therefore kinase activation via 

phosphorylation of an activation loop, which is common to many other kinases, appears not to 

be necessary [24,25]. Moreover, the DAPK1 kinase domain interacts with HSP90, a chaperone 

protein critical for the stability of DAPK1 [61,62], hence this interaction is likely to be long-lived 

and DAPK1 could be considered to exist as a protein complex.  
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The calcium/calmodulin regulatory domain of DAPK1 is central to its kinase activity; activation 

of this region by calcium-activated calmodulin results in activation of the kinase activity [63]. 

Furthermore, when inactive this domain acts as a pseudo-substrate, physically negatively 

regulating kinase activity by blocking entry of exogenous substrates to the kinase catalytic cleft 

[25]. Genetic deletion of this domain results in a constitutively active DAPK1 kinase [63]. This 

region is further negatively regulated by an autophosphorylation event on residue S308 (in the 

calcium/calmodulin regulatory domain), which reduces the affinity of calmodulin binding [64]. 

This residue is dephosphorylated by PP2A phosphatase upon stimuli such as ceramide, TNFa, 

ER stress and ischaemia, which consequently activates the DAPK1 kinase domain [65–67]. 

 

The latest domains to be mapped within DAPK1 are the ROC-COR tandem domains. As described 

in the context of ROCO proteins, the ROC domain of this functional unit is able to bind and 

hydrolyse GTP. The role of this catalytic activity in DAPK1 is largely unexplored, however it is 

evident that in GTP binding deficient forms of DAPK1, kinase activity is enhanced [29,30] 

suggesting an important intramolecular regulatory role for this region. Furthermore, it has been 

proposed that the ROC domain is a homodimerisation interface in addition to the kinase domain 

[29]. A region that overlaps the ROC domain and flanks the region towards the N-terminus is 

thought to be involved in the localisation of DAPK1 to the cytoskeleton, since deletion mutant 

forms of DAPK1 lacking residues 641-835 resulted in mislocalisation of DAPK1 to the cytosol 

[63,68]. 

 

The death domain at the C-terminus of DAPK1 is a protein-protein interacting region which is 

involved in a diverse range of functions spanning both interdomain regulation and activation of 

downstream molecular cascades. This death domain is required for the docking of extracellular 

signal-regulating kinase (ERK), which subsequently phosphorylates Ser735 in the ROC domain 

and promotes kinase activity at the N-terminus of the protein [69]. Regulatory interactions such 

as this, illustrate the complexity and significance of interdomain cross-talk for the functioning of 

multidomain proteins. In addition, the death domain has a role in the stability of the protein, 

since this region binds adaptor proteins which recruit a ubiquitin E3 ligase complex to initiate 

polyubiquitination and ultimately protein degradation via the proteasome [70].  

 

Following the death domain is a 17 amino acid sequence known as the serine rich tail, which 

denotes the C-terminus of the protein. It has been established that the serine rich tail has no 

direct influence on kinase activity but it is thought to negatively regulate apoptosis by 

modulating PPIs elsewhere in the protein [71].  
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1.3.3 DAPK1 function  

 

DAPK1 has been implicated in a diverse range of biological processes. Most notably, this cell 

signalling molecule has functional links to cell death and autophagic pathways [49], however 

further evidence has also suggested roles for DAPK1 in inflammation [72], cell migration  [73], 

synaptic function [74], and beyond [75]. At a molecular level, a number of substrates of DAPK1 

kinase activity have been identified (Table 1.1). Current understanding of how DAPK1 is involved 

in cell death and autophagic pathways is outlined below in further detail.   

 

1.3.3.1 Cell death and autophagic pathways 

 

Cell death signalling is traditionally classified into three pathways based on mechanistic and 

cellular morphological features prior to cell death (i.e. apoptosis, autophagy, necrosis) [76]. 

Although these classifications are widely used, a recent proposal for reclassification of cell death 

signalling highlights the complexity and diversity of these pathways [77]. This is reflected in the 

involvement of DAPK1 in cell death, which is functionally linked to all three of the traditionally 

classified pathways. Since its identification, it has been reported that the activation of DAPK1 

harbours pro-apoptotic properties upon stimulation from a variety of signals: interferon-g, 

TNFα, TGFβ, ceramide, ischaemia, Fas signalling, p53 signalling [50,78–82]. At a cellular level, 

pro-apoptotic DAPK1 signalling results in membrane blebbing and the formation of autophagic 

vesicles [83].  

 

DAPK1 has also been associated with promoting autophagic cell death via ER stress signals and 

through DAPK3 [60,65]. Moreover, the molecular basis of the role of DAPK1 in autophagy has 

been mapped from two angles. First, DAPK1 is known to phosphorylate beclin 1, which results 

in the dissociation of beclin 1 from Bcl-2 [84]. This signalling event enables beclin 1 to become 

active with respect to assembly of class III phosphatidylinositol 3-kinase (PI3KC3) complex I for 

autophagy induction. Through an independent mechanism, DAPK1 activates PI3KC3 complex I 

via phosphorylating PKD [85] which in turn, phosphorylates Vps-34 (a component of PI3KC3 

complex I) to activate the complex for autophagy induction. It has also been shown that the 

activation of PKD by DAPK1 results in JNK signalling and cellular necrosis [85]. A further 

mechanism whereby DAPK1 induces cell death is by anoikis (programmed cell death due to 

detachment of cells from the cellular matrix), whereby DAPK1 is thought to interfere with 

integrin function [86]. 

 

 



 23 

 
 
 

  
 
1.3.4 DAPK1 in disease and as a therapeutic target 
 
The dysregulation of DAPK1 has been linked to a number of human diseases. A widespread 

epigenetic feature of many tumour and cancer types is hypermethylation of the DAPK1 

promoter region and hence suppression of DAPK1 transcription [91]. Due to the pro-apoptotic 

properties of DAPK1, targeting this region with demethylating agents has been a therapeutic 

avenue explored in oncology. Evidence from preclinical tests supports this as a potential 

therapeutic strategy [92,93].  

 

Furthermore, DAPK1 has been associated wither several neurological disorders. This protein has 

been proposed as a therapeutic target for ischaemic stroke and brain injury due to evidence that 

suggests DAPK1 contributes to neuronal death in the brain following ischaemia or trauma 

[88,94]. DAPK1 has also been linked to Alzheimer’s disease (AD) via data showing increased 

DAPK1 expression in brains of AD patients and suggested roles of DAPK1 in tau and amyloid 

precursor protein regulation [95,96], although this require further exploration. DAPK1 

expression is also elevated in the brain of epilepsy patients [97].  

 
1.3.5 Death-associated protein kinase (DAPK) family 
 
In addition to the ROCO protein family, DAPK1 also belongs to the DAPK family based on kinase 

homology and cell death related functions. The other two DAPKs, DAPK2 (or DRP1) and DAPK3 

(or ZIPK) are much smaller than DAPK1 at just 42kDa and 55kDa, respectively, with just the 

kinase domain in common throughout all three. Unlike the ROCO proteins, whereby the DAPK1 

kinase domain is more distantly related to the other kinase domains of the protein family, DAPKs 

share >80% sequence homology within the kinase domains [25].  

Substrate Phospho sites Related function References 
BECN1 (Beclin1) T119 Autophagy [84] 

DAPK3 (or ZIPK) T299, S309, S311, 
S312, S318, S326 Autophagic cell death [60] 

MCM3 S160 DNA replication, cell cycle [87] 
MLC S19 Apoptotic membrane blebbing [68] 
NR2B S1303 Ischaemic neuronal death [88] 
p53 S23 Apoptosis and necrosis [89] 
PKD Undefined Necrosis [85] 

STX1A (Syntaxin 1A) S188 Synaptic vesicle activity [74] 

Tropomyosin S283 Stress fibre formation, 
cytoskeletal dynamics [90] 

Table 1.1 – Substrates of DAPK1 kinase activity. Reported DAPK1 substrates, mapped 

phosphorylation sites and proposed functional influence. 
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1.4 Caenorhabditis elegans  

 

Caenorhabditis elegans is a free-living nematode that naturally inhabits soil and feeds on 

bacteria. However, for over fifty years C. elegans has been used as a model organism in 

laboratories for a multitude of biological research from understanding the foundations of 

genetics to preclinical drug screening for potential therapeutics. The widely used wild-type 

strain, termed N2 (Bristol), was isolated from compost near Bristol, UK.  

 

C. elegans has a short life cycle of approximately 3 days from fertilisation to a reproductively 

active adult nematode, although this timescale is variable with temperature [98]. Through this 

life cycle (Figure 1.2), embryos undergo a short in utero development period, followed by ex 

utero embryonic development and hatching of an L1 larvae. In favourable condition, which 

includes a bacterial food source, L1 larvae undergo a series of larval moults (L1-L4) prior to 

development into a young adult and then finally a reproductively active adult. The C. elegans 

lifespan is also relatively short, approximately 17 days at 20°C [99], hence this model organism 

is frequently used in ageing research.   

 

In addition, C. elegans exists in two sexes, self-fertilising hermaphrodites and males. However, 

males are present in a very low frequency (<0.2%) in laboratory populations [100] and hence 

the majority of progeny arise from self-fertilisation. For reproduction, hermaphrodite 

nematodes produce and store sperm prior to the production of oocytes and therefore can 

produce a finite number of fertilised embryos (typically 250-300), whereas upon cross-

fertilisation whereby sperm is provided by male nematodes, hermaphrodites can produce a 

brood size of approximately 1000 progeny. Adult hermaphrodite nematodes produce progeny 

for approximately 5 days. A short generation time, together with the potential to produce 

hundreds of progeny via either self- or cross-fertilisation positions C. elegans an attractive model 

organisms for genetic studies.  

 

Furthermore, the cell fate of each cell in C. elegans has been mapped [101]. Adult 

hermaphrodite nematodes possess 959 somatic cells which form simple organ systems, with a 

nervous system composed of 302 neurons. Moreover, the body of C. elegans is transparent and 

therefore fluorescent tracking of proteins and cells is achievable in vivo. In addition, there is a 

considerable degree of conservation between the C. elegans and human genomes, with a report 

that over 80% of C. elegans genes have a human ortholog [102]. This highlights the genetic 

tractability of this species in the context of the human genome/proteome. This is supported by 

a comprehensive resource for C. elegans research, WormBase [103]. 
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1.5 Overall aims 
 

The primary aim of the research presented in this thesis is to progress our current understanding 

of the physiological role of DAPK1 by defining its proximal interactome. This aim will be achieved 

through a range of bioinformatic and functional modelling approaches. First my goal is to 

determine the current knowledgebase on the human DAPK1 interaction profile, and more 

broadly the ROCO protein family as a whole, by mapping PPI networks based on existing data 

from published studies and use this interactome analysis as the basis for gathering functional 

insight. To achieve this goal, I aim to develop a data mining and processing pipeline to maximise 

the utility of freely available PPI data. The ultimate aim with this pipeline is to release it as a 

resource for the research community. I then aim to integrate this literature-derived ROCO 

protein interaction network with novel ROCO PPI findings as a strategy to prioritise interactors 

identified via a high-throughput screen for further investigation. 

Figure 1.2 – Caenorhabditis elegans life cycle. A stepwise visualisation of the C. elegans life 

cycle when nematodes are maintained at 22°C. Timespan for each stage is annotated in blue 

text, 0 mins corresponds to time of fertilisation. Length of nematodes at each stage is annotated 

in grey and in brackets. Image from wormatlas.org (available at 

https://www.wormatlas.org/hermaphrodite/introduction/IMAGES/introfig6.jpg [accessed 

November 2019]) 
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Next, I intend to translate the human DAPK1 interactome data to C. elegans in order to predict 

DAPK-1 interactors in this model organism. I then aim to gain evidence based insight into the C. 

elegans DAPK-1 interactome in order to assess the validity of predictions and understand where 

DAPK-1 signalling may fit within the wider cellular context. To support this goal, I plan to develop 

a genome edited C. elegans FLAG tagged DAPK-1 strain. Furthermore, I aim to enhance the C. 

elegans toolbox available for dissecting the role of DAPK-1 in vivo by engineering novel mutant 

strains whereby key residues in relation to the DAPK-1 catalytic activities are targeted. Finally, I 

aim to phenotypically characterise these new strains to obtain an idea of the role of DAPK-1 in 

C. elegans physiology and to suggest routes for future examination. 
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CHAPTER TWO 

 
 

Evaluating the Human ROCO 
Protein Interaction Network  
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2.1 Introduction 

 

The resources for mapping protein interactomes are becoming well established, both in terms 

of curated data repositories and available technical approaches [104]. These tools facilitate the 

construction of PPI networks for interpreting PPI data collectively and in the wider cellular 

context.  As described in Chapter One – ‘Investigating protein-protein interactions: the rationale, 

resources and rewards’, these network analysis approaches are often coupled with functional 

annotation analyses to add a functional perspective to PPI networks. Since interacting proteins 

are likely involved in the same or similar functional pathways [10], the utility of functional 

annotations is particularly beneficial for inferring biological meaning to functionally 

uncharacterised proteins within PPI networks. Additionally, these are valuable approaches for 

assessing the interaction and functional profiles of related proteins.  

 

The human ROCO proteins are an attractive protein family for PPI network analysis due to the 

diverse, yet partially similar, multidomain topologies and dual enzymatic activities of these 

proteins. These structurally related proteins consist of a conserved tandem supra-domain, 

termed ROC-COR, flanked by a plethora of PPI regions (Figure 1.1A). A number of these PPI 

interfaces and repeat motifs are conserved between two or more ROCO proteins, such as the 

leucine-rich repeats. In addition, several functional domains are unique to specific ROCO 

proteins. This poses an interesting route of investigation to dissect commonalities and 

distinctions in the ROCO protein interaction profiles based on protein structure. 

 

Furthermore, three of the four human ROCO proteins (DAPK1, LRRK1 and LRRK2) possess both 

kinase and GTPase catalytic activities, a phenomenon exclusive to these three proteins in the 

human proteome. Since kinases and GTPases are key molecules in signal transduction cascades 

[105,106] and epigenetic/genetic alterations to the ROCO proteins, in particular DAPK1 and 

LRRK2, lead to disease phenotypes, exploring the ROCO protein interactome will likely shed light 

on their potentially critical contribution to cell signalling. Consequently, defining these PPI 

events will facilitate the targeting of ROCO proteins and associated functional pathways in 

existing and novel therapeutic development programmes.  

 

Prior studies to gather insight into the interaction profiles of the human ROCO proteins have 

taken an individualistic approach. The DAPK1 interactome has been assessed by using a 

traditional literature review strategy, which shed light on a multitude of pathways potentially 

influenced by DAPK1 [75]. Furthermore, the LRRK2 interactome has been mapped in two cases 

using PPI data repositories, which provided insight into the complex functional landscape of 
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LRRK2 biology, but also showcased the utility of PPI databases for PPI network analyses 

[107,108]. However, knowledge gaps persist in our understanding of human ROCO protein 

biology, including why such structurally similar proteins appear to be differentially involved in 

cellular function and dysfunction. In addition, where these complex multidomain enzymes fit 

within the landscape of subcellular signalling is underexplored.  With this in mind and since the 

interaction profiles of this protein family as a whole had not been performed, a collective PPI 

network analysis approach was adopted in this project. 

 

2.1.1 Project aims 

 

Within this section of my investigation the aims of the research were two-fold, first from the 

perspective of exploring the ROCO protein interactome utilising both literature-derived and 

novel experimental data, then second, using the initial part of this analysis as a case study for 

trialling and further developing an in-house bioinformatic pipeline for maximising the utility of 

high quality PPI data available in the public domain, for PPI network analysis. 

 

More specifically, my aims were to systematically assess the extent of the PPI literature for the 

human ROCO proteins in order to construct a confidence-weighted ROCO PPI network, using 

this network as the foundation for functional enrichment analysis (FEA) to gain functional insight 

into this protein family. These two approaches in combination were then utilised to identify 

commonality and distinction within the interaction and functional profiles of the ROCO proteins. 

Furthermore, I aimed to integrate novel PPI data derived from protein microarray experiments 

(performed by collaborators) with existing PPI data to prioritise interactors from the microarray 

screen for further validation.  

 

Finally, in relation to my methodological development aim, my aim was to use the ROCO PPI 

network analysis based on literature-derived data as a prototype analysis to facilitate ongoing 

development of a structured bioinformatic pipeline for extracting, processing and confidence 

scoring PPI data. The rationale for this stems from our vision of releasing this pipeline as a freely-

available user-friendly online resource and for this to materialise, extensive trialling of the 

pipeline with a broad range of protein query sets was crucial to identify and address potential 

malfunctions within the coding scripts of the pipeline. Hence the ROCO PPI network analysis 

contributed to this trialling procedure. 
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2.2 Materials and Methods 

 

2.2.1 Constructing the literature-derived network  

 

The literature-derived ROCO protein interaction network was generated by utilising a structured 

data mining approach coupled to an in-house data processing pipeline. This enabled extraction 

of PPI data which was readily available within the public domain to be processed, using a 

transparent filtering and quality control procedure, and subsequently assigned a confidence 

score based on the method detection and publication records. The pipeline (Figure 2.2), termed 

weighted protein-protein interaction network analysis (WPPINA) [13], consisted of a series of 

coding scripts developed in R (version 3.2.2). Each step of the pipeline is described below. 

 

2.2.1.1 Data acquisition  

 

PPI data was sourced by querying the Proteomics Standard Initiative Common Query Interface 

[109] (PSICQUIC [available at 

http://www.ebi.ac.uk/Tools/webservices/psicquic/view/main.xhtml]) for each ROCO protein 

(DAPK1, LRRK1, LRRK2 and MASL1), independently. To ensure a wide capture of reported PPIs, 

data was downloaded, via the PSICQUIC, from six primary databases: BioGRID [4], InnateDB, 

InnateDB-All, InnateDB-IMEx [110], IntAct [5] and MINT [111] (data downloaded on 12th Jan 

2017 in a PSI-MITAB 2.5 format). This resulted in the generation of 17 text-files, each file was 

specific to a query protein and a source database (e.g. DAPK1_IntAct or LRRK2_BioGRID), and 

contained multiple entries of molecular interaction data (Figure 2.1). 

 

The data entries consist of identifiers (IDs) for each interactor, the interactor species ID, a 

detection method annotation (this is derived from the EBI interaction detection method 

annotation ontology, annotation prefix “MI:”) and the PubMed ID relating to the publication 

that reports the interaction. In most cases, further information is stored in each data entry, such 

as database ID, however, this is not utilised for downstream data processing.  
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2.2.1.2 Data formatting and quality control 

 

Upon downloading the data, the first challenge in data processing was faced. The downloaded 

data files originate from six different database sources, which although essentially curate the 

same type of data, the file formats differ slightly. These format inconsistencies hamper the 

ability to straightforwardly merge the files for further data processing. In particular, the 

inconsistencies of importance were where the gene/protein ID is located within the file and 

which gene/protein ID type is used to report a PPI. Achieving consistency in these two elements 

of the datasets early in the pipeline was essential to ameliorate potential data processing 

challenges downstream.   

 

Three coding scripts were developed to overcome these format inconsistency issues. First, for 

data downloaded from Innate, a script to extract the Uniprot ID and store it in a more prominent 

position which aligns with other dataset formats (e.g. data downloaded from IntAct), since 

entries in Innate databases list the Uniprot ID nested within a string of alternative ID types. A 

further two scripts were developed to achieve a consistent ID type for each entry; BioGRID 

reports Entrez gene IDs, whereas the other data sources (Innate, IntAct, MINT) reports Uniprot 

protein IDs. These ID conversion scripts transposed the reported ID (Entrez or Uniprot) into the 
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Figure 2.1 – Distribution of molecular interaction data entries for the human ROCO 

proteins across multiple primary databases. Number of PPI data entries available (on 

12th January 2017) in BioGRID, InnateDB, InnateDB-All, InnateDB-IMEx, IntAct and 

MINT for each of the human ROCO proteins that were extracted for data processing 

within the WPPINA pipeline. 
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alternative ID type and respective HGNC approved symbol (gene name) ID, based on a dictionary 

file of ID synonyms (developed from Uniprot-derived data for all human proteins annotated with 

a Swiss-Prot ID on 13th Jan 2017). The output files from these two latter scripts listed the PPI 

data entries with three ID types (Entrez, Swiss-Prot and gene name), which were consistently 

formatted.  

 

Of note, Uniprot protein IDs are subcategorised into manually reviewed Swiss-Prot IDs or 

unreviewed automatically assigned TrEMBL IDs. Since the dictionary file used in the ID 

conversion scripts is curated using human Swiss-Prot IDs only, PPIs defined by TrEMBL or 

obsolete IDs, non-protein data entries (e.g. miRNAs, small molecules) and non-human PPIs were 

discarded from further data processing. In addition, incomplete data entries (e.g. a data entry 

lacking a PubMed ID) were removed. Once the datasets were consistently formatted and 

filtered, the data were merged into one file per seed protein. These files were a collation of 

human PPI data from each of the six source data repositories. 

 

2.2.1.3 Interaction detection method reassignment 

 

Each of the merged data files was then subjected to method annotation reassignment based on 

categorisation of the EBI molecular interaction detection method annotation ontology. A coding 

script was developed which grouped specific EBI annotations into a custom ontology, curated 

in-house, based on technical similarity of the methodology (an insight into this grouping is 

provided in Table 2.1 and the complete list is provided in Supporting File S1). This method 

reassignment step enables accurate confidence scoring, which was the subsequent step in the 

pipeline, whereby data entries were scored based on distinct methodologies used to detect an 

interaction. Hence, technically similar methodological approaches which have unique EBI 

annotations needed to be considered collectively.  

 

Through this process each data entry was assigned a new method detection annotation (Table 

2.1). Data entries that were reassigned the annotation ID, UNSPM (unspecified), were discarded 

from further data processing. In cases such as this, the initial EBI annotation lacked detail and 

hence the specific data entry curated into the source database was considered poor quality.  
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EBI Annotation EBI Annotation ID Reassigned Annotation (ID) 
coimmunoprecipitation MI:0019 

Coimmunoprecipitation 
(COIP) 

anti bait coimmunoprecipitation MI:0006 
anti tag coimmunoprecipitation MI:0007 

two hybrid MI:0018 

Two Hybrid (TWO) 
two hybrid array MI:0397 

barcode fusion genetics two hybrid MI:2215 
validated two hybrid MI:1356 

experimental interaction detection  MI:0045 
Unspecified (UNSPM) docking MI:0035 

biophysical MI:0013 
  

2.2.1.4 Interaction confidence scoring  

 

The PPI data was then further processed to allow for confidence scoring. A coding script was 

developed to first remove repeated equivalent data entries, arising when a binary interaction 

originating from a single methodology and publication were replicated in the datasets 

undergoing processing. Replicated data entries occurred due to the same entries being curated 

into multiple primary databases and since this approach collated data from numerous of these 

data repositories, these cases would have persisted as replicate identifications of a PPI if 

disregarded, when in fact these entries are a single PPI identification report. 

 

Next, each binary interaction was confidence scored based on three parameters (Table 2.2): the 

number of distinct methods used to detect an interaction (MS, method score), the number of 

publications that report the interaction (PS, publication score) and the likelihood the interactor 

is an affinity purification mass spectrometry (AP-MS) contaminant (CS, CRAPome score). For the 

method score (MS), each binary interaction scored a value of 1 or 2 based on whether a single 

or multiple reassigned method annotations were associated with that interaction, respectively. 

Likewise, for the publication score (PS), a value of 1 or 2 was assigned to the interaction based 

on whether one or multiple PubMed IDs were annotated to that interaction, respectively.  

 

The third scoring parameter, the CRAPome score (CS), utilised the CRAPome repository (version 

1.1) [112], a database of known contaminants of AP-MS experiments. Contaminant likelihood 

was negatively scored by querying each interactor detected via AP-MS against the CRAPome 

Table 2.1 – Snapshot of method annotation reassignment. EBI molecular interaction 

detection method annotations are grouped and reassigned to new annotations based on 

technical similarity. 
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repository to identify how common it was within the 411 CRAPome datasets (scored on January 

18th 2017). If the interactor was present within >50% of the datasets and had not been detected 

by an alternative method, it was scored -1; if the interactor was present within >50% of the 

datasets but had been detected by an alternative distinct method or if it was present within 30-

50% of the CRAPome datasets, it was scored -0.5; and if the interactor was present in <50% of 

the datasets it was assigned a CS of 0 (interactors not detected via AP-MS were also assigned a 

CS of 0). Refer to Table 2.2 for further detail regarding the CS assignment. These three scores 

(MS, PS, CS) were then added to generate a final confidence score.   

 
 
 
 
 

Score Type Condition Assigned Score 

Method Score (MS) 
Single method used 1 

Multiple distinct methods used 2 

Publication Score (PS) 
Single publication record 1 

Multiple publication records 2 

CRAPome Score (CS) 
 

Interactor reported in >50% of CRAPome datasets and 
not detected by an alternative (non-AP-MS) method 

-1 

Interactor reported in >50% of CRAPome datasets and 
detected by an alternative (non-AP-MS) method 

-0.5 Interactor reported in 30-50% of CRAPome datasets 
and not detected by an alternative (non-AP-MS) 

method 
Interactor reported in <50% of CRAPome datasets and 

detected by an alternative (non-AP-MS) method 

0 Interactor reported in <30% of CRAPome datasets and 
not detected by an alternative (non-AP-MS) method 

Interactor not reported by AP-MS 

 
 

2.2.1.5 Network output 

 

For generating the literature-derived network, a confidence threshold was set on the scored PPI 

datasets, only interactors that exceeded a confidence score of 2 were mapped as nodes within 

the network. Hence, the network represents a subset of reported PPIs from literature-derived 

data sources which had elevated confidence-weighting. Network visualisations were generated 

using Cytoscape [113] (version 3.3.0).  

 

Table 2.2 – Overview of confidence score assignment. Conditions for scoring each PPI data 

entry, based on three scoring parameters: Method Score (MS), Publication Score (PS) and 

CRAPome Score (CS). The final score equates to MS + PS + CS 
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Data was extracted from six primary databases:
BioGRID, InnateDB, InnateDB-All, InnateDB-IMEx, IntAct and MINT  

HGNC approved symbol IDs are converted into their Swiss-Prot and Entrez Gene IDs
   

Non-protein IDs (e.g. miRNAs), non-human PPIs, unreviewed TrEMBL / obsolete IDs
and incomplete entries discarded

   

Method code annotations are reassigned based on technical similarity
Entries reassigned “UNSPM” method code discarded   

Remove repeated equivalent data entries   

Single method = 1
Multiple distinct methods = 2  

Single publication record = 1
Multiple publication records = 2  

Likely contaminant = -1 or -0.5
Unlikely contaminant = 0  

Each PPI in the output file is annotated with the detection methods used and publication origin
Each PPI is also confidence weighted based on these two parameters for confidence thresholding 

Detection Method
Publication

Confidence Score

Query PSICQUIC

DAPK1 LRRK1 LRRK2 MASL1

Download Data

Identifier Conversion

Dataset Formatting

Quality Control

Collate Data

Method Code Reassignment

Confidence Scoring

Remove Duplicates

Sum Scores

Downloadable Network Table

Number of
Distinct Methods

Number of
Publications

AP-MS Contaminant 
Likelihood

Weighted Protein-Protein Interaction Network Analysis
WPPINA:

Figure 2.2 – Weighted Protein-Protein Interaction Network Analysis (WPPINA) pipeline. 

Outline of the data mining, processing and confidence scoring procedure underlying WPPINA, 

see Chapter Two – ‘2.2.1 - Constructing the literature-derived network’ for further detail. 
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2.2.2 Generating the experimental network  

 

An experimental ROCO protein PPI network was generated based on novel protein microarray 

derived data. The PPI data which underlies this experimental network were generated by Dr 

Sybille Dihanich, Dr Alexandra Beilina and Dr Mark Cookson at the National Institutes of Health 

(NIH), USA. Materials and methods for this process are summarised below to provide context 

for these results. I then utilised this post-processed data for PPI network analysis in this project.  

 

2.2.2.1 Protein production and purification   

 

As described in reference [12], 3xFLAG-tagged DAPK1, LRRK1, LRRK2, MASL1 or GFP were 

transfected into HEK293T cells using polyethylenimine (PEI). Cells were harvested 24 hrs after 

transfection and lysed using lysis buffer: 20mM Tris (pH 7.5), 150mM NaCl, 1mM EDTA, 1% 

Triton X-100, 10% glycerol, 1x protease inhibitor cocktail (Roche) and 1x phosphatase inhibitor 

cocktail (Thermo Scientific). Lysates were precleared by centrifugation at 20 000 x g for 10 mins 

at 4°C, then incubated with EZview Red Protein G beads (Sigma-Aldrich) for 1 hr at 4°C to remove 

proteins which bind non-specifically to agarose. Following preclear with Protein G beads, lysates 

were incubated with EZview Red ANTI-FLAG M2 beads (Sigma-Aldrich) for 1 hr at 4°C to pull-

down FLAG fusion proteins of interest. Beads were then washed six times using wash buffer: 

20mM Tris (pH 7.5), 400mM NaCl and 1% Triton X-100, and protein eluted using elution buffer: 

25mM Tris (pH 7.5), 150mM NaCl and 100μg/ml 3xFLAG peptide (Sigma-Aldrich). Protein yields 

and purity were estimated by gel staining with Coomassie brilliant blue (Thermo Scientific) 

(Figure 2.3).  

 

2.2.2.2 Protein microarray  

 

Once purified, 6μg of each either 3xFLAG-tagged full-length DAPK1, LRRK1, LRRK2, MASL1 or 

GFP were used to probe protein microarrays (Protoarray, version 4.1; Invitrogen) in accordance 

with manufacturer’s instructions with the modification that following 3xFLAG-tagged protein 

probing, arrays were probed with monoclonal ANTI-FLAG BioM2 (Biotin Clone M2) antibody 

(Sigma-Aldrich) then with Alexa Fluro 647 streptavidin (Invitrogen). Microarrays were imaged 

using an Axon GenePix 4000B fluorescence scanner and images were acquired using GenePix 

Pro software. Significant hits were determined using ProtoArray Prospector software and Z-

scores, signal difference in standard deviations above background fluorescence, were used as 

estimates for binding strength. Proteins on the array were immobilised in duplicate and 

reported values were averaged for both data points.  
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2.2.2.3 Network construction 

 

A PPI network was constructed to represent potential ROCO protein interactors based on the 

protein microarray data. The array data was first filtered against the GFP positive hits, used as a 

negative control, to identify hits specific to DAPK1, LRRK1, LRRK2 and/or MASL1. Furthermore, 

a confidence threshold of Z<3 was assigned to the datasets and only proteins associated with 

signals that exceeded this threshold were considered potential interactors. Each positive hit was 

then mapped to its corresponding Uniprot ID, hits corresponding to hypothetical proteins were 

discarded and the Uniprot IDs were converted to its corresponding HGNC approved symbol 

(gene name), using a coding script previously described (see ‘data formatting and quality 

control’). These gene names were then utilised for constructing the experimental network, using 

Cytoscape (version 3.3.0). 

 
2.2.3 Creating the common core network 

 

Data from both literature-derived and protein microarray network analysis approaches were 

considered in parallel to identify nodes common to both data sources. These nodes were 

mapped onto a network (the common core network) with particular detail annotating which 

data source the interactor originated, i.e. derived from published literature or our protein 

microarray experiments. In contrast to the literature-derived network, the common core 

network was inclusive of literature-derived data regardless of confidence score. 

kDa

Figure 2.3 – Purification of 3xFLAG-tagged proteins. 

Purified 3xFLAG-tagged MASL1, DAPK1, LRRK2, GFP and 

LRRK1 subjected to SDS-PAGE and subsequently stained 

with Coomassie brilliant blue. Experiment performed by 

Dr Sybille Dihanich and Dr Alexandra Beilina at the NIH. 
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2.2.3.1 Coexpression analysis 

 

In addition to using this data integration strategy to prioritise nodes of interest, the nodes of the 

common core network were assessed in terms of their tissue-specific mRNA expression pattern 

in relation to their associated seed protein mRNA expression. This co-expression profiling, 

performed by Dr Raffaele Ferrari (UCL Institute of Neurology, UK), utilised median gene 

expression values from the Genotype-Tissue Expression (GTEx) project [114] (data obtained 5th 

February 2018; GTEx V7 data release). This data was derived from RNA sequencing a wide variety 

of non-diseased tissue samples from 635 donor individuals, at a transcriptome-wide scale. The 

results are catalogued in the GTEx portal, which is a freely-accessible online resource.  

 

For this analysis a stringent gene expression threshold of three reads per kilobase of transcript 

per million mapped reads (RPKM) was assigned to identify specific gene expression signal from 

background noise. Pairwise interactors were considered to be coexpressed when median mRNA 

expression levels for both interactors exceeded this 3 RPKM threshold. Expression levels were 

assessed across 13 tissue types: bladder, brain, heart, kidney (cortex), liver, lung, skeletal 

muscle, skin, intestine, spleen, thyroid, reproductive apparatus and whole blood. Data analysed 

for brain, heart, skin, intestine and reproductive apparatus tissue types were mean averages of 

the subcategorised tissue types available at the time of query.  

 

2.2.4 Functional enrichment analysis (FEA) 

 

Enrichment analysis of gene ontology (GO) biological process (BP) annotations was performed 

to gather functional insight into specific aspects of the ROCO protein networks. This approach 

analyses GO BP term annotations associated with a sample protein input list in comparison to a 

reference set, in this case, the entire genome, to determine functional terms which are enriched 

within a query list.  

 

2.2.4.1 g:Profiler and functional annotation reassignment 

 

FEA was predominantly performed using g:Profiler g:GOSt [115] (on 23rd June 2017), an online 

web resource for functional profiling of gene/protein lists. Despite many resources available for 

this application [116,117], g:Profiler was chosen because it is actively maintained and functional 

annotations are regularly updated, unlike numerous of the alternative available tools. The 

analysis parameters were as follows: statistical significance was determined by the Fisher’s exact 
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test with the g:SCS algorithm for multiple testing correction; p<0.05 was assigned as the 

significance threshold; and the output data was not subjected to hierarchical filtering. 

 

To aid interpretation of the FEA results, significantly enriched GO BP terms were classified via 

an in-house ontology which grouped functionally similar annotations into functional blocks and 

further subcategories, semantic classes. The coding script which underlies this process relies on 

semantic classification of GO terms, a dictionary list of GO BP terms was mapped to 

corresponding reassigned functional annotations that were manually curated (Table 2.3). This 

approach enables a clearer overview of the functional landscape enriched within a query protein 

set, yet retains GO term-specificity. Terms grouped into the ‘general’, ‘enzyme’, ‘physiology’ and 

‘metabolism’ functional blocks provided very limited functional insight and were discarded from 

functional enriched map visualisations.  

 

2.2.4.2 Panther and WebGestalt cross-validation 

 

Two alternative FEA tools, Panther [118] and WebGestalt [119], were also utilised (on 22nd 

November 2017) to cross-validate the initial enrichment results via distinct approaches. These 

resources implement different, more conservative statistical methodology to correct for 

multiple testing to the one used in g:Profiler, which is a custom g:Profiler algorithm [120]. The 

analyses via both Panther and WebGestalt, utilised the over-representation enrichment test 

with Bonferroni correction. The entire genome was used as the reference set for comparison in 

all cases. This replication strategy enabled identification of major differences in enrichment 

results which may be due to FEA tool-specific biases.  

 
 
 
 

GO term GO ID 
Reassigned functional block 

– semantic class 
regulation of apoptotic process GO:0042981 

cell death - apoptosis  execution phase of apoptosis GO:0097194 
inflammatory cell apoptotic process GO:0006925 

autophagosome assembly GO:0000045 

waste disposal - autophagy 
positive regulation of macroautophagy GO:0016239 

autophagosome organization GO:1905037 
chaperone-mediated autophagy GO:0061684 

regulation of multi-organism process GO:0043900 
general cellular process GO:0009987 

regulation of molecular function GO:0065009 
  

Table 2.3 – Snapshot of functional term reannotation. GO terms are grouped into functional 

blocks and semantic classes based on functional similarity. 
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2.3 Results 

 

Using a multi-layered methodological approach, a collection of ROCO protein interaction 

network analyses were performed and are presented hereafter. These provide a comprehensive 

overview of the existing identified ROCO protein interaction landscape, incorporating a novel 

contribution of potential PPIs derived from protein microarray analysis. These network analyses 

provide the foundation for gathering functional insight into the ROCO protein family. 

Furthermore, integrating data from these different approaches allows for prioritisation of 

protein interactors for further investigation.   

 

2.3.1 Literature-derived ROCO protein interaction network 

 

The literature-derived protein interaction network (Figure 2.4D) provides a confidence-

weighted overview of the interactors that have been identified and reported in published 

literature for the human ROCO proteins. This network was constructed using a custom designed 

bioinformatic pipeline, Weighted Protein-Protein Interaction Network Analysis (WPPINA) 

[12,13] which has recently been developed into a freely available online PPI query resource, 

Protein Interaction Network Online Tool (PINOT) [121]. Each ROCO protein, DAPK1, LRRK1, 

LRRK2 and MASL1 were designated seed proteins and therefore these protein identifiers served 

as query inputs for this literature-mining procedure.   

 

The WPPINA pipeline pools PPI data from six IMEx consortium associated databases, processes 

these data entries through quality control and filtering steps which enables a confidence score 

to be assigned to each interaction. This confidence score is based on the number of distinct 

methods used for interaction detection, the number of publications that report a specific 

interaction and the likelihood that the interaction detected is a false positive from an AP-MS 

experiment based on data within the CRAPome repository [112]. Only interactions that were 

replicated by method and/or publication record, and were unlikely to be AP-MS contaminants 

exceeded the confidence threshold set for generating the network.  

