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Abstract
Sensors that measure the attenuated backscatter coefficient (e.g., automatic
lidars and ceilometers [ALCs]) provide information on aerosols that can impact
urban climate and human health. To design an observational network of ALC
sensors for supporting data assimilation and to improve prediction of urban
weather and air quality, a methodology is needed. In this study, spatio-temporal
patterns of aerosol-attenuated backscatter coefficient are modelled using Met
Office numerical weather prediction (NWP) models at two resolutions, 1.5 km
(UKV) and 300 m (London Model [LM]), for 28 clear-sky days and nights.
Initially, attenuated backscatter coefficient data are analysed using S-mode prin-
cipal component analysis (PCA) with varimax rotation. Four to seven empirical
orthogonal functions (EOFs) are produced for each model level, with common
EOFs found across different heights (day and night) for both NWP models.
EOFs relate strongly to orography, wind, and emissions source location, high-
lighting these as critical controls of attenuated backscatter coefficient spatial
variability across the megacity. Urban–rural differences are largest when wind
speeds are low and vertical boundary-layer dynamics can more effectively dis-
tribute near-surface aerosol emissions vertically. In several night-time EOFs,
gravity-wave features are found for both NWP models. Increasing the horizon-
tal resolution of native ancillaries (model input parameters) and improving the
urban surface scheme in the LM may enhance the urban signal in the EOFs. PCA
output, with agglomerative Ward cluster analysis (CA), minimises intra-group
variance. The UKV and LM CA shape and size results are similar and strongly
related to orography. PCA-CA is a simple, but adaptable methodology, allowing
close alignment with observation network design goals. Here, CA is used with
wind roses to suggest the optimised ALC deployment is one in the city to observe
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the urban plume and others surrounding the city, with priority given to cluster
size and frequency of upwind advection.

K E Y W O R D S

aerosols, lidar, network design, numerical weather prediction, urban

1 INTRODUCTION

Automatic lidars and ceilometers (ALCs) measure the
attenuated backscatter coefficient from atmospheric par-
ticles. Although many were originally used to measure
cloud base height (Illingworth et al., 2007), there are
an increasingly wider variety of applications, including
investigation of particle mass concentrations (Münkel
and Roininen, 2010; You et al., 2016), to measure
boundary-layer height (Wang et al., 2012; Peña et al., 2013;
Kotthaus and Grimmond, 2018b), and sea-breeze dynam-
ics (Lemonsu et al., 2006). As instrument sensitivity
has increased (Kotthaus et al., 2016), the utility of
ALC-measured aerosol backscatter has grown (Illingworth
et al., 2013; Madonna et al., 2014; Jin et al., 2018; Cimini
et al., 2020), though many studies analyse relative vari-
ations or the signal-to-noise ratio of the measurements
(Wiegner and Gasteiger, 2015). To relate modelled aerosol
fields to the observed aerosol-attenuated backscatter coef-
ficient directly, a forward operator (FO) is required.

An aerosol FO estimates the attenuated backscatter
coefficient using aerosol variables as inputs. Typically,
model aerosol-variable inputs are used from numerical
weather prediction (NWP) or chemistry transport models
to run an FO, so that the estimated attenuated backscatter
coefficient can be evaluated against ALC observations or
the latter can be assimilated (Benedetti and Dabas, 2016;
Charlton-Perez et al., 2016; Geisinger et al., 2017; Chan
et al., 2018; Warren et al., 2018). Several of these studies
take advantage of ALC networks to obtain spatial aerosol
information.

ALC networks cover spatial scales spanning cities
(Kotthaus and Grimmond, 2018a), countries (Flentje
et al., 2010; Osborne et al., 2018), and continents (Wel-
ton et al., 2000; Illingworth et al., 2007, 2015; Pappalardo
et al., 2014; Guerrero-Rascado et al., 2016; Nishizawa
et al., 2016). However, the ideal positioning of an ALC
within a network is uncertain and may depend on the
location and spatial scale of dominant features, whether
local, meso, or synoptic scale. Undesirable observational
redundancy can exist when multiple ALCs are positioned
such that they are capturing the same meteorological fea-
tures and respond to the same emission sources, while

observations may miss (or only partially capture) features
occurring elsewhere. Optimised instrument positioning
maximises sampling efficiency and strengthens the obser-
vation products acquired across a network for a given
equipment and operational cost.

Though practical constraints will impact final deploy-
ment locations (e.g., geopolitical boundaries or suitability
of local infrastructure), an understanding of spatial vari-
ability and scale of meteorological features and their inter-
action with emission sources in the study area is critical.
Most relevant processes are expressed in dynamics of the
near-surface atmosphere; that is, the atmospheric bound-
ary layer (ABL).

Network design for weather and hydrological instru-
mentation has been informed by the analysis of spa-
tial or spatio-temporal variability in meteorological obser-
vations using (geo-)statistical techniques (e.g., Bastin
et al., 1982; Burn and Goulter, 1991; Bayat et al., 2019),
and regional climate models’ climatological variability
(St-Hilaire et al., 2003). However, the resolution of the lat-
ter can be coarse compared with many meso-scale and
local-scale processes driving aerosol distributions, and
higher resolution models might better represent smaller
scale processes that could be important.

The principal component analysis (PCA) technique
can reduce a dataset to a series of orthogonal functions, or
modes, that represent patterns of variability (Wilks, 2011).
S-mode PCA (or empirical orthogonal function [EOF]
analysis) is one variant that focuses on identifying spatial
patterns in the different eigenvectors. It is used exten-
sively to analyse meteorological variability, including
rainfall (Smith and Phillips, 2013; Yu and Lin, 2015), wind
(Álvarez-García et al., 2020; Farjami and Hesari, 2020),
and temperature (Li et al., 2018). PCA has also been
used to explore ABL variables, such as boundary-layer
turbulence (Wilson, 1996; Lin et al., 2008), urban heat
island characteristics (Vicente-Serrano et al., 2005;
Qiao et al., 2018), and air quality (Henry et al., 1991;
Chan and Mozurkewich, 2007; Fleming et al., 2012;
Rogula-Kozłowska et al., 2015; Gupta et al., 2018). Fur-
ther in-depth reviews of different PCA approaches in
meteorology and climatology can be found in Monahan
et al. (2009), Schmidt et al. (2019), Wilks (2011), and
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Zhang and Moore (2015). Some studies complement PCA
with cluster analysis (CA) to explore the relations between
modes or with other meteorological variables (Henry
et al., 1991; Beaver and Palazoglu, 2006) and to identify
and group geographical regions according to similar tar-
get variable variability (Neal and Phillips, 2009; Smith
and Phillips, 2013; Dogruparmak et al., 2014). Identifying
regions with co-varying meteorology or aerosol distribu-
tion based on PCA and CA can be exploited for network
design by informing optimised placement of instrumenta-
tion to capture unique phenomena and maximise network
utility.

In this study, our objectives are to: (a) identify the main
spatial patterns of forward modelled attenuated backscat-
ter coefficient 𝛽m variability across a metropolitan area
(London, UK), using NWP forecasts and PCA, (b) develop
a method using PCA and CA to identify areas of similar
𝛽m and inform ALC network design, and (c) understand
the impact of horizontal resolution through the use of two
NWP models.