 

The literature-derived network (Figure 2.4D) displays a strong bias for interactors within the 

LRRK2 interactome, in comparison to the other three ROCO protein interactomes. 113 

interactors exceeded the confidence threshold and were mapped into the network for LRRK2, 

whereas 38, 14 and 4 interactors were mapped into the DAPK1, LRRK1 and MASL1 interactomes, 

respectively (Figure 2.4C). This skewed network topology is likely driven by literature bias, for 

example, a protein of great interest (especially if associated with human disease) will be 
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extensively studied, including investigations into its interacting molecules, and hence findings of 

this nature are regularly reported in the published literature, giving rise to an abundance of PPI 

data for this protein of interest in data repositories. The relationship between the number of 

PubMed entries and the number of reported interactors for each ROCO protein supports this 

hypothesis (Figure 2.4B). In this case, LRRK2 is a widely studied protein in relation to 

understanding and potentially developing therapeutics for Parkinson’s Disease [122], whereas 

MASL1 in comparably neglected [46]. Alternatively, LRRK2 may have a broader interaction 

profile merely due to its greater molecular mass, in comparison to the other three ROCO 

proteins. 

 

Interestingly, this topological trend evident in the network differs when considering the seed 

protein interactomes prior to applying the confidence threshold, i.e. all reported interactors 

regardless of confidence score. For example, the LRRK1 interactome is comparably larger than 

the DAPK1 interactome prior to confidence thresholding, 85 interactors versus 57 interactors, 

respectively (Figure 2.4A and 2.4C). Whereas upon confidence thresholding, the DAPK1 

interactome consists of a greater number of interactors (Figure 2.4C and 2.4D). The retention of 

interactors following confidence thresholding reflects the experimental efforts into interactor 

discovery and characterisation. This retention of interactors is much greater for DAPK1 and 

MASL1, whereby 66.7% and 57.1%, respectively, of the reported interactors exceed the 

confidence threshold. In comparison, only 16.5% and 23.5% of the LRRK1 and LRRK2 interactors, 

respectively, have been replicated and hence persist into mapping the network.  

 

Furthermore, this literature mining and subsequent PPI network mapping approach allows for 

straightforward identification of common interactors between proteins of interest. Here, in the 

case of the human ROCO proteins, five common interactors were extracted from the literature 

and persisted through the pipeline to mapping the network (Figure 2.4D).  Of these five 

interactors, three were common to DAPK1 and LRRK2 (FADD, MYO1B and MYO1D) and two were 

common to LRRK1 and LRRK2 (BAG5 and HSPA8). Functional detail of these common interactors 

is summarised in Table 2.4, providing insight into potential overlapping cellular functions 

amongst the human ROCO proteins.  
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Figure 2.4 – Literature-derived human ROCO protein interaction network. 
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Seeds Common Interactor 
(UniProt Swiss-Prot ID) Functional Overview References 

DAPK1 & 
LRRK2 

 
FADD (Q13158), 

FAS-associated death 
domain protein 

 

 
Apoptosis, necrosis, autophagy, 
inflammation, innate immunity, 

cell proliferation, cell cycle 
progression, lipid metabolism 

 

 
[123,124] 

 
MYO1B (O43795),  

Unconventional myosin-Ib 
 

Intracellular transport, cell 
motility, cytoskeletal organisation 

[125] 

 
MYO1D (O94832),  

Unconventional myosin-Id 
 

Intracellular transport, cell 
motility, cytoskeletal organisation 

[125] 

LRRK1 & 
LRRK2 

 
BAG5 (Q9UL15),  

Bcl-2 associated athanogene 5 
 

Protein chaperone [126,127] 

 
HSPA8 (P11142), 

Heat shock cognate 71kDa protein 
 

 
Protein chaperone, 

transcriptional repression, 
autophagy, endocytosis  

 

[128] 

 
  

Table 2.4 – Functional overview of common interactors within literature-derived network. 

Figure 2.4 – Figure legend continued (A) Network visualisation of human ROCO protein interaction 

data extracted and processing using the Weighted Protein-Protein Interaction Network Analysis 

(WPPINA) pipeline prior to confidence thresholding. Data extracted 12th January 2017. (B) 

Relationship between number of PubMed entries and number of interactors in primary databases 

(determined using WPPINA pipeline) for each ROCO protein. The two variables are date matched to 

the data extraction date listed above. r = 0.977, p = 0.023 upon Pearson’s correlation testing. (C) 

Quantification of ROCO protein interactors before and after applying the replication confidence 

threshold, confidence scoring assigned as part of the WPPINA pipeline. (D) Network visualisation of 

human ROCO protein interaction partners following data processing via the WPPINA pipeline, 

confidence thresholded to include only interactions that have been replicated.   
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2.3.2 Experimental ROCO protein interaction network 

 

The experimental protein interaction network (Figure 2.5A) represents novel data derived from 

protein microarray screens, whereby each of the four human ROCO proteins were purified and 

introduced to an array chip of 9480 immobilised proteins, independently. These screens were 

conducted through a collaboration with Dr Mark Cookson (National Institutes for Health, USA) 

and the data generated was utilised within this project. Positive hits (i.e. potential ROCO protein 

interaction partners) were defined as signals which exceeded the Z-score threshold (Z<3), to 

separate out reliable signal from background noise, and had been filtered against GFP positive 

hits, which was used as a negative control to identify non-specific binding events. These data 

processing steps reduced the likelihood of false-positive hits persisting in the network.  

 

Through this hypothesis-free approach 303 interactions were detected for the human ROCO 

proteins: 87 DAPK1 interactions, 51 LRRK1 interactions, 78 LRRK2 interactions and 87 MASL1 

interactions (Figure 2.5B). From mapping the network (Figure 2.5A), it was evident that the 

distribution of nodes (226 in total) surrounding the seed proteins was relatively even in 

comparison to the network topology of the literature-derived network (Figure 2.4D) which was 

heavily biased in the direction of the LRRK2 interactome. This finding opposes the hypothesis 

that LRRK2 has a greater number of interactors due to its greater molecular mass, in relation to 

the other ROCO proteins. A further notable observation of the experimental network is the 

extent of common interactors between multiple ROCO proteins. These mutual nodes account 

for 23.5% of the entire network, suggesting a higher degree of overlap between interaction 

profiles than depicted in the literature-derived network. Furthermore, 8.4% of the nodes within 

the network are common to three or more seed protein and five nodes (2.2% of the nodes in 

the network) are mutual nodes connecting all four ROCO proteins (Figure 2.5A and 2.5C).  

 

Moreover, due to the lack of existing PPI data for MASL1, all potential interactors identified 

within this screen for this seed protein are novel contributions to understanding the MASL1 PPI 

landscape. In contrast, for the other seed proteins, several of the potential interactors detected 

by protein microarray exist in the published literature (1 DAPK1 interactor, 3 LRRK1 interactors 

and 11 LRRK2 interactors), increasing confidence in these interactions based on this replication. 

Interestingly, a number of kinases were identified as potential MASL1 interactors within the 

experimental network (Table 2.5). In particular, six of these kinases, CLK1, LIMK1, MAP3K4, 

NEK11, ROR1 and STK25 were detected to be specific to MASL1.  
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Figure 2.5 – Experimental human ROCO protein interaction network. (A) Network visualisation of 

the positive interactors identified for the human ROCO proteins using protein microarray 

experimentation (experimental network), utilising the four proteins of interest as prey proteins, 

independently. (B) Quantification of the number of positive interactors identified by protein 

microarray for each ROCO protein. 303 positive interactions identified across 226 nodes. (C)  Venn 

diagram indicating the extent of overlap between ROCO protein interactomes in the experimental 

network. Number of interactors and percentage of entire network (in terms of nodes) presented. 
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Kinase Interactor 
(UniProt Swiss Prot ID) 

Additional Seed 
Interaction 

Functional Overview References 

AURKB (Q96GD4), 
Aurora kinase B 

LRRK2 

Interacts with CLK1 (listed below) 
Mitosis and meiosis 

Catalytic core of the chromosomal 
passenger complex (CPC) 

[129–131] 

CLK1 (P49759), 
Dual specificity protein 

kinase CLK1 
- 

Phosphorylates AURKB (listed above) 
RNA splicing 

[129][132] 

GAK (O14976), 
Cyclin-G-associated 

kinase 
LRRK1 & LRRK2 

Catherin-mediated membrane trafficking 
 Centrosome maturation and 

chromosome congression during mitosis 
[133][134] 

LIMK1 (P53667), 
LIM domain kinase 1 

- 
Cytoskeleton dynamics  
in mitosis and meiosis 

[135][136] 

MAP3K4 (Q9Y6R4), 
Mitogen-activated 

protein kinase kinase 
kinase 4 

- 
p38/MAPK and JNK pathways 

Apoptosis 
Development 

[137][138] 

NEK1 (Q96PY6), 
Serine/threonine-

protein kinase Nek1 
LRRK1 

DNA damage response 
Meiosis 

Cilium assembly 
[139–142] 

NEK11 (Q8NG66), 
Serine/threonine-

protein kinase Nek11 
- 

DNA damage response 
Meiosis 

[140][143] 

ROR1 (Q01973), 
Inactive tyrosine-

protein kinase 
transmembrane 
receptor ROR1 

- 

Pseudokinase 
Transmembrane receptor in Wnt 

signalling pathway 
Auditory hair cell development 

[144][145] 

STK25 (O00506), 
Serine/threonine-
protein kinase 25 

- 
Lipid metabolism 

Cell migration 
Cell polarity 

[146][147] 

Table 2.5 – MASL1-interacting kinases. Functional insight into kinases identified as potential 

MASL1 interactors based on protein microarray data. Shaded rows indicate kinases that are 

specific to MASL1. 
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2.3.3 Common core ROCO protein interaction network 

 

In order to maximise the potential of the protein microarray data and to reduce the burden of 

approach-specific limitations, the two independent network analysis approaches were 

considered collectively. Overlaying the literature-derived data onto the experimental dataset 

enabled cross-validation of positive hits from the protein microarray screen, which lacked 

independent replication, with existing PPI data and identification of nodes that were common 

to both network analysis approaches but linked to different seed proteins in each. Presented in 

Figure 2.6A is the common core network, which represents common nodes across the literature-

derived data prior to confidence thresholding and the experimental network.  

 
These common nodes within the common core network can be categorised as: (i) interactors of 

the same seed protein which are present in both network approaches (these are indicated by 

the dotted and dashed green edges in Figure 2.6A, e.g. LRRK2 interactors: ARFGAP1, CHGB and 

GAK); (ii) interactors which are common to the two network analysis approaches but within the 

interactomes of different seed proteins (when considering unthresholded literature-derived 

data, 44 interactors [Figure 2.4A]; when considering confidence thresholded literature-derived 

data, 14 interactors [Figure 2.4D and 2.6B]); (iii) interactors that would exceed the confidence 

threshold (final score of >2 within the WPPINA pipeline) if the protein microarray data was 

integrated into literature-derived data and hence representing an independent replication (this 

was the case for seven LRRK2 interactors [Table 2.6]). It is of note that since these analyses were 

carried out, the protein microarray data has been curated into the IntAct data repository.  

 

To provide further insight into the likelihood of the binary interactions within the common core 

network, pairwise coexpression profiling was performed based on tissue-specific gene 

expression data. Utilising mRNA expression data from the GTEx project [114] and an expression 

threshold of 3 RPKM, this analysis identified distinct tissues where specific interactor mRNA was 

coexpressed with specific seed protein mRNA. Of the 44 nodes within the common core 

network, only one, DUX3, was not recognised as a GTEx query input. This resulted in analysis of 

99 pairwise interactions across 13 tissue types.  
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Proteins common
to both networks

Seed origin
Literature-derived Protein microarray

ABL1 LRRK1 DAPK1 LRRK1
ARFGAP1 LRRK2 LRRK2

BAG2 DAPK1 DAPK1 LRRK1 LRRK2 MASL1
BAG5 LRRK1 LRRK2 LRRK1

CALM1 DAPK1 MASL1
CHGB LRRK2 LRRK1 LRRK2 MASL1
ECHS1 LRRK2 LRRK1
EGFR LRRK1 LRRK1
GAK LRRK2 LRRK1 LRRK2 MASL1

MATK LRRK2 LRRK1
NEK1 LRRK2 LRRK1 MASL1
PAK6 LRRK2 DAPK1 LRRK1

RAB29 LRRK2 LRRK1
STUB1 LRRK2 DAPK1 LRRK1 LRRK2 MASL1

(A)

(B)

Figure 2.6 – Common core human ROCO protein interaction network. (A) Common core 

network consisting of common nodes across unthresholded literature-derived and 

experimental protein microarray data. Dotted red edges indicate protein microarray-

derived interactions; dashed blue edges indicate literature-derived interactions; dotted and 

dashed green edges indicate replicated interactions derived from both protein microarray 

and literature datasets. Nodes are represented with a circular node if common to one seed, 

double circular node if common to two seeds, square node if common to three seeds and 

triangular node if common to all four seeds. (B) Common nodes across the thresholded 

literature-derived and experimental networks. 
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The mRNA expression of all four seed proteins exceeded the 3 RPKM threshold in all tissue types 

analysed, with the exception of skeletal muscle, hence the lack of coexpression signal across all 

pairwise interactions (Figure 2.7). On average, coexpression of pairwise interactors was evident 

in 9 (out of 13) tissue types analysed. For 9 pairwise interactors, predominantly DAPK1 

interactors, coexpression was evident across 12 tissue types analysed. Whereas 5 pairwise 

interactors were limited to coexpression in just one or two tissue types analysed, potentially 

suggesting a specialised role for these proteins in relation to specific tissue types. The highest 

level of coexpression, in terms of proportion of pairwise interactors analysed, was in the 

reproductive apparatus (97.0%), brain (93.9%) and intestine (91.9%). 

 
 
 
 
 
 
 
 
 

LRRK2 Interactor 
(UniProt Swiss Prot ID) 

Additional Seed Interaction 
Literature+ Protein 

Microarray 
ANKS4B (Q8N8V4), 

Ankyrin repeat and SAM domain-containing protein 
4B 

- MASL1 

BAG2 (O95816), 
BAG family molecular chaperone regulator 2 

DAPK1* LRRK1 
DAPK1 LRRK1 

MASL1 
CDC42EP3 (Q9UKI2), 

Cdc42 effector protein 3 
LRRK1 

DAPK1 LRRK1 
MASL1 

CUEDC1 (Q9NWM3), 
CUE domain-containing protein 1 

- MASL1 

LGALS8 (O00214), 
Galectin-8 

- - 

NDUFAF7 (Q7L592), 
Protein arginine methyltransferase NDUFAF7, 

mitochondrial 
- - 

ZRANB2 (O95218), 
Zinc finger Ran-binding domain-containing protein 2 

- - 

 

Table 2.6 – LRRK2 interactors identified via protein microarray that have been previously 

reported with the literature. These interactors would exceed the confidence threshold (final 

score of >2) assigned within the WPPINA pipeline if the protein microarray data was integrated 

into the literature based dataset. +unthresholded literature data; *interaction in literature-

derived network 
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Figure 2.7 – mRNA coexpression profiling of ROCO proteins in relation to nodes within the 

common core network. Transcript coexpression analysis using data from the GTEx project (V7 

data release) and an expression threshold of 3 reads per kilobase of transcript per million 

mapped reads (RPKM) across 13 tissue types. ROCO proteins colour coded: DAPK1 red, LRRK1 

yellow, LRRK2 blue, MASL1 green. 
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2.3.4 Enriched functions within the ROCO protein interaction networks 

 

To gain functional insight into the ROCO protein interactomes presented in the PPI networks, 

functional enrichment analysis (FEA) was performed based on GO BP annotations. This analysis 

was initially undertaken utilising g:Profiler [115] with subsequent cross-validation using Panther 

[118] and WebGestalt [119] (see ‘2.2.4 Functional enrichment analysis (FEA)’ for further detail). 

The data presented corresponds to the g:Profiler derived FEA. Significantly enriched GO BP 

terms were grouped into functional blocks and then further categorised into semantic classes 

based on semantic similarity amongst GO BP terms (Table 2.3), enabling an overview of the 

ROCO protein functional landscape (Figure 2.8A). 

 

FEA of the literature-derived network resulted in 516 significantly enriched GO BP terms which 

span a diverse range of biological processes (Figure 2.8A). The most significantly enriched terms 

associate with intracellular organisation and transport related functions (Table 2.7; complete 

functional enrichment result available in Supporting File S2). In addition, each seed protein 

interactome (DAPK1, LRRK1, LRRK2 and MASL1) was dissected from the literature-derived 

network for independent FEA. This seed-specific functional insight highlights cell death and 

development as significantly enriched functions within the DAPK1 and LRRK1 interactomes, 

respectively. Intracellular organisation and transport related annotations were most 

significantly enriched within the LRRK2 interactome (Table 2.7; complete functional enrichment 

results available in Supporting Files S3 [DAPK1], S4 [LRRK1], and S5 [LRRK2]). As expected, due 

to the size of the MASL1 interactome (5 nodes in total), no functional annotations were 

significantly enriched within this sample set. For annotations to reach statistical significance in 

this enrichment analysis the sample protein set annotations were required to be over-

represented in relation to the entire genome (reference set) annotations and withstand multiple 

testing correction, hence this method has limited power in small sample set cases [148].   

  

Finally, the common core network was subjected to FEA. Since this network was comprised of 

common nodes between the ROCO proteins, this analysis revealed enriched functions that 

appear to be common across the four ROCO protein interactomes, which may shed light on the 

relationship between common structural domains and shared functions. A collection of 63 GO 

BP terms were significantly enriched. These terms cover a more limited functional landscape 

than was the case for the literature-derived network FEA (Figure 2.8B) and provide specific 

insight into a subset of potentially convergent functions associated with ROCO proteins. The top 

hits, in terms of enrichment significance, were functional terms associated with stress response 

(Table 2.7; complete functional enrichment result available in Supporting File S6). 
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(A)

(B)

Figure 2.8 – Human ROCO protein interactome functional enrichment map. (A) An overview of 

the enriched functions associated with the literature-derived network. (B) Enriched functions of 

the common ROCO proteins interactors of the common core network; insight into the functional 

overlap amongst the human ROCO proteins. Terms presented represent the functional blocks 

(uppercase terms) and semantic classes (lowercase terms) that the significantly enriched GO BP 

terms have been grouped into, utilising g:Profiler coupled to an in-house functional grouping 

process. 
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Dataset GO BP term p-value 
Functional block - semantic 

class 

Literature-
derived network 

cellular component organization 
or biogenesis 

4.60 x 10-36 Intracellular organisation 

intracellular transport 
 

2.44 x 10-30 Transport - intracellular 

cellular component organization 
 

4.31 x 10-30 Intracellular organisation 

DAPK1 
interactome+ 

cell death 
 

3.85 x 10-7 Cell death 

apoptotic process 
 

4.39 x 10-7 Cell death - apoptosis 

programmed cell death 
 

1.36 x 10-6 Cell death 

LRRK1 
interactome+ 

neuron projection development 
 

3.49 x 10-5 
Development - neuronal - 

axon 
cell development 

 
3.82 x 10-5 Development 

neurogenesis 
 

9.11 x 10-5 Development - neuronal 

LRRK2 
interactome+ 

cellular component organization 
or biogenesis 

2.75 x 10-29 Intracellular organisation 

intracellular transport 
 

4.36 x 10-29 Transport - intracellular 

establishment of localization in 
cell 

 
1.61 x 10-26 

Protein metabolism - 
localisation 

Common core 
network 

cellular response to stress 
 

1.14 x 10-5 Response to stimulus - stress 

regulation of cellular response to 
stress 

1.65 x 10-4 Response to stimulus - stress 

stress-activated protein kinase 
signalling cascade 

1.15 x 10-3 Response to stimulus - stress 

 
 
 
 
 
 
 
 

Table 2.7 – Top three significantly enriched GO BP terms in various ROCO protein 

interactome functional enrichment analyses. A breakdown of the most significantly enriched 

terms and corresponding functional block – semantic class grouping for the literature-derived 

network, subset interactomes within this network and the common core network, analysed 

using g:Profiler. +interactomes based on the literature-derived network. 
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2.4 Discussion  

 

The PPI network analyses performed in this study broadened our understanding of the human 

ROCO protein interactome. By exploring the interaction profiles of these structurally related 

proteins collectively, new insights were gathered into the commonalities and distinctions 

present in their proximal interactomes, which was further used to determine shared and 

exclusive functional associations. In addition, the overall strategy adopted, whereby existing 

data was utilised to complement novel high-throughput experimental data represents an 

example of how data integration from previous experimentation reported within the published 

literature can maximise the potential of newly generated data. 

 

2.4.1 The utility of WPPINA for analysis of the human ROCO proteins  

 

The literature-derived ROCO protein interaction network (Figure 2.4D) represents the extent of 

DAPK1, LRRK1, LRRK2 and MASL1 interactors from published studies which have been retained 

following data processing and confidence thresholding via the WPPINA pipeline. Three standout 

aspects of this bioinformatic pipeline are the retention of high quality data entries only, wide 

coverage of data collated from numerous primary databases, and a confidence score threshold 

based on interaction replication. Hence the presented network illustrates a robust reflection of 

the current knowledge for the ROCO protein interaction profiles.  

 

A particular benefit of mapping protein interaction networks of multiple seed proteins using 

WPPINA is the straightforward identification of common interactors, which would likely be 

overlooked if surveying literature-derived PPI data using alternative methods. Since the primary 

structure of the ROCO proteins feature a number of common domains, for example the ROC-

COR region which defines the protein family and the leucine-rich repeats (LRR) in LRRK1, LRRK2 

and MASL1, common interactors may shed light on potential domain-specific interaction 

interfaces and shared functions amongst the ROCO proteins (Table 2.4). Interestingly, the 

potential for heterodimerisation of DAPK1, LRRK1 and LRRK2 (in all three combinations) was 

evident from this network, suggesting a role for the ROC-COR tandem domain in this 

conformation. Within the published studies which report these interactions, further 

characterisation into the interaction interfaces indicated that the ROC-COR region is critical for 

dimerisation [35]. 

 

Two of the DAPK1 and LRRK2 common interactors were unconventional myosin proteins, 

MYO1B and MYO1D, which are involved in vesicle trafficking (Table 2.4). Of note, Rab proteins 
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contribute to the regulation of myosin motor function and recent evidence suggested LRRK2 

phosphorylates a subset of Rab proteins [149]. This, together with myosin proteins as LRRK2 

interactors, supports previous suggestions of LRRK2 playing an important role in intracellular 

vesicular trafficking [150] and from this PPI network analysis highlights DAPK1 as a potential 

contributor to the same or related function. In addition, since Rab proteins are increasingly 

considered bona fide LRRK2 substrates [151], an open question persists as to whether LRRK1, 

which is paralogous to LRRK2 including a highly conserved kinase domain, also impacts the 

phosphorylation state of Rab proteins. A recent study supports this notion, reporting Rab7a as 

a LRRK1 substrate [38].  

 

2.4.2 Adding novel insight from ROCO protein microarray data  

 

The generation and analysis of an experimental network (Figure 2.5A) provided novel insight 

into potential interactors of the ROCO proteins. This hypothesis-free approach evaluates the 

interaction profile of each seed protein based on an equivalent experimental setup, diluting the 

effect of ascertainment bias present in the literature-derived network. In particular, insight into 

the potential MASL1 interactome was massively enhanced through this analysis, since the 

literature-derived data is extremely limited. In addition, the increased proportion of 

commonality evident between seed protein interaction profiles comparative to the literature-

derived network was intriguing and likely to be a more accurate representation of the capability 

for ROCO proteins to interact with common nodes, based on the structural organisation of these 

seed proteins.  

 

In relation to the potential interactors within the MASL1 interactome, numerous kinases were 

identified and a subset of these kinases are specific to MASL1. These are of particular interest 

since MASL1 is the only ROCO protein which lacks an intrinsic kinase domain and since the other 

ROCO proteins possess intra-regulatory cross-talk between the GTPase activity of the ROC 

domain and the kinase activity [30,31,152], the MASL1 GTPase activity may harbour an 

equivalent reciprocal relationship with an extrinsic kinase. Further validation to test this 

hypothesis would determine whether any of these kinases are downstream effector molecules 

of MASL1.      

 

Although this experimental network revealed a fresh perspective on the ROCO protein 

interactome, the literature-derived network provided a more robust representation of the 

ROCO protein interaction profiles to date. This is because the nodes within the experimental 

network lack independent replication and are sensitive to inherent limitations of the protein 
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microarray technique, therefore need to be considered as potential interactors that require 

further validation by alternative PPI detection methods. If reproducible utilising a distinct PPI 

detection method, this would increase confidence in these initial positive hits, similarly to the 

concept underlying the scoring process within the WPPINA pipeline. Example intrinsic biases 

faced during protein microarray experimentation include the choice of protein baits on the array 

chip, potential alterations to physiological protein conformations and the reliance on antibody 

detection methodology. 

 

2.4.3 Data integration strategies and the common core network 

 

Since both the literature-derived and experimental network analysis approaches sustain 

inherent biases, data from the two approaches were considered collectively to reduce the 

impact of these biases on network analysis. This resulted in the construction of the common 

core network (Figure 2.6A) which consisted of interactors common to both datasets. The utility 

of this strategy is two-fold: first to cross validate novel experimental data with the existing PPI 

knowledgebase, and second to prioritise and nominate interactors for further investigation. 

From mapping this network, 44 nodes were identified and the majority (89%) linked to at least 

two seed proteins. This indicated a subset of proteins from the experimental network which are 

potentially novel common interactors for multiple ROCO proteins based on supporting data 

within the literature, highlighting avenues for further investigation.  

 

Within the common core network (Figure 2.6A), three proteins (BAG2, CDC42EP3 and STUB1) 

were mutual nodes for all four ROCO proteins, suggesting potential interaction profile 

convergence across the whole protein family. For BAG2 (in relation to the DAPK1 interaction 

[153]) and STUB1 (in relation to the LRRK2 interaction [154,155]), these interactors have also 

been identified by alternative PPI detection techniques other than protein microarray, which 

reduces the likelihood that these proteins were false positive hits in the experimental network. 

In addition, this strengthens the rationale for pursing further investigation into the potential 

interaction of these proteins with the other ROCO proteins.  

 

A further subset of proteins of particular interest were the 15 nodes common to both LRRK1 and 

LRRK2. These proteins were largely novel potential interactors for LRRK1 from the experimental 

network and previously reported interactors of LRRK2 based on published literature (Figure 

2.6A), including interactors which exceeded the WPPINA pipeline confidence threshold (Figure 

2.6B). Since the two LRRK proteins are structurally very similar, investigating the validity of these 

LRRK1 interactions using distinct methodological approaches highlights a further route for 
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further study. One of these common LRRK1 / LRRK2 interactors is RAB29, which supports a 

previous discussion point as to whether Rab proteins are phosphorylated by LRRK1, based on 

the catalytic interplay of LRRK2 and Rab proteins [151].  

 

Since the spatial pattern of protein expression will influence the likelihood of proteins 

interacting, coexpression profiling of pairwise interactors within the common core network was 

performed. This analysis revealed similar and distinct coexpression trends for interactors in 

relation to different seed proteins (Figure 2.7). In particular, a relatively uniform coexpression 

pattern was evident for the BAG proteins analysed (BAG1, BAG2, BAG3 and BAG5) in relation to 

the ROCO proteins, which aligns with the role of BAG protein as molecular chaperones and 

protein complex adaptor elements [126]. Whereas CD2BP2 for example, displayed a distinct 

tissue-specific coexpression profile for LRRK1 in comparison to LRRK2, suggesting that despite 

overlapping interaction profiles, this degree of convergence is likely to be altered in different 

tissue types which may shed light on potential divergent functional profiles. This builds on a 

more physiological representation of interactome analysis.  

 

Although this expression analysis represents a crude approach for assessing coexpression, it 

provided insight into the probability of pairwise interactions occurring based on coexistence of 

corresponding transcripts at a tissue-level. This analysis utilised transcript expression data due 

to the availability of expression profiles across the majority of the transcriptome at a tissue-

specific level. However, protein coexpression profiling would have increased physiological 

relevance for this analysis, but a comprehensive catalogue of this data-type is currently not 

readily available. 

 

2.4.4 Gaining functional insight 

 

The functional landscapes of the literature-derived and common core networks were evaluated 

utilising GO BP annotations for FEA. These analyses provided insight into common and distinct 

functional pathways which are influenced by the proximal interactomes of the ROCO proteins. 

First, FEA of the literature-derived network which included reported interactors for all four 

ROCO proteins, revealed a diverse range of functional associations (Figure 2.8A) suggesting that 

the ROCO proteins (or due to the persistent LRRK2 bias within this network, LRRK2) may act as 

signalling hubs for a multitude of molecular cascades. As previously discussed, this network 

harbours ascertainment bias in relation to the LRRK2 interactome, which persists in the FEA of 

this network, hence the FEA results of the literature-derived network are largely representative 

of the LRRK2 interactome. This is supported when comparing the literature-derived network and 
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LRRK2 network FEA results (Table 2.7), whereby the two most significantly enriched annotations 

are identical.   

 

Furthermore, single interactome FEA for DAPK1 and LRRK1 networks, subset from the literature-

derived network, shed light on functional associations for those seed proteins specifically. These 

analyses highlighted cell death related and development related functions as enriched in the 

DAPK1 and LRRK1 interactomes, respectively (Table 2.7). These findings are particularly 

interesting in relation to LRRK1, since the functional characterisation of this protein is in its 

infancy. Upon subjecting the common core network to FEA, the most significantly enriched 

annotations related to the stress response within the cell (Table 2.7), uncovering potential 

convergence in relation to ROCO protein function; a concept which is plausible based on the 

structural overlap between these proteins. Further investigation is required to establish the 

extent of this potential shared functionality of the ROCO proteins. 

 

The use of FEA to interpret gene lists in a functional context escalated in the mid-2000s, to a 

point whereby it is now often a routine analysis alongside high-throughput genomic, 

transcriptomic and proteomic analyses. This, together with ongoing functional annotation 

efforts which increases the usefulness of this approach, has led to wide choice of FEA tools 

available [116,117]. Each tool differs in relation to the level of maintenance, underlying 

algorithm and additional features, which can make it difficult to know which tool to rely on. 

g:Profiler [115] was chosen as the predominant FEA tool for this project, largely because it is 

actively maintained in relation to up-to-date GO annotations. This is particularly important for 

interpreting functional enrichment findings in the context of the current functional 

knowledgebase [156]. Due to the dynamic nature of functional annotation, enrichment results 

can quickly become outdated.  

 

Furthermore in support of using g:Profiler for FEA, this tool utilises a custom multiple correction 

algorithm for assigning significance thresholds, termed g:SCS (set counts and sizes). This 

statistical method is optimised in relation to the discovery of false-positives and outperforms 

the widely used Benjamini-Hochberg false discovery rate and Bonferroni correction algorithms 

[120]. In addition and  as previously described, to ensure FEA results were not significantly 

impacted by tool-specific biases, cross-validation of results was achieved using distinct 

resources. 

 

The post-processing of the FEA output performed following these analyses, which involved 

grouping GO annotations into functional blocks and semantic classes, addressed two aspects of 
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the challenge of interpreting lists of significantly enriched GO terms. First, it provided a clearer 

overview of the types of functions enriched (Figure 2.8), including the extent to which a specific 

functional block contributed to the enrichment e.g. the proportion of cell death related 

functional annotations enriched in the literature-derived network FEA was 8.1%. Second, this 

approach grouped annotations with negligible specific functional meaning into a ‘general’ 

category, enabling these terms to be discarded prior to downstream interpretation of FEA 

results. Examples of non-specific functional annotations which provide very limited insight into 

the biological roles of proteins within a query sample set are ‘negative regulation of cellular 

process’, ‘multicellular organismal process’ and ‘rhythmic process’.  

 

2.4.5 Considerations for literature-derived PPI network analysis approaches  

 

Despite the utility of WPPINA for constructing literature-derived networks, there are a number 

of caveats to this type of analysis. A key issue is the partial nature of the data underlying the 

analysis which strongly implies the PPI network is incomplete, since the analysis relies on 

literature-derived data and often many interactors within an interaction profile are yet to be 

discovered. For example, the physiological MASL1 interactome is likely to be greater than 4 

interactors, however due to the lack of investigation into the MASL1 interaction profile, MASL1 

PPI data is very limited. In contrast, proteins at the centre of extensive investigation, such as 

LRRK2 in this case, suffer from ascertainment bias in this analysis due to the skew in available 

data.  

 

This ascertainment bias is further highlighted by the rate of growth in PPI identification reports 

for LRRK2: an analysis of the LRRK2 interactome using an earlier version of the same pipeline 

performed in July 2014, yielded 62 interactors [107], in comparison to the 113 interactors 

reported here (January 2017), hence an almost two-hold increase in 30 months. A more recent 

analysis using PINOT with the equivalent confidence threshold (July 2019) extracted 220 

interactors (over 1400 interactors prior to confidence thresholding) for LRRK2. Furthermore, 

ongoing high-throughput projects, such as BioPlex [2,3], continue to capture increasing amounts 

of the human protein interactome. The latest unpublished version of the BioPlex network 

reported over 70 000 interactions from approximately 7500 independent AP-MS experiments.  

 

Further considerations for interpreting PPI networks based on literature-derived data sources 

relate back to the quality of the database curation and the technical procedure which underlies 

the PPI detection. The process of database curation either operates automatically using 

computation or manually by curators. Both approaches are susceptible to poor quality data 
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curation, however manual curation involves a more thorough review and verification process. 

In addition, each PPI detection method has inherent limitations (Table 2.8) and PPIs detected 

under experimental conditions are to a certain degree artefactual. Therefore, how an 

experimental setup relates to the physiological setting is important to consider. To address 

these issues, the WPPINA pipeline comprises a rigorous quality control process and each PPI 

data entry is fully traceable back to the detection method used and the source publication.  

 

2.4.6 Challenges and ongoing developments: WPPINA to PINOT  

 

The development of a novel bioinformatic approach to mine and process literature-derived PPI 

data resulted in the WPPINA pipeline. This team effort was predominantly developed and 

trialled by Dr Claudia Manzoni and myself throughout the course of this project. As previously 

described (Figure 2.2), this data management and analysis strategy extracts PPI data from 

numerous primary databases, integrates this expanse of information, performs clear filtering 

and quality control checks and confidence scores each PPI based on detection method and 

publication records. This procedure then outputs a network file that can be easily uploaded into 

network visualisation software, such as Cytoscape [113]. 

 

One of the purposes of developing the WPPINA pipeline was to overcome challenges faced when 

attempting to incorporate and interpret PPI data from multiple repositories. A notable issue that 

was addressed during the development of the pipeline was the format inconsistencies in 

curation of different databases which hampered collating data from multiple sources. For 

example, the majority of the data repositories utilised in this analysis (Innate, IntAct and MINT) 

report the UniProt protein ID for each interactor, whereas BioGRID reports the NCBI Entrez gene 

ID. Since BioGRID was a considerable contributory resource towards the total PPI data available 

(Figure 2.1) and the curation effort is independent of the other data repositories, the absence 

of integrating this data would have reduced potential data coverage. Hence, the implementation 

of a ID conversion procedure within the pipeline (described in the ‘2.1 Material and Methods’ 

section) to enable integration of data from the six data repositories for downstream data 

processing. The vision of the IMEx consortium includes standardisation across curation efforts, 

however BioGRID is currently a consortium observer as oppose to an active member.  
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Table 2.8 – Advantages and limitations of PPI detection methods. Examples of techniques for 

detecting PPIs with considerations regarding inherent limitations of each approach, expanded 

from reference [104]. Cross-validation of PPI detection across multiple methods reduces the 

impact of method-specific limitations and increases the confidence in a PPI event.  

PPI detection method Advantages Limitations 

Coimmunoprecipitation 
(CoIP) 

• Obtain protein complexes in an 
almost physiological state, in 
relation to PTMs and conformation 

• Flexibility in downstream detection 
method, e.g. Western blot or mass 
spectrometry 

• Protein tag not required 
• Relatively low cost 

• Requires high quality antibodies to 
be available for proteins of interest 

• Relies on prediction of potential 
interacting partners 

• Low affinity PPIs not detected 
• Ex vitro / Ex vivo detection from 

lysate 
• Undetected components of complex 

may persist 

Protein Microarray 

• High-throughput, thousands of 
proteins assessed in parallel 

• Hypothesis-free 
• Able to detect low affinity PPIs 
• Customisable arrays 

• Limited to arrays commercially 
available or proteins that can be 
immobilised 

• Non-physiological setting 
• Typically requires protein of interest 

to be tagged with epitope / 
flurophore 

Yeast Two-Hybrid (Y2H) 

• In vivo, in the context of yeast 
• Well established technique 
• Scalable to a high-throughput format 
• Relatively low cost, initially just 

requiring yeast, two-hybrid/cDNA 
constructs and growth media 

• Proteins of interest must be capable 
of being expressed in yeast and are 
typically overexpressed 

• PPI detection occurs in nucleus only 
• System may lack the necessary PTM 

capability and accessory molecules 
• Protein fragments may need to be 

used in the case of large or 
membrane-bound proteins 

Affinity Purification – 
Mass Spectrometry (AP-MS) 

• Purification step can be done as in 
CoIP using native antibodies 
avoiding the need to tag proteins or 
using an epitope tag where 
antibodies are of poor quality or 
unavailable 

• Protein complexes derived from 
physiological setting 

• Detect multiple components of a 
complex 

• May require tagging protein of 
interest 

• Low affinity PPIs not detected 
• Ex vitro / Ex vivo detection from 

lysate 
• Spatial expression profiles disrupted 

which may lead to artefactual PPIs 
occurring in lysate 

• Require specialist expertise for 
interpreting mass spectra 

Surface Plasmon Resonance 
(SPR) 

• Highly sensitive 
• Able to detect low affinity and 

transient PPIs 
• Binding tracked in real-time 
• Label-free 

 

• Proteins of interest must be highly 
purified 

• Artificial conditions setup in flow cell 
to mimic physiological setting 

• Specialist equipment and expertise 
required 

BRET / FRET / FLIM 

• Live cell imaging 
• Provides a spatial and temporal 

representation of PPIs 
• Highly sensitive 
• Provides insight into proximity of 

two potential interaction partners 

• Proteins of interest must be fused to 
bioluminescent / fluorescent 
molecule 

• Detection molecules at risk of 
photobleaching 

• Complex experimental design in 
relation to choice of donor/acceptor 
molecules and controls 

Proximity Ligation Assay 
(PLA) 

• In situ detection, physiological 
setting 

• Able to detect low affinity and 
transient PPIs 

• Single molecule resolution 

• Requires proximity probes to be of 
high quality to specifically detect 
proteins of interest 

• Limited to probes commercially 
available or in-house development 

• Dependence on enzymes for ligation 
and polymerisation of oligos 
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Throughout the later stages of the development process the WPPINA pipeline was applied as a 

tool for PPI network analysis within numerous projects. For example, PPI network analysis was 

performed for frontotemporal dementia (FTD) associated genes [13], for the human ROCO 

proteins presented here [12], for Parkinson’s disease (PD) associated genes [14] and for 

exploring the tau interactome [157]. As more studies utilised WPPINA as a strategy for gaining 

insight into PPI landscapes, the pipeline became more exposed to the breadth of PPI data 

available and in turn, the related challenges, such as poor data curation hampering data 

processing. Subsequently, we were able to develop the pipeline further to increase its 

robustness.  