2 METHODS

2.1 NWP data

The two models used are (a) the operational, convection-
permitting UK regional model (UKV, 1.5 km; Tang
et al., 2013), and (b) the experimental London Model (LM,
300 m; Boutle et al., 2016). These have been applied and
evaluated for London, UK (Boutle et al., 2016; Lapworth
and Osborne, 2016; Warren et al., 2018). Both are specific
configurations of the Met Office Unified Model (Davies
et al., 2005). The urban surface energy balance scheme
within the research LM at the time of this study was the
JULES/Best one-tile scheme (Best, 1998; Best et al., 2006;
2011) and within the UKV the JULES/MORUSES two-tile
scheme (Porson et al., 2010; Best et al., 2011; Bohnensten-
gel et al., 2011). The latter requires more detailed surface
information and differentiates between urban canyons
and roofs in a tiled scheme to better represent surface
fluxes (Hertwig et al., 2020). The aerosol emission ancil-
lary is derived from the 1 km native resolution National
Atmospheric Emissions Inventory dataset (Neal, 2019) to
produce a dry mass mixing ratio of aerosol. The emis-
sion ancillary is based on a monthly climatology that is
smoothly interpolated to a day scale using a running mean.
Each day, a sinusoidal function is used to vary emissions
across the day, which peak at 1200 UTC. The orography
ancillary is from a digital terrain elevation data model with
a native 100 m resolution (Boutle et al., 2016). The nine
land-use tiles are populated from the Institute of Terres-
trial Ecology 25 m resolution dataset (Bunce et al., 1990).

All ancillaries are rescaled to the respective NWP model
resolution for implementation.

In this study, 28 clear-sky days are selected between
April 1, 2018 and October 31, 2018 to avoid cloud-related
processes (Table S1). Data from both models are used to
force the aerosol lidar FO (aerFO; Warren et al., 2018)
to create three-dimensional hourly fields of attenuated
backscatter 𝛽m. Hourly aerFO calculations are conducted
from midnight for 24 hr using the prior-day 2100 UTC fore-
cast (i.e., 3 hr spin-up at the start of every model run are
not used). The NWP data from both models are extracted
for the London domain (Figure 1).

To account for diurnal variations in meteorological
processes, such as the ABL height response to the sur-
face energy balance, day (sunrise (SR)+ 2 hr to sunset
(SS)− 2 hr) and night (i.e., SS+ 2 hr to SR – 2 hr) are anal-
ysed separately. From both NWP models, the 24 model
levels from the bottom to 2,075 m above ground level (agl)
are selected so as to include the ABL and (typically) the
majority of the aerosol in the total atmospheric column
(Seinfeld and Pandis, 2016). This ensures both the daytime
boundary layer and night-time residual layer are always
within the domain analysed. The heights of the model lev-
els represent the midpoint of each layer. In London, the
median boundary layer depth (1,704 m) and the typical
daytime maximum mixed-layer height are below 2,075 m,
as estimated from ALC observations within the London
Urban Meteorological Observatory (Figure 1) (Kotthaus
and Grimmond, 2018b). Manual quality control further
ensures the ABL height does not exceed 2,075 m for any of
the case-study days selected.

2.2 Overview of the aerFO

Warren et al.’s (2020) aerFO version 2 is used to calcu-
late 𝛽m (at 905 nm). Briefly, the two critical variables are
obtained from the NWP output: dry mass of total aerosol
(m, kg⋅kg−1) and relative humidity (RH). Model fields of
air temperature Tair and pressure pair are used with the
specific water vapour mixing ratio q to compute the water
vapour absorption. Both the UKV and LM provide m from
the passive aerosol tracer (mMURK) of the MURK visibil-
ity scheme, which considers the most common UK aerosol
species (Neal, 2019). A constant lidar ratio of 43.1 sr is
used. This lidar ratio, calculated specifically for urban
areas, uses both in-situ urban aerosol observations from
an urban background site (North Kensington) in the Lon-
don Air Quality Network (DEFRA, 2018) and modelling
(Warren et al., 2020).

First, aerFO estimates physical properties of the
aerosol in accumulation mode from mMURK, including the
dry mean volume radius and total number concentration.
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This follows the MURK empirical parametrisation based
on the climatological mean mass of dry aerosol, mean
dry volume radius, and total number concentration (Clark
et al., 2008). The climatological (monthly) values and the
geometric distribution for the accumulation mode are cal-
culated from aerosol observations at an urban background
site in London (NK; Figure 1; DEFRA, 2018).