 

At this stage, the pipeline was limited to a semi-automated format that required the user to run 

the coding scripts in R. As this analysis strategy gained more interest, we wanted to increase the 

user-friendliness of this approach, enabling the wider research community to make use of the 

WPPINA pipeline. This led to the development of PINOT, a fully-automated freely-available 

online PPI query resource to optimise the utility of PPI data within the public domain (available 

at http://www.reading.ac.uk/bioinf/PINOT/PINOT_form.html) [121]. The most recent 

development of the WPPINA pipeline underlies this resource which is coupled to an easy-to-use 

web-interface which was implemented by Dr Liam McGuffin (University of Reading). PINOT is 

not targeted at a specific user background, we envisage that the straightforward to use input 

form and easy to interpret output file will be of benefit to a broad range of user types. In 

addition, the R scripts which underlie the tool are available from the website to enable 

transparency of the pipeline and to enable modification if desired.     

 

The utility of PINOT was compared to three alternative PPI query resources, human integrated 

protein-protein interaction reference (HIPPIE) [158], molecular interaction search tool (MIST) 

[159] and search tool for recurring instances of neighbouring genes (STRING; Table 2.9) [160]. 

These other resources also utilise evidence based PPI data to enable construction of PPI 

networks, however each resource (including PINOT) has distinguishing features. Notably, the 

added value of PINOT is that the data is extracted at the time of query, for human data, hence 

the user obtains the most up-to-date representation of the available PPI data. Furthermore, the 

data output provided by PINOT is of high quality, largely due to the quality control procedures 

within the data processing pipeline, and therefore every PPI is annotated with its corresponding 

method detection annotation and publication identifier (PubMed ID).   

 

In terms of performance, i.e. the number of PPIs extracted for a given query, the performance 

of PINOT is generally comparable to other resources [121]. In test cases, the performance of 
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PINOT is sometimes slightly lower than in HIPPIE and MIST, and this is due to the quality of the 

data curation within source databases. For example, if a curated data entry is missing its 

corresponding PubMed ID, this entry would be discarded from data processing in PINOT, 

whereas this is not the case in other resources. In other examples, the performance of PINOT 

hugely exceeds that of alternative resources, these cases usually arise when a high-throughput 

PPI screen has recently been curated into the source repositories but since alternative resources 

(HIPPIE and MIST) bank data as oppose to extracting it at the time of query, this data has not 

been captured, this has been observed in relation to LRRK2 [121].  

 

The most recent developments of PINOT include a stringent or lenient filtering option, required 

when completing the input form. This stringency filter relates to the method detection 

annotations and upon selecting the lenient option, method detection annotation corresponding 

to non-specific method detection annotations which are grouped into the ‘unspecified’ category 

as part of the method reassignment process, which provide limited detail such as ‘experimental 

interaction detection’ would be retained. This increases data coverage at the expense of data 

quality. Furthermore, an additional query species option was recently incorporated, for 

Caenorhabditis elegans PPIs (see ‘3.2.2 Developing a C. elegans query option for PINOT’).  

 

 

 

 

 

Feature PINOT HIPPIE MIST STRING 
Data extracted at the time of query ✓ ✗ ✗ ✗ 

Can accommodate large input lists (100s of seeds) ✓ ✓ ✗ ✗ 

Parsable output file ✓ ✓ ✗ ✓ 

Direct interactions for seeds only ✓ ✓ ✓ ✗ 

Multiple species coverage ✓ ✗ ✓ ✓ 

Assigned confidence score ✓ ✓ ✓ ✓ 

PubMed ID reported ✓ ✓ ✓ ✗ 

Detection method reported ✓ ✓ ✓ ✗ 

Quality control publication and method annotations ✓ ✗ ✗ NA 

NCBI Entrez ID ✓ ✓ ✓ ✗ 
UniProt SwissProt ID ✓ ✗ ✗ ✗ 

Programming codes available ✓ ✗ ✗ ✗ 
Network visualisation ✗ ✓ ✓ ✓ 

Orthologous inference ✗ ✗ ✓ ✗ 

Table 2.9 – Comparison of features across PPI query resources. PINOT compared against its 

closest related PPI query tools, human integrated protein-protein interaction reference 

(HIPPIE), molecular interaction search tool (MIST) and search tool for recurring instances of 

neighbouring genes (STRING). ✓ indicates presence and ✗ indicates absence of feature. 
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2.4.7 Conclusions 
 

These ROCO protein interaction network analyses and associated investigations provides novel 

insight into the interaction and functional profiles of the human ROCO proteins. The extent of 

commonality and distinction between these profiles was evaluated. Evidence supporting 

potential shared interactors and functional pathways for multiple ROCO proteins, although it 

appears that despite the structural conservation between these proteins, the ROCO proteins 

have evolved largely divergent interactomes. Assessing the ROCO protein interaction profiles 

from multiple angles enabled new experimental data to be considered in the context of existing 

confidence-weighted PPI literature-derived data, which in turn prioritised specific proteins for 

further follow-up validation studies. In addition, the construction of the literature-derived 

network represented a sample analysis for the ongoing development of the WPPINA pipeline, 

which facilitated improvements to this procedure and the development of PINOT.  

 

Future direction for better understanding the ROCO protein interaction profile would benefit 

from further integration of novel experimental data, derived from distinct method detection 

approaches, such as yeast two-hybrid or stable isotope labelling with amino acids in cell culture 

(SILAC) screens. Furthermore, as cell type specific protein expression data becomes readily 

available, incorporating this data would also strengthen our understanding of ROCO PPI events 

in the cell. Finally, this study highlights the value of data integration strategies for accelerating 

biological understanding, which is particularly relevant in this ever-increasing data-rich era.   
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CHAPTER THREE 

 
 

 

Assessing the DAPK-1 Protein 
Interaction Profile in 

Caenorhabditis elegans 
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3.1 Introduction  
 

Human DAPK1 is the product of an ancient evolutionary lineage [21]. As described in Chapter 

One, mammalian DAPK1 belongs to both the DAPK and ROCO protein families, due to structural 

homology of the kinase and ROC-COR domains, respectively. The DAPK family diversified within 

the mammalian clade, with 3 DAPKs in the human proteome, whereas lower organisms only 

possess a single DAPK protein [161]. This offers a reductionist approach for studying DAPKs in 

invertebrates. In contrast, the evolutionary history of the ROCO proteins is much more complex, 

numerous diversification, duplication and loss events occurred throughout the evolutionary 

timeline [23,162]. DAPKs, and the closely related DRAKs, in invertebrate model organisms, 

include Drak, a DRAK1/DRAK2 ortholog in Drosophila melanogaster and DAPK-1, a DAPK1 

ortholog in Caenorhabditis elegans. Interestingly, amongst a diverse collection of invertebrates, 

phylogenetic analysis of DAPK1 and its orthologs identified that the closest relative to human 

DAPK1 is within the sea urchin Stongylocentrotus purpuratus proteome [161]. Furthermore, 

DAPK1 contains structural homology in the proximity of the LRRs and ROC-COR regions to a plant 

protein, Tornado1 in Arabidopsis thaliana [163], although this protein lacks kinase and death 

domains.   

 

The DAPK1 ortholog in C. elegans, DAPK-1, shares considerable sequence similarity to its human 

counterpart (Figure 3.1A), especially with regard to the kinase domain. These proteins have 

equivalent domain topologies and differ in length by only five amino acids. The basic loop motif 

within the kinase domain, which is a characteristic feature of DAPKs [24], and the P-loop of the 

ROC domain responsible for GTP binding are largely homologous. In addition, the two amino 

acid triads of the kinase domain ATP-binding pocket (Lys 42, Glu 64, Glu 100, Glu 143, Asn 144 

and Asp 161 in DAPK1 [24]), which are critical for catalysis, are conserved (Figure 3.1B and 3.1C). 

However, Ser308 (in DAPK1), an autophosphorylation site within in Ca2+/CaM regulatory domain 

which negatively regulates kinase activity upon phosphorylation, is not conserved within C. 

elegans DAPK-1.    

 

Functional characterisation of C. elegans DAPK-1 is in its infancy, nevertheless, a number of roles 

have been proposed. Genetic manipulation approaches, specifically dapk-1 mutagenesis, RNA 

interference (RNAi) and transgenesis, have been utilised to assess phenotypic consequences 

which relate to DAPK1 function. Of note, dapk-1 loss-of-function results in viable and fertile 

progeny [161]. Furthermore, studies have provided indications that DAPK-1 may be involved in 

stress-induced autophagy, epidermal homeostasis, innate immunity, wound healing and 

neuronal excitotoxicity [164–167]. Despite extensive evidence of human DAPK1 functioning 
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within cell death pathways, in particular apoptosis, this functional link requires further 

investigation in relation to C. elegans DAPK-1. However, orthologous functional connections 

between human DAPK1 and C. elegans DAPK-1 are evident, such as the roles of DAPK1/DAPK-1 

in autophagy [49,164] and the emerging evidence implicating these proteins in excitotoxic 

neurodegeneration [167,168].  

 

 

 
 
 
 
 
 
 
 

 

 

 

The role of DAPK-1 at a mechanistic level, in the context of signalling cascades, is poorly 

understood. The reported PPI profile is very limited, there are no PPI data entries for DAPK-1 in 

WormBase nor when querying the major molecular interaction repositories via the PSCIQUIC. 

Insights from functional studies have reported that DAPK-1 physically interacts with PTRN-1 

(Patronin), a microtubule-binding protein, to elicit an inhibitory effect on PTRN-1 function [166]. 

This binding event plays a role in epidermal integrity and wound healing in C. elegans. In 

addition, a DAPK-1 PINN-1 interaction has been hypothesised based on a reported orthologous 

interaction in human [169] and convergent functional findings in relation to these two proteins 

in C. elegans [167], in the context of excitotoxicity. 
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Figure 3.1 – Primary structure comparisons between human DAPK1 and C. elegans DAPK-1. 

(A) Domain topology and sequence similarity of DAPK1 and DAPK-1. Snapshots of annotated 

protein sequence alignments within the kinase and ROC domains (B and C, respectively). 

Pairwise sequence alignment analysis performed using the EBI EMBOSS Stretcher tool for full-

length and domain protein sequences. Highlighted sequence corresponds to ATP binding 

residues (red), basic / P loop (yellow) and hinge region (blue).  
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Model organisms are powerful tools for exploring biology at a subcellular level to influence 

inferences to more complex organisms based on genetic tractability, especially in cases where 

clear orthologs exist between species. However, in the case of C. elegans and DAPK1/DAPK-1, 

human DAPK1 research is more advanced in relation to characterising the interaction and 

functional landscape of this protein. Nevertheless, there are many benefits to using C. elegans 

as a model system for understanding protein function [100,170]. Most notably, protein function 

can be assessed at a whole-organism level (in vivo) and genetic manipulation is a routinely used 

procedure to support this in vivo investigation into protein function. With this in mind, 

DAPK1/DAPK-1 remained the centre of investigation, but in the context of C. elegans.  

 

3.1.1 Project aims  

 

The aims of this section of research complement and build on those outlined in Chapter Two, 

from both a method development and an exploratory protein interactome perspective. My first 

aim was to further develop PINOT to incorporate a C. elegans PPI query option. In parallel to this 

focus, I aimed to gather insight into the protein interaction network of C. elegans DAPK-1, which 

was previously undefined, with the exception of one reported DAPK-1 PPI.  

 

With regard to the further development of PINOT, my aim was to expand the query capacity of 

our resource to encompass a C. elegans option. To address this aim, I planned to modified the 

coding scripts underlying PINOT, to extract WormBase-curated PPI data for data processing, in 

relation to method code reassignment and confidence scoring. This modified script would then 

be implemented onto the server hosting PINOT and upon the user selecting C. elegans as a query 

option, this new script would be utilised. The vision with this additional PINOT development was 

to broaden the utility of PINOT to the C. elegans community, but also to facilitate the assessment 

of the potential DAPK-1 interactome within the wider cellular context. 

 

In relation to investigating the DAPK-1 interactome, my aim was to utilise various distinct 

approaches to predict and identify potential binding partners. First, using predominantly human 

DAPK1 literature-derived PPIs as a foundation for predicting C. elegans DAPK-1 interactors based 

on identifying orthologs of these reported interactors. Second, I aimed to assess the DAPK-1 

interaction network experimentally, using the yeast two-hybrid (Y2H) system and by affinity 

purification - mass spectrometry (AP-MS), to identify novel DAPK-1 interactors. I planned to 

outsource the Y2H screen to a specialist company. Taken in combination, I aimed to use these 

approaches as a strategy to test the validity of the DAPK-1 interactor predictions and identify 

novel interactors.  
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3.2 Materials and Methods 
 
3.2.1 General laboratory materials and media/buffer compositions 
 

Reagent Supplier 

1-bromo-3-chloro-propane  Sigma-Aldrich 

Agar Fisher Scientific  

Agarose Fisher Scientific  

Ampicillin Sigma-Aldrich 

Bromophenol blue Sigma-Aldrich 

Calcium chloride  Fisher Scientific  

Cholesterol Fisher Scientific  

Dibasic potassium phosphate  Fisher Scientific  

Dibasic sodium phosphate Fisher Scientific  

Ethanol Fisher Scientific  

Ethylenediaminetetraacetic acid (EDTA) Sigma-Aldrich 

Fluorodeoxyuridine (FUDR) Fisher Scientific  

Gelatin Fisher Scientific  

Gibco PBS Tablets ThermoFisher 

Glycerol Fisher Scientific  

HALTTM protease inhibitor single-use cocktail ThermoFisher 

IGEPAL CA-630 Fisher Scientific  

Immobilon-P PVDF membrane Sigma-Aldrich 

Invitrogen TRI Reagent solution ThermoFisher  

Magnesium chloride Sigma-Aldrich 

Magnesium sulfate  Fisher Scientific  

Monobasic potassium phosphate  Fisher Scientific  

NuPAGE reagents ThermoFisher  

Nystatin  Fisher Scientific  

Peptone Fisher Scientific  

Phenylmethylsulfonyl fluoride (PMSF) Sigma-Aldrich 

Potassium chloride Fisher Scientific  

Propanol Fisher Scientific  

Proteinase K Fisher Scientific  

Skimmed Milk Powder Asda  

Sodium azide Fisher Scientific  
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Sodium chloride Fisher Scientific  

Sodium dodecyl sulfate (SDS) Sigma-Aldrich 

Sodium hydroxide Fisher Scientific  

Sodium hypochlorite  Fisher Scientific  

50x TAE buffer Sigma-Aldrich 

Tris Fisher Scientific  

Triton X-100 Fisher Scientific  

Tryptone Sigma-Aldrich 

Tween-20 Sigma-Aldrich 

Yeast extract Sigma-Aldrich 

β-mercaptoethanol  Sigma-Aldrich 

 
Nematode growth media (NGM) 

1.7% (w/v) agar, 0.25% (w/v) peptone, 50mM NaCl, 5µg/ml cholesterol [dissolved in ethanol], 

25mM KPO4, 1mM CaCl2, 1mM MgSO4, 25 units/ml nystatin, in ddH2O.  

 

Enriched peptone (EP) media 

2.5% (w/v) agar, 2% (w/v) peptone, 20mM NaCl, 5µg/ml cholesterol [dissolved in ethanol], 

25mM KPO4, 1mM MgSO4, 25 units/ml nystatin, in ddH2O.  

 

M9 buffer 

86mM NaCl, 42mM Na2HPO4, 22mM KH2PO4, 1mM MgSO4, in ddH2O. 

 

PBS-T 

PBS supplemented with 0.05% Tween-20 

 

Freezing buffer  

100mM NaCl, 50mM KH2PO4, 5.6mM NaOH, 30% (v/v) glycerol, 300µM MgSO4, in ddH2O.  

 

Luria Broth (LB) / Luria Agar (LA) 

171mM NaCl, 1% (w/v) tryptone, 0.5% (w/v) yeast extract, in ddH2O. LA was also supplemented 

with 1.8% (w/v) agar. 

 

Bleaching solution  

2% (v/v) NaOCl, 250mM NaOH, in ddH2O.  
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Worm lysis buffer 1 (WLB1) 

50mM KCl, 10mM Tris (pH 8.3), 2.5mM MgCl2, 0.45% (v/v) IGEPAL CA-630, 0.45% (v/v) Tween-

20, 0.01% (v/v) gelatin, in ddH2O. 

 

Worm lysis buffer 2 (WLB2) 

200mM NaCl, 100mM Tris HCl (pH 8), 1mM ethylenediaminetetraacetic acid (EDTA), 8% (v/v) 

glycerol, 2% Triton X-100, 1mM phenylmethylsulfonyl fluoride (PMSF [dissolved in propanol]), 

2x HALTTM protease inhibitor single-use cocktail, in ddH2O.    

 

RIPA buffer 

Ready-to-use premixed RIPA buffer (Sigma-Aldrich [150 mM NaCl, 50 mM Tris (pH 8.0), 1% 

IGEPAL CA-630, 0.5% sodium deoxycholate, 0.1% sodium dodecyl sulfate (SDS)]) supplemented 

with 2x HALTTM protease inhibitor single-use cocktail.    

 

Denaturation buffer 

125mM Tris (pH 6.8), 20% (v/v) glycerol, 4% (w/v) sodium dodecyl sulfate (SDS), 5% (v/v) β-

mercaptoethanol, 0.03% (w/v) bromophenol blue, in ddH2O.  

 
3.2.2 Developing a C. elegans query option for PINOT 

 

Since C. elegans is a widely used model organism for basic biology and translational biomedical 

research, ongoing efforts to dissect molecular signalling events have resulted in the detection 

of many PPIs, most of which have been detected in a high-throughput manner. Similarly to 

human PPI data, C. elegans PPI data is actively curated into databases and hence these 

repositories are a valuable resources for constructing PPI networks. The development of a C. 

elegans query option within PINOT was to utilise this PPI data in relation to a query input and to 

facilitate the interpretation of this data collectively. A number of modifications were made to 

the coding scripts which underlie PINOT in order to develop C. elegans PPI query capacity, these 

are described below and the pipeline for C. elegans PPI data querying is outlined in Figure 3.2. 

 

3.2.2.1 Data acquisition and pre-processing 

 

Although C. elegans PPI data is curated into databases accessed through the PSICQUIC, such as 

BioGRID and IntAct, which are utilised for human PPI querying in PINOT, there is an independent 

curation effort for C. elegans PPIs carried out by WormBase which encompasses a wider 

coverage of the PPI data generated for C. elegans [171]. This WormBase-curated data is available 
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via the Alliance of Genome Resources Portal (available at https://alliancegenome.org) in a MI 

TAB format, which is the data format that the pipeline underlying PINOT was designed to process 

in relation to human PPIs. Hence, much of the already developed pipeline would be compatible 

with this dataset. Therefore, this dataset (specifically the alliance molecular interactions dataset 

version 2.1), which contained approximately 760 000 molecular interaction data entries across 

multiple species, was downloaded for implementation into PINOT.  

 

In contrast to how the human PPI data is acquired in PINOT, the entire WormBase-curated C. 

elegans PPI dataset was downloaded for storage on the server hosting PINOT and therefore 

upon querying PINOT for C. elegans PPI data, the data is extracted from this local data pool. A 

further difference from the human PPI query pipeline was that the downloaded dataset was 

pre-processed prior to implementation into PINOT. This pre-processing involved the dataset 

formatting, quality control and method code reassignment steps of the pipeline underlying 

PINOT prior to the storage of the dataset on the server. The key reason for this was to reduce 

the computational load on PINOT for querying C. elegans PPI data. Since this complete dataset 

was static in nature (i.e. was downloaded, stored and not subject to change), undertaking the 

bulk of the data processing once as oppose to every time a query is submitted was a much more 

efficient approach, computationally. 

 
More specifically, these pre-processing steps first involved retaining only C. elegans data entries 

from the dataset, reducing the size of the dataset to approximately 37 000 molecular 

interactions. Then, the dataset was manually reformatted in terms of discarding undesired data 

columns. The only data columns retained correspond to the WormBase gene ID for each 

interactor, an alias ID for each interactor (either the common name or locus ID), the interaction 

detection method annotation and the associated PubMed ID, since this is the relevant 

information in relation to the data processing and output data generation in the pipeline. 

Further reformatting reduced information within each data entry by discarding any non-

essential characters for data processing, for example non-specific ID prefixes: 

‘wormbase:WBGene00004945’ reduced to ‘WBGene00004945’. Next, in line with the quality 

control step of the pipeline, non-PPI entries, such as protein-DNA interaction entries, were 

manually removed. This resulted in a dataset of approximately 30 000 PPI data entries. The 

quality of the data curation was notably high, in comparison to PPI data in BioGRID for example, 

incomplete data entries were absent in this WormBase-curated data.  
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Figure 3.2 – Data processing pipeline underlying PINOT for C. elegans 

data. A stepwise insight into the pipeline. A notable difference to the 

human PPI data pipeline is that the entire C. elegans dataset is 

downloaded, pre-processed and stored, the query is submitted to extract 

data from this stored dataset, the data is then scored and the fully 

processed dataset (which corresponds to the query input) is provided. The 

downloaded data is updated upon every new WormBase molecular 

interaction data release.    
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This dataset was then subjected to the previously developed method code reassignment coding 

script which reassigns each PPI data entry with a new detection method annotation based on 

the technical similarity of the technique. Similarly to the human PPI data pipeline, a stringent or 

lenient filter option was implemented into PINOT for discarding or retaining C. elegans data 

entries which were reassigned the UNSP (unspecified) detection method annotation, 

respectively. In the case of the stringently filtered dataset, these UNSP-associated data entries 

were manually removed. These pre-processed datasets, corresponding to the stringent and 

lenient filtered versions of the C. elegans PPI data, were then stored on the server hosting PINOT 

for further data processing upon query submission. 

 

3.2.2.2 Query submission 

 

The PINOT user interface was modified to accommodate querying C. elegans PPI data and this 

included the addition of a drop-down menu to select this species. The interface development 

was carried out by Dr Liam McGuffin at the University of Reading. The required input for 

querying C. elegans PPI data and running the pipeline is a list of WormBase gene IDs (example 

format: WBGene00000063), either entered into the text box within the PINOT interface or 

uploaded in a .txt file format. This ID type was decided since it is a universal ID for all C. elegans 

genes and is curated alongside each WormBase PPI data entry. Although the gene name ID 

(example format: act-1) is commonly used to identify C. elegans genes and proteins, not all 

genes have been assigned this ID type.  

 

Upon submitting a query, each data entry row which matches the queried ID is extracted from 

the downloaded and pre-processed C. elegans PPI dataset. A file is then created for each queried 

ID containing the rows of data entries which match the specific ID of interest. The queried 

protein (seed protein) is positioned into the first two columns of these files. These files are then 

temporarily stored on the server. 

 
3.2.2.3 Interaction confidence scoring 
 

The concept underlying the confidence scoring step of the pipeline for C. elegans PPI data is 

identical to the process developed for human PPI data (see ‘2.2.1.4 Interaction confidence 

scoring’). Each file which was created in the previous step is assessed for repeated equivalent 

interaction entries, i.e. the same interaction detected and reported in by a single 

method/publication curated multiple times. These types of replicate entries are discarded, so 

only one is retained. Each data entry is then confidence scored based on the number of distinct 
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methods used to detect an interaction (using the reassigned method codes) and the number of 

publications which report the interactions (based on PubMed ID). Each data entry is scored a 

value of 1 for each distinct method used and a value of 1 for each unique publication associated 

to the interaction. These two scores are added together to calculate the final score which is 

provided within the output file. Following this confidence scoring of each file, these files are 

merged to create a single final network file. 

 

3.2.2.4 Network output 

 

Similarly to the output file provided when querying PINOT for human PPI data, the C. elegans 

output file, which is either emailed to the user or can be downloaded from the browser, is 

straightforward to interpret (Figure 3.3). Each row corresponds to a binary interaction and 

contains the WormBase gene IDs for each interactor, the common gene name ID or locus ID (for 

genes lacking a common gene name) for each interactor, the interaction detection method score 

and annotation, the publication score and PubMed ID, and the final confidence score. This file 

is compatible for importing into network visualisation software, such as Cytoscape [113]. 

 
 

 
 
 
 
3.2.3 Predicting DAPK-1 interactors 

 

Insight into the DAPK-1 protein interaction profile was limited to one reported protein 

interactor, PTRN-1 [166], and hence predicted interactomes were constructed based on 

orthologous inference from other species. First, the human DAPK1 PPI network was generated 

by querying PINOT [121] (available at 

http://www.reading.ac.uk/bioinf/PINOT/PINOT_form.html) with DAPK1 on 25th June 2019 

(Homo sapiens and stringent filter query options selected). The output data was confidence 

thresholded so that only interactors that had been replicated were retained for mapping the 

network. This corresponds to interactions that were annotated with a final score greater than 2 

in the PINOT output file.  

 

Figure 3.3 – Screenshot of an example PINOT C. elegans data output.  
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Two approaches were utilised for predicting the DAPK-1 interactome by orthologous inference: 

using the interolog feature in MIST [159] (the Molecular Interaction Search Tool, available at 

https://fgrtools.hms.harvard.edu/MIST/), a feature which enables PPI predictions based on 

orthologs of reported PPIs in other species; and by pinpointing the orthologs of human DAPK1 

interactors using Ortholist 2.0 [172] (available at http://ortholist.shaye-lab.org), a meta-analysis 

compiled resource for human – C. elegans ortholog conversions. MIST was queried with DAPK-

1 on 27th September 2019, with the interolog feature and the filtering option of filtering out 

low rank interactions selected. The C. elegans orthologs of the reported (and replicated) human 

DAPK1 interactors derived from PINOT were identified using Ortholist 2.0 on 25th June 2019. 

The HGNC approved symbols were used as the input ID type, no minimum number of programs 

and no partial matches were selected as criteria for the analysis. These orthologous PPIs were 

mapped onto two separate predicted DAPK-1 interaction networks. 

 

The predicted DAPK-1 interactors from the latter predicted network (derived from Ortholist-

converted orthologs) then formed the basis of a further PINOT query to identify reported C. 

elegans protein binding partners for these predicted DAPK-1 interactors. This PINOT query was 

performed on 28th August 2019 and the corresponding WormBase gene IDs (obtained from the 

Ortholist 2.0 output) were used as the query input. C. elegans was the selected query species. 

As before, the output file was confidence thresholded to retain only interactions that had been 

replicated (final score greater than 2), for mapping onto the network. Networks were visualised 

in Cytoscape version 3.7.0. 

 

3.2.4 DAPK-1 yeast two-hybrid screen 

 

In order to identify novel putative DAPK-1 interactors, a yeast two-hybrid (Y2H) screen was 

performed. This experiment was carried out by Hybrigenics Services (France), a specialist Y2H 

service provider. Full-length C. elegans dapk-1 (NCBI sequence reference: NM_058439.4) was 

cloned into their ULTImate Y2HTM pB27 vector with a LexA DNA-binding domain (DBD), which 

binds the promotor region of the HIS3 reporter gene, fused to the 5’ end of the gene. dapk-1 

was screened against a mixed life stage C. elegans prey-Gal4 activation domain construct library 

(Hybrigenics reference: CEMS). Positive selection of PPI events was determined by mating yeast, 

bait transformants (a) and prey transformants (α), on media lacking histidine. The DNA of 

positive clones was sequenced to identify the prey gene underlying the positive hit.  
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3.2.5 Generating a FLAG-dapk-1 C. elegans strain 

 

With the goal of conducting further experimental interactomic analysis of DAPK-1 adopting 

distinct interaction detection approaches, such as AP-MS, an epitope tag was engineered onto 

DAPK-1 using clustered regularly interspaced short palindromic repeats (CRISPR) – Cas9 knock-

in technology. This genomic modification was carried out by SunyBiotech (China), a company 

which specialises in C. elegans precision gene editing. The service provided by SunyBiotech 

covered single guide RNA (sgRNA) design, plasmid construction, plasmid microinjection, 

screening for and isolating homozygotes harbouring the modification, and sequence validation.     

 

3.2.5.1 FLAG-dapk-1 sequence design 

 

A 3xFLAG tag and linker sequence was inserted at the endogenous dapk-1 locus, at the 5’ end 

of the gene (Figure 3.4), on the N2 (wild-type) genetic background. The precise 3xFLAG sequence 

was suggested by SunyBiotech based on previous successful FLAG tag knock-in projects. The 

linker sequence was designed to create a short flexible bridge of amino acids between the 

epitope tag and DAPK-1 in order to connect the tag to the protein of interest yet limit potential 

structural interference that may impact protein functionality. As is commonly used [173], a short 

chain of two glycine residues flanking both sides of a serine residue was used as the peptide 

linker. 

 

 
 
 
FLAG-DAPK1 validation 
 
 
 
3.2.6 FLAG-dapk-1 sequence validation  
 
In addition to the knock-in verification performed by SunyBiotech, validation of the FLAG-dapk-

1 genotype was conducted in-house. Nematodes were lysed and genomic DNA was crudely 

Figure 3.4 – Inserted 3xFLAG and linker sequence at the dapk-1 locus. DNA sequence with 

corresponding translated amino acid sequence below. 3xFLAG sequence (green) and flexible 

linker sequence (blue) inserted at the 5’ end of dapk-1 (red).  
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extracted for PCR. Restriction digestion was performed for reactions with primer combinations 

forward 1 (F1) and reverse 1 (R1; see Table 3.1), based on a restriction site in the inserted region, 

in order to validate the insertion of the tag and linker. The experimental design is illustrated in 

Figure 3.5. Refer to ‘3.2.1 General laboratory materials and media/buffer compositions’ for 

media and buffer compositions used in this section and hereafter.  

 

3.2.6.1 C. elegans maintenance 

 

C. elegans were routinely maintained on nematode growth media (NGM) plates seeded with 

Escherichia coli OP50 (referred hereafter as OP50) at 20°C. A new OP50 stock culture was 

streaked on Luria agar (LA) monthly. From this plate, Luria broth (LB) was inoculated with OP50 

and incubated at 37°C for 16-24hrs, cultures were stored at 4°C. This liquid culture was 

inoculated and spread on NGM plates (100µl, 300µl and 1ml on 30mm, 60mm and 100mm 

plates, respectively) and incubated at 37°C for 16-24hrs, OP50-seeded NGM plates were stored 

at 4°C. These plates were then used for maintaining C. elegans. Nematodes were replated 2 or 

3 times per week to prevent starvation. Replating C. elegans either involved cutting a cube of 

NGM from a populated plate and placing it upside down on a fresh NGM plate or by picking 

individual nematodes with a platinum wire onto fresh plates.  

 

3.2.6.2 Freezing and recovering C. elegans 

 

C. elegans stocks were stored at -80°C. For freezing, predominantly starved L1-L2 nematodes 

were washed off plates with M9 buffer and collated into a 15ml or 50 ml tube. An equal amount 

of freezing buffer was then added to the M9/nematode suspension, the suspension was mixed 

and aliquoted into cryopreservation tubes (1ml per tube). These tubes were then placed in 

polystyrene racks at -80°C. For nematode recovery from -80°C, samples were thawed at room 

temperature and the nematode suspension was pipetted onto NGM plates, 200-300µl per 

60mm plate, and incubated under standard maintenance conditions (20°C).   

 

3.2.6.3 Obtaining synchronised life-stage C. elegans populations 

 

C. elegans populations were bleached in preparation for experimentation, this enabled the 

isolation of embryos for establishing synchronised life-stage populations and also sterilised 

samples from bacterial/fungal contamination. Bleaching was performed by collecting gravid C. 

elegans off plates using M9 buffer, nematodes were then left to settle to the bottom of a tube, 

the supernatant was removed and bleaching solution was added (typically 1ml in a 1.5ml tube). 
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Samples were then shaken vigorously and monitored under the stereo microscope to detect 

when the nematode bodies had started to disintegrate. Once this had occurred, the samples 

were centrifuged at 2500 x g for 2 minutes, the supernatant was discarded, 1ml M9 buffer was 

added, the sample was mixed and then centrifuged as before. This M9 buffer wash step was 

repeated four further times to wash out the bleaching solution from the sample leaving an M9-

embryo solution. This solution was then incubated at 20°C for 16hrs to allow the embryos to 

hatch into L1 larvae, these larvae were then plated onto NGM.  

 

For ageing synchronised populations of C. elegans, to adult day 5 or day 10 for example, late-

stage L4s/young adults were transferred onto NGM supplemented with 50µM 

fluorodeoxyuridine (FUDR) which inhibits DNA synthesis and therefore suppresses the 

development of embryos [174]. This enabled synchronised ageing of C. elegans populations 

without the technical challenge of managing progeny contamination. NGM plates supplemented 

with FUDR were seeded with 10x concentrated OP50 broth. 

 

3.2.6.4 DNA extraction, PCR and restriction digestion 

 

Ten adult (day 1) C. elegans were picked into 20µl worm lysis buffer 1 (WLB1) supplemented 

with 1mg/ml proteinase K, per strain (FLAG-dapk-1; N2). Four replicates were processed for each 

strain. Samples were lysed and DNA crudely extracted by incubation at 65°C for 1 hour followed 

by 95°C for 15 minutes. 

 

Two different PCRs were performed on these DNA extracts based on two different primer 

combinations (F1 + R1 and F2 + R1 [see Figure 3.5]). Primer sequences are listed in Table 3.1. PCRs 

were performed in a total volume of 15µl: 7.5µl 2x PCRBIO HS Taq Mix (PCR Biosystems), 0.6µl 

10µM primer mix (forward and reverse), 3µl DNA extract, 3.9µl nuclease-free water. The 

thermocycler parameters for PCR are outlined in Table 3.2. Samples were incubated in a BioRad 

T100 Thermal Cycler. 

 

 

 
Primer Primer sequence (5’ to 3’) 

FLAG-dapk-1 forward 1 (F1) TAAAGACGTGCTGAGTGACG 
FLAG-dapk-1 forward 2 (F2) TAAGCGTGACTACAAGGACG 
FLAG-dapk-1 reverse 1 (R1) TTTCCTGAGAGAAGAACGGG 

 
  

Table 3.1 – Primer sequences for FLAG-dapk-1 genotype validation by PCR. Primers supplied 
by Eurofins. 
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Temperature Time 
95°C 1 min 30 secs 
95°C 15 secs* 
55°C 15 secs* 
72°C 15 secs* 
72°C 2 mins 

*these three steps were cycled 40 times 
 
 
PCR products derived from the reactions with primer combinations F1 + R1 were subjected to 

restriction digestion with BseRI (New England Biolabs).  Digest reactions were performed in a 

total volume of 20µl: 0.3µl BseRI, 2µl 10x CutSmart reaction buffer, 7µl PCR amplified product, 

10.7µl nuclease-free water. For digestion, samples were incubated at 37°C for 2 hours. DNA 

fragment size was visualised by 2% (w/v) agarose gel electrophoresis (80V for 1 hour) in TAE 

buffer, using 0.5x SYBR safe stain for DNA detection and a 100bp DNA ladder. Gels were imaged 

on a U:Genius 3 (Syngene). 

 

 
 
 
 
 
 
 
 
 
 
 
 

3xFLAG

(A)

(B) Expected fragment size (bp) 
From PCR Upon digestionPrimer combination

F  + R FLAG-dapk-1 789 510 + 279

no cleavage

-

-

693

354

no amplification

N2

N2

FLAG-dapk-1

Strain

cleavage site 

recognition site 
BseRI restriction site

forward primer 1 (F )1

1 1

F  + R1 1

F  + R2 1

F  + R2 1

forward primer 2 (F )2

linker
dapk-1

exon 1 intron 1
reverse primer 1 (R )1

AAGAGAGGAGGATCTGGA GG ATCAG
TTCTCTCCTCCTAGACCT CC TAGTC

Table 3.2 – PCR thermocycler programme for FLAG-dapk-1 genotype validation 

Figure 3.5 – Experimental design and predicted result for FLAG-dapk-1 genotype validation. 

(A) Site of 3xFLAG tag and linker knock-in at the 5’ end of the dapk-1 gene, with annotations of 

where the primers were designed to bind the template. The BseRI restriction site is annotated 

onto the template and a detailed sequence view of the enzyme recognition and cleavage sites 

are highlighted. (B) Expected DNA fragment sizes following PCR and subsequent restriction 

digestion with BseRI upon amplification with two different primer combinations. Restriction 

digestion was not performed on amplicons derived from primer combination F2 + R1.  
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3.2.7 FLAG-DAPK1 protein expression analysis 

 

3.2.7.1 Protein extraction 

 

C. elegans protein extracts were prepared in various lysis buffers in an attempt to optimise 

protein detection via Western blot. First, synchronised life stage nematodes at various life stages 

were collected off either NGM or enriched peptone (EP) media plates with M9 buffer. Once 

collated into a tube, the nematodes were washed at least two times in M9 buffer, by allowing 

the worms to settle at the bottom of the tube, removing the supernatant and adding fresh M9 

buffer. After these washes and removing the supernatant, one of three buffers was added to 

the sample for nematode lysis and protein extraction, either worm lysis buffer 2 (WLB2), RIPA 

buffer or denaturation buffer. The volume of this buffer added was 1x the estimated volume of 

nematodes. Samples were then sonicated (using a probe sonicator) for 5 x 30 seconds, with 10 

second intervals, at 55% amplitude. After sonication, the samples were centrifuged at 18 800 x 

g for 15 minutes at 4°C, the supernatant was removed and stored at -20°C, or immediately 

processed, for Western blot analysis.  

 

In the cases where the lysis and protein extraction were performed in WLB2 and RIPA buffer, 

the protein concentrations were estimated using a PierceTM bicinchoninic acid (BCA) assay kit 

(ThermoFisher Scientific), as per manufacturer’s guidelines. These samples were then aliquoted, 

diluted in the corresponding lysis buffer to achieve equal protein concentrations across samples 

and supplemented with 5% (v/v) β-mercaptoethanol and 1x NuPAGE LDS sample buffer. In all 

cases of sample preparation, the samples were then heated at 95°C for 10 minutes prior to 

loading for Western blot analysis. 

 

3.2.7.2 Western blot 

 

Protein samples were loaded into NuPAGETM 4-12% Bis-Tris precast gels assembled in NuPAGETM 

MOPS SDS running buffer and subjected to 140V for 90 minutes. PageRulerTM Plus prestained 

protein ladder was loaded alongside samples. Following protein separation by gel 

electrophoresis, samples were transferred to polyvinylidene difluoride (PVDF) membrane by 

wet electro-transfer in NuPAGETM transfer buffer supplemented with 20% methanol, at 50V for 

4 hours. Protein transfer efficiency was assessed by Ponceau S staining. Membranes were 

blocked with 5% milk in PBS-T (referred to as blocking solution) for 1 hour at room temperature.  
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For immunoblotting, membranes were cut and probed with primary antibody diluted in blocking 

solution for 16 hours at 4°C, washed in PBS-T (5 x 5 minute 10ml washes), probed with secondary 

antibody diluted in blocking solution for 1 hour at room temperature and washed again in PBS-

T (5 x 5 minute 10ml washes). Refer to Table 3.3 for specific antibody details. Membranes were 

then incubated with an enhanced chemiluminescence (ECL) substrate, SuperSignalTM West Pico 

PLUS chemiluminescent substrate (ThermoFisher Scientific), for 5 minutes at room temperature, 

then imaged on an ImageQuant LAS 4000 mini (GE Healthcare Life Sciences).  

 
 
 

Antibody Dilution Host 
Species 

Supplier Catalogue 
Number 

Anti-β-actin monoclonal 1:5000 
(approx. 0.4µg/ml) Mouse Sigma-

Aldrich A1978 

Anti-FLAG M2 monoclonal 1:1000 
(approx. 4µg/ml) Mouse Sigma-

Aldrich F3165 

Anti-mouse IgG polyclonal 
peroxidase conjugate 

1:2000 (FLAG) or 
1:10000 (actin) Goat Sigma-

Aldrich A3682 

 
 
3.2.8 FLAG-dapk-1 transcript expression analysis 

 

Quantitative PCR (qPCR) was performed to assess the presence of the FLAG-dapk-1 transcript 

within this newly generated strain. In parallel, this technique was also utilised to provide hints 

at any potential alterations of dapk-1 transcript expression upon FLAG tag insertion. Two C. 

elegans strains were processed, in triplicate, for this experiment: FLAG-dapk-1 and N2. 

 

3.2.8.1 RNA extraction 

 

For C. elegans lysis, synchronised L4 stage C. elegans were washed off NGM with 2ml M9 buffer. 

Three densely-populated but non-starved 60mm plates were used per sample. Nematodes were 

washed twice in 1ml M9 buffer to remove bacteria from sample suspension. 1ml TRI ReagentTM 

solution was added to each sample, then samples were frozen to -80°C. Following thawing, 

samples were subjected to bead beating with 0.5mm glass beads at 6m/sec for 2 x 20 seconds 

(with a 1 minute pause interval) in a tissue homogeniser. Samples were left to stand at room 

temperature for 5 minutes to promote nucleoprotein complex dissociation. The supernatant 

was then transferred to a new tube.  

 

The RNA isolation process first involved adding 100µl 1-bromo-3-chloro-propane to the lysate 

samples, which were subsequently shaken vigorously for 15 seconds then left to stand for 3 

Table 3.3 – List of antibodies used for Western blot  
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minutes at room temperature. Samples were then centrifuged at 12 000 x g for 15 minutes at 

4°C. After centrifugation the upper colourless phase of the samples were transferred to a new 

tube, 1 volume of 70% ethanol was added and the samples mixed by vortexing. To immobilise 

the RNA, the samples were added onto Qiagen RNeasy mini spin columns and centrifuged at 

8000 x g for 15 seconds.  

 

The RNA samples were purified through a number of steps using the Qiagen RNeasy mini kit in 

combination with the Qiagen RNase-free DNase set. 350µl RW1 buffer was added onto the 

columns, which were then centrifuged at 8000 x g for 15 seconds. 80µl DNase I mix (10µl DNase 

I [1500 Kunitz units [175]/550µl] + 70µl RDD buffer) was added to the columns, which were then 

left to stand at room temperature for 15 minutes. Columns were then washed with 350µl RW1 

buffer, centrifuged at 8000 x g for 15 seconds, 500µl RPE buffer (diluted in ethanol at a ratio of 

1:4) was added and again, columns were centrifuged at 8000 x g for 15 seconds. Again, 500µl 

RPE buffer (diluted as before) was added to the column, which was then centrifuged at 8000 x 

g for 2 minutes. Columns were then centrifuged at 8000 x g for 1 minute to remove any residual 

liquid. New collection tubes were then attached to the columns and RNA was eluted with 30-

50µl nuclease-free water by centrifugation at 8000 x g for 1 minute. RNA concentrations were 

determined using the Nanodrop 2000 spectrophotometer (Thermo Scientific). 

 

3.2.8.2 cDNA synthesis  

 

cDNA synthesis was performed using reagents from the ProtoScript II First Strand cDNA 

Synthesis Kit (New England Biolabs). First, a RNA-primer mix containing 1µg RNA, 2µl 60µM 

random primer mix in a total volume of 8µl (made up with nuclease-free water) was incubated 

at 65°C for 5 minutes. These RNA-primer mixes were then supplemented with 10µl 2x 

ProtoScript II Reaction Mix and 2µl 10x ProtoScript II Enzyme Mix, followed by incubation at 

25°C for 5 minutes, 42°C for 1 hour and 80°C for 5 minutes. Samples were then stored at -20°C.  

 

3.2.8.3 qPCR 

 

qPCR was performed with primers targeting a region of the FLAG sequence, the dapk-1 exon 1-

2 junction, the dapk-1 exon 12-13 junction and the tba-1 exon 1-2 junction (α-tubulin; to act as 

a housekeeping gene). cDNA used for qPCR was diluted 1:4 in nuclease-free water and 2µl of 

this diluted template was loaded into sample wells. 8µl of PCR master mix was then added to 

each well, the final concentrations of these master mix components were 1x FastStart Universal 

SYBR Green Master (Rox) (Sigma-Aldrich) and 0.3µM primer mix (forward and reverse) in 
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nuclease-free water (see Table 3.4 for primer sequences). Three experimental replicates, each 

in duplicate, were setup in one plate. A no template control (NTC) reaction was setup for each 

master mix (i.e. primer combination).  

 

The samples were incubated at 95°C for 10 minutes then cycled between 95°C for 15 seconds 

and 62°C for 1 minute for 40 cycles in a StepOnePlusTM Real-Time PCR System thermocycler 

(Applied Biosystems). The melt curve was determined using a 0.5°C incremental increase in 

temperature from 62°C to 95°C. Quantitative data was visualised and analysed to determine 

cycle threshold (Ct) values using StepOne software version 2.3. Data was normalised against the 

housekeeping gene, tba-1, to determine relative expression changes. Representative qPCR 

products were loaded into a 2.5% (w/v) agarose gel for electrophoresis (80V for 1 hour) to assess 

for non-specific amplification.  

 

 

 
 
 

Primer Primer sequence (5’ to 3’) 
FLAG forward TGACGATGACAAGAGAGGAGG 
FLAG reverse TTCGAACGGCGTATCGTCAA 

dapk-1 exons 1-2 forward AACTTGGAAGCGGACAATTCG 
dapk-1 exons 1-2 reverse TTGCGTATCGCCGCTTTTTG 

dapk-1 exons 12-13 forward TAGACGTGGGTGTTGCTGAT 
dapk-1 exons 12-13 reverse CGGTTGAATCGACATCTGGC 

tba-1 exons 1-2 forward AGACCAACAAGCCGATGGAG 
tba-1 exons 1-2 reverse TCCAGTGCGGATCTCATCAAC 

  

Table 3.4 – Primer sequences for FLAG-dapk-1 transcript validation by qPCR. Primers supplied 

by Sigma-Aldrich 
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3.3 Results 

 
3.3.1 Implementation of C. elegans query option in PINOT 

 

A C. elegans query option was added to PINOT to enable C. elegans PPI data to be extracted 

from the published records in relation to an input query list. As described, the pipeline 

underlying this aspect of PINOT differs slightly in comparison to using the resource for querying 

human PPI data. The key difference is that the C. elegans PPI data is downloaded, pre-processed 

and banked within the server hosting PINOT, whereas for human data is extracted and 

processed at the time of query. The C. elegans dataset utilised was curated by WormBase and 

includes the widest coverage of C. elegans PPI data, over four-fold more entries than BioGRID 

and approximately 70% more than IMEx member databases [171]. In addition, approximately 

60% of the data entries curated by WormBase were unique to this curation effort.   

 

Examining this WormBase dataset in further detail, specifically the alliance molecular 

interactions version 2.1 dataset (downloaded from the Alliance of Genome Resources download 

portal, available at https://www.alliancegenome.org/downloads), it includes 29 774 binary PPI 

data entries for C. elegans, curated from a total of 1308 publications. The majority of these 

interactions were detected by the Y2H technique (63%) and molecular sieving approaches 

(33%), with the remaining 4% detected by other methodologies. Hence, the distribution of 

distinct method detection strategies in this C. elegans PPI dataset is biased towards two 

technical approaches.  

 

3.3.1.1 PINOT performance for C. elegans data 

 

The performance of PINOT for querying C. elegans PPIs was compared to MIST [159], an 

alternative PPI query resource which also has C. elegans query capacity, the results of this 

comparison are reported in Figure 3.6. The data acquisition process which underlies these two 

resources differs slightly, as described, PINOT extracts data from the latest release of WormBase 

molecular interaction data, whereas MIST utilises data from several repositories, including 

WormBase, BioGRID and IMEx associated databases. In addition, there are distinct features to 

these resources, notably the interolog feature in MIST which suggests PPIs based on inference 

across species, however just evidence-based PPIs for C. elegans were used for this comparison.  

 

Overall, the performance of PINOT, in relation to the number of data entries extracted, is 

comparable to MIST. More specifically, PINOT extracts slightly fewer data entries across the 
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query cases reported in Figure 3.6. However, upon assessing the completeness of the output 

data provided by these two resources, in relation to interaction detection method and/or 

PubMed ID annotations within the data entries, there was a striking difference. Since the PINOT 

pipeline focusses particular emphasis on the quality of data provided to the user (through a 

stringent quality control (QC) procedure), all data entries provided in the output file were 

complete, whereas in MIST, incomplete data entries persisted in the output dataset. In the more 

abundant data pools, for example when querying the ATP and CED protein (Figure 3.6), 

incomplete data entries accounted for the majority of the output dataset in MIST.  

 

A further observation from this comparison is that the difference between the number of data 

entries extracted using PINOT with the stringent or lenient filter applied is very slight (and in 

most cases none existent; Figure 3.6). This reflects the WormBase curation effort (for the data 

utilised in PINOT) and in fact, only 381 data entries, which accounts for 1.3% of the entire 

WormBase dataset, are curated with an unspecified detection method annotation which are 

discarded in the stringent filter but retained in the lenient filter. Therefore, a difference in the 

PINOT output, with stringent or lenient filters applied, will only be apparent if the query proteins 

are present within that very small proportion of the dataset (1.3%).    
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3.3.2 Predicted DAPK-1 protein interaction networks 

 

First, an updated human DAPK1 interaction network (in relation to the DAPK1 interactome 

reported in Chapter Two) was generated using PINOT. Only interactors assigned a final score >2 

within the PINOT pipeline and hence were experimentally replicated interactors, were retained 

for constructing the network. As a result, 34 interactors (including the DAPK1-DAPK1 

interaction), from a total of 138 interactors extracted, were mapped onto the DAPK1 interaction 

network (Figure 3.7A).  

 

Since the C. elegans DAPK-1 interaction network was limited to one reported interactor, which 

was absent from PPI database curation efforts, numerous approaches were adopted to gather 

insight into the potential DAPK-1 interaction landscape. The first approaches utilised 

orthologous inference, exploiting the MIST and Ortholist tools independently, to generate 

predicted DAPK-1 PPI networks (Figure 3.7B and 3.7C).     
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Figure 3.6 – Performance comparison of PINOT and MIST for C. elegans PPI data. The number 

of PPI data entries extracted when using PINOT (with stringent and lenient filters applied, 

independently) and MIST were assessed with three query lists: PD-associated DNAJC orthologs: 

DNJ-14, DNJ-25, DNJ-27, Y73B6BL.12, K07F5.16, RME-8 and GAKH-1; ATP proteins: ATP-1, ATP-

2, ATP-3, ATP-4, ATP-5 and ATP-6; and CED proteins: CED-1, CED-2, CED-3, CED-4, CED-5, CED-6, 

CED-7, CED-8, CED-9, CED-10, CED-11, CED-12 and CED-13. The input format used for PINOT was 

the WormBase gene ID, the common gene name (as listed here) was used for MIST querying and 

no filter by rank parameter was set. The output data was evaluated in relation to the number of 

complete and incomplete (lacking detection method and/or PubMed ID annotations) data 

entries extracted.  Analysis performed on 24th September 2019.  
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Surprisingly, there were fewer nodes within the more recent DAPK1 interaction network than 

were mapped onto the DAPK1 PPI network over two years previously, using an earlier version 

of the same method (from 38 in 2017 to 34 in 2019). The four nodes absent in the more recent 

analysis: MIB1, UBC, UNC5A and UNC5C, were all present in the raw output dataset with a final 

score of 2, whereas previously these interactors were assigned a final score >2. This was 

investigated to understand the reason for this and it was traced back to a modification of DAPK1 

interactor data entries in the BioGRID repository during this time period, for example, one of 

the data entries listing the DAPK1-MIB1 interaction from a second publication was absent from 

the more recently acquired BioGRID data. This highlights that the curated data repositories are 

dynamic datasets and supports the need for providing a date (of data acquisition) alongside this 

type of analysis. Furthermore, it showed that advances in DAPK1 interactor data curation (and 

potentially detection), at least for replicated interactors, was stagnant during this time period. 

 

3.3.2.1 Predicted DAPK-1 interactors using MIST  

 

The interolog feature was used in MIST [159] to deduce DAPK-1 interactor predictions based on 

reported interactors in other species. These ortholog predictions are derived from the 

integration of the DRSC Integrative Ortholog Prediction Tool (DIOPT) [176] within MIST. Upon 

querying DAPK-1 in MIST, 25 proteins that ranked moderate within their custom confidence 

ranking scale were identified (Figure 3.7B), therefore these interactors have been inferred from 

multiple species, or a single species but identified by multiple methods, or both multiple species 

and multiple methods. In this analysis, the majority of orthologous inferences were derived from 

reported human DAPK1 interactions (57%), however inference from mouse and rat Dapk1 

interactions also contributed, 31% and 12% respectively.  
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(B) MIST interolog DAPK-1 PPI network(A) PINOT DAPK1 PPI network

(C) DAPK1/DAPK-1 ortholog network using Ortholist 2.0

(D) Overlap of nodes between (B) and (C)
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Figure 3.7 – DAPK1 protein interaction network and orthologous C. elegans interactors. 

(A) Human DAPK1 protein interaction network derived from PINOT on 25th June 2019. This 

network only displays interactions which have been replicated by interaction detection 

method and/or publication (i.e. PINOT final score >2). (B) Predicted C. elegans DAPK-1 

protein interaction network derived from the Molecular Interaction Search Tool (MIST) 

implementing the interolog query option, i.e. these nodes represent potential interactors 

inferred from reported interaction within a different species. (C) Predicted C. elegans DAPK-

1 protein interaction network based on the ortholog conversion of interactors within the 

human DAPK1 PPI network. Orthologs identified using Ortholist 2.0. (D) Number of 

overlapping nodes between the MIST-derived interolog PPI network and the Ortholist-

converted ortholog PPI network. 
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3.3.2.2 Predicted DAPK-1 interactors using Ortholist 2.0  

 

A second predicted DAPK-1 protein interaction network based on orthologous inference was 

constructed utilising the confidence-weighted human DAPK1 PPI network presented in Figure 

3.7A as a foundation. For this approach, each node in the human network was submitted to 

Ortholist 2.0 to identify its C. elegans orthologs, these orthologs were then mapped onto a PPI 

network (Figure 3.7C). This network comprised of 41 predicted DAPK-1 interactors. Of note, in 

some cases multiple orthologs originated from a single human protein and all were retained.  

 

Since the two processes underlying the predicted PPI networks were distinct, but both 

possessed a level of increased confidence weighting, moderate rank in MIST and derived from 

replicated human DAPK1 interactors (PINOT final score >2) in the Ortholist network, the 

networks were overlaid to assess their commonality. As a result, 12 proteins were identified as 

common between the two predicted networks (Figure 3.7D): ACT-4, CAP-1, CMD-1, COR-1, 

HUM-1, HUM-5, LEV-11, LRK-1, MPK-1, PAA-1, SUR-6 and UNC-5. This highlights a strategy for 

prioritisation of predicted interactors for physical and functional validation.  

 

3.3.2.3 Incorporation of reported interactors within the predicted DAPK-1 network 

 

The 41 predicted DAPK-1 interactors from the Ortholist-derived ortholog network (Figure 3.7C) 

formed the basis of a further analysis of the reported interactors of these predicted interactors. 

This analysis, performed using the C. elegans query option in PINOT, extracted 400 binary 

interactions that involve the 41 predicted DAPK-1 interactors. Of these reported interactions, 

45 were assigned a final score >2 within the PINOT pipeline and these were mapped onto the 

Ortholist-derived predicted network to add a second layer of interactors to the potential DAPK-

1 interactome (Figure 3.8). Of note, this retention of only 11% of interactors from reported to 

replicated, based on the PINOT scoring procedure, supports the observation that the majority 

of the PPI data are derived from Y2H screens and it seems only a small proportion are replicated 

in distinct studies. 

 

This hybrid, prediction and evidence-based, PPI network (Figure 3.8) provides wider and 

strengthened insight into the potential interactome of DAPK-1, than with predictions alone. 

Interestingly, a number of the predicted DAPK-1 interactors share common reported interactors, 

such as LEV-11 and PAA-1 (both of which were within the overlapping subset of nodes from the 

MIST and Ortholist network comparisons) which are both reported to interact with SMO-1. 

Furthermore, two of the predicted DAPK-1 interactors, LET-92 and SUR-6, are reported to 
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interact together and with a common interactor, SAS-6, potentially positioning DAPK-1 in a 

signalling cascade and/or complex with these three proteins. Potential connectivity of proteins, 

such as these examples, were apparent in numerous cases (Figure 3.8). This network analysis 

approach highlights a second strategy for prioritisation of predicted interactors for follow-up 

studies. 

 

 
 
 
 
 
 
 
 
 
  

Figure 3.8 – Predicted DAPK-1 protein interaction network based on orthologous 

interactor predictions and reported interactions of these nodes. Dashed edges indicate 

predicted interactions based on C. elegans ortholog conversions of nodes within the 

human DAPK1 PPI network. Orthologs identified using Ortholist 2.0. Solid edges indicate 

reported interactions derived from PINOT, with a confidence threshold set to only retain 

replicated PPIs. 
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3.3.3 Hybrigenics DAPK-1 yeast two-hybrid screen 

 

The DAPK-1 Y2H results were obtained by Hybrigenics (France), this experiment was outsourced 

to this company based on their expertise in this area.  

 

3.3.3.1 dapk-1 sequence validation and compatibility  

 

Cloning of the full-length dapk-1 bait sequence into a DBD-fusion vector was performed and 

validated by Hybrigenics. Initial attempts to assemble this sequence into their vector by ligation 

of three fragments proved unsuccessful in terms of reconstituting and validating the correct 

sequence. Therefore, gap repair cloning (directly in yeast) was performed. The sequence 

validation results from this cloning approach showed positive validation of the dapk-1 sequence 

at the protein level, however two synonymous mutations at the DNA level were present, C1350T 

(I450I) and G2922A (K974K). As these variants did not alter the coding sequence of DAPK-1, this 

sequence was considered valid for progressing with the screen.  

 

Prior to the full library screen, the dapk-1 bait was screened on a small-scale to assess its 

compatibility with the Y2H  system. This assessment showed that dapk-1 was neither toxic nor 

autoactivating within the experimental setup and therefore this bait was subjected to the full 

library screen. 

 

3.3.3.2 Identification of novel DAPK-1 interactors 

 

The Y2H screening of the full-length dapk-1 bait against the C. elegans mixed stage prey library 

resulted in 268 positive clones, from approximately 157 000 000 potential interactions tested. 

These 268 positive clones were processed by sequencing which identified nine protein binding 

partners of DAPK-1, three of which were proven technical artefacts of the experimental system. 

Hence, six novel DAPK-1 interactors were identified (Table 3.5): CMD-1, MEP-1, SYD-9, UNC-14, 

C39E9.12 and F13H8.5. CMD-1 (or calmodulin) was the only interator identified with very high 

confidence and this hit was overrepresented within the positive clones (78% of all positive 

clones). The other five interactors detected were of moderate confidence and were detected 

from a low number of positive clones (Table 3.5), in some cases just one positive clone 

corresponded to these hits.  

 

The confidence ratings assigned to these positive hits are derived from a ‘predicted biological 

score’ that Hybrigenics calculate based on technical parameters, such as the number of prey 
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fragments that contribute towards the overall pool of positive clones, and using data generated 

from previous Hybrigenics screens of the same species. A further feature provided by 

Hybrigenics in the result output was the identification of a selected interaction domain (SID), 

which corresponds to the minimum region of protein sequence interacting with the bait protein. 

The SID boundaries for each interactor identified are listed in Table 3.5. This is calculated based 

on the prey fragments which interact with the bait and provides an insight into the interaction 

interface of the prey protein. Of note, if only one prey fragment corresponds to a positive hit, 

the SID will be the full length of that fragment, whereas if multiple different prey fragments 

correspond to a positive hit, the SID is likely to be more specific and may represent the 

interaction interface with increased accuracy.  

 

 

 

 
  

Protein 
Y2H Positive Hit 

Hybrigenics 
Confidence 

Rating 

Number of 
Sequenced 
Clones that 
Match Hit 

Protein 
Length 

(aa) 

Selected 
Interaction 

Domain (SID) 
(aa) 

Human 
Orthologs 

CMD-1 
T21H3.3 

WBGene00000552 

Very high 
confidence 209 149 80-145 

CALM1, 
CALM2, CALM3 

(Calmodulin) 
MEP-1 

M04B2.1 
WBGene00003218 

Moderate 
confidence 1 870 400-854 ZFAT, ZFX, ZFY, 

ZNF711 

SYD-9 
ZK867.1 

WBGene00044068 

Moderate 
confidence 1 452 54-297 ZFP57 

UNC-14 
K10D3.2 

WBGene00006753 

Moderate 
confidence 6 665 51-335 - 

- 
C39E9.12 

WBGene00008035 

Moderate 
confidence 2 409 2-381 - 

- 
F13H8.5 

WBGene00017438 

Moderate 
confidence 1 513 250-507 - 

Table 3.5 – Novel DAPK-1 interactors identified by yeast two-hybrid (Y2H). A summary 

detailing the positive hit results identified from the outsourced Y2H screen (Hybrigenics, 

France). Each interactor was assigned a confidence rating and a selected interaction domain 

(SID) based on the analysis of the sequenced prey fragments. aa = amino acid 
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3.3.4 Generation of a FLAG-dapk-1 C. elegans strain 

 

A 3xFLAG tag was engineered into the C. elegans genome at the endogenous 5’ dapk-1 locus to 

facilitate further experimentation centred around the DAPK-1 interaction profile. This genomic 

modification was outsourced to SunyBiotech (China). 

 

3.3.4.1 FLAG-dapk-1 sequence validation  

 

SunyBiotech provided sequencing results supporting the validation of the 3xFLAG tag knock-in 

at the desired locus. This involved sequencing a 705bp region which included the introduced 

sequence. The 3xFLAG and linker sequence was validated in line with the expected sequence 

insertion, however two synonymous mutations were identified which correspond to exon 1 of 

dapk-1, C72T (F24F) and A105T (G35G). In addition, the introduction of the 3xFLAG and linker 

sequence was validated in-house by PCR and restriction digestion (Figure 3.9; see Figure 3.5 for 

experimental design and expected results). This analysis also supports the successful insertion 

of the 3xFLAG and linker sequence at the desired locus.  

 

In brief, the expected amplified fragment size when using primers F1 and R1 was 789bp and 

693bp on the FLAG-dapk-1 and N2 genetic backgrounds, respectively. Upon digestion with 

BseRI, which targets a region within the 3xFLAG and linker sequence, the fragments derived 

from the FLAG-dapk-1 were expected to be cleaved into fragments of length 510bp and 279bp, 

whereas the N2-derived fragments were expected to remain intact upon incubation with the 

BseRI endonuclease. This expectation matches the result across all replicates of the FLAG-dapk-

1 and N2 samples (Figure 3.9A), with some undigested fragments persisting in the FLAG-dapk-1 

digested samples. For PCR using primers F2 and R1, whereby F2 was designed to anneal to the 

3xFLAG sequence, the expected amplified fragment size was 354bp on the FLAG-dapk-1 

template background whilst no amplification was expected from the N2-derived samples. The 

gel image corresponding to this PCR (Figure 3.9B) showed expected amplification with regard 

the FLAG-dapk-1-derived samples. However, unexpected weak signal was evident in the N2-

derived samples at approximately 200bp and 800bp, although due to the fragment size and 

signal intensity this is likely as a result of off-target binding of the primers.  
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3.3.4.2 FLAG-DAPK-1 protein validation  

 

Synchronised life stage C. elegans populations were lysed for protein extraction using various 

lysis buffer compositions and processed for Western blot analysis in an attempt to detect FLAG-

DAPK1. Following gel electrophoresis and electro-transfer of the samples, the membranes were 

cut and probed for either FLAG or β-actin. Samples were collected at various C. elegans life 

stages since DAPK-1 expression is likely to be dynamic through the developmental stages. The 

rationale underlying this was to identify an appropriate life stage whereby DAPK-1 is expressed 

at a detectable level (and at its highest) to inform future experimentation with regard FLAG-

DAPK1 AP-MS. Each lysis method was replicated at least twice and the resulting blots showed 

similar outcomes. Representative blot images from these analyses are displayed in Figure 3.10. 
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Figure 3.9 – FLAG-dapk-1 tag validation at the genomic level. PCR of two DNA fragments at 

the 5’ dapk-1 locus to validate insertion of a 3xFLAG tag. (A) Agarose gel image of DNA 

fragments derived from PCR of a region spanning the 5’ untranslated region, dapk-1 exon 1 and 

a region of dapk-1 intron 1, followed by restriction digestion with BseRI which targets a 

recognition site in the inserted 3xFLAG-linker region. (B) Agarose gel image of DNA fragments 

derived from PCR, whereby the forward primer was designed to anneal to the inserted 3xFLAG 

sequence. Lane numbering corresponds to sample replicates; NTC, no template control. 
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From this analysis, it is evident that detecting the FLAG epitope in the FLAG-dapk-1 C. elegans 

strain proved challenging. The expected result for positive validation of the tag at the protein 

level would be specific signal in the FLAG-dapk-1 samples at approximately 160kDa (which 

would correspond to full-length DAPK-1), which was absent in the N2 samples. C. elegans lysis 

in WLB2 was the initial lysis method used and no specific FLAG-DAPK-1 signal was observed 

across any of the samples (Figure 3.10A), even following exposure times exceeding 30 minutes 

during imaging. Specific detection of a β-actin ortholog, likely to be ACT-2, was observed when 

probing with the anti-β-actin antibody. This verified that this antibody was suitable for C. elegans 

samples, reactivity in this species was not previously reported by the supplier. Furthermore, this 

signal acted as a positive control for protein extraction.  

 

To identify whether proteolytic cleavage of DAPK-1 may be occurring which may be a reason for 

the lack of specific signal at the expected molecular weight of full-length FLAG-tagged DAPK-1, 

samples lysed by the same method (lysis in WLB2) were subjected to Western blot analysis, but 

for this experiment, the entire membrane was probed for the FLAG epitope (Figure 2.10B). From 

this blot, high intensity off-target signal was evident across all samples (including negative 

controls) at an approximate molecular weight of 60kDa. FLAG-dapk-1 strain specific signal was 

evident in samples derived from L2 and L4 stage nematodes between 15-35kDa and 15-25kDa, 

respectively.  

 

Due to unsuccessful validation of FLAG-DAPK-1 using the WLB2 lysis buffer, the lysis and protein 

preparation methods were then altered to use more stringent lysis buffers, first RIPA buffer and 

then lysing the samples direct in denaturation buffer. Following nematode lysis in RIPA buffer, 

again, no specific signal in the FLAG-dapk-1 samples was observed (Figure 3.10C). Western blot 

was then trialled on samples derived from lysis directly in denaturation buffer. Estimates of 

protein quantity were not performed on these samples and this resulted in uneven loading, in 

relation to the amount of protein loaded per well. This is reflected in the blot image (Figure 

3.10D), whereby the lanes corresponding to day 10 samples were overloaded in relation to other 

samples. This image was overexposed in an attempt to identify any subtle but specific FLAG-

DAPK-1 related signal. However, this was not observed.  
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Figure 3.10 – FLAG-DAPK-1 tag validation at the protein level. Representative blot images of 

various protein preparation methods used in an attempt to detect FLAG-DAPK-1 within lysates 

from C. elegans at different life stages. (A) Samples were lysed in WLB2. (B) Samples were lysed 

in WLB2 and the whole blot was probed for the FLAG epitope. (C) Samples were lysed in RIPA 

buffer. (D) Samples were lysed in denaturation buffer. FLAG-associated images were 

overexposed in attempt to detect weak but specific signal. β-actin was used as positive control 

for protein extraction and loading control across equivalent life stages. 
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3.3.4.3 FLAG-dapk-1 transcript analysis  

 

Since convincing evidence to support the expression of FLAG-DAPK-1 at the protein level was 

lacking, qPCR was performed to assess whether the FLAG tag was detectable at the transcript 

level. The amplification reactions targeted two regions of the dapk-1 sequence, spanning exon 

junctions at the 5’ and 3’ end of the gene, the FLAG sequence and exons 1-2 of tba-1 

(housekeeping gene). The expected PCR product sizes were 99bp, 147bp, 103bp and 124bp for 

dapk-1 exons 1-2, dapk-1 exons 12-13, FLAG and tba-1 primer combinations, respectively. From 

agarose gel electrophoresis of the qPCR products, it was evident that specific amplification was 

achieved across the four primer combination reactions and hence dapk-1 and tba-1 mRNA was 

expressed (Figure 3.11A). Moreover, amplification targeting the FLAG sequence was detected, 

specific to the FLAG-dapk-1 samples, suggesting transcription of FLAG-dapk-1. 
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Figure 3.11 – FLAG-dapk-1 transcript analysis by qPCR. (A) Agarose gel electrophoresis of qPCR 

products derived from cDNA amplification of four loci: exons 1-2 and exons 12-13 of dapk-1, 

FLAG and tba-1, in FLAG-dapk-1 and N2 nematodes. (B) Exon intron topology of dapk-1 splice 

variants, schematic obtained from WormBase. (C) Relative expression level of dapk-1 exons 1-

2 in FLAG-dapk-1 and N2 nematodes. (D) Relative expression level of dapk-1 exons 12-13 in 

FLAG-dapk-1 and N2 nematodes. Relative expression levels presented as delta-Ct values 

subtracted from an arbitrary value (n=3). 
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The preliminary quantitative data from this experiment indicates a decrease in dapk-1 mRNA 

expression in the FLAG-dapk-1 strain when compared to the N2 strain, measured at two exon 

junctions of the gene (Figure 3.11C and 3.11D).  The relative expression levels of FLAG-dapk-1 

strain derived transcripts were reduced to approximately 20% and 60% of N2 strain derived 

transcript expression, at exons 1-2 and exons 12-13 regions of dapk-1, respectively (exon 

numbers corresponds to full-length gene). This is based on fixed cycle threshold (Ct) values of 

the dapk-1 targeted amplifications (exons 1-2 or 12-13) normalised against the Ct values for the 

housekeeping gene measured from the same experimental sample. Of note, shorter splice 

variants of dapk-1 lack the 5’ portion of the gene (Figure 3.11B). 
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3.4 Discussion  

 

The approaches developed and used in this body of research harnessed predictive and evidence-

based PPI mapping to provide novel insight into the interaction profile of C. elegans DAPK-1. The 

orthologous transition of PPI network analysis from human DAPK1 to C. elegans DAPK-1 

highlights a strategy for PPI inference for poorly defined interactomes, especially for popular 

model organisms, such as C. elegans, whereby PPI query and ortholog conversions tools are 

becoming well-established [121,159,172,177]. In addition to PPI predictions, novel DAPK-1 

interactors were identified using Y2H technology and an epitope tag was engineered into the C. 

elegans genome at the dapk-1 locus to facilitate further DAPK-1 PPI screens.  

  

3.4.1 Capturing C. elegans PPI data in PINOT 

 

The vision of incorporating a C. elegans query option into PINOT led to the successful 

development of a data processing pipeline which was trialled and integrated into the online 

version of the resource [121]. This pipeline functions similarly to the pipeline underlying PINOT 

for human PPI data, however a number of steps are performed prior to the query submission, 

i.e. the C. elegans PPI dataset is pre-processed (as described). This additional species capability 

broadens the use of PINOT which will, as a result, hopefully be of valuable resource for the C. 

elegans research community.  

 

The added value of PINOT for C. elegans PPI data query above alternative resources is multi-

layered. First and in relation to data coverage, PINOT utilises data from WormBase [103], which 

is the primary repository for C. elegans information and hence curates the widest coverage of 

C. elegans PPI data [171]. Updated versions of this WormBase dataset are released 

approximately every 4 months and therefore to maintain an up-to-date resource for C. elegans 

PPI querying, the C. elegans dataset within PINOT will be updated in conjunction with these 

releases.  

 

MIST [159], an alternative tool for C. elegans PPI querying, collates data from numerous sources, 

which includes WormBase and a number of the IMEx member repositories, and hence a wider 

coverage of data would be expected in comparison to PINOT. This was the case, although the 

difference was marginal. However, the data quality provided by MIST was compromised, in 

relation to completeness, in comparison to PINOT (Figure 3.6). In addition and similarly to PINOT 

for C. elegans data, MIST utilises banked PPI data from a bulk download event direct from the 

source repositories, however it is unclear how regularly this banked dataset is updated, although 
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the date or version of the latest downloaded dataset is available. Therefore the user may not be 

provided with an up-to-date representation of the interaction profiles for proteins of interest if 

there is a considerable time gap between MIST downloading the latest PPI dataset and the time 

of query. 

 

An alternative approach to access this WormBase curated PPI data is via specific gene pages on 

the WormBase website. Upon querying a gene and then selecting the ‘Interactions’ tab, a 

network visualisation of reported PPIs is displayed. However, this can only be done on a protein-

by-protein basis and multiple proteins cannot be queried simultaneously. In contrast, there is 

no limit to the number of proteins that can be queried during a PINOT query submission, 

therefore this WormBase data can be extracted, collated and considered collectively, in relation 

to a query input list. This highlights a further advantage of using PINOT for C. elegans PPI 

querying. 

 

As described, the composition of this WormBase curated data is skewed towards PPIs detected 

by the Y2H approach. Due to the inherent limitations of this technique (briefly outlined in Table 

2.8), such as PPI detection only occurring within the nucleus; bait and prey proteins typically 

overexpressed and in fragments; system potentially lacks the physiological post-translational 

modification (PTM) and accessory molecule profile for proteins of interest which could impact 

protein folding; etc, these considerations should be accounted for when interpreting the C. 

elegans PPI data from the PINOT output. The final score assigned to each PPI within the PINOT 

output acts as a confidence score and will facilitate this interpretation. However, it is likely that 

when using PINOT for C. elegans data, the majority of PPIs will score a final score of 2 (which 

was the case when mapping the DAPK-1 double layered network [Figure 3.8]), for example, a 

reported PPI based on a single detection from a high-throughput Y2H screen (such as the C. 

elegans interactome study from the Vidal laboratory [178]), and these PPIs should be 

interpreted with caution. 