Second, aerosol optical properties are calculated,
including the extinction efficiencies for the dry aerosol
particles and the effect of hygroscopic growth on parti-
cle extinction. For computational efficiency, precalculated
look-up tables of dry extinction efficiency and hygro-
scopic growth effects are used. The estimation of the
extinction coefficient includes the effect of water vapour.
Third, the backscatter is calculated using a fixed lidar ratio
and then converted into 𝛽m by applying the transmission
factor.

There are several sources of uncertainty in the spatial
variation in 𝛽m due to the NWP model aerosol composi-
tion being spatially invariant (in this application) that need
to be considered. The lidar ratio, dry extinction efficiency,
and extinction enhancement factor could vary spatially in
reality, most notably when wind speeds are low and aerosol
mixtures become more greatly influenced by local sources.
Consequently, some spatial variability may be missed.
However, the lidar ratio and extinction enhancement fac-
tor are highly sensitive to RH, and all three variables are
highly sensitive to mMURK (Warren et al., 2020), which
are spatially variable, and should still allow many spatial

patterns of 𝛽m variability to be identifiable. For example,
areas experiencing sea breezes also experience changes
in RH, as well as aerosol composition, and the spatial
variability in 𝛽m may, therefore, be partially captured. To
reduce the uncertainty in spatially varying aerosol propor-
tions, speciated aerosol ancillaries can be used. However,
speciated aerosol emission ancillaries were not available
for the NWP models used in this study.

2.3 S-mode PCA

To explore the nature of 𝛽m variability in the LM domain
(Figure 1), PCA is used to extract the most important
spatial patterns from the original dataset and to identify
when these spatial patterns are most prominent during
the study period. As the distribution of 𝛽m is positively
skewed, it is not directly appropriate for PCA (Neal and
Phillips, 2009). Therefore, a logarithmic transformation
(log10(𝛽m)) is applied to reduce the skewness. For example,
taking the logarithmic transformation of daytime 𝛽m at
111.7 m agl reduced the skewness from 9.85 to 0.89.

Following Wilks (2011), S-mode PCA of log10(𝛽m) is
carried out for each model level separately. To begin, a vec-
tor is created containing the time series of log10(𝛽m) from
each grid cell for a model level (x = x1, … , xn, where
n is the number of grid cells on the model level). x is
then mean-centred elementwise (x′). PCA of x′ will then
identify positive and negative spatial patterns of variability

F I G U R E 1 London Urban Meteorological Observatory automatic lidar and ceilometer (ALC) sites (circles with labels) within the
“London” grid domains of the UKV (1.5 km) and London Model (LM; 300 m) extracted for the principal component analysis. Chiltern Hills
and North Downs are highlighted as areas with significant orography. Contains Ordnance Survey data ©Crown copyright and database right
(2019). Topography in metres above sea level [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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with respect to the time average. The covariance matrix
S of x′ is then calculated, allowing PCA to emphasise
identifying the largest covariances in x′ as the main spa-
tial patterns. Singular-value decomposition can then be
carried out on S to produce unit-scaled eigenvectors (ei,
where ||ei|| = 1) with paired eigenvalues 𝜆i, where i = 1,
… , n, and where n is the number of original spatial vari-
ables x. The eigenvectors are then used to calculate a set
of new, uncorrelated variables (the principal components
[PCs]), that relate each ei to each xi (length of ei is equal
to the number of spatial points in x). A PC time series
can be interpreted as a series of “scores”. High positive PC
scores equate to the spatial pattern ei being more relevant
at a given time (length of a PC time series is equal to the
length of the x time series), whereas more negative scores
indicate the inverse of ei is more relevant. Thus, each suc-
cessive PC explains the maximum remaining variability in
the original dataset.

By design, S-mode PCA produces orthogonal eigenvec-
tors that represent statistical patterns of spatial variability.
The orthogonality constraint of the method means that the
first eigenvector captures the maximum variability