 

3.4.2 Creating predicted DAPK-1 PPI networks from orthologous inference 

 

Numerous roles have been proposed for C. elegans DAPK-1 (as described in the introduction of 

this chapter), however mechanistic characterisation of this protein in the context of signalling 

events remains an area for future investigation. In addition, the interaction profile of C. elegans 

DAPK-1 was largely a blank canvas, with only one reported interactor [166]. Therefore, two 

strategies were used to map predictive PPI networks for DAPK-1, using MIST and Ortholist 2.0 

for orthologous inference from DAPK1 PPIs in other species.  
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Despite a similar strategy underlying these two approaches, the predicted PPI networks differed 

in terms of the number of nodes mapped (Figures 3.7B, 3.7C and 3.7D), this reflects the 

differences in the methodology underlying the ortholog assignment. The key differences are 

that MIST utilises data from multiple species (human, mouse and rat in this case), whereas 

Ortholist performs C. elegans ortholog conversions from human only and the underlying human 

DAPK1 PPI network was derived from PINOT. Furthermore, the orthology analysis tools 

integrated into MIST and Ortholist differ: MIST encompasses 15 orthology algorithms for C. 

elegans via the integration of the DIOPT [176], while Ortholist utilises 6 orthology algorithms 

[172]. Of note, 5 of the these programs incorporated into Ortholist are also used in the MIST 

interolog feature.  

 

Based on these differences, MIST incorporates a wider coverage of both, species ortholog 

conversions and orthology algorithms, and would be expected to output a wider array of 

orthology-predicted PPIs than the Ortholist approach. However, the confidence parameters are 

unmatched in these two approaches, which contributes to the differences in network size. The 

ortholog selection in MIST utilises the highest stringency filter in the DIOPT for orthology analysis 

[159] and hence these interactors are high confidence orthologs. In contrast, when using PINOT 

coupled with Ortholist, the original reported PPIs are of increased confidence (only interactors 

with a final score <2 in PINOT) but the ortholog mapping does not filter based on confidence, 

unlike MIST, hence a wider collection of orthologs are present. Therefore, these two distinct 

approaches taken together provide a useful strategy for not only predicting PPIs based on 

orthology, but prioritising these predicted interactors by identifying nodes common to both 

approaches (i.e. high confidence orthologs derived from replicated reported PPIs [Figure 3.7D]) 

for validation.  

 

Evidence-based PPI mapping was then incorporated into the Ortholist-derived predicted 

network to add an element of confidence-weighted experimental data to the potential DAPK-1 

interaction landscape. This facilitates a vision of where DAPK-1 may fit within the functional 

landscape of C. elegans biology. Despite a lack of reported interactors for DAPK-1, DAPK-1 

predicted interactors possessed many reported interactors within C. elegans, with a degree of 

confidence (Figure 3.8). Therefore, this positions DAPK-1 in the context of potential proximal 

signalling events, providing routes for DAPK-1 related pathway investigation, in the context of 

computational pathway inference modelling [179] and functional ‘wet-lab’ studies.    

 

Furthermore, several nodes of this predicted layer of DAPK-1 interactors possess connectivity 
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through reported interactions with other predicted DAPK-1 interactors and/or via common 

nodes within the second layer of evidence-based interactors. These cases are of particular 

interest, because they position DAPK-1 in an already established interconnected network which 

may suggest the involvement of DAPK-1 in a series of signalling events and/or protein complex. 

An example of this interconnectivity is between LET-92, SUR-6, SAS-6, RSA-1, PAA-1, SMO-1 and 

LEV-11 (see lower right side of the network presented in Figure 3.8), which includes a number 

of predicted DAPK-1 interactors.  

 

LET-92, SUR-6, RSA-1 and PAA-1 are subunits of protein phosphatase 2A (PP2A) [180], which 

may act on DAPK-1, similarly to human DAPK1 and PP2A [66,67] although the target 

phosphorylation site (Ser308) is not conserved in C. elegans DAPK-1. Alternatively, PP2A may 

act in concert with DAPK-1 to regulate the phosphorylation status of substrates. Of note, PP2A 

in C. elegans (as a complex and in subunits) influences numerous signalling cascades and hence 

is functionally linked to a diverse range of biological processes. In addition, several of these 

interconnected nodes aforementioned are functionally associated with the cell cycle [181–183], 

and therefore this potentially positions DAPK-1 in the same functional sphere.  

 

3.4.3 Novel DAPK-1 binding partners 

 

Further investigation into the DAPK-1 interaction network was achieved by outsourcing a Y2H 

screen whereby full-length DAPK-1 was used as the bait protein against a mixed life-stage C. 

elegans prey library. By using this approach experimental PPI data was generated in a 

hypothesis-free and high-throughput manner. From this screen, six DAPK-1 interactors were 

identified (Table 3.5). These results uncover novel insight into the DAPK-1 interaction profile and 

since this was largely undefined previously, provides routes for perturbing potential DAPK-1 

signalling events for understanding the role of this protein at molecular and mechanistic levels.  

 

Unsurprisingly, although previously unreported, CMD-1 (or calmodulin) was identified as very 

high confidence DAPK-1 interactor. This was an expected result since calcium/calmodulin 

regulation of the kinase activity in human DAPK1 is well characterised [63] and based on 

structural conservation is likely to also be the case for the C. elegans ortholog. In addition, CMD-

1 shares a high degree of homology with human calmodulin at a structural level (98% identity), 

differing by only three residues. Furthermore, CMD-1 was a node present in both predicted 

DAPK-1 PPI networks (Figures 3.7B and 3.7C). The CMD-1 interaction interface mapped to the 

C-terminal portion of the protein, within residues 80-145 (Table 3.5). The DAPK-1-CMD-1 

interaction is unlikely to elicit a specific DAPK-1 functional pathway, but rather play a critical role 
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in kinase activation and in turn, influence a multitude of potential signalling cascades. 

Calmodulin is a regulatory molecule for a whole class of kinases, plus a plethora of other 

enzymes and structural proteins, within the C. elegans proteome [184]. Hence, CMD-1 RNAi 

results in disruption to numerous fundamental cellular process, such as apoptosis, cell migration 

and cell proliferation (Table 3.6). 

 

The other DAPK-1 interactors identified by the Y2H screen: MEP-1, SYD-9, UNC-14, C39E9.12 

and F13H8.5, were rated with moderate confidence and therefore these results, in particular, 

would benefit from replication via alternative method detection strategies to assess their 

validity. Nevertheless, these positive hits provide novel insight into the potential DAPK-1 

interactome and a foundation for hypothesis-driven DAPK-1 PPI studies. Despite a lack of 

functional and phenotypic data for two of these potential interactors, the possible role of DAPK-

1 can be gleaned from the current understanding of MEP-1, SYD-9 and UNC-14 function (Table 

3.6). The human orthologs of these proteins (listed in Table 3.5) were not reported human 

DAPK1 interactors.  

 

 

 

 

 

 

 

Protein 
Y2H Positive Hit Functional insight 

Associated C. elegans phenotype 
upon gene knock-out-, RNAi+, point 

mutation* 
Refs 

CMD-1 
T21H3.3 

WBGene00000552 

Regulatory calcium-
binding molecule for 

many proteins 

Embryonic lethal+ (RNAi 
microinjected). Apoptosis+, cell cycle+ 
and cell migration+ defects, increased 

cell proliferation+ (RNAi fed). 

[185–187] 

MEP-1 
M04B2.1 

WBGene00003218 

Larval, oocyte and 
gonad development, 
cell differentiation, 

chromatin regulation 

Lethal-, L1 development arrest+, 
slowed growth+, vulval abnormalities+, 
epithelial and intestinal morphology 

variant+ 

[188–191] 

SYD-9 
ZK867.1 

WBGene00044068 

Synaptic function, 
endocytosis 

Axon morphology variant-, synaptic 
defects*, developmental delay-*, egg 

retention-*, enlarged intestine-*, 
reduced number of progeny-* 

[192] 

UNC-14 
K10D3.2 

WBGene00006753 

Synaptic function, 
axon guidance, 

membrane trafficking 

Axon morphology variant*, locomotion 
variant+* [193–196] 

C39E9.12 
WBGene00008035 Unknown - - 

F13H8.5 
WBGene00017438 Unknown - - 

Table 3.6 – Functional and phenotypic insight into novel DAPK-1 interactors identified by 

Y2H. A list of the six DAPK-1 protein binding partners identified by the yeast-two hybrid 

approach alongside the current understanding of the protein function and the associated C. 

elegans phenotypes upon genetically manipulating the corresponding gene. 
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Interestingly, there are common phenotypic traits upon genetic manipulations of these 

interactors, such as development delay in mutant mep-1 and syd-9 C. elegans [189,192]. 

Furthermore, MEP-1 and SYD-9 are reported to physically interact [197], potentially positions 

DAPK-1, MEP-1 and SYD-9 in a functionally relevant interaction triad. Of further interest is the 

functional commonality between these hits, for example SYD-9 and UNC-14 are both involved 

in synaptic function and vesicular trafficking. In addition, upon genetic manipulation of the 

corresponding genes, disruption to axon morphology is evident [192,195,198]. With DAPK-1 

possessing functional links to autophagy and cytoskeletal dynamics [161], validating and 

characterising the interplay between these three proteins appears a logical route for further 

investigation. Furthermore, UNC-14 contains a RUN domain, a PPI interface which is known to 

interact with GTPases [199].  

 

3.4.4 Validation challenges with the FLAG-dapk-1 C. elegans strain  

 

The generation of a 3xFLAG-tagged dapk-1 C. elegans strain was to enable in-house 

experimentation into the in vivo DAPK-1 interaction profile, with the aim of performing AP-MS 

on FLAG-DAPK-1 isolated from nematode lysates. The reason for inserting an epitope tag at the 

endogenous dapk-1 locus was two-fold. First, to enable detection and isolation of the protein 

since DAPK1 antibodies (developed for the human ortholog) are of low quality. Second, for this 

detection to be representative of the endogenous DAPK-1 expression profile, avoiding 

overexpression systems which may result in artefactual PPI events. The FLAG tag was chosen 

since it is small and hydrophilic [200,201], therefore the likelihood of it interfering with the 

biological activity and folding of DAPK-1 is low. Moreover, the triplication of the FLAG sequence 

hugely increases the detection efficiency [202] and since DAPK-1 is likely to be expressed at a 

low level (Figure 3.12), sensitivity of the detection system was a key consideration.   

 

Upon receiving the FLAG-dapk-1 strain, a number of validation steps were performed to ensure 

the tag had been inserted as expected, prior to further experimentation. Sequencing data 

provided by SunyBiotech and PCR followed by restriction digestion of genomic DNA performed 

in-house validated the insertion of the tag at the genomic level. However, attempting to detect 

the FLAG tag within protein extracts derived from this strain was challenging and convincing 

validation at the protein level is still lacking. The detection of FLAG-DAPK-1 was expected to be 

difficult, since mRNA expression data for the corresponding transcript showed relatively low 

expression throughout the C. elegans life stages (Figure 3.12). Nevertheless, detecting the 

3xFLAG epitope using the anti-FLAG M2 monoclonal antibody was thought to be a highly 

sensitive and specific. Specific signal corresponding to full-length FLAG-DAPK-1 was absent in all 
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life stages tested (embryos through to 10-day old adults). Based on the mRNA data available 

dapk-1 expression is highest during embryonic and L2-L3 larval stages (Figure 3.12) and further 

evidence suggests expression heightens during ageing, marginally at around day 6 and then 

substantially post day 16 [203]. Therefore, ageing C. elegans for longer may help in detecting 

FLAG-DAPK-1. 

 

To troubleshoot this issue of FLAG detection, nematode samples were lysed in lysis buffers of 

increasing stringency, first using WLB2 which contains Triton X-100 (non-ionic detergent), then 

RIPA buffer which contains SDS and sodium deoxycholate (ionic detergents) and finally lysis 

directly in denaturation buffer containing β-mercaptoethanol (Figure 3.10). Despite this 

approach, specific FLAG signal corresponding to full-length DAPK-1 was not detected and using 

the less refined, yet more harsh, lysis method of nematode lysis in denaturation buffer, a lot of 

non-specific signal was detected. In addition, protein quantity was adjusted by lysing a greater 

number of nematodes. In some case whereby the protein concentration was estimated, 

approximately 30µg of protein was loaded into each well of the gel, however even at high 

protein quantities, no FLAG specific signal was observed.  Protein extraction was successful 

when using these three lysis methods, as shown by intense specific signal when probing samples 

with anti-β-actin antibody. The protein detected here was most likely ACT-2, the C. elegans β-

actin ortholog, which shares a high degree of sequence similarity to the immunogen used for 

antibody production (93% coverage, 86% identity).  

 

 

 

 

 

 

 

(A) dapk-1 (B) act-2

Life stages Life stages

Figure 3.12 – dapk-1 and act-2 mRNA expression through the developmental stages of C. 

elegans. Median mRNA expression values from the PolyA+ and Ribozero modENCODE datasets 

accessed via WormBase. (A) dapk-1 expression, (B) act-2 expression. Life stage abbreviations: EE, 

early embryo; LE, late embryo; L1-L4, larval stages 1-4; YA, young adult. 
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Since specific signal corresponding to full-length FLAG-DAPK1 was undetectable via Western 

blot analysis, dapk-1 transcripts were assessed by qPCR. This was to gather insight into first, 

whether the FLAG sequence was transcribed and second, whether dapk-1 expression was 

affected by the genome editing. It was reassuring to identify that the FLAG sequence was being 

transcribed (Figure 3.11A), largely because a number of dapk-1 splice variants lack exon 1 (Figure 

3.11B), which is where the FLAG epitope is fused. However, splicing events may impact on the 

representation of FLAG-dapk-1 in the dapk-1 transcript pool (including all isoforms). Therefore, 

further work is required to decipher dapk-1 RNA processing and to gather insight into the ratios 

of expression levels between dapk-1 isoforms. Based on studies to map the splicing patterns in 

another ROCO gene of similar size and complexity, human LRRK2, this type of analysis is 

challenging, especially with low abundance targets [204]. 

 

An indication that dapk-1 expression is reduced in the FLAG-dapk-1 strain (Figures 3.11C and 

3.11D) may have contributed to the challenge of detecting FLAG-DAPK-1 at the protein level. 

The expression of the already lowly expressed dapk-1 may be suppressed due to the genomic 

modification. Alternative strategies to pursue in vivo DAPK-1 interactome studies include dapk-

1 transgenesis or stimulation of dapk-1 expression, however these approach possess limitations 

with regard to non-physiological expression and therefore pursing validation of the FLAG-dapk-

1 strain is favoured. 

 

3.4.5 Conclusions  

 

The analyses underlying this chapter provide a route for studying PPIs in a model organism 

whereby the current PPI landscape for a protein of interest is sparse and a clear ortholog has 

been identified. In this case, the analyses were centred on C. elegans DAPK-1. Predicted PPI 

networks were constructed based on orthologous inferences from reported PPIs in other species 

and this was coupled with reported C. elegans PPIs to assess the potential interaction profile of 

DAPK-1 in the wider cellular context. This was largely facilitated by the implementation of a C. 

elegans PPI data query option in PINOT. These hybrid networks, incorporating both predicted 

and evidence-based PPI data, were complemented by DAPK-1 PPI detection using the yeast two-

hybrid approach which yielded six novel DAPK-1 interactors. In addition, a FLAG-dapk-1 C. 

elegans strain was engineered for further DAPK-1 interactomic studies, however technical 

validation of this strain is ongoing.      

 

Furthermore, this research provides the foundations for developments and future investigations 

in several directions. Improvements to the C. elegans PPI query aspect of PINOT are already 
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under consideration, in relation to implementation of the Alliance of Genome Resources API and 

incorporation of data captured by the PSICQUIC. At several stages in these analyses interactors 

were prioritised for further validation, which streamlines future ‘wet-lab’ studies. In addition, 

once validated, the FLAG-dapk-1 strain represents a powerful tool for mapping the C. elegans 

DAPK-1 interaction profile. Overall, the resources developed and results obtained will guide and 

strengthen future DAPK-1 interactome and functional studies.  
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CHAPTER FOUR 

 
 

Developing Novel Mutant 
dapk-1 C. elegans Models  
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4.1 Introduction 

 
 

The dapk-1 gene in C. elegans was identified from a genetic screen for mutant strains associated 

with epidermal morphogenesis defects, first reported in 2004 [205]. This gene was initially 

termed mor-3, a C. elegans nomenclature based on observed phenotype, whereby mor 

corresponds to ‘morphological: rounded nose’. Based on C. elegans tissue gene expression 

profiling, dapk-1 is expressed in the epidermal layer, specifically the hypodermis, and the body 

wall musculature [165,206,207]. Throughout the life stages of C. elegans, dapk-1 gene 

expression increases during embryonic development and is most highly expressed during late 

embryogenesis (approximately 10 hours into embryonic development), then dapk-1 is 

expressed at lower levels throughout larval development and adulthood [208] (Figure 3.12A). 

The pattern of expression dapk-1 expression in aged nematodes requires further investigation, 

however insights from the data available suggests dapk-1 expression is relatively low up to adult 

day 14 then increases within days 16-19 [203].  

 

Since the identification and genetic mapping of dapk-1, a number of studies have assessed 

phenotypic characteristics of C. elegans upon genetic manipulation of dapk-1 [164–167]. One 

approach has been to utilise dapk-1 mutant strains (Table 4.1), two of which are available from 

the Caenorhabditis Genetics Centre (CGC; gk219 and ju4). The gk219 allele is a dapk-1 gene 

knockout derived from a deletion in the 5’ UTR region and exon 1 of the gene. This strain was 

generated and isolated by the C. elegans Knockout Consortium [209] as part of a large-scale 

chemical mutagenesis effort, using trimethylpsoralen (TMP) or ethyl methane-sulphonate 

(EMS), for creating gene knockouts across the C. elegans genome. The ju4 allele also originated 

from an EMS based chemical mutagenesis screen, whereby mutants were assessed in relation 

to defects in epidermal morphogenesis [165]. In addition, hundreds of other mutant dapk-1 

strains have been generated, as part of the million mutation project [210], but not characterised.  

 

Of the mutant dapk-1 strains with reported phenotypes, the ju4 allele which harbours a 

substitution mutation in the kinase domain (S179L), displays the most prominent phenotype. Of 

note, this residue is not conserved in relation to human DAPK1 (Figure 4.1B). This mutation 

results in a highly penetrant cuticle morphology defect evident in multiple body areas (head, 

tail, vulva, dorsal midline) from L3 larval development onwards, with progressive severity [165]. 

This defect is characterised by a thickened cuticle and epidermal degeneration which triggers 

innate immune responses in the nematode. The penetrance of this phenotype in other mutant 

dapk-1 strains is considerably lower (Table 4.1) and is temperature sensitive, with a higher 

incidence within populations maintained at 25°C in comparison to 15°C, across all four listed 
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mutant alleles [165]. The molecular underpinnings of this epidermal homeostasis dysregulation 

are largely unknown. 

 

 
 
 
 

Mutant Mutation Impact on protein sequence Cuticle defect 
penetrance 

dapk-1 
(gk219) 

612bp deletion 
5’ UTR and most of exon 1 

Gene knockout 
Not translated 19% 

dapk-1 
(ju4) 

C > T substitution 
Position 1308062 S179L in kinase domain 100% 

dapk-1 
(ju469) 

25bp deletion 
Exon 9 – intron 9 junction 

Predicted truncation after 
residue 862 (in ROC-COR) 16% 

dapk-1 
(ju557) 

C > T substitution 
Position 1321809 Q691stop in ROC domain 33% 

 

  

(A)

(B)

Table 4.1 – Mutant dapk-1 C. elegans strains with reported cuticle defect phenotype. 

Penetrance of this phenotype is temperature sensitive, percentages reported correspond to 

maintaining the nematodes at 20°C [165] 

Figure 4.1 – Structural inference of ju4 S179L mutation site based on human DAPK1 kinase 

structure. (A) Crystal structure of human DAPK1 kinase domain with ATP analogue, at a 1.62Å 

resolution. Protein Data Bank ID: 1JKL, [24]. S179 aligned residue A165 (in human structure) 

highlighted by red arrow. (B) Human DAPK1 C. elegans DAPK-1 sequence alignment at the ju4 

S179L locus, with peptide binding region shown in blue (human sequence). 
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In addition, transgenic approaches to exogenously express dapk-1, wild-type and mutant forms, 

in C. elegans have also been adopted to assess the role of DAPK-1. Transgenic expression using 

green fluorescent protein (GFP) under the transcriptional control of the dapk-1 promoter, has 

been a method used to pinpoint dapk-1 expression within the epidermis in vivo [165]. Mutant 

dapk-1 lacking specific domains or harbouring point mutations, have been expressed in C. 

elegans as transgenes to assess phenotypic consequences on the wild-type and mutant dapk-1 

genetic backgrounds [166]. The only construct variant which induced the cuticle morphology 

phenotype on the wild-type background was the ju4 allele, although exogenous expression of 

the constructs lacking the kinase domain did enhance this phenotype on the ju469 allele genetic 

background. Exogenous expression of full-length dapk-1 rescued this phenotype on the ju4 allele 

genetic background. Furthermore, nematode lethality was evident when exogenously 

expressing the ju4 allele and constructs lacking the kinase domain on the ju4 allele background. 

Another study using transgenesis of dapk-1, but in the context of excitotoxicity, reported that 

dapk-1 overexpression, by incorporating a heat shock protein (hsp-16) promoter upstream of 

the gene, enhanced neuronal toxicity in an established nematode excitotoxicity model strain 

(glt-3;nuIs5). In contrast, crossing the dapk-1 knockout allele (gk219) into this strain had the 

opposite effect, neuronal toxicity was suppressed [167]. This research therefore positions DAPK-

1 as a regulator of excitotoxic mechanisms in C. elegans.  

 

A further genetic tool which has been used to study the role of dapk-1 is targeted RNAi to 

knockdown the expression of the dapk-1 transcript. A study investigating the links between 

autophagy regulation and survival in C. elegans fed dapk-1 RNAi to a mutant gpb-2 strain which 

is hypersensitive to starvation stress and autophagy hyperactive [164]. As a result, starvation-

induced autophagy was reduced, using survival as a readout. Upon generating a double mutant 

gpb-2 dapk-1 strain, which harboured the gk219 dapk-1 knockout allele, starvation-induced 

autophagy was again reduced, using LGG-1 as a marker for autophagy. This study suggested a 

role for DAPK-1 in muscarinic signalling in relation to autophagy regulation [164].  

 

Despite a range of genetic tools which have been utilised to manipulate dapk-1 for gathering 

insight into the function of the translated protein, the current understanding of how DAPK-1 

functions as a molecule and how it influences signalling in the wider cellular context remains 

unclear. With advances in precision genome editing, such as the CRISPR-Cas9 approach, 

generating targeted point mutations in the C. elegans genome have become an invaluable tool 

for assessing protein function. The key benefits of this approach are that modifications are 

carried out with a high degree of precision and at the endogenous locus [211], hence the 
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mutated gene is under endogenous transcriptional control. In addition, this approach had not 

been performed in the context of dapk-1 gene manipulation on the wild-type genetic 

background. With this in mind, this was the strategy adopted in this project. 

 

4.1.1 Project aims 

 

The goal of the research outlined in this chapter was to develop novel C. elegans models for 

understanding DAPK-1 function. These models would enhance the mutant dapk-1 strain toolbox 

due to the generation of novel mutant nematodes whereby key residues in relation to the 

proposed DAPK-1 catalytic activities were targeted. Furthermore, these models would provide 

a foundation for in vivo validation and signalling-related characterisation of predicted DAPK-1 

interactors and Y2H hits presented in the previous chapter. The initial aim was to generate and 

begin to characterise these novel mutant dapk-1 strains.  

 

To achieve this, mutagenesis would be carried out by a specialist C. elegans genome editing 

service provider. Two residues were selected for CRISPR-Cas9 mutagenesis, K57W and T715N, 

which were hypothesised to result in kinase inactivity and GTP binding deficiency, respectively, 

based on sequence conservation and biochemical analysis of human DAPK1 and other human 

ROCO proteins [30,34,56,212,213]. Therefore, my first aim was to validate the mutant 

genotypes generated from these mutagenesis events. Second, I aimed to outcross these newly 

created strains against the wild-type genetic background in order to reduce the likelihood of 

genetic variation elsewhere in the genome (not at the desired locus), this may arise due to 

potential off-target effects of the CRISPR-Cas9 mutagenesis process. 

 

My third aim in relation to these novel mutant dapk-1 C. elegans strains was to gather 

preliminary phenotypic data. In the first instance, in relation to known mutant dapk-1 

phenotypes, i.e. the head morphology abnormality. Then, to assess general features of C. 

elegans fitness, such as determining lifespan profiles and performing progeny counts for the 

mutant strains. These initial phenotyping analyses would provide an indication of the impact a 

kinase inactive form and a GTP binding deficient form of DAPK-1 has on the physiology of C. 

elegans in vivo.  
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4.2 Materials and Methods 

 

The maintenance of C. elegans for the research outlined in this chapter was as previously 

described in Chapter Three – 3.2.6.1 C. elegans maintenance. N2, dapk-1 (gk219) and dapk-1 

(ju4) strains were obtained from CGC. 

 

4.2.1 Generating novel dapk-1 mutant strains  

 

In addition to the mutant dapk-1 strains available from CGC (gk219 and ju4), two novel 

mutations were introduced into dapk-1 by CRISPR-Cas9 mutagenesis. The modified genomic 

sequences are presented below (4.2.1.1 – Genomic modifications resulting in dapk-1 K57W and 

T715N mutant strains). At the protein level, these mutations correspond to K57W and T715N, 

hypothesised to result in kinase inactivity and GTP binding deficiency, respectively. The 

generation of these mutant strains was outsourced to Knudra Transgenics (USA). Similarly to the 

genome engineering outsourced to SunyBiotech, the service provided by Knudra Transgenics 

covered sgRNA design, plasmid construction, microinjection, screening and validation of the 

homozygous mutant nematodes. Two independent microinjections were performed for each 

desired mutant strain.  

 

4.2.1.1 Genomic modifications of the dapk-1 K57W and T715N mutant strains 

 

Genomic sequence at the locus (exon 2 [K57W] and exon 9 [T715N]) of the novel dapk-1 mutant 

strains (knu483 K57W, knu484 K57W, knu450 T715N, knu458 T715N) is listed below. Modified 

sequence is highlighted: syntron (blue); recoded exon (yellow); codon corresponding to 

mutation (pink). Exonic and intronic sequence is represented by uppercase and lowercase, 

respectively. 

 

dapk-1 (knu483 and knu484 K57W): 

 

ctaaaatgttgctctttgaatcaacacccaccttaaacgcagtcgaaaattggtaattttacagCGGCCA

GTTTGCTGTTGTTCGTCGTGTTCGCGACCGCAAGACTGGAGAGAAGTACGCTGCTTGGTTCATTAAGAAA

CGCCGCTATGCTACCTCCCGCCGCGGTGTTACCCGCCAAAACATTGAGCGCGAGGTCCGTGTTCTTCAAA

AAATCCGCGGTAACTCCAATGTGGTGGAGCTTCATGCAGTTTATGAAA 

 

 

 



 115 

dapk-1 (knu450 and knu458 T715N): 

 

TCTCCCAACTCTACCCACTGGACACCTCTCTTCGTCGTATCAAACTTAAACTTCTTGGACACTCTCAGTC

CGGCAAGAATCGTCTTGTACAGACACTTCACTCGTCACGTGGAA 

 

4.2.2 Validation of dapk-1 mutant strains 

 

4.2.2.1 DNA extraction 

 

DNA extraction and PCR was performed on each mutant dapk-1 strain to validate the presence 

of the mutation at the genomic level. As previously described, DNA was crudely extracted from 

C. elegans by picking 10 adult (day 1) nematodes into 20µl  worm lysis buffer 1 (see ‘3.2.1 general 

laboratory materials and media/buffer compositions’ for buffer composition) supplemented 

with 1mg/ml proteinase K, per strain. N2 nematodes were processed alongside mutant strains 

to act as a control for wild-type dapk-1 and extractions were carried out with a minimum of two 

replicates (i.e. a minimum of 20 nematodes sampled). Samples were lysed and DNA extracted 

by incubation at 65°C for 1 hour followed by 95°C for 15 minutes.  

 

4.2.2.2 PCR and restriction digestion 

 

Genotyping was carried out using the cleaved amplified polymorphic sequences (CAPS) 

approach, whereby PCR is performed to amplify a region of genomic DNA in the proximity of a 

mutation site followed by characterisation of the amplicons by restriction digestion and gel 

electrophoresis. The PCR and restriction digestion experimental designs for this genotyping are 

illustrated in Figure 4.2. Primer sequences are listed in Table 4.2. PCRs were performed in a total 

volume of 15µl: 3µl 5x OneTaq reaction buffer, 0.3µl 10mM dNTPs, 0.3µl 10µM primer mix 

(forward and reverse), 0.1µl OneTaq Hot Start polymerase, 3µl DNA extract, 8.3µl nuclease-free 

water. PCR reagents sourced from New England Biolabs (NEB). The thermocycler parameters for 

PCR are outlined in Table 4.3. Samples were incubated in a BioRad T100 Thermal Cycler. 

 

PCR products derived from ju4, T715N and K57W reactions were subjected to restriction 

digestion, see Table 4.4 for the corresponding restriction endonuclease and reaction buffer. 

Digest reactions were performed in a total volume of 20µl: 0.3µl restriction endonuclease, 2µl 

10x corresponding reaction buffer, 7µl PCR amplified product, 10.7µl nuclease-free water. For 

digestion, samples were incubated at 37°C for 2 hours. DNA fragment size was visualised by 2% 
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(w/v) agarose gel electrophoresis (80V for 1 hour) in TAE buffer, using 0.5x SYBR safe stain for 

DNA detection and a 100bp or 2-log DNA ladder. Gels were imaged on a U:Genius 3 (Syngene). 

 
 

Primer Primer sequence (5’ to 3’) 
gk219 forward 1 CTGAGAATTTTGAAAACCCG 
gk219 forward 2 CTAGACTCATTTCCTCCC 
gk219 reverse 1 CTTTGTCTCTGCTTCCTTGC 

ju4 forward  TCGACCACGTCTGTGCAAAAGAATGCC 
ju4 reverse CCACTGCTCCCGGCTCAATTTCTCTA 

T715N mutant forward CTAAAACTGACTCACATGG 
T715N mutant reverse GTAGTAACTAAAAGAGCCG 

K57W mutant forward 1 CCTAGTACAAAATCCACGG 
K57W mutant reverse 1 CACCATGTTCCACTTTTCTC 
K57W mutant forward 2 TTCAGGTATTCTGGTTTCCG 
K57W mutant reverse 2 CTAACGTAGATACGAGCTGC 

 
 
 
 
 

Temperature Time 
94°C 30 secs 
94°C 30 secs* 
** 30 secs* 

68°C 1 min* 
68°C 5 mins 

*these three steps were cycled 40 times 
** annealing temperature varied depending on primer combination: gk219, 49°C; ju4, 62°C; 
T715N, 48°C; K57W primer set 1, 50-55°C; K57W primer set 2, 50°C. 
 
 
 
 
 

Enzyme Cleavage site Incubation 
temperature Reaction buffer Template 

validation 

XbaI 
 

37°C CutSmart ju4 

AvaI 
 

37°C CutSmart T715N 

NruI 
 

37°C NEB 3.1 K57W 

  

Table 4.2 – Primer sequences for mutant dapk-1 validation by PCR. Primers supplied by Eurofins. 

Table 4.4 – Restriction endonucleases used for genotype validation. All sourced from New 

England Biolabs (NEB). Cleavage site annotations, Y corresponds to C or T, R corresponds to A or G.  

Table 4.3 – PCR thermocycler programme for gk219, ju4, T715N and K57W genotyping 



 117 

  

(A) gk219

(C) T715N

(D) K57W

(B) ju4

forward primer 1 (F )

forward primer XbaI restriction site specific to wild-type sequence due to utilising dCAPS primer design

AvaI restriction site   

exon 2 intron 1 
intron 2 

ju4 mutation site

T715N mutation site

K57W mutation site

reverse primer

1 forward primer 2 (F )2
exon 1

exon 3

exon 9 intron 9

gk219 deletion

intron 1

forward primer

forward primer 1
forward primer 2

reverse primer

reverse primerreverse primer

reverse primer 1 reverse primer 2

reverse primer 1 (R )1

recoded

recoded
NruI restriction site

syntron

mutant

wild-type

mutant

wild-type

Figure 4.2 – Mutant dapk-1 genotyping experimental design using PCR and restriction 

digestion. (A) Three primer reaction to validate the 5’ UTR deletion in the gk219 strain. (B) 

Derived cleavage amplified polymorphic sequence (dCAPS) primer design to incorporate XbaI 

restriction site specific to N2 strain. (C) Primer design in relation to mutant T715N and N2 

genomic templates, and AvaI cleavage site which is specific to the wild-type amplicon. (D) Two 

primer pairs designed to amplify the genomic region containing the K57W mutation site with 

NruI restriction site annotated which is specific to the mutant amplicon.  
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4.2.3 Outcrossing novel dapk-1 mutant strains 

 

Once validated the novel mutant dapk-1 strains were outcrossed back onto the wild-type 

genetic background to reduce the likelihood of off-target genetic modifications from the 

genome editing persisting in the genome, whilst retaining the desired modification. This 

outcrossing was performed with homozygous mutant hermaphrodite nematodes and N2 male 

nematodes. Since the frequency of male nematodes in C. elegans N2 populations is less than 

0.2% [100], the generation of male nematodes was induced to obtain a sufficient number of 

males for establishing genetic crosses.  

 

4.2.3.1 Generating male C. elegans 

 

Non-disjunction of the X chromosome during meiosis which results in the generation of male C. 

elegans was achieved by heat stress. L4 N2 hermaphrodite nematodes were picked onto NGM 

plates, 6 plates in total, 10 nematodes per plate. These plates were incubated at 30°C for 5 

hours, 5.5 hours and 6 hours, two plates per incubation time, then returned to 20°C. The 

progeny population of these L4 nematodes contained an increased proportion of males 

(approximately 5%), which were identifiable once this generation of nematodes were 

approximately L4 stage. Following the generation of males by heat shock, populations of N2 

male nematodes were maintained by picking 2 L4 N2 hermaphrodites and 10 adult N2 males 

onto an NGM plate which would result in predominately cross-fertilisation and a 30-50% 

proportion of males in the progeny population. 

 

4.2.3.2 Outcrossing 

 

Mutant dapk-1 strain nematodes were outcrossed by picking 2 L4 mutant hermaphrodites and 

10 adult N2 males onto an NGM plate. The progeny from this cross (F1 generation), derived from 

cross-fertilisation, were heterozygous for the mutant allele. Two L4 heterozygous mutant 

hermaphrodites and 10 adult N2 males were then picked onto an NGM plate, for further 

outcrossing. The progeny population from this second cross (F2 generation) were singled onto 

individual NGM plates, incubated under standard condition until embryos were laid, then lysed 

for genotyping. Progeny derived from self-fertilisation of heterozygote hermaphrodites would 

result in a proportion of homozygous mutant nematodes (25% in theory). These homozygotes 

and subsequent generations derived from self-fertilisation were considered 2 x outcrossed. This 

process was repeated to achieve a 4 x outcrossed dapk-1 T715N strain. 
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The genotype of the nematodes, in relation to the dapk-1 mutation, was traced by PCR and 

restriction digestion as previously described in ‘4.2.2 Validation of dapk-1 mutant strains’ with 

the modification that single worms were lysed in 10µl WLB1 supplemented with 1mg/ml 

proteinase K, as oppose to 20µl.  

 
4.2.4 Phenotyping dapk-1 mutant strains 
 

All phenotyping was performed on hermaphrodite nematodes. The dapk-1 T715N mutant strain 

(dapk-1 knu458 T715N) used for phenotype analysis was 4x outcrossed   

 

4.2.4.1 Scoring head morphology defects 

 

The presence of head morphology defects in C. elegans was scored using a stereo microscope, 

observing adult day 1 nematodes on NGM plates. Representative images of the head 

morphology defect phenotype were captured by immobilising nematodes in 25mM sodium 

azide on 2% (w/v) agarose pads set on glass microscope slides. These nematodes were imaged 

using a AMG EVOS FL imaging system with a 4x objective lens. 

 

4.2.4.2 Lifespan assay 

 

The impact of dapk-1 mutant genotypes on lifespan was assessed by monitoring nematodes 

daily, under the stereo microscope, to identify the number of nematodes that died on each day 

of the lifespan time course. Approximately 120 L4 nematodes were picked onto NGM plates 

supplemented with 50µM FUDR on day 0 (three or four plates per genotype, each containing 

30-35 nematodes, were setup in parallel) and maintained under standard conditions. At 24-hour 

intervals, each plate was monitored to identify dead nematodes. If the nematodes were not 

obviously alive (e.g. mobile or visible pharynx pumping), the plate was lightly tapped on the 

bench and if still indistinguishably alive, the nematode was lightly touched with a platinum wire. 

If the nematode was unresponsive to these stimuli, it was reported as dead. Dead nematodes 

were removed from the assay plates and discarded.  

 

Nematodes which were lost (e.g. dried up on the side of plates) or had died as a result of age-

related vulval integrity defects (AVID; i.e. vulval rupturing which leads to premature death [214]) 

were censored from the survival plots. This assay was repeated (as previously described) with 

the addition of 100µg/ml ampicillin supplemented into the NGM, which was seeded with 10x 

concentrated heat-killed OP50. OP50 was heat-killed by incubation at 75°C for 90 minutes. To 

verify the bacteria was heat-killed, a sample of the culture was streaked on an LA plate and 
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incubated at 37°C overnight.  This addition of ampicillin was largely implemented to reduce 

foreign bacterial contamination.    

 

4.2.4.3 Progeny counts 

 

The production and viability of progeny derived from self-fertilisation in dapk-1 mutant 

hermaphrodite C. elegans was evaluated by counting the number of nematodes which survived 

post-embryonic development for individual parent nematodes. Single L4 nematodes were 

picked onto NGM plates (1 per plate) and maintained under standard conditions. The 

nematodes were monitored the following day to determine when the first embryos were laid. 

From that point, the adult nematode on each plate (not progeny nematodes) was transferred 

onto a fresh NGM plate every 24 hours for 5 days. At day 5, the adult nematodes were 

maintained for a further 2 days to ensure progeny production had ceased. Once the progeny 

had developed to L3/L4 stage, the nematodes on each plate were counted. These counts 

corresponded to a 24 hour period of embryo laying. 
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4.3 Results 

 

4.3.1 Validation of mutant dapk-1 C. elegans strains 

 

For assessing C. elegans phenotypes in the context of gathering insight into the potential role of 

DAPK-1, several mutant dapk-1 strains were obtained. Two previously established mutant 

strains were purchased, the  dapk-1 (gk219) gene knockout strain and the dapk-1 (ju4) S179L 

point mutation variant. In addition, novel mutant dapk-1 strains were engineered by Knudra 

Transgenics (USA), the dapk-1 (knu483 K57W; knu484 K57W) and dapk-1 (knu450 T715N; 

knu458 T715N) strains, designed based on the hypothesis that these mutants would result in 

kinase inactivity and GTP binding deficiency in DAPK-1, respectively. The first task once obtaining 

these strains was to validate their genotype in relation to the dapk-1 gene. This was to ensure 

results from downstream experimentation with these nematodes could be interpreted in the 

context of validated mutant dapk-1 genotypes.  

 

4.3.1.1 dapk-1 gk219, ju4, knu450 T715N and knu458 T715N  genotype validation  

 

Genotype validation was performed using PCR targeting the mutation site, followed by 

restriction digestion (in some cases) and agarose gel electrophoresis to determine amplified 

(and digested) DNA fragments. See Figure 4.2 for a visual representation of the experimental 

design with the expected DNA fragment sizes following each series of reactions.  

 

The PCR for validating the dapk-1 (gk219) strain (dapk-1 deletion) contained two forward 

primers, one which targeted the 5’ UTR of dapk-1 approximately 940bp upstream of the gene 

(forward 1) and one which targeted the 5’ UTR which was reported to be deleted in the dapk-1 

(gk219) strain (forward 2). Since shorter amplicons are preferentially enriched in PCR due to the 

amplification taking less time, plus the extension period in the PCR thermocycles limits the 

length of an amplicon which can be produced, amplification primed by forward primer 1 and 

the reverse primer on the N2 genetic background would not result in a product, due to the size 

of the potential amplicon. Hence, on the N2 template background, the expected amplicon was 

392bp, primed by forward primer 2 and the reverse primer. Whereas, on the dapk-1 (gk219) 

genetic background, which lacks the region whereby primer 2 anneals to the genomic template, 

the expected amplicon was 591bp, primed by forward primer 1 and the reverse primer. These 

expected results match the results obtained across duplicate samples of each strain (Figure 

4.3A). Therefore, these results validate the genomic deletion within the 5’ UTR and exon 1 of 

dapk-1 within the gk219 strain.   
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The PCR experimental design for validating the dapk-1 (ju4) genotype utilised the derived 

cleavage amplified polymorphic sequence (dCAPS) primer strategy [215]. This approach was 

used since the ju4-associated mutation did not create or disrupt a restriction site with the 

genomic sequence. Therefore, using the dCAPS method, a mismatch in the reverse primer 

sequence created an XbaI restriction site specific to the N2 genomic template. Upon PCR and 

restriction digestion with XbaI, the expected result was the production of a 210bp amplicon, 

which was cleaved into 23bp and 187bp fragments on the N2 genetic background only. This 

result was not observed when performing the PCR and restriction digestion (Figure 4.3B). 

Amplicons of the expected size were evident (210bp), however fragments corresponding to the 

expected XbaI cleavage were not observed. These reactions were repeated and products 

separated in a high concentration of agarose (3% w/v as oppose to 2% w/v) in an attempt to 

obtain better separation between the expected 210bp and 187bp bands, however the same 

result was obtained. These results indicate that the expected cleavage did not occur. 

 

Unlike the dapk-1 (gk219) and dapk-1 (ju4) strains, the dapk-1 (knu450 T715N) and dapk-1 

(knu458 T715N) strains were engineered as part of this project and therefore it was especially 

critical that this genotype was validated prior to further experimentation. Knudra Transgenics 

performed verification of the mutation by sequencing, as part of the service provided. However, 

robustly performing in-house validation of the genotype was important for tracking the 

mutation in later genetic outcross experiments. 

 

As part of the mutagenesis process, performed by Knudra Transgenics, a 55bp region which 

included the mutation site was recoded (see ‘4.2.1.1 Genomic modifications of the dapk-1 K57W 

and T715N mutant strains’), however only the T715 residue was altered at the protein level. 

Within this region on the N2 genetic background there is an AvaI restriction site, however this 

was disrupted upon recoding this region in the T715N strains. Therefore, a 810bp region was 

amplified at this locus and the AvaI restriction site was utilised for genotyping. Upon restriction 

digestion with this nuclease it was expected that the N2 amplicons would be cleaved into 290bp 

and 520bp fragments, whereas T715N strain derived amplicons would not be cleaved. This 

expected result aligned with the result obtained for both of the independently generated T715N 

strains, knu450 T715N and knu458 T715N (Figure 4.3C). Hence, this validated the T715N strain 

genotype.  
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Figure 4.3 – dapk-1 mutant genotype validation for gk219, ju4 and T715N strains. PCR 

of genomic sequence in the proximity of the dapk-1 mutation site to verify the mutant 

genotype. (A) Agarose gel image of PCR products amplified from a 3 primer combination 

reaction targeting the 5’ UTR of dapk-1, which is deleted within the dapk-1 (gk219) 

mutant strain. (B) Agarose gel image of DNA fragments derived from PCR of a region 

flanking the mutation site within the dapk-1 (ju4) mutant strain followed by restriction 

digestion by XbaI. (C) Agarose gel image of PCR products subjected to restriction 

digestion with AvaI, following amplification of a genomic region in the proximity of the 

T715N mutation.     
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4.3.1.2 Optimising K57W genotype validation  

 

Validation of the dapk-1 K57W genotype by PCR and restriction digestion proved to be 

challenging. Knudra Transgenics had verified the desired mutation by sequencing a 435bp region 

which encompassed the mutation site, however upon attempting to amplify a wider genomic 

region at this locus for in-house validation, no PCR product was observed from either of the 

K57W mutant strains following agarose gel electrophoresis. The verification data provided by 

Knudra Transgenics indicated the insertion of a 34bp syntron (synthetic intron) in substitution 

of a 23bp intronic region, followed by a 164bp recoded sequence which corresponds to exon 2 

and includes the mutation site (Figure 4.2D; and see ‘4.2.1.1 Genomic modifications of the dapk-

1 K57W and T715N mutant strains’). As mentioned regarding the T715N mutagenesis, this 

recoded region only altered the desired residue (K57) at the protein level.  

 

The initial PCRs targeting this locus were designed to amplify a 690bp region (in relation to the 

K57W genotype which included the syntron insertion) and these reactions were first performed 

with an annealing temperature of 55°C within the PCR cycle. The expected PCR product size was 

observed on the N2 and dapk-1 T715N template backgrounds, but the lack of signal evident in 

lanes corresponding to both independently derived dapk-1 K57W (knu483 and knu484) strains 

suggested no amplification occurred on these template backgrounds. These PCRs were 

repeated, with the incorporation of lowered annealing temperatures in the PCR cycle (55°C, 

53°C, 50°C) to assess whether lowering the annealing temperature, and therefore the primer 

binding stringency, would result in the expected amplification on the dapk-1 K57W template 

background. This optimisation strategy did not clearly result in the expected amplicon size for 

dapk-1 K57W derived samples, although weak signals corresponding to fragments of length 500-

600bp were evident in the knu483 K57W samples when performing the PCR with an annealing 

temperature of 50°C and an even weaker signal was present at the same (50°C) annealing 

temperature for sample knu484 K57W 2 at the expected fragment size (Figure 4.4A). The 

expected amplicon size was observed for N2 and dapk-1 T715N derived samples, across the 

three annealing temperature trialled.   

 

Further optimisation of this PCR was attempted with regard to the MgCl2 concentration within 

the reaction mix. The reaction buffer supplied with the OneTaq Hot Start polymerase (NEB) used 

contains 1.8mM MgCl2 once diluted to the recommended 1x concentration. This is likely to be 

the optimal MgCl2 concentration for the efficiency of this specific polymerase. However, 

increasing MgCl2 concentration in PCRs tends to increase the activity of the polymerase and 

therefore increase the amplicon yield, although this is at the expense of the enzyme fidelity 
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[216]. Since fidelity was not paramount in this PCR application and polymerase activity could 

potentially be enhanced, these PCRs were repeated with further MgCl2 supplementation: 

1.8mM, 2.5mM and 3.2mM final concentrations. At 2.5mM MgCl2 signal of an amplicon 

corresponding to a fragment slightly larger than expected was evident in the knu483 K57W 1 

sample, this was paired with an off-target amplicon of around 500bp which was also observed 

in one of the T715N samples. At the higher MgCl2 concentration (3.2mM), the expected signal 

was lost in the N2 samples and reproducible signal in K57W derived samples remained absent 

(Figure 4.4B). 

 

Although the primers tested for this locus performed as expected on the N2 and dapk-1 T715N 

template  backgrounds, the lack of expected amplification on the K57W template background 

led to a third approach. This was to design a new primer pair for amplifying this genomic region. 

The expected amplicon size with this new primer pair, forward 2 and reverse 2, was 1044bp and 

1033bp on the K57W and N2 template backgrounds, respectively. In addition, upon restriction 

digestion with NruI, the 1044bp fragment would be cleaved into 660bp and 384bp fragments, 

whereas cleavage was not expected to occur in the N2 amplicons. Weak signal was evident in 

the knu484 K57W sample at approximately 660bp which would indicate expected cleavage and 

the corresponding PCR product was subsequently run on an agarose gel which showed the 

expected 1044bp size (Figure 4.4C). However, this observation is coupled with signal in the no 

template control (NTC) lane of this experiment which indicates nucleic acid contamination and 

therefore overall, this result cannot be interpreted as evidence in support of validating the K57W 

genotype. 
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Figure 4.4 – Optimising mutation validation of dapk-1 K57W strain. (A) Impact of decreasing 

the annealing temperature within the PCR cycle on amplified fragment production using forward 

1 (F1) and reverse 1 (R1) primer combination. (B) Effect of adjusting the MgCl2 concentration 

within the reaction mix on PCR amplification using F1 and R1 primer combination. Numbers 

correspond to duplicate sample preparations. (C) New primer combination (forward 2 and 

reverse 2) targeting a wider region around the K57W mutation site, left image: fragments 

following restriction digestion with NruI; right image: PCR products corresponding to DNA 

fragments used in the restriction digestion. NTC, no template control. 
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4.3.2 Outcrossing the dapk-1 (knu458 T715N) strain  

 

Following successful genotype validation of the dapk-1 T715N strains, the dapk-1 (knu458 

T715N) strain of this genotype was outcrossed onto the N2 genetic background to reduce any 

background genetic variation within the genome which may impact future phenotypic analysis. 

The crosses were setup to enable cross-fertilisation from male N2 nematodes to hermaphrodite 

mutant nematodes and the genotype of the resulting progeny was traced using PCR and 

restriction digestion. Figure 4.5 provides a representation of how the genotypes are traced, 

these gel images are derived from the 2x outcrossed nematodes. As previously described, the 

expected fragment size indicating the mutant allele which does not undergo cleavage by AvaI is 

810bp whilst the N2 allele is cleaved to produce 290bp and 520bp fragments.  

 

As shown in Figure 4.5A, a number of parent nematodes from the 2x outcrossed population 

were individually genotyped and this resulted in the identification of homozygotes and 

heterozygotes in relation to the mutant allele. Of note, the nematodes which were homozygous 

for the mutant allele at this stage (e.g. nematode 4 and nematode 12) suggests that self-

fertilising hermaphrodite nematodes persisted through these two generations of the crossing 

process and therefore these nematodes were not of outcrossed origin. The genotypes of 

interest here are the heterozygotes (e.g. nematode 8 and nematode 10) since this genotype 

indicates cross-fertilisation has occurred. When these heterozygotes produce progeny by self-

fertilisation, a subset (25% in theory) would be homozygous for the mutant allele. These 

nematodes were identified by genotyping the progeny of nematode 8 and nematode 10 (Figure 

4.5B), since the parent nematodes laid embryos prior to lysis. Several progeny nematodes tested 

positive for the homozygous mutant genotype (e.g. nematode 5 and nematode 13 derived from 

parent nematode 8). Nematode 5 from parent nematode 8 was taken forward to establish 

populations of a 2x outcrossed dapk-1 (knu458 T715N) strain and this process was repeated to 

achieve a 4x outcrossed dapk-1 (knu458 T715N) strain.  
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Figure 4.5 – Representative genotype verification upon outcrossing the dapk-1 (knu458 

T715N) strain onto the N2 background by PCR and restriction digestion. Images show the 

resulting genotypes of single nematodes from the 2x outcrossing process. Restriction digestion 

using AvaI. (A) Genotyping parent hermaphrodite nematodes which have undergone 2x 

outcrossing to identify heterozygotes. (B) Genotyping the progeny population of nematodes 

derived from heterozygotes identified from the previous image (nematode 8 and nematode 

10), to identify homozygotes in relation to the mutation. NTC, no template control. 
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4.3.3 Phenotypic analysis 

 

4.3.3.1 Head morphology defect 

 

Initial analysis of mutant dapk-1 C. elegans revealed that the dapk-1 (ju4) mutant strain 

developed an abnormal head morphology which manifested from an L4 stage (Figure 4.6A). This 

phenotype was visible using the stereo microscope and was also evident in some of the other 

mutant dapk-1 strains. Since this phenotype had been previously reported in relation to the 

dapk-1 (gk219) and dapk-1 (ju4) strains with associated penetrance data [165], the penetrance 

of this phenotype was further assessed in relation to the dapk-1 (gk219), dapk-1 (ju4) (replicate 

assessment), dapk-1 (knu458 T715N), dapk-1 (knu483 K57W) and dapk-1 (knu484 K57W) strains 

(Figure 4.6B and 4.6C). The penetrance data collected for the dapk-1 (gk219) and dapk-1 (ju4) 

strains aligned closely with the previous report, specifically dapk-1 (gk219): 20% (n=210), 

compared to a previously reported 19% (n=281); dapk-1 (ju4): 98% (n=442), which was 

previously reported as 100% (n=309). In relation to the newly generated 4x outcrossed dapk-1 

(knu458 T715N) mutant strain, this phenotype was only observed in 1 nematode, which equated 

to less than a 0.3% penetrance amongst the nematodes scored (n=383). This phenotype was 

absent in the N2 strain. 

 

Since this phenotype was evident in the novel K57W mutant strains, the penetrance of the 

defect was also quantified. These preliminary results indicate a penetrance of 16% (n=199) and 

47% (n=30) for the dapk-1 (knu483 K57W) and dapk-1 (knu484 K57W) strains, respectively 

(Figure 4.6C). Of note, in-house genotype validation of these strains was absent and hence these 

strains had not been outcrossed, however genomic validation performed by Knudra Transgenics 

supports the desired mutant genotype.  

 

  



 130 

 

  

dapk-1 ju4N2

(A)

(B) (C)

Figure 4.6 – Head morphology defect in mutant dapk-1 C. elegans strains. Abnormal head 

morphology in mutant dapk-1 strains is penetrant to varying extents dependent on dapk-1 

mutation. (A) Representative transmitted light images of the head region in adult day 1 C. 

elegans, N2 and dapk-1 (ju4) genotypes. Red arrows indicate head morphology defect. Imaged 

on AMG EVOS FL microscope, with 4x objective lens. Scale bar represents 200µm. (B) 

Percentage of C. elegans sampled which exhibited head morphology abnormities, as displayed 

in the right image above, for several mutant dapk-1 strains: N2, n=72; dapk-1 (gk219), n=210; 

dapk-1(ju4), n=442; dapk-1 (knu458 T715N), n=383. (C) Percentage of dapk-1 K57W mutant C. 

elegans, from both generated strains, which show head morphology defects. The results for 

these strains are very preliminary, these nematode populations were not outcrossed and in-

house validation of this mutant genotype was incomplete. dapk-1 (knu483 K57W), n=199;  

dapk-1 (knu484 K57W), n=30.  
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4.3.3.2 Lifespan assessment  

 

The lifespan of mutant dapk-1 C. elegans was assessed and statistically analysed in comparison 

to the N2 strain. Using an experimental setup whereby the nematodes were maintained on 

standard NGM, the median lifespan of N2 C. elegans was 14 days (Figure 4.7A). The lifespan of 

dapk-1 (gk219) and dapk-1 (ju4) mutant C. elegans was significantly extended compared to N2 

nematodes, to a median lifespan of 16 days and 18 days, respectively (adjusted p<0.0004 in both 

cases [log-rank Mantel-Cox test with Bonferroni correction]). In particular, the dapk-1 (ju4) 

mutant strain lifespan profile represents very few nematode deaths until day 16 in the assay 

(Figure 4.7A). The median lifespan of the dapk-1 (knu458 T715N) strain nematodes was 

extended to 16 days, although the difference was not statistically significant across the entire 

lifespan (adjusted p=0.2960 [log-rank Mantel-Cox test with Bonferroni correction]). The FLAG-

dapk-1 strain was included in this assay and the lifespan profile for these nematodes was similar 

to that of N2 C. elegans, there was no statistically significant difference (adjusted p>0.9999 [log-

rank Mantel-Cox test with Bonferroni correction]). 

 

When this assay was repeated but with the supplementation of 100µg/ml ampicillin in the NGM 

and with heat-killed OP50 (as opposed to a live bacterial culture), the lifespan of nematodes 

increased across all genotypes tested (Figure 4.7B and 4.7C). Both ampicillin supplementation 

and the use of dead OP50 have been previously reported to extent lifespan, independently 

[217–219]. Interestingly, the lifespans of mutant dapk-1 strains were shortened in comparison 

to N2 C. elegans in this experimental setup (Figure 4.7B). This shortening of lifespan was strongly 

statistically significant for the dapk-1 (gk219) and dapk-1 (ju4) strains (adjusted p<0.0004 in both 

cases [log-rank Mantel-Cox test with Bonferroni correction]) and was the converse of lifespan 

observations in the absence of ampicillin and presence of live OP50. As previously observed, no 

statistically significant difference was apparent for the dapk-1 (knu458 T715N) strain in 

comparison to the N2 strain (adjusted p=0.1860 [log-rank Mantel-Cox test with Bonferroni 

correction]). Upon comparing the two assay results for each genotype, the greatest difference 

in median lifespan was evident in the N2 strain, whereby the median lifespan was extended by 

13 days (Figure 4.7C). The lesser differences in median lifespan were observed in the dapk-1 

(gk219) and dapk-1 (ju4) strains, 1 day and 5 days, respectively.  
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Figure 4.7 – Analysis of lifespan in mutant dapk-1 C. elegans strains. The lifespan of 

nematode strains are presented as Kaplan-Meier survival plots with the log-rank Mantel-Cox 

statistical test and Bonferroni multiple testing correction to assess for statistically significant 

differences. (A) Survival plot of various mutant dapk-1 C. elegans strains maintained on NGM 

lacking ampicillin. (B) Survival plot of various mutant dapk-1 C. elegans strains maintained on 

NGM supplemented with 100µg/ml ampicillin. In both cases the summary statistics are 

presented in the table below the plots. (C) Survival plots for each strain separately, displaying 

both conditions with and without ampicillin supplemented in the media, data derived from the 

same assays as presented in plots above. Abbreviations: Adj, adjusted; amp, ampicillin; ns, not 

significant  
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4.3.3.3 Viable progeny counts 

 

A further assessment of mutant dapk-1 C. elegans fitness was performed by counting the 

number of viable offspring produced by individual nematodes during the period of reproductive 

activity (day 1-7 of adulthood). This dataset tested non-normal (on the whole; D’Agostino and 

Pearson normality test) and therefore the non-parametric Mann-Whitney U test with Bonferroni 

multiple testing correction was performed to evaluate statistical significance across genotypes. 

A statistically significant reduction in the total number of viable offspring produced was 

observed in the dapk-1 (ju4) and dapk-1 (knu458 T715N) mutant strains, in comparison to N2 

nematodes (Figure 4.8A). The greatest difference was evident in the dapk-1 (ju4) strain, whereby 

these nematodes produced 74 less viable progeny (mean average), 195 (dapk-1 [ju4]) compared 

to 269 (N2) (adjusted p<0.0003 [Mann-Whitney U test with Bonferroni correction]). 

 

Since these counts were obtained on a daily basis it was possible to identify on which days there 

were considerable disparity in viable progeny produced (Figure 4.8B). The greatest difference 

was observed during day 1 of reproductive maturity, which was also when the greatest number 

of viable progeny was produced. On average 156 viable progeny were produced by N2 

nematodes during day 1 whereas only 77 viable progeny were produced by dapk-1 (ju4) mutant 

C. elegans on this day (averages reported as means). From days 2 to 7 the number of progeny 

produced followed a similar trend throughout the genotypes, whereby fewer progeny were 

produced each day. Furthermore, on day 3 it was evident the dapk-1 (gk219) and dapk-1 (ju4) 

strains produced a greater number of progeny than the N2 nematodes. This is interesting 

because an observation of delayed development in larval stages of dapk-1 (gk219) and dapk-1 

(ju4) nematodes (which is yet to be quantified) may persist into reproductive maturity whereby 

reproductive and embryonic developmental processes may also be slowed.  
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Figure 4.8 – Viable progeny assessment in mutant dapk-1 C. elegans strains. (A) Total 

number of progeny produced from self-fertilisation of hermaphrodite nematodes across 7 

days of reproductive maturity. Data plotted as mean of offspring number with standard 

deviation. Statistical significance determined by the Mann-Whitney U test with Bonferroni 

multiple testing correction, comparing each mutant dapk-1 strain against wild-type (N2). (B) 

Number of progeny produced day-by-day over the assessment period. Data points indicate 

the mean average number of progeny produced across all nematodes sampled for each 

strain. Abbreviations: Adj, adjusted. 
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4.4 Discussion 

 

The validation and preliminary phenotyping data generated and presented in this chapter 

provides insight into novel mutant dapk-1 C. elegans models and broadens the knowledgebase 

of previously reported mutant strains. The creation of new mutant strains using CRISPR-Cas9 

technology demonstrates the application of genome editing for functional studies in C. elegans 

and the suggested steps to validate and establish a novel mutant strain for phenotypic analysis. 

Also highlighted are the challenges faced during the genotype validation process. 

 

4.4.1 Further insight into mutant dapk-1 associated cuticle abnormalities 

 

Abnormalities of the cuticle in mutant dapk-1 C. elegans, which manifests prominently in the 

head region of day 1 adult nematodes, have been previously reported in relation to the dapk-1 

(gk219) and dapk-1 (ju4) strains [165]. Interestingly, the penetrance of this phenotype is 

considerably greater in the dapk-1 (ju4) strain than any other mutant dapk-1 strains (Table 4.1 

and Figure 4.6B). As described, penetrance data obtained during this study for this phenotype 

align with previous findings and the novel dapk-1 (knu458 T715N) mutant nematodes possess 

this defect at an extremely low penetrance (<0.3%). Mutant dapk-1 strains with C-terminal 

DAPK-1 truncations which lack the death domain (ju469 and ju557) also display this phenotype 

at a moderate penetrance (Table 4.1) [165].  

 

Characterisation of this phenotype has shown that the cuticle thickens by up to 10 times in the 

dapk-1 (ju4) strain expanding both outwards from the body wall and inwards into the underlying 

epidermal tissue. Moreover, this cuticle accumulation resembles wounding derived scar 

formation [220]. This led Tong et al. to investigate the role of DAPK-1 in relation to innate 

immune responses which resulted in the proposed function of this protein as a negative 

regulator of tissue repair in the epidermis and a repressor of immune responses upon wounding. 

It is speculated that DAPK-1 negatively regulates the p38 MAPK cascade upstream of TIR-1 [165]. 

In addition, it was identified that antimicrobial peptides (AMPs), NLP-29 and NLP-30, which are 

downstream of the p38 MAPK pathway, were upregulated in the dapk-1 (ju4) strain. However, 

how DAPK-1 functions at a molecular level remains unclear.  

 

Furthermore, this phenotype is induced by exogenous expression of dapk-1 S179L (the ju4 allele 

mutation) on the N2 genetic background and therefore it has been suggested that the ju4 allele 

results in a dapk-1 gain-of-function [166]. Due to the position of the underlying mutation, S179L 

in the kinase domain within a region referred to as the peptide binding ledge, it has been 



 136 

proposed that this mutation causes alterations to phosphorylation substrate specificity [166]. 

Using structural inference from the human DAPK1 kinase domain (Figure 4.1) [24], this 

hypothesis is plausible since this residue aligns within the putative peptide binding region in 

human DAPK1 and based on three-dimensional modelling of the human structure, appears to 

be externally orientated. 

 

The explanation of how dapk-1 genotype influences this phenotype is likely to be complex, 

largely due to the multidomain structure of DAPK-1 and its potential intrinsic regulatory 

mechanisms [30] i.e. domain cross-talk. Nevertheless, the kinase domain appears to play a role. 

This is supported by preliminary results from the newly generated dapk-1 (knu483 K57W) and 

dapk-1 (knu484 K57W) strains (in the absence of in-house genotype verification and 

outcrossing), whereby this phenotype is observed at a 16-47% penetrance. However, transgenic 

expression of an equivalently kinase inactive form of DAPK-1 (K57A mutant) does not induce or 

enhance this phenotype on the N2 and dapk-1 (ju4) genetic backgrounds, respectively [166]. In 

addition, it appears GTPase activity of the ROC domain does not significantly impact this 

phenotype. 

 

4.4.2 Exploring new dapk-1 phenotype avenues 

 

Further preliminary assessment of mutant dapk-1 phenotypes was carried out in relation to 

lifespan and progeny yield. Upon lifespan assessment in the absence of ampicillin in the NGM, 

the lifespan of the dapk-1 (gk219) and dapk-1 (ju4) strains was significantly extended. This is 

particularly interesting in the context of  the suggested innate immunity role for DAPK-1. A 

consequence of C. elegans ageing is a decline in immune function, referred to as 

immunosenescence, due to reduced p38 MAPK signalling [221], a pathway which DAPK-1 is 

thought to influence [165]. With this process, nematodes become increasingly susceptible to 

pathogen infection, such routes of infection can be via wound sites and the intestine, since 

intestinal tissue integrity deteriorates with aging [165,222]. OP50, the C. elegans bacterial food 

source, can become an opportunistic pathogen, proliferating in the intestine of aged nematodes 

and invading surrounding tissues as tissue integrity declines [219]. Since the innate immune 

response in the gain-of-function dapk-1 (ju4) strain is thought to be constitutively active in the 

epidermis [165], it may be that this strain can evade potential pathogen infection for an 

extended period throughout aging. This would be an intriguing hypothesis to test in a future 

study. 
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When this assay was repeated in the presence of ampicillin and heat-killed OP50, the impact of 

mutant dapk-1 genotype on lifespan had the opposite effect compared to N2 nematodes. On 

average, N2 nematodes outlived mutant dapk-1 nematodes. In this assay, concentrated heat-

killed OP50 was fed to the worms and therefore there would be no growth of this bacteria on 

the plates. Consequently, the likelihood of OP50 becoming pathogenic via intestinal and 

surrounding tissue inhabitation was much less and hence this is a likely contributor to the 

extended lifespan across all genotypes. The comparably shortened lifespan in mutant dapk-1 

strains in this experimental setup requires further investigation. Of note, the difference in 

lifespan profile for the dapk-1 (gk219) strain in the presence and absence of ampicillin and live 

OP50 is relatively slight, compared to differences across other genotypes. This suggests that 

DAPK-1 plays a role in the extended lifespan evident in the presence of ampicillin and heat-killed 

OP50, which is notably observed in the N2 strain (Figure 4.7C). In addition, mortality in these 

mutant nematodes may be due to a mechanism unrelated to alterations in immune responses. 

One potential route for future investigation is the role of autophagy in longevity of mutant dapk-

1 C. elegans, since dapk-1 knockdown has been associated with reduced starvation-induced 

autophagy [164] and autophagy is a crucial process for C. elegans longevity [223]. Moreover, 

human DAPK1 regulates autophagy induction via beclin 1 [49,84], which strengthens motivation 

to pursue this line of investigation further.  

 

Progeny yield or brood size was another phenotype assessed in these mutant dapk-1 

nematodes. The results obtained, when testing the dapk-1 (ju4) and dapk-1 (knu458 T715N) 

mutant strains, show that brood size is significantly compromised in these nematodes in 

comparison to N2 nematodes. Again, the dapk-1 (ju4) strain displayed the most prominent 

phenotype. Although these are preliminary findings, these data provides a foundation for 

exploring this phenotype in further detail. Indications from these data suggest both the kinase 

and GTPase activities of DAPK-1 play a role in biological processes which lead to this phenotype. 

At a functional level this observation could be due to defects in various physiological processes 

including gamete production, fertilisation and embryogenesis, or a secondary consequence of 

an indirect insult to nematode physiology. These results taken together with extensive evidence 

that human DAPK1 is involved in apoptosis [49] and that apoptosis is a fundamental process in 

C. elegans embryonic development [224], positions apoptosis during embryogenesis as a 

candidate process to investigate in the context of mutant dapk-1 C. elegans strains. This is also 

supported by life-stage mRNA expression data, whereby a peak in dapk-1 expression during late 

embryogenesis is evident (Figure 3.12).  
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4.4.3 Genotype validation challenges 

 

Using PCR and restriction digestion, genotype validation of two of the mutant dapk-1 strains was 

inconclusive. First, validation of the ju4 allele using the dCAPS primer method followed by 

restriction digestion with XbaI resulted in the expected PCR amplification, however the expected 

amplicon cleavage, specific to the N2 template background, did not occur. Despite 

troubleshooting this experiment in relation to increasing both the agarose gel percentage for 

electrophoresis and the restriction digestion incubation time, the expected result was not 

observed. Further optimisation was not pursued since this nematode strain exhibited the head 

morphology defect phenotype as previously described [165]. This phenotype acted as a proxy 

for genotype validation, however verification of the genomic sequence in exon 3 of dapk-1 in 

this strain is required prior to further experimentation.  

 

In-house genotype validation of the newly generated dapk-1 (knu483 K57W) and dapk-1 

(knu484 K57W) strains was also challenging. Despite sequencing derived verification data from 

Knudra Transgenics and a number of PCR optimisation approaches trialled, evidence of this 

genotype was not robustly reproducible. Performing in-house validation of this strain by PCR 

and restriction digestion was imperative for this strain to be outcrossed for phenotypic analysis, 

since this is the method utilised for tracking the genotype through the outcrossing process. 

Thoughts of potential off-target issues of the CRISPR-Cas9 approach [225], such as off-target 

genomic DNA cleavage and sequence insertion at the undesired locus for example, or even on-

target genomic damage [226], have not been eliminated. However, when performing PCR using 

the forward 2 and reverse 2 primer combination, which was designed to amplify a region of 

approximately 1kb, indications of the expected amplicon and digested products were evident. 

Therefore, further PCR optimisation with this primer pair is worthwhile pursuing.  

 

4.4.4 Conclusions 

 

This body of research provides the initial direction for expanding our understanding of DAPK-1 

in C. elegans. Novel mutant dapk-1 strains were engineered whereby key residues in relation to 

the hypothesised catalytic activities of DAPK-1 were precisely targeted, enabling phenotypic 

assessment of nematodes possessing kinase inactive or GTP binding deficient forms of DAPK-1. 

These genetic tools form a strong basis to enable dissection of DAPK-1 function in vivo, 

specifically in relation to the catalytic activities of this protein. The genotype of the GTPase 

deficient T715N mutant was successfully validated and this strain was 4x outcrossed in 
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preparation for phenotypic characterisation. In-house genotype validation of the kinase inactive 

K57W strain is incomplete. Further optimisation is required to firmly verify this mutant 

genotype, which then requires outcrossing onto the wild-type genetic background prior to any 

detailed phenotypic analysis. 

 

In addition, the initial assessment of phenotypes associated with mutant dapk-1 C. elegans will 

guide future investigation into defining and characterising a clear dapk-1 related phenotype. 

Once a defined phenotype has been established, this adds a readout to the toolbox for 

understanding DAPK-1 function. In particular, this would be of considerable value for validating 

DAPK-1 interactors (discussed in the previous chapter), whereby knockdown or overexpression 

of these potential interactors could be used as an approach to assess the modulation of an 

described phenotype. The results obtained build on the previously proposed role of DAPK-1 in 

innate immune responses, with suggestions that the absence of DAPK-1 GTPase activity does 

not impact the head morphology defect. Furthermore, this preliminary phenotyping data also 

highlights routes for potential examination, such as the role of DAPK-1 in autophagy and 

apoptosis.  
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CHAPTER FIVE 

 
 

General Discussion and 
Suggested Future Work 
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5.1 General Discussion 

 

Due to the multidomain structure and dual catalytic activities of DAPK1, the role and regulation 

of this protein is likely to be considerably complex. The basis to this complexity can be 

deciphered through defining the proximal interactome of DAPK1. Efforts to delineate the 

interaction profile of DAPK1 have been fruitful, however there remains scope for further 

developing our understanding of where DAPK1 fits within the wider subcellular landscape. Since 

this protein, and more broadly the human ROCO proteins which share structural homology, are 

linked to numerous diseases, this is also substantial interest in understand the function of these 

proteins from a therapeutic perspective.   

 

The overarching goal of the research presented in this thesis was to gain a deeper understanding 

of the physiological function of DAPK1, taking a bioinformatic and functional modelling 

approach. A programme of research was established which encompassed resource 

development and investigative analyses to collectively contribute towards this principal goal. 

Each results chapter (Chapters Two, Three and Four) describe and discuss focussed projects with 

this convergent theme of defining the DAPK1 interactome, initially in relation to the human 

proteome, then due to the genetically tractability of this protein and the opportunity to explore 

its interaction landscape in vivo, in relation to the C. elegans proteome. 

 

5.1.1 Research overview 

 

An underpinning aspect to a considerable proportion of the research presented was the 

development and application of the Weighted Protein-Protein Interaction Network Analysis 

(WPPINA) pipeline which was further developed into an online PPI query resource, PINOT 

(Protein Interaction Network Online Tool) [121]. This bioinformatic tool maximises the utility of 

freely available literature-derived human and C. elegans PPI data through a systematic data 

processing pipeline. Data is extracted and collated from numerous repositories, subjected to 

quality control measures and confidence scored based on method detection and publication 

records, providing the user with an easy-to-interpret output file for downstream applications. 

Two notable features of PINOT which provides enhanced value are that data is extracted at the 

time of query (for human PPIs), and all entries in the data output are of verifiable, fully traceable 

back to the source publication. This pipeline was utilised at multiple stages throughout this 

thesis. 
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In terms of investigating the DAPK1 PPI profile, the first analyses focussed on the ROCO protein 

family as a whole [12,227]. This project aimed to gather interactomic and functional insight into 

the commonalities and distinctions between these structurally related multidomain proteins. 

PPI network analyses was performed using literature-derived data (via the WPPINA pipeline) 

and novel protein microarray data, and in combination these datasets were utilised to prioritise 

potential interactors for validation and functional studies. These prioritised interactors include 

numerous common nodes between multiple ROCO proteins. Functional enrichment analysis 

shed light on a potential shared function of the ROCO proteins centred on the stress response, 

although it appears these proteins have largely evolved divergent roles, based on the overall 

degree of overlap between their interaction profiles and functional characterisation to date.   

 

Exploring the DAPK1 interaction profile was then translated into the context of C. elegans for 

predictive and experimental DAPK-1 PPI mapping. Predicted DAPK-1 PPI networks were 

generated utilising two distinct approaches, the MIST interolog feature and PINOT coupled with 

Ortholist 2.0, which both rely on orthologous inference. Reported interactors were then added 

to PINOT/Ortholist-derived network to incorporate evidence based PPI data and position the 

potential DAPK-1 interactome in a wider cellular context. These approaches demonstrate the 

utility of data integration strategies, in particular for prioritising interactors for future 

experimentation. Furthermore in this body of research, six novel DAPK-1 interactors were 

identified by an outsourced yeast two-hybrid (Y2H) screen. Of these hits, MEP-1, SYD-9 and UNC-

14 appear to be intriguing candidate proteins for follow-up studies, based on their prior 

characterisation.  

 

The identification of UNC-14 as a DAPK-1 interactor is of particular interest in the context of 

autophagy. UNC-14 is reported to interact with UNC-51 [194,198], which is orthologous to 

human ULK1, a kinase involved in the regulation of phagophore formation during the initiation 

of autophagy [228]. In addition, it is reported that human DAPK1 phosphorylates beclin 1 [84], 

which promotes assembly of the class III phosphatidylinositol 3-kinase (PI3KC3) complex I 

required for the induction of autophagy [49,228]. This positions DAPK1 as a potential 

coregulator of the ULK1 and beclin 1/PI3KC3 pathways in autophagy induction. Therefore, 

testing whether DAPK1 regulates ULK1 in the mammalian system provides an exciting route for 

future investigation.  

 

Finally, a number of novel dapk-1 C. elegans strains were engineered and initial validation and 

phenotypic analysis is underway. These include a FLAG-dapk-1 strain whereby a 3xFLAG tag was 

knocked-in to the dapk-1 locus using CRISPR-Cas9 genome editing. The rationale for generating 
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this strain was to perform in vivo DAPK-1 PPI interaction analysis, such as AP-MS. Furthermore, 

K57W and T715N mutant dapk-1 strains were generated and these are hypothesised to result 

in kinase inactive and GTP binding deficient forms of DAPK-1, respectively. Of note, further work 

is required to validate the genotype of the K57W strain. These strains will aid in deciphering how 

the biochemical activity of DAPK-1 relates to the interaction profile and ultimately the function 

of DAPK-1 in vivo. Preliminary phenotypic analysis of these strains, in conjunction with other 

available mutant dapk-1 strains, dapk-1 (gk219 [dapk-1 knockout]) and dapk-1 (ju4 [proposed 

dapk-1 gain-of-function [166]]), have yielded some interesting results to pursue for future 

research. In particular, reduced progeny counts in mutant dapk-1 strains were observed, 

providing a line of enquiry, potentially in relation to apoptosis in embryogenesis. The route for 

further examination is supported by extensive evidence relating to the role of DAPK1 in 

apoptotic pathways [49]. 

 
5.1.2 Outlook 
 
The research outcomes of the work presented in this thesis contribute novel findings in relation 

to the interaction and functional profiles of DAPK1 in human (in the context of the ROCO protein 

family), and DAPK-1 in C. elegans. In addition, this work will guide future strands of investigation, 

for both, DAPK1/DAPK-1 research and more broadly, the development of PINOT for example, 

will assist in PPI analyses in general.  

 

5.1.2.1 The human DAPK1 and C. elegans DAPK-1 interactomes 

 

The literature-derived ROCO protein interaction network analysis revealed the extent of the 

research into defining the human DAPK1 interaction profile. Progress into mapping this 

interactome had been fruitful and the number of potential DAPK1 binding partners which 

possess functional connections to a diverse range of signalling cascades demonstrates the 

complex nature of understanding the role and regulation of DAPK1 [75]. However, when 

considering this data with an aspect of confidence-weighting, interactors and thus signalling 

pathways which are more confidently associated with DAPK1 can be distinguished from the 

expanse of detected DAPK1 PPIs. Since there is therapeutic interest in targeting DAPK1 [229], 

identifying bona fide substrates and developing the necessary tools to dissect DAPK1 signalling 

(such as high quality antibodies and specific chemical modulators) is of importance. In addition, 

visualising this PPI data collectively in conjunction with PPI data relating to the other ROCO 

proteins enabled identification of the potential overlap in interaction profiles of these partially 

homologous proteins [12]. Therefore, this PPI analysis approach enabled a vision of the DAPK1 

and more broadly the ROCO protein interaction landscape from a new angle.  
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The predicted C. elegans DAPK-1 PPI network and the putative DAPK-1 interactors identified by 

Y2H provide new leads for defining the role of DAPK-1 in C. elegans. The DAPK-1 interactome 

was largely undefined prior to embarking on this research project, and hence these potential 

interactors will facilitate in generating insight into the molecular mechanisms underlying DAPK-

1 function. Although only CMD-1 was common to both the predicted and identified DAPK-1 

interactors, the predicted interactors are of importance for determining whether the structural 

orthology between the human and C. elegans forms of DAPK1/DAPK-1 persists into interactome 

and in turn, functional orthology. For example, it has been proposed that the role of C. elegans 

DAPK-1 in innate immune responses is analogous to the role of human DAPK1 in inflammation 

[161]. If this is the case, inference from C. elegans dapk-1 models for understanding DAPK1 in 

humans and vice versa, becomes a powerful approach. Moreover, if it is the case it poses the 

question, how translational is it to other structurally orthologous proteins?  

 

From phenotypic analysis it is clear the DAPK-1 plays an important role in C. elegans 

homeostasis, most notably in the epidermis [165]. However, although these phenotypic links 

have been observed, how DAPK-1 is regulated as a molecule and how it impacts the wider 

landscape of subcellular signalling is unknown. Once the novel mutant dapk-1 strains (K57W and 

T715N) are established, the outlook for contributing evidence to these unknowns is promising. 

These strains are proposed to act as tools for assessing the kinase and GTPase activities of DAPK-

1, independently, therefore enabling phenotype analysis in the context of specific DAPK-1 

catalytic activities. Furthermore, a distinct yet complementary approach for evaluating the role 

of DAPK-1 kinase and GTPase activities in C. elegans cell signalling would be to chemically 

manipulate these catalytic activities, however this is largely reliant on the development of novel 

compounds in order to eliminate concerns of off-target effects derived from current 

inhibitors/activators tested in relation to human DAPK1 [91].  

 

5.1.2.2 PINOT and PPI data curation 

 

It is hoped that the development of PINOT will have a positive impact on the wider research 

community, since this resource is applicable and useful for PPI analyses across the human and 

C. elegans proteomes and adds value to the current selection of PPI query resources. The utility 

of PINOT is diverse, several applications are presented here, with respect to providing an 

overview of the ROCO protein interaction profiles, prioritising hits from novel high-throughput 

PPI screens and predicting the proximal interactome of DAPK-1. In addition, this approach has 

been applied to numerous other projects, including mapping  human disease related PPI 
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networks [13,14]. The PINOT data output provide a valuable foundation of confidence scored 

PPIs collated from decades of published research for a multitude of downstream analyses. 

 

As discussed in Chapter Two, there are limitations to utilising literature-derived PPI data, those 

already discussed include the incompleteness of the data, the ascertainment bias and the 

reliance on high quality database curation. Unfortunately, these limitations will persist into the 

future. The incompleteness of data falls into two categories, PPIs that have not be identified and 

also PPIs that have been detected but not curated into repositories. This latter scenario is 

particularly pertinent in the current era of high-throughput screens and therefore database 

curators, such as the team at IntAct, are attempting to reduce this void in curation by 

encouraging research groups to deposit data in repositories as standard procedure, especially 

targeting this message at research groups known to generate masses of PPI data. Noteworthy 

progress in the molecular interaction curation field with regard to data quality and consistency 

is due efforts in standardisation led by the IMEx consortium [6]. 

 

In addition, there are many considerations centred around the experimental setup of PPI 

detection and physiological relevance of an identified PPI, that require thought within the 

existent PPI datasets. For example, the post-translational modification (PTM) status of a protein 

will likely influence its interaction profile, this has been demonstrated for LRRK2 [230]. However, 

often this data is either not known or not readily available to be an included annotation in the 

curation process. Furthermore, the temporal and spatial expression patterns of proteins will 

impact the occurrence of a PPI, this is an area partially addressed in relation to data integration 

of tissue-specific mRNA expression measures in the analysis of common ROCO protein 

interactors. With advances in detecting cell type specific expression levels [231], these strategies 

could be implemented with further precision. Emerging evidence also suggests tRNA 

abundance, which is variable in different tissues, is a key player in protein translation efficiency 

and in turn, protein levels [232]. In addition, subcellular localisation of potential binding partners 

is a further consideration, for example FADD which is a reported interactor of DAPK1 and LRRK2 

has distinct functional roles depending on its cellular localisation and phosphorylation state 

[233], this will also be reflected in distinctions in its interaction profiles. Therefore, expression 

and localisation data integration strategies will be of significant benefit and add a layer of 

physiological relevance to PPI network analysis. 
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5.2 Future Work 

 

In addition to the novel findings and developments presented in this thesis, this work provides 

the foundation for future investigation in a number of directions. Many of these routes for 

further work have been suggested within each results chapter. A repeated theme from the PPI 

network analyses is the prioritisation of interactors for validation. Suggested future work of 

particular interest is highlighted below. 

 

First, in relation to further defining the human DAPK1 interaction network, novel experimental 

PPI data generated by distinct method detection strategies will continue to broaden our 

understanding of the DAPK1 interactome. Interactors detected by several distinct 

methodological approaches are of particular interest for identifying novel bona fide DAPK1 

interactors for functional characterisation experiments. Similarly, follow-up experimentation of 

common interactors between ROCO proteins provide an intriguing direction for future study. 

These nodes are of particular interest because although it appears the ROCO proteins largely 

occupy separate functional spheres, commonality in their interaction profiles suggests potential 

cross-talk in their proximal interactomes. Additionally, and in relation to progressing the in silico 

analysis, the integration of further data types, for example protein expression and localisation 

data (as mentioned in the previous section), would be of significant benefit for better 

interpreting the physiological relevance of binding partners. 

 

With regard to avenues for further investigation of DAPK-1 in C. elegans, validating the physical 

interaction of the hits identified via Y2H, in particular MEP-1, SYD-9 and UNC-14 , would be a 

valuable next step. Testing the validity of these interactors would be best achieving using a 

distinct method detection technique, such as co-immunoprecipitation, and further 

characterisation in relation to phosphorylation mapping via mass spectrometry approaches 

would elucidate whether these proteins are DAPK-1 substrates. If these proteins are genuine 

DAPK-1 interactors they represent important tools for deciphering DAPK-1 function in vivo. Next, 

further work centred around the validation and characterisation of novel dapk-1 C. elegans 

models is necessary. In particular, establishing phenotypic readouts in the K57W and T715N 

dapk-1 models would result in a powerful tool to assess proposed kinase inactivity and GTP 

binding deficiency of DAPK-1 in vivo. These strains could then be utilised for assessing the effect 

of manipulating the expression (i.e. knock-down, overexpress) of the putative DAPK-1 

interactors, that were identified via the Y2H screen, on an established dapk-1 related 

phenotype. Furthermore, C. elegans is widely used for compound screening [234] and therefore 

compounds, such as DAPK inhibitors and activators [91,229], could be tested on nematodes in 
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order to expand the DAPK-1 manipulation toolbox to chemical approaches for developing our 

understanding of the role and regulation of DAPK-1. Ultimately, results from these in vivo 

assessments could form the basis of biochemical and functional inferences from C. elegans 

DAPK-1 to human DAPK1. 

 

Finally, future work to maintain and develop PINOT is in the pipeline. Although the C. elegans 

query option encompasses a wide coverage of PPI data, the widest coverage of complete data 

entries compared with alternative tools, there is scope for further widening this data capture. 

For example via incorporation of the PSICQUIC API in addition to utilising WormBase derived 

data. In addition, one feature PINOT lacks compared to alternative PPI query tools is a network 

visualisation alongside the data output and therefore developing this feature would strengthen 

the resource further.    
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7.1 Supporting files  

 

Supporting files corresponding to analyses in Chapter Two are available at: 

 

https://www.dropbox.com/sh/6rxxf2v0grl5s3o/AADNTUFC8Yt0UxEuMmz3LFSua?dl=0 

 

Programming scripts which underlie data processing in PINOT are available at: 

 

https://www.reading.ac.uk/bioinf/downloads/PINOT_scripts/ 
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Comparative Protein Interaction Network Analysis Identifies
Shared and Distinct Functions for the Human ROCO
Proteins
James E. Tomkins, Sybille Dihanich, Alexandra Beilina, Raffaele Ferrari, Nicolò Ilacqua,
Mark R. Cookson, Patrick A. Lewis, and Claudia Manzoni*

Signal transduction cascades governed by kinases and GTPases are a critical
component of the command and control of cellular processes, with the precise
outcome partly determined by direct protein–protein interactions (PPIs). Here,
we use the human ROCO proteins as a model for investigating PPI signaling
events—taking advantage of the unique dual kinase/GTPase activities and
scaffolding properties of these multidomain proteins. PPI networks are
reported that encompass the human ROCO proteins, developed using two
complementary approaches. First, using the recently developed weighted PPI
network analysis (WPPINA) pipeline, a confidence-weighted overview of
validated ROCO protein interactors is obtained from peer-reviewed literature.
Second, novel ROCO PPIs are assessed experimentally via protein microarray
screens. The networks derived from these orthologous approaches are
compared to identify common elements within the ROCO protein
interactome; functional enrichment analysis of this common core of the
network identified stress response and cell projection organization as shared
functions within this protein family. Despite the presence of these
commonalities, the results suggest that many unique interactors and
therefore some specialized cellular roles have evolved for different members
of the ROCO proteins. Overall, this multi-approach strategy to increase the
resolution of protein interaction networks represents a prototype for the utility
of PPI data integration in understanding signaling biology.

1. Introduction

The subcellular environment hosts a dynamic network of molec-
ular events that regulates cell homeostasis and coordinates sig-
nal transduction. Defining these regulatory mechanisms and
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understanding how they influence the
physiology of biological processes is im-
portant in determining how subtle al-
terations in protein function may lead
to disease. Since protein–protein inter-
actions (PPIs) are central to these pro-
cesses, and as interacting proteins are
likely to be involved in the same or related
pathway,[1] searching for proteins that
physically interact with each other repre-
sents a means to achieve deeper insight
into the highly interconnected landscape
of cellular functions. The importance of
elucidating protein interactors within cell
signaling events is illustrated in our un-
derstanding of the mTOR complexes,[2]

whereby the assembly of particular pro-
tein interactors differentially initiates a
diverse range of functional pathways.
The human ROCO protein family
(Figure 1) consists of four multidomain
cell signaling proteins, death-associated
protein kinase 1 (DAPK1), leucine-rich
repeat kinase 1 (LRRK1), leucine-rich
repeat kinase 2 (LRRK2), and malig-
nant fibrous histiocytoma amplified
sequence 1 (MASL1 or MFHAS1),
which are characterized by a tandem
ROC (Ras of complex proteins)-COR

(C-terminal of ROC) supra-domain.[3] Although the ROCO pro-
teins are defined by this conserved region, the domain topology
surrounding the ROC-COR unit (which includes numerous pro-
tein interaction motifs) is diverse and dissimilar between ROCO
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Significance Statement

This researchdemonstrates theutility of the extensive collec-
tionof PPI data already in thepublic domain via peer-reviewed
publication to complement novel PPI datasets, in order to iden-
tify similarities anddifferences inPPI and functional profiles of
relatedmultidomainproteins andprioritize interactors to pur-
sue for validation in the laboratory. ThehumanROCOproteins
are an attractive protein family for utilizing this approach since
their primary structure consists of a conserved regionflanked
by adiverse rangeof PPI domainswithin a single open reading
frame.
Our literatureminingpipeline implemented in this analysis,
WPPINA, ensures awide coverageof reportedPPIs frommulti-
ple data repositorieswhichmaximizes theusefulness of novel
data integration, such asproteinmicroarray as is used in this
study. The significanceof this strategy is that novel datasets are
not just stand-alone results and canbe interpreted in combina-
tionwith decadesof research intoPPIs of particular proteins of
interest, by adopting this straightforward approach to support
further investigations.

proteins. Three of the four ROCO proteins (DAPK1, LRRK1, and
LRRK2) also harbor active kinase domains in addition to the GT-
Pase activity of the ROCdomain, an arrangement that is exclusive
to these three proteins, within the human proteome. The com-
bination of multiple enzymatic activities coupled with a range
of PPI domains within the same open reading frame positions
the ROCO proteins as a unique protein family to investigate the
functional commonalities and differences of structurally related
proteins. The presence of several interaction domains within the
primary structure of these proteins may reduce the requirement
for adaptor proteins to complex with ROCO proteins. There-
fore, direct interactors are likely to be functionally relevant ef-
fector proteins and hence the analysis of direct ROCO protein

interactors will provide important functional insight into this
family of proteins. Thus, the humanROCOproteins are an attrac-
tive protein family to utilize as a model for PPI network analysis,
to explore the link between PPI profiles and functional fates. This
approach has been previously used for LRRK2 in isolation,[4,5]

the DAPK1 interactome has been reviewed,[6] and the compari-
son between LRRK1 and LRRK2 has been attempted.[7] However,
the collective PPI network analysis of the entire human ROCO
protein family is a novel contribution.
Despite their sequence similarity (Figure 1), the humanROCO

proteins appear to be associated with different cellular processes.
DAPK1 is linked to cell death pathways[8–10] and is also involved
in inflammation.[11] LRRK1 has been associated with numerous
distinct cellular mechanisms, which include EGFR trafficking,[12]

mitotic spindle orientation,[13] and humoral immunity.[14] LRRK2
has been implicated in a diverse range of cellular processes, in-
cluding macroautophagy, cytoskeletal dynamics, and mitochon-
drial function.[15] Finally MASL1, the least studied of the hu-
man ROCO proteins, has functional connections to macrophage
polarization[16,17] and erythropoiesis.[18] These proteins also have
disease relevance: DAPK1, LRRK1, and MASL1 in cancers,[19–21]

while mutations in LRRK2 are a common genetic contributor to
familial Parkinson’s Disease (PD)[22] and LRRK2 has been asso-
ciated with numerous other human diseases.[23] However, signif-
icant gaps in our understanding of ROCO protein biology per-
sist, which have implications for drug development in human
disease.[19,24] In addition, fundamental questions relating to why
such similar proteins are differentially involved in health and dis-
ease, and how the complex enzymatic functions of these proteins
fit with the biochemical regulation of cellular signaling pathways,
remain to be addressed.
Since key components underlying the functional divergence

evident between the ROCO proteins will reside in their prox-
imal interactomes,[7,23] we set out to investigate these in-
teractomes using two orthologous approaches to determine
PPI networks across the human ROCO protein family. We
first used an in-house data mining approach which enabled

Figure 1. Domain topology of the human ROCO proteins and ROC-COR supra-domain sequence similarity. A) Multidomain structure of the hu-
man ROCO proteins which are characterized by a conserved tandem ROC-COR domain. Abbreviations: Ank, ankyrin repeats; Arm, armadillo repeats;
Ca2+/CaM reg, calcium/calmodulin regulatory domain; COR, C-terminal of ROC; DAPK1, death-associated protein kinase 1; LRR, leucine-rich repeats;
LRRK1, leucine-rich repeat kinase 1; LRRK2, leucine-rich repeat kinase 2; MASL1, malignant fibrous histiocytoma amplified sequence 1; ROC, Ras of
complex proteins. B) Peptide sequence identity and C) similarity of the ROC-COR supra-domain across ROCO proteins. ROC-COR region defined as
residues 612–1225 (DAPK1), 574–1143 (LRRK1), 1271–1790 (LRRK2) and 345–972 (MASL1). Please note that the presence of a WD40 domain in LRRK1
is still a matter of scientific debate.[50,52]
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identification of PPIs reported in the published literature, to
generate a weighted protein–protein interaction network anal-
ysis (WPPINA).[25] Second, to complement WPPINA, we used
protein microarray screens to construct an experimental net-
work, enabling hypothesis-free discovery of novel protein interac-
tors. We compared these two ROCO protein networks to validate
interactors across the approaches and prioritize interactors for
further investigation. Functional insight into these networks was
obtained by utilizing gene ontology (GO) functional annotations.
These results highlight a subset of interactors common to mul-
tiple ROCO proteins, but also numerous interactors specific to
particular ROCO proteins, supporting the hypothesis that these
proteins have evolved largely independent cellular functions.
Furthermore, we demonstrate that the use of WPPINA to

query a high-throughput-derived PPI dataset (such as data ob-
tained by protein microarray screens) represents a novel, rapid,
and effective tool to prioritize protein interactors for further ex-
perimental validation based on the functional knowledge that is
readily available in the published literature.

2. Experimental Section

2.1. Literature-Derived Network Data Download

Protein–protein interaction data was obtained by querying
the PSICQUIC online interface[26] (available at http://
www.ebi.ac.uk/Tools/webservices/psicquic/view/main.xhtml)
for DAPK1, LRRK1, LRRK2, and MASL1, independently. Data
was downloaded on January 12, 2017, in a MITAB 2.5 format,
from six primary database sources: IntAct,[27] BioGRID,[28]

InnateDB, Innate-DB-All, InnateDB-IMEx,[29] and MINT[30] to
ensure a wide capture of reported PPIs.

2.2. Construction of the Literature-Derived Network

The literature-derived ROCO PPI network was constructed as
previously described.[25] In brief, datasets from primary PPI
databases were processed to obtain format and protein identifier
(ID) consistency, utilizing a dictionary dataset of all human pro-
teins (developed from a UniProt search of human proteins ob-
tained on January 13, 2017). Data from the six datasets were then
merged into a single file and repeated equivalent interaction data
entries (i.e., interactions derived from the same publication and
annotated in multiple databases) were removed.
A series of filtering steps were applied. First, non-protein

interactors, such as chemical and miRNA, and protein ID
terms corresponding to non-reviewed automatic annotations,
which include UniProt TrEMBL IDs, were removed. In ad-
dition, transcript-specific information was removed. Next,
non-human interactors, which included seed orthologs, were dis-
carded. Filtered datasets were then subjected to method detec-
tion reassignment, which grouped similar detection methods
based on the EBI Molecular Interactions Ontology, available at
http://www.ebi.ac.uk/ols/ontologies/mi (File 1, Supporting In-
formation).

A confidence value was assigned to each interaction based on
three parameters: method score (MS), the number of different
methods used to detect a specific interaction (one method
scored a value of 1, multiple methods scored a value of 2);
publication score (PS), the number of publications that report a
specific interaction (one publication scored a value of 1, multiple
publications scored a value of 2); and CRAPome score (CS), the
likelihood that the interaction is an affinity purification mass
spectrometry (APMS) contaminant. The CS utilizes the
CRAPome[31] (version 1.1), a known contaminant repository for
APMS experiments, which contained 411 datasets at the time of
scoring (January 18, 2017). Each interactor that was detected by
APMS was queried against the CRAPome and if the protein was
a positive hit in >50% of the CRAPome datasets and had only
been detected by APMS, the protein was scored a value of −1; if
the protein was a positive hit in >50% of the CRAPome datasets
but had also been detected by another non-APMSmethod or was
a positive hit in 30–50% of the CRAPome dataset and had only
been detected by APMS, the protein was scored a value of −0.5;
and if the protein was a positive hit for <50% of the CRAPome
datasets and had also been detected by another non-APMS
method or was a positive hit in <30% of the CRAPome datasets,
the protein was scored a value of 0.
The sumof the three scoring parameters then formed the basis

of a confidence scale and only interactions that scored <2 were
retained for constructing the network. This <2 score threshold
ensures that nodes of the network represent interactors that have
been independently replicated, by method and/or publication.

2.3. Protein Production and Purification

HEK293T cells were transfected with 3xFLAG tagged DAPK1,
LRRK1, LRRK2,MASL1, or GFP plasmids using PEI reagent, col-
lected 24 h after transfection and cells were lysed in the buffer:
20mMTris (pH 7.5), 150mMNaCl, 1mMEDTA, 1%Triton, 10%
Glycerol, protease inhibitor cocktail (Roche), and 1x Halt phos-
phatase inhibitor cocktail (Thermo Scientific). Lysates were pre-
cleared by centrifugation at 20 000 × g for 10 min and incubated
for 1 h at 4 °C with EZview Red Protein G beads (Sigma) to re-
move proteins non-specifically binding to agarose. After preclear
with protein G beads, lysates were incubated for 1 h at 4 °C with
EZview Red Anti-FLAG M2 Agarose (Sigma) that is suitable for
the immunoprecipitation of FLAG fusion proteins. Beads were
washed six times with the wash buffer: 20 mM Tris (pH 7.5),
400 mM NaCl, 1% Triton and proteins were eluted in 25 mM
Tris (pH 7.5), 150 mM NaCl, and 100 μg mL−1 3xFLAG pep-
tide (Sigma). Protein yields and purity were estimated by staining
gels with Coomassie brilliant blue staining (Thermo Scientific,
Figure 1, Supporting Information).

2.4. Protein Microarrays

3xFLAG tagged, full-length DAPK1, LRRK1, LRRK2, MASL1,
and GFP control proteins were purified as previously
described.[32] Six micrograms of each purified 3xFLAG tagged
protein were used to probe protein microarrays (Protoarray,
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version 4.1; Invitrogen) according to the manufacturer’s instruc-
tions with the modification that after 3xFLAG tagged protein
probing, arrays were probed with monoclonal ANTI-FLAG
BioM2−Biotin, Clone M2 (Sigma-Aldrich) antibody, followed
by probing with Alexa Fluor 647 streptavidin (Invitrogen).[33]

Arrays were imaged using an Axon GenePix 4000B fluores-
cence scanner and images were analyzed using GenePix Pro
software. ProtoArray Prospector software was used to analyze
the microarray data acquired from GenePix Pro and identify the
significant hits. Binding strength was estimated as Z-scores,
that is, numbers of standard deviations above background
fluorescence on the array. Each protein on the array was spotted
in duplicate, hence reported values were averaged for both spots.
Signals considered as potential interactions were determining
using a Z-score threshold of Z > 3. ROCO protein positive hit
interactors were determined by filtering against GFP (negative
control) interactions to identify proteins that bound DAPK1,
LRRK1, LRRK2, or MASL1 but not GFP.

2.5. Functional Annotation

To gather insight into the cellular processes that are influenced
by the proteins within the networks, functional enrichment anal-
ysis was performed. This analysis is based on gene ontology
(GO) annotations and determines enrichment of biological pro-
cess (BP) annotations within a query protein list (ROCO pro-
tein interactors in this case), by a comparison against anno-
tations for the entire human genome. Functional enrichment
analysis was undertaken using g:Profiler g:GOSt (available at
http://biit.cs.ut.ee/gprofiler/index.cgi), on June 23, 2017. Statis-
tical significance was determined using Fisher’s one-tailed test
with a g:Profiler g:SCS algorithm to correct for multiple test-
ing; p < 0.05 was set as the significance threshold and out-
put data was not subjected to hierarchical filtering. Results were
confirmed by replication of the functional enrichment analy-
sis using WebGestalt[34] (http://webgestalt.org/option.php) and
Panther[35] (http://www.pantherdb.org/) on November 22, 2017
(File 10, Supporting Information); the statistical testing underly-
ing the enrichment analysis for these alternative portals is differ-
ent, thus replication by this means provides reinforcement of the
result obtained using g:Profiler.
All algorithms used for data processing were developed in

R version 3.2.2. Networks were generated and visualized using
Cytoscape[36] version 3.3.0 and graphs were produced in Graph-
Pad Prism 7.0.

3. Results

We here present an insight into the protein interaction network
of the ROCO protein family. The four human ROCO proteins,
DAPK1, LRRK1, LRRK2, andMASL1 were used as seed proteins.
The term “interactome” refers to the group of proteins that di-
rectly bind to a particular seed protein.

3.1. Construction of the Literature-Derived Network

The literature-derived PPI network (Figure 2A) was constructed
by collecting the reported PPIs of ROCO proteins, utilizing

our recently developed pipeline (WPPINA),[25] which collates
data from several databases within the IMEx consortium.[37]

Data were quality checked and a confidence threshold was
applied to retain only interactions that have been replicated by
a minimum of two experimental methods and/or reported in
at least two peer-reviewed publications. Therefore, this network
provides a confidence-weighted visual overview of state-
of-the-art PPI knowledge centered on the human ROCO
proteins.
The network topology indicated a strong bias toward the

LRRK2 interactome with 113 interactors, compared to the 38,
14, and 4 interactors for DAPK1, LRRK1, and MASL1, respec-
tively (Figure 2B). This differential recovery of PPIs is likely
driven by literature bias toward proteins with known human dis-
ease associations. For example, LRRK2 is the focus of many in-
vestigations within PD research,[38] whereas MASL1 is relatively
understudied.[21] Interestingly, this trend differs when consider-
ing the interactomes prior to applying the confidence threshold
(i.e., when retaining all reported interactors regardless of repli-
cation; Figure 2B). Of the 57 DAPK1 interactors reported within
the literature, 38 were retained when the confidence threshold
was applied. This relatively high (66.7%) retention of interactors
indicates that themajority of interactors that have been identified
for DAPK1 have been replicated. Four of the seven (57.1%) re-
ported MASL1 interactors were also replicated observations and
hence were retained for constructing the network. In contrast,
only 16.5% of LRRK1 interactors and 23.5% of LRRK2 interac-
tors were retained after confidence thresholding, showing lim-
iting replication of the interactors identified. These results sug-
gested that the expanse of PPI data for more widely studied pro-
teins does not directly reflect increased confidence or robustness
of the related interactome.
Considering only the confidence thresholded network, our re-

sults indicated common interactors between ROCO proteins:
three interactors common to both DAPK1 and LRRK2 (FADD,
MYO1B, and MYO1D), and two interactors common to both
LRRK1 and LRRK2 (BAG5 and HSPA8; Figure 2A). Func-
tional insight into these common interactors is summarized in
Table 1, Supporting Information. In addition, from this analy-
sis it was shown that DAPK1, LRRK1, and LRRK2 can exist as
homo- and hetero-dimers, conformations that may be critical for
the functions of these proteins.[39,40] In contrast, the MASL1 in-
teractome was fully detached from the other ROCO protein in-
teractomes within this network, indicating a lack of common in-
teractors between MASL1 and the other ROCO proteins on the
basis of the existing literature.

3.2. Generating the Experimental Network

To address the biases in literature coverage for the human ROCO
proteins, we performed protein microarray experiments as a
hypothesis-free approach for identifying potential ROCO protein
interaction partners. This approach formed the basis of the ex-
perimental network (Figure 3A). We limited false-positive hits in
each interactome by setting a Z-score threshold to distinguish
positive hits from background signals and by filtering ROCOpro-
tein hits against GFP hits as a negative control for non-specific
binding.
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Figure 2. Literature-derived ROCO protein interaction network. A) Network visualization of the ROCO protein interaction partners following data pro-
cessing via the WPPINA pipeline. B) Quantification of the interactors retained following confidence score thresholding.

In contrast to the literature-derived network, this network dis-
played a more even distribution of interactors around each seed
protein (Figure 3B). Specifically, we identified 87 (DAPK1), 51
(LRRK1), 78 (LRRK2), and 87 (MASL1) positive hits for each
seed protein, respectively (File 2, Supporting Information). Of
note, numerous kinases have been identified as potential MASL1
interactors (Table 1), six of which, CLK1, LIMK1, MAP3K4,
NEK11, ROR1, and STK25, appear to be specific interacting part-
ners of MASL1.
A remarkable finding from mapping this protein microar-

ray data was that 23.5% of the entire network consisted of
common node connections between two or more seed pro-
teins. Furthermore, 8.4% of the nodes in the network were
common to three or more seed proteins and five nodes
(2.2% of the network) were common to all four seed proteins
(Figure 3A,C). This suggested that the overlap between seed pro-
tein interactomes might in fact be greater than previously re-
ported. However, it is important to note that further validation

of these interactors is required to increase confidence in their
veracity.

3.3. Identification of ROCO Protein Common Interactors

A particular advantage of applying two orthologous network anal-
ysis approaches is to compare and combine the networks to
minimize the burden of approach-specific limitations and max-
imize the capacity of available data. To achieve this, we merged
the literature-derived network and the microarray data with the
aim of validating via the literature some of the experimentally
obtained, but not replicated, hits. Many nodes were common
to both networks (Figure 4; referred to as the common core
network). These common nodes can be categorized into three
groups: i) interactors of the same seed protein that are cross-
supported by both networks (e.g., ARFGAP1, CHGB, and GAK
which are common to LRRK2 in both networks); ii) interactors
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Figure 3. Experimental ROCO protein interaction network. A) ROCO protein interaction network analysis using protein microarray screens. B) Quantifi-
cation of positive interactors identified by protein microarray for each ROCO protein. Three hundred and three interactions identified across 226 nodes.
C) Extent of common nodes within the experimental network. Number of interactors and percentage of entire experimental network reported.

common to both literature-derived data and the experimental net-
work but within different seed protein interactomes (Figure 4),
and iii) interactors that are common to both literature-derived
and experimental datasets associated with the same seed pro-
tein, but only if the confidence threshold is removed from the
literature-derived data (Table 2, Supporting Information). In-
teractors from iii) do not exceed the confidence threshold in
place within the WPPINA pipeline to support replication of

interactors, however with integration of the protein microar-
ray data these interactors would exceed this threshold due to
acquiring independent replication from the protein microarray
experiments.
Considering the overlap between the literature-derived and

the experimental networks, 14 common interactors were iden-
tified (Figure 4B). When the non-thresholded literature-derived
data and the protein microarray network were examined, 48
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Table 1.MASL1-interacting kinases. Kinases that were identified as interactors of MASL1 in the protein microarray screen, with functional associations.
Of note, cell cycle–related functions appear to be a common functional theme.

Kinase interactor Additional seed
interaction

Functional enrichment
contribution

Further functional detail

Abbreviated name Full protein name

AURKB Aurora kinase B LRRK2 - � Interacts with CLK1,[53] another MASL1-interacting kinase
identified in this protein microarray screen

� Phosphorylated AURKB localizes to kinetochores in
prometaphase cells[54]

� Functional role in mitotic cell division, specifically as a catalytic
unit of the chromosomal passenger complex (CPC)[54]

� Dysregulation associated with tumorogenesis[55]

CLK1a) CDC2-like kinase 1 - - � Associates and phosphorylates AURKB,[53] another
MASL1-interacting kinase identified within this protein microarray
screen

� Dual specificity kinase that localizes to the nucleus[56]
� Involved in alternative splicing and neuronal differentiation[56–58]
� Potential drug target for Influenza and Alzheimer’s disease

(AD)[59,60]

GAK Cyclin-G-associated kinase LRRK1 and
LRRK2

Development, transport,
intracellular
organization, protein
metabolism

� Androgen receptor-interacting transcriptional coactivator[61]
� Localizes to the trans-Golgi network[62]
� Involved in clathrin-mediated membrane trafficking and

metaphase mitotic progression[63]
� Disease links to cancer and Parkinson’s disease (PD)[61,64,65]

LIMK1a) LIM domain kinase 1 - - � Regulates microtubule dynamics, specifically mitotic spindle
structure and positioning

� Acts downstream of several Rho-family GTPase signal
transduction pathways[66]

MAP3K4a) Mitogen-activated protein
kinase kinase kinase 4

- - � Mediator in stress-activated p38/MAPK and JNK signaling
pathways[67]

� Involved in tumur suppression and epithelial-mesenchymal
transition[68]

� Loss of MAP3K4 is associated with defective neural tube
development[69]

NEK1 NIMA-related kinase 1 LRRK1 Cell Cycle, Intracellular
Organization, Protein
Metabolism,
Response to Stimulus

� Associated with axial spondylometaphyseal dysplasia[70]
� Involved in DNA damage response and cell cycle control;

suggested role in post-mitotic cilia assembly
� Mutations in NEK1 are associated with ciliopathy and polycystic

kidney disease (PKD)[71]

NEK11a) NIMA-related kinase 11 - - � Involved in DNA damage and genotoxic stress responses
� Highly expressed throughout S phase of the cell cycle to the G2-M

transition
� Activated by phosphorylation by ATM and ATR kinases[71]

(Continued)

interactors were common to both datasets (Figure 4 and File 3,
Supporting Information).
To further investigate the likelihood that the common core

network reports true interactions, we added an additional score
considering tissue-specific gene expression. Using expression
data derived from GTEx[41] and a gene expression threshold of

three reads per kilobase of transcript per million mapped reads
(RPKM), co-expression analysis identified distinct tissues where
specific interactor mRNA were expressed together with specific
seed protein mRNA (Table 3, Supporting Information).
Concerning pairwise interactions betweenROCOproteins and

interactors from the common core network (48 interactors and a
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Table 1. Continued.

Kinase interactor Additional seed
interaction

Functional enrichment
contribution

Further functional detail

Abbreviated name Full protein name

ROR1a) Receptor tyrosine kinase-like
orphan receptor 1

- - � Pseudokinase
� Non-canonical Wnt transmembrane receptor[72]
� Highly upregulated in chronic lymphocytic leukemia (CLL)[73] and

other blood cancers[74]

STK25a) Serine/threonine kinase 25 - - � Associates with Golgi apparatus
� Dominant negative STK25 causes dispersal of the Golgi apparatus

and inhibits cell migration[75]
� Involved in glucose homeostasis[76]
� Regulates lipid release from lipid droplets and induces

NAFLD/NASH pathogenesis[77]

a) kinases specific to MASL1

total of 115 pairwise interactions; Table 3, Supporting Informa-
tion), only 1 protein out of 48 interactors, DUX3, was not found
in the GTEx database used for co-expression analysis. On aver-
age, co-expression within nine tissues was evident, whilst in ten
cases co-expression was found in 12 tissues (out of 13 analyzed,
Table 3, Supporting Information). Although most tissues in-
cluded at least one co-expressed interaction pair, one tissue
(skeletal muscle) did not show any co-expressed interaction pairs
due to an absence of significant ROCO protein expression in this
tissue. The highest proportion of co-expressed interaction pairs
was seen in the reproductive apparatus (96% of co-expressed in-
teraction pairs), followed by two tissues: brain and intestine (92%
and 90% of co-expressed interaction pairs, respectively; Table 3,
Supporting Information).

3.4. Functional Insight Into the Common Core Network

The literature-derived and common core networks were sub-
jected to functional enrichment analysis based on gene ontol-
ogy (GO) functional annotations. Particularly, we used biological
process (BP) terms to gather functional insight into these net-
works. The significantly enriched BP terms were grouped into
functional blocks defined by more specific semantic classes (us-
ing a curated dictionary list to match GO terms with a custom
grouped ontology) based on semantic similarity (Files 4 and 8,
Supporting Information). This enabled an overview of signifi-
cantly enriched functions (see Figure 2, Supporting Information
for a summary of functions associated with the ROCO literature-
derived and common core networks, and Files 4–9, Supporting
Information for a breakdown of each functional block, including
semantic class– and GO term–specificity).
Within the common core network, which consists of 48 com-

mon interactors plus the seed protein nodes (Figure 4), a to-
tal of 26 GO BP terms were significantly enriched, represent-
ing a specific subset of the whole 516 functionally diverse terms
significantly enriched within the literature-derived network
(Figure 2, Supporting Information and File 4, Supporting

Information). The predominantly enriched terms within this re-
fined analysis indicated “response to stimulus” and “intracellular
organization” functional blocks supported by “stress” and “cell
projections” semantic classes, respectively (Table 2). Functional
associations for specific ROCO proteins were also explored by
functional enrichment analysis of the individual interactomes
within the literature-derived network identifying “cell death” and
“development” as distinct functional themes for DAPK1 and
LRRK1, respectively, and “intracellular organization” and “trans-
port” for LRRK2 (Table 2).

4. Discussion

The human ROCO proteins are defined by a ROC-COR supra-
domain which contains highly conserved motifs and substantial
sequence similarity (Figure 1), a tandem domain organization
that can be evolutionary traced from prokaryotic organisms.[42]

This domain homology is paralleled by flanking domain dissim-
ilarity, driving a twofold interest into the proximal interactors
of these proteins and their potential effects on subcellular func-
tions: first from a fundamental biology perspective in relation to
the complex domain organization of these proteins, and second
from a drug discovery perspective due to the involvement of these
proteins in human diseases.
In the current study, we used a combination of bioinformatic

literature-based analysis (WPPINA) and an experimentally de-
rived protein microarray dataset, to expand our insight into the
ROCO protein interactomes, specifically into common and dis-
tinct interactors, and functional pathways regulated by this fam-
ily of proteins.
Although literature-derived PPI networks are incomplete by

definition as they are affected by ascertainment bias[43] and de-
pend solely on existing experimental findings (i.e., many interac-
tors may exist that are yet to be discovered and/or relatively newly
discovered protein interactors will be neglected in comparison
to the more studied ones), the WPPINA analysis reported here
represents a comprehensive literature review of reported ROCO
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Figure 4. Common nodes across literature-derived and experimental
ROCO PPI data. A) The network is specifically depicted to highlight inter-
actors that are common to both non-thresholded literature-derived data
and protein microarray data. Dotted edges indicate interactions deriving
from protein microarray experiments; dashed edges indicate interactions
described in literature; dotted and dashed edges are interactions repli-
cated between the two datasets. Seeds are represented with a circular
node. Common interactors are represented with a double circular node if
they are common to two seeds, square node if they are common to three
seeds, and triangular node if they are common to all four seeds. B) Com-
mon nodes across the literature-derived and experimental networks when
considering literature-derived data after thresholding.

PPIs[25] and ensures an extensive and weighted coverage of pri-
mary literature sources comparatively to currently used literature
mining and prediction network mapping tools.
In the case of the ROCO proteins, the literature-derived PPI

network incorporates a potential bias toward the LRRK2 interac-
tome, due to extensive investigation into LRRK2 in relation to
PD.[44,45] This is evidenced by the nearly twofold increase in the
number of LRRK2 interactors (from 62 to 113) compared to a pre-
vious analysis performed in 2014 using an earlier version of the
same data processing pipeline.[4] Conversely, the distribution of
nodes amongst the other ROCO proteins highlights the compar-
ative neglect of research into characterizing the DAPK1, LRRK1,
and MASL1 interactomes.[21] However, it is worth considering
that all interactions reported through WPPINA are experimen-
tally proven, replicated, and cleared from type-I error.

The domain topology and primary structures of the ROCO
proteins are dissimilar outside of the ROC-COR region
(Figure 1), hence common interactors may provide hints to-
ward ROC-COR-specific interactions. The common interactors
identified within the literature-derived network include: FADD,
MYO1B, and MYO1D (between DAPK1 and LRRK2), and BAG5
and HSPA8 (between LRRK1 and LRRK2). Functional insight
into these common interactors is provided in Table 1, Support-
ing Information. Of note, two common interactors (MYO1B
and MYO1D) are unconventional myosin proteins involved in
vesicle trafficking, a critical function for many cellular processes
and ultimately cell survival. Interestingly, Rab proteins have a
regulatory role in myosin motor function, which combined with
evidence of Rab proteins as LRRK2 substrates[46] and myosins
as LRRK2 interactors, supports a key role for LRRK2 in the
regulation of intracellular vesicle transport.[47] This WPPINA
approach allows for the straightforward identification of these
mutual connections which could easily be overlooked when
reviewing literature using alternative strategies. By removing the
confidence threshold within the WPPINA pipeline, we increased
the number of interactors reported within the literature-derived
ROCO PPI network; however, the additional interactors have to
be considered carefully since there is no evidence of replication
within the peer-reviewed literature.
The experimental network, which is based on protein mi-

croarray data, provides novel insight into the ROCO protein in-
teractomes. This network is not biased toward a specific seed
protein since all are equally evaluated utilizing a hypothesis-free
approach and is complete in relation to the extensive range of pro-
teins immobilized on the microarray (9480 proteins). However,
the experimental network is not as robust as the literature-derived
network due to technical biases (i.e., intrinsic limitations to this
experimental procedure, including the choice of baits for the
microarray; alterations of physiological protein conformations
[non-physiological environment, absence of lipidic membranes,
tagged preys]; variations of posttranslational modifications as evi-
dence suggests that the phosphorylation state of LRRK2 impacts
the protein interaction profile of the protein).[48] Consequently,
interactions reported in the experimental network require repli-
cation by alternative interaction detection methods to overcome
the technical biases and ensuring validity of the protein microar-
ray positive hits.
Nevertheless, this high-throughput approach allows for the

identification of potential novel interactors, expanding the cur-
rent landscape of the ROCO protein interaction network, partic-
ularly for the less studied ROCO proteins. For example, many
potential MASL1 interactors have been identified, which include
numerous kinases (Table 1).MASL1 (unlike the other ROCOpro-
teins) lacks an intrinsic kinase domain (Figure 1), therefore it can
be hypothesized that its GTPase activity within the ROC domain
may influence an extrinsic kinase domain.[39,49,50] The novel po-
tential MASL1-interacting kinases identified in this screen may
be downstream effectors of the switch-like GTPase activity of
MASL1 and thus part of a reciprocal regulatory relationship.
To address the intrinsic biases of these two approaches, we in-

tegrated the literature-derived and experimentally derived data.
The advantage of this strategy is that the microarray data will
dilute the ascertainment bias of the literature-derived network,
while the literature-derived network will supply the reproducibil-
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Table 2.Most significantly enriched terms from functional enrichment analysis of each dataset.

Datasets p-value GO term Semantic class

Literature-
derived

4.6E-36 Cellular component organization
or biogenesis

Intracellular organization

Network 2.44E-30 Intracellular transport Transport—intracellular

4.31E-30 Cellular component organization Intracellular organization

DAPK1 0.000000385 Cell death Cell death

0.000000439 Apoptotic process Cell death—apoptosis

0.00000136 Programmed cell death Cell death

LRRK1 0.0000349 Neuron projection development Development—neuronal—axon

0.0000382 Cell development Development

0.0000911 Neurogenesis Development—neuronal

LRRK2 2.75E-29 Cellular component organization
or biogenesis

Intracellular organization

4.36E-29 Intracellular transport Transport—intracellular

1.61E-26 Establishment of localization in
cell

Protein metabolism—localization

Common
core

0.00000192 Regulation of cellular response to
stress

Response to stimulus—stress

Network 0.0000539 Plasma membrane bounded cell
projection organization

Intracellular organization—cell
projections

0.0000752 Cell projection organization Intracellular organization—cell
projections

ity element and aid prioritization of positive hits from the
microarray experiments. By overlaying this data, numerous in-
teractors common to both datasets became evident, including
interactors from the same seed origin, reinforcing confidence
in the protein microarray data, and interactors that were repli-
cated between the two approaches but in association with dif-
ferent seeds of origin (Figure 4), opening new avenues for fu-
ture functional investigation. These common nodes across both
approaches were used to construct the common core network
(Figure 4), which illustrates the potential overlap in ROCO pro-
tein interaction profiles.
The probability of proteins interacting within the cellular

environment is subject to a number of important variables,
including both temporal and spatial patterns of expression.
Therefore, we subjected the interactors of the common core net-
work to tissue-specific gene expression profiling using data from
GTEx (Table 3, Supporting Information). Although this repre-
sents a crude type of analysis (i.e., temporal expression and in-
tracellular localization are not taken into account), it provided
another way to assess the probability of the interactions reported
in the common core network based on co-existence of protein
transcripts in human tissues. Particularly, we gathered that the
highest frequency of co-expressed interaction pairs was in the re-
productive apparatus, followed by brain and intestine, whilst only
skeletal muscle did not show any co-expression. Additionally,
ten proteins (ABL1, CALM1, CBLB, CDC42EP3, GAK, MRGBP,
RPAP3, SNX9, STUB1, and TUBB4B) were co-expressed with
ROCO proteins in 12 out of the 13 tissues analyzed. This insight
into tissue-specific co-expression supports the likelihood of the
majority of pairwise interactions that have been reported in the
literature and that have been assessed in a functional context.

To obtain functional insight into the ROCO protein interaction
network, we performed functional enrichment analysis for the
literature-derived and common core networks, independently.
The analysis of the former evidenced a diverse range of cellular
functions (Figure 2A, Supporting Information), which support
the concept of the ROCO proteins as hubs for a multitude of
signaling cascades and hence challenging targets for therapeutic
development.[4] The analysis of the latter suggested a limited
range of associated functional blocks: cell death, intracellular
organization (particularly cell projections), protein metabolism,
and response to stimulus (particularly stress response;
Table 2 and Figure 2B, Supporting Information). In addi-
tion, functional enrichment analysis of individual ROCO protein
interactomes indicated distinct functional themes for each seed
protein (Table 2). In combination, these enrichment analyzes
provide an overview of cellular functions associated with the
ROCO proteins, suggesting potential convergent and divergent
roles of these proteins within the cell, thus guiding future
detailed assessments of ROCO protein function.
These analyzes provide a valuable foundation for understand-

ing the ROCO protein interaction network. We here integrated
peer-reviewed literature, microarray, and co-expression datasets
to isolate common and distinct interactors of the ROCO pro-
teins. We constructed a ROCO protein common core network
highlighting the extent of commonality in the interaction pro-
files of these proteins. Using functional analysis approaches, we
showed that, the ROCO proteins share a structurally conserved
unit, which may be responsible for shared interactions (such as
those with BAG2, CBLB, CDC42EP3, STUB1, and VGLL4) and as
consequence, may influence the involvement of the ROCO pro-
teins in common pathways identified (such as stress response
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and cell projection organization). However, despite this domain
conservation, the ROCO proteins seem to have evolved largely
divergent interactomes and associated functions within the cell
(Table 2). This supports previous research into the functions of
LRRK1 and LRRK2.[7] The diversification of interactomes and bi-
ological functions of the ROCO proteins may reflect an evolu-
tionary pressure toward phylogenetic differentiation of a single
ancestral ROCO gene[51] and may justify why the human ROCO
proteins are differently associated with disease.
In summary, we utilized a confidence-weighted data process-

ing pipeline (WPPINA) to prioritize high-throughput experimen-
tal results. Importantly, this approach provides the flexibility
to incorporate data from a wide range of sources, and in the
future could be further complemented by findings from yeast
two-hybrid and stable isotope labelling with amino acids in
cell culture (SILAC) screens, for example. Together, this analy-
sis highlights the value of a multi-layered approach, combining
bioinformatics with novel experimental data to better inform and
accelerate laboratory investigations.

Abbreviations
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Abstract (350) 
Background: The past decade has seen the rise of omics data, for the understanding 

of biological systems in health and disease. This wealth of data includes protein-

protein interaction (PPI) derived from both low and high-throughput assays, which is 

curated into multiple databases that capture the extent of available information from 

the peer-reviewed literature. Although these curation efforts are extremely useful, 

reliably downloading and integrating PPI data from the variety of available repositories 

is challenging and time consuming. 
Methods: We here present a novel user-friendly web-resource called PINOT (Protein 

Interaction Network Online Tool; available at 

http://www.reading.ac.uk/bioinf/PINOT/PINOT_form.html) to optimise the collection 

and processing of PPI data from the IMEx consortium associated repositories 

(members and observers) and from WormBase for constructing, respectively, human 

and C. elegans PPI networks. 
Results: Users submit a query containing a list of proteins of interest for which PINOT 

will mine PPIs. PPI data is downloaded, merged, quality checked and confidence 

scored based on the number of distinct methods and publications in which each 

interaction has been reported. Examples of PINOT applications are provided to 

highlight the performance, the ease of use and the potential applications of this tool.  



   
 

 

Conclusions: PINOT is a tool that allows users to survey the literature, extracting PPI 

data for a list of proteins of interest. The comparison with analogous tools showed that 

PINOT was able to extract similar numbers of PPIs while incorporating a set of 

innovative features. PINOT processes both small and large queries, it downloads PPIs 

live through the PSICQUIC and it applies quality control filters on the downloaded PPI 

annotations (i.e. removing the need of manual inspection by the user). PINOT provides 

the user with information on detection methods and publication history for each of the 

downloaded interaction data entries and provides results in a table format that can be 

easily further customised and/or directly uploaded in a network visualization software. 
   
Keywords: protein interaction, protein network, network, data mining, protein 
database  

 
Background 
During the past two decades the use of omics data to understand biological systems 

has become an increasingly valued approach (1). This includes extensive efforts to 

detect protein-protein interactions (PPIs) on an almost proteome-wide scale (2, 3). 

The utility of such data has been greatly supported by primary database curation 

and the International Molecular Exchange (IMEx) Consortium, which promotes 

collaborative efforts in standardising and maintaining high quality data curation 

across the major molecular interaction data repositories (4). The primary databases, 

such as IntAct (5) and BioGRID (6), are rich data resources providing a 

comprehensive record of published PPI literature. PPI data are critical to describe 

connections among proteins, which in turn supports both inference of new functions 

for proteins (based on the guilt by association principle (7)) and visualization of 

protein connectivity via shared interactors, thus shedding light on communal 

pathways involving proteins of interest (8-10). Additionally, literature extracted PPI 

data can support the prioritization of interactions from high-throughput experiments 

which generate large lists of potential PPI hits, therefore assisting the selection of 

candidates for further analysis/validation (11). 

However, the process of collating PPI data from multiple sources is currently 

hampered by the fact that no single data source encompasses the full extent of PPIs 

reported in the literature, requiring users to merge (partial) information mined from 

different primary databases. Furthermore, merging such data is not straightforward 



   
 

 

due to inconsistencies in data format and differences in data curation across the PPI 

databases (IMEx members vs non-members). 

To optimize the use of PPI data from the public domain, we developed a user-

friendly tool that assists PPI data extraction and processing: the Protein Interaction 

Network Online Tool (PINOT). This tool represents the development (and 

automation) of our previous PPI analysis framework (i.e. weighted protein-protein 

interaction network analysis - WPPINA) (9, 11-15). Through PINOT, PPI data is 

downloaded directly (i.e. downloaded “live” at the time of the query) from seven 

databases using the Proteomics Standard Initiative Common Query Interface 

(PSICQUIC) and integrated to ensure a wide coverage of the PPIs available from 

these repositories (16). These data are scored through a simple and transparent 

procedure based on ‘method detection’ and ‘publication records’ and allows the user 

to further apply customized confidence thresholds. PINOT is fully automated and 

available online as an open access resource. Output data are provided as a 

summary table (directly online or emailed to the user), which summarizes the most 

comprehensive current knowledge of the PPI landscape for the protein(s)-of-interest 

submitted in the query list. Of note, the R scripts which underlie PINOT can be freely 

downloaded from GitHub and can be customized by the users. 
 

Methods 

Protein Interaction Network Online Tool (PINOT) 
PINOT can be run automatically at 

http://www.reading.ac.uk/bioinf/PINOT/PINOT_form.html (hereafter referred to as 

“webserver”). A choice of parameters is integrated by default as explained further 

below and in Supplementary Materials (S1). Alternatively, R scripts can be 

downloaded from [GitHub – http….] (hereafter referred to as “standalone tool”, since 

parameters can be modified as per user choice).  

A list of proteins of interest (seeds) can be queried to identify their literature-reported 

interactors that have been curated into PPI databases (Figure 1).  

 

 



   
 

 

 

 
 

 

 
 

 

 

 

 

FIGURE 1 – PINOT user interface 
A. Screenshot of the PINOT webpage, B. Examples of the text file to be uploaded or list to 
be populated into the text box of query seeds (i.e. proteins for which protein interactors will 
be extracted from primary databases that manually curate the literature), C. Example result 
output file from PINOT, containing the extracted and processed PPI data (only the file’s 
header is reported as an example), D. Example of the discarded proteins log file from 
PINOT, a text file reporting all the seeds for which interactions are not returned to the user, 
and E. Example of the network providers log file from PINOT containing a list of active 
databases that were utilised for downloading PPI data. 
 
 
For Homo sapiens (taxonomy ID: 9606) the seed identifiers submitted into the query 

field must be in an approved HUGO Gene Nomenclature Committee (HGNC) gene 

symbol or valid Swiss-Prot UniProt ID format. Upon query submission, PPI data are 

extracted directly (via API: Shannon, P. (2018) PSICQUIC R package, DOI: 

10.18129/B9.bioc.PSICQUIC (17)) from seven primary databases, all of which directly 

annotate PPI data from peer-reviewed literature: bhf-ucl, BioGRID (6), InnateDB (18), 

IntAct (5), MBInfo (https://www.mechanobio.info), MINT (19) and UniProt (20). The 

downloaded protein interaction data are then parsed, merged, filtered and scored 

(Figure 2) automatically by PINOT. Detailed description of the PINOT pipeline can be 

found in the supplementary materials (S1). The user can select to run PINOT with 

lenient or stringent filter parameters. The output of PINOT (Figure 1C-E) consists of: 

i) a network file (final_network.txt), which is a tab-spaced text file containing the 

processed PPI data in relation to the seeds in the initial query list; ii) a log file 

(A) PINOT Interface (B) Query Input Examples

(C) Result Output Example

(D) Discarded Proteins Log File Example

(E) Network Providers Log File Example

or

HGNC approved symbol WormBase gene IDSwiss-Prot UniProt ID

or



   
 

 

(final_network_log.txt) reporting proteins that have been discarded from the initial 

query list, and; iii) a log file (final_network_providers.txt) indicating the PPI databases 

used by the API at download. The output dataset is available for download and/or 

emailed to the user.  

For Caenorhabditis elegans (taxonomy ID: 6239) the seed identifiers must be in an 

approved WormBase gene ID (21) format, “WBGene” followed by 8 numerical digits. 

Upon submission PPI data are downloaded from an internal network stored within 

PINOT and created (following similar criteria applied for the human PPIs - details in 

S1) based on the WormBase PPI catalogue (Alliance_molecular_interactions.tar file 

downloaded from the Alliance of Genome Resources on 15th April 2019). The user 

can apply stringent or lenient filtering options. The output of PINOT for a C. elegans 

query consists of: i) a network file (final_network.txt), which is a tab-spaced text file 

containing the processed PPIs for the seeds in the initial query list; and ii) a log file 

(final_network_log.txt) reporting proteins that have been discarded from the initial 

query list. 

Software 

The PINOT pipeline is coded in R and runs on a Linux server at the University of 

Reading, with java servlets processing user’s submissions via the web interface.  

PINOT quality control 

We have tested the PINOT pipeline using multiple input query lists structured as 

follows: i) small input lists = 6 sets of 1 to 5 proteins, selected randomly or in 

association with typical processes suspected to be functionally relevant for 

Parkinson’s Disease (PD); and ii) large input list = 941 proteins, the mitochondrial 

proteome as reported by MitoCarta2.0 (22).  

PINOT was compared to two other related online tools. For this analysis, searching 

parameters were selected (where possible) to maximize the extraction of protein 

interactions: the Human Integrated Protein-Protein Interaction Reference (HIPPIE) 

was used with confidence score = 0 and no filters on confidence level, interaction type 

or tissue expression; and the Molecular Interaction Search Tool (MIST) was used with 

no filtering rank to download only protein protein interactions. Importantly and of note, 

files from HIPPIE and MIST required manual parsing after download to remove entries 

that were associated to no PMID and/or no conversion method code. Data were 

downloaded on 18th September 2019. 
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Select Species Select Method
Filter StingencyInput Query

Upload .txt file or populate text box
HGNC approved symbols or 

Swiss-Prot UniProt IDs (human)
WormBase IDs (C. elegans)

 

Filtering of reassigned 
method codes

Lenient or Stringent
 
 

Data are extracted from seven primary databases using the PSICQUIC:
bhf-ucl, BioGRID, InnateDB, IntAct, MBInfo, MINT and UniProt (human)

Or Wormbase via the Alliance of Genome Resources repository (C. elegans)
  

HGNC approved symbol IDs are converted into their Swiss-Prot and Entrez Gene IDs (human only)
   

Method code annotations are reassigned based on technical similarity   

Each PPI in the output file is annotated with the detection methods used and publication origin
Each PPI is also confidence weighted based on these two parameters for customisable

confidence thresholding 

Detection Method
Publication

Confidence Score

Each distinct method scores a value of 1   

*features available when running the pipeline manually   

Each publication scores a value of 1   

Submit Query

Download Data

Identifier Conversion

Dataset Formatting

Quality Control

Collate Data

Method Code Reassignment

Confidence Scoring

Sum Scores

Downloadable Network Table

Number of
Distinct Methods

Number of
 Publications

Performance Report
Unrecognised protein identifiers

No PPI data available
 Active data providers

 

Performance Report
Discarded entries when all 

interactors for a query protein fail QC
Count of entries discarded at QC*

 

Discarded Data Entries
Non-protein IDs (e.g. miRNAs)

Unreviewed TrEMBL or obsolete IDs
Incomplete entries

 

Discarded Data Entries
Reassigned “UNSPM” method code

Unrecognised method codes
Identical duplicate entries

 

Protein Interaction Network Online Tool P I N O T



   
 

 

FIGURE 2 – PINOT pipeline 
A stepwise insight into the process which underlies the PINOT pipeline. Performance reports 
(green boxes) are generated and data are discarded (red boxes) at numerous stages within 
the pipeline to ensure high quality and transparent data processing.   

Results 
PINOT is a webtool that takes a list of proteins/genes (seeds) as input and returns a 

table containing a comprehensive list of PPIs - published in peer-reviewed literature – 

centred upon the seeds. This table consists of a variable number of rows and 11 

columns (Figure 1 and 3). Each row represents a binary interaction between one of 

the seeds (interactor A) and one of its specific protein interactors (interactor B). The 

11 columns contain: the gene name, the Swiss-Prot protein ID and the Entrez gene ID 

for interactor A and B (“NameA”, “SwissA”, “EntrezA”, “NameB”, “SwissB”, “EntrezB”); 

the number and type of different methods through which the interaction has been 

identified (“Method.Score”, “Method”); and the number of different publications 

reporting the interaction and the corresponding PubMed IDs (“Publication.Score”, 

“PMIDS”). The final column (“Final.Score”) contains a confidence score based on the 

number of different methods + the number of different publications reporting the 

interaction. PPIs with a final score of 2 are reported in literature by 1 publication and 

detected by 1 technique; these PPIs are considered “suggestive” (but are clearly not 

“replicated”). They might be either: i) false positives, or ii) true novel interactions that 

have not yet been replicated in additional studies. A final score >2 suggests a degree 

of replication that can be either or both: multiple publications reporting the PPI and 

multiple techniques used to detect the interaction. It is not possible to obtain a final 

score <2 since every PPI annotation – to be retained in PINOT – has to be supported 

by at least 1 interaction detection method and 1 PMID; if this condition is not met, the 

PPI is discarded by PINOT and not shown in the output file. 

The PINOT output can be imported into Cytoscape (23) or yED 

(https://www.yworks.com/products/yed) for network visualization by selecting the 

“NameA” and “NameB” columns as source and target nodes, respectively.  

 

PINOT: Example of application 

In Figure 3 PINOT has been used to download PPIs for a limited selection of human 

protein products of genes mutated in familial PD: ATP13A2, FBXO7, GBA, PINK1, 

SMPD1 and VPS35. PINOT quickly retrieved a table containing 327 interactions from 



   
 

 

peer-reviewed literature (with associated PMIDs) thus supporting and simplifying 

otherwise time-consuming classical literature mining. The PINOT output was imported 

into Cytoscape and PPIs were visualized in a network (“NameA” = source and 

“NameB” = target), the seeds were highlighted in dark-red and the edges (interactions 

between each protein) were coded based on the “Final.Score” field, thus highlighting 

the confidence (number of methods + number of publications) of the interaction. Since 

we were interested in interactors that were common to the seeds in the initial list - and 

not interactors of just one seed - the network was filtered retaining only the nodes 

(interactors) that bridged two or more seeds. The obtained core-network revealed that 

among the common interactors of the seeds (PD proteins) there were 2 proteins 

(SNCA and PRKN), which are products of 2 additional genes known for being mutated 

in familial PD as it was for those in the initial seed list used for the query. Additionally, 

topological analysis (based on the number and strength of the edges) suggested the 

core network could be subdivided into 2 distinct clusters respectively including PINK1, 

FBXO7 and the newly identified PRKN and SNCA in the first cluster, while ATP13A2, 

VPS35 and SMPD1 were more closely associated in the second cluster, with GBA a 

bridge seed between the 2 clusters. This observation suggested a dichotomy, based 

on the protein interactomes, of the seeds included in the initial input list. Based on the 

guilt-by-association principle we hypothesised that the proteins contributing to these 

clusters could be associated with different cellular functions and components. We 

therefore performed functional enrichment analysis (based on Gene Ontology (GO) 

Cellular Component (CC) annotations) using g:Profiler (24) revealing that indeed, 

clusters 1 and 2 are associated with mitochondria and 

vacuoles/lysosomes/endosomes, respectively. 



   
 

 
 



   
 

 

Figure 3 – PINOT: An example application  
A stepwise insight into the potential use of PINOT. 1. A submission list is created as a text file 
using gene names as per HGNC approved symbols or Swiss-Prot IDs; the submission list can 
be uploaded as file or pasted into the PINOT interface. 2. PINOT downloads from PSICQUIC 
the human PPIs (in this example, stringent filters applied) 3. PPIs are provided back to the 
user via email or from the webpage; results are in a parsable file that can be opened by a text 
reader application and imported into Microsoft Excel, for example. 4. The interactions can be 
visualized in a network format by opening the PINOT output through Cytoscape. Connections 
between nodes (edges) are coded with increased line width based on the final score that 
interaction was assigned by PINOT. The wider the edge – the more confident PINOT is about 
the interactions. 5. The interactions can be further processed according to the user’s research 
question, in this case, only interactors that are communal to at least 2 of the initial query 
proteins have been retained, generating a core network (in dark-red the initial seeds; in bright-
green the identified common interactors that are proteins mutated in PD). Based on the 
network topology the seeds and their interactors can be visually clustered into group 1 
(depicted in gold) and group 2 (depicted in blue). 6. Specific functional enrichment (GO CC 
terms) for groups 1 and 2 after filtering out the less represented terms. Analyses performed 
on the 22/08/2019.      

 

Human-PINOT performance 

The performance of PINOT was compared to that of alternative resources for both a 

small and large number of seeds. Regarding the former, five different small seed lists 

were used as input for PPI query in HIPPIE (25) and MIST (26), two alternative online 

and freely available resources. It should be noted that, despite apparent similarities, 

each of these tools has been developed differently. All three resources (PINOT, 

HIPPIE and MIST) have distinguishing features for addressing different research 

questions (Table 1). The results of the different queries have been compared, by 

evaluating the total number of interactors provided in the output (Figure 4A).  

PINOT, HIPPIE and MIST retrieved a similar number of PPIs. PINOT with stringent 

filtering applied, was always extracting fewer interactions; this is an expected outcome 

since this filter option is built with the purpose of retaining only annotations that have 

survived stringent screening, largely based on completeness of curated data entries.  

The large input list was queried in PINOT and HIPPIE, the only two servers that 

allowed for processing more than 900 seeds within the submission list. In fact, MIST 

submission needed to be divided into multiple small lists to allow the browser to 

properly process the query. Additionally, the downloaded table(s) were not parsable 

(in an automated fashion), thus making MIST counterintuitive for the processing of 

large input lists. The number of retrieved interactors was slightly higher for HIPPIE in 



   
 

 

comparison with PINOT when the stringent QC filter was applied. PINOT with lenient 

filtering applied retrieved more interactions than HIPPIE (Figure 4B). Additionally, the 

vast majority of downloaded interactions were similar from using the two resources, 

suggesting that PINOT is able to extract specific interations from literature (Figure 4C). 

 

 
 
Figure 4 – PINOT: Performance & Sensitivity  
A. PINOT performance was evaluated by counting the number of interactors retrieved (gene 

names) upon submission of the reported query lists to human-PINOT (with stringent and 

lenient filtering), HIPPIE and MIST (on 18th September 2019). The databases were set to 



   
 

 

retrieve the maximum number of interactions (by removing all possible filters). The HIPPIE 

and MIST outputs were manually cleaned to remove interactions with i) no interaction 

detection method; ii) no PMID; iii) multiple Entrez IDs. The number of retained interactions 

retrieved is reported on top of each bar. B. PINOT (with stringent and lenient filtering) and 

HIPPIE were queried to retrieve PPIs for a seed list of 941 protein from Mitocarta 2.0. C. 

Comparison between PINOT and HIPPIE showing that the vast majority of interactors (Entrez 

IDs) downloaded by the two tools was identical: 6790 common interactors for PINOT lenient 

(640 unique interactors) vs HIPPIE (355 unique interactors); 6572 common interactors for 

PINOT stringent (319 unique interactors) vs HIPPIE (573 unique interactors). 

 

C elegans-PINOT performance 

 

The performance of PINOT for querying C. elegans PPI data was tested alongside the 

C. elegans query option in MIST, assessing interaction networks of different 

dimensions (Figure 5). The data acquisition strategy underlying these two resources 

differs slightly, PINOT extracts data from the latest release of WormBase molecular 

interaction data, whereas MIST utilises data from numerous sources, including 

WormBase, BioGRID and IMEx associated repositories.  

Similarly to comparisons across the human PPI query capacity, PINOT and MIST 

performed comparably in terms of the number of PPI data entries extracted. More 

specifically and as previously described with human data, PINOT extracting slightly 

fewer across these test query cases (Figure 5). However, upon assessing the 

completeness of these extracted data entries, in terms of interaction detection method 

and/or PMID annotations, there was a striking difference in performance. Since the 

PINOT pipeline focusses particular emphasis on the QC of data, all data entries within 

the output dataset were complete, whereas incomplete data entries persisted in the 

MIST output dataset. In the more abundant PPI data pools, for example when querying 

the ATP and CED C. elegans proteins (Figure 5), incomplete data entries accounted 

for the majority of the output dataset in MIST.  

 

 

 

 

 



   
 

 

 
Figure 5 – PINOT and MIST performance comparison for C. elegans PPI data 
The performance of PINOT (with stringent and lenient filter options) and MIST was assessed 

in terms of the number of PPI data entries extracted upon querying different protein lists (on 

24th September 2019). The output dataset was evaluated in relation to the number of 

complete and incomplete (lacking interaction detection method and/or PubMed ID 

annotations) data entries extracted. The query lists were PD-associated DNAJC orthologs: 

DNJ-14, DNJ-25, DNJ-27, Y73B6BL.12, K07F5.16, RME-8 and GAKH-1; ATP proteins: ATP-

1, ATP-2, ATP-3, ATP-4, ATP-5 and ATP-6; and CED proteins: CED-1, CED-2, CED-3, CED-

4, CED-5, CED-6, CED-7, CED-8, CED-9, CED-10, CED-11, CED-12 and CED-13. The input 

format used for PINOT was the WormBase gene ID, the common gene name (as listed here) 

was used for MIST querying and no filter by rank parameter was set. 

 
 

Discussion 
PINOT can be used as a tool to quickly and effectively survey the literature and 

download the most up-to-date PPI data available for a given set of proteins/genes of 

interest. This is particularly useful to assist anyone attempting to mine overwhelming 

abundant literature targeting certain proteins/genes, in relation identifying reported 

PPIs. 

The PPI data downloaded through PINOT can be used as a reference list from 

literature for experimental PPI data resulting from high-throughput experiments 

(protein microarrays; yeast 2 hybrid screens, etc) helping in prioritisation of 



   
 

 

experimental results for validation. PINOT can also be useful to evaluate interactors 

of different proteins/genes of interest within an input seed list simultaneously. The 

analysis of the combined interactomes of such seeds can reveal the existence of 

communal interactors, can provide a base to cluster the seeds into groups and can 

support further functional analysis to better characterize the functional landscape of 

seeds of interest. 

 

Alternative tools that appear to be similar to PINOT are HIPPIE and MIST. STRING 

(27) is a conceptually different tool; it does not report ‘interaction detection methods’ 

nor ‘Publication IDs’ for PPIs which are crucial pieces of information for the evaluation 

and interpretation of PPI data. Additionally, the reported interactions are not focused 

only on the proteins in the input list, interactions of interactors are also reported, thus 

making it difficult to parse the output table. HIPPIE implements a tailored confidence 

score for different methodological approaches; MIST provides a valuable resource for 

users interested in mapping PPIs across species (i.e. interologs); PINOT focusses on 

high quality PPI data output by implementing multiple QC steps to remove problematic 

or non-univocal annotations. PINOT performance was comparable to that of HIPPIE 

and MIST both in terms of number and identity of downloaded interactions. However, 

there are some unique features of PINOT that are not, at the moment, integrated within 

the other databases. Human PPIs in PINOT are directly downloaded from PSICQUIC 

at every query submission. In contrast, PPIs in HIPPIE and MIST are recovered from 

a central built-in repository within the servers, implying that both HIPPIE and MIST 

require constant updates in order to retrieve the latest PPI data available. This is 

clearly demonstrated by searching for interactors of LRRK2, where (at the time of 

submission) 1 high-throughput publication is updated in PSICQUIC, while both HIPPIE 

and MIST do not contain this full annotation yet (Figure 6).  

PINOT has access to the most up-to-date interactions that could be retrieved at a 

given time from PSICQUIC (however, it has to be considered that each database is 

responsible for updating their PSICQUIC service and therefore discrepancies might 

exist with the central database).  

 



   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 – LRRK2 interactome 
PINOT performance was evaluated by counting the number of interactors retrieved (gene 

names) for LRRK2 by using PINOT (with stringent and lenient filtering), HIPPIE and MIST. 

The databases have been set to retrieve the maximum number of interactions (by removing 

all possible filters). HIPPIE and MIST output were manually cleaned to remove interactions 

with i) no interaction detection method; ii) no PMID; iii) multiple Entrez IDs. The number of 

the surviving interaction retrieved is reported on top of each bar (18-09-2019). 

 

PINOT implements QC filtering which involves discarding PPI data entries that are 

curated without a PMID and/or the interaction detection method annotation. Therefore 

the output file from PINOT does not require further QC by the user, while lists from 

MIST and HIPPIE require manual parsing to remove incomplete data entries through 

a time consuming, post-hoc processing procedure. 

Another distinctive feature of the PINOT pipeline is the implementation of a unique 

interaction detection method conversion step. During this step, the interaction 

detection method annotation for each downloaded interaction data entry is converted 

based on a conversion table (S2) that is available for download from the PINOT web-

portal. During this conversion, technically similar methods are grouped together. For 

example: “Two Hybrid - MI:0018”, “Two Hybrid Array - MI:0397” and “Two Hybrid 

Pooling Approach - MI:0398” are grouped together into the “Two Hybrid” method 



   
 

 

category. This step of ‘method clustering and reassigment’ is critical to assess the 

actual number of distinct methods used to describe a particular interaction and to dilute 

the bias caused in the event of the same technique being annotated under slightly 

different method codes in different PPI databases.  

Interaction scores are provided in different formats for the three tools. HIPPIE 

incorporates a filtering system based on a confidence score between 0 and 1 that can 

be set either before or after the analysis. This is a complex scoring system, which 

takes into consideration multiple parameters, such as the number of publications that 

report a specific interaction and a semi-computational quality score based on the 

experimental approach (for example, imaging techniques would score less than direct 

interactions etc.) (28). MIST similarly has an option for filtering interactions pre- or 

post-analysis; however, this is based on fixed ranking values defined as low, medium 

(interaction supported by other species), or high (supported by multiple experimental 

methods and/or reported in multiple publications). In the case of PINOT, two different 

scores are provided: the interaction detection method score (MS) reports the number 

of different methods used (after conversion), while the publication score (PS) counts 

the number of different publications which report the interaction. Finally, PINOT coding 

scripts are fully available for download. They are coded in R to make them accessible 

to a large research audience; additionally a read me text file helps customization of 

the scripts according to the users’ needs. Some of the divergent features across 

PINOT, HIPPIE, MIST and STRING are reported in Table 1.  

 

 

 

 

 

 

 

 

 

 

 

 



   
 

 

 PINOT HIPPIE MIST STRING 
Live PPI data yes no no no 

Large Submission yes yes no no 

Parsable Table yes yes no yes 

PPIs for seeds only yes yes yes no 

Visualization app no yes yes yes 

Other Species PPIs yes no yes yes 

Score yes yes yes yes 

Pubmed ID (PMID) yes yes yes no 

Detection Method yes yes yes no 

QC on method and PMID yes no no - 

Entrez ID yes yes yes no 

Swiss-Prot ID yes no no no 

Codes available yes no no no 

 
Table 1 – Comparison of features available within the PINOT, HIPPIE, MIST and 
STRING resources. 
 

 

List of Abbreviations 
PPI = protein protein interaction; PINOT = protein interaction network online tool; PD 
= Parkinson’s Disease; PMID = Pubmed ID; QC = Quality Control   
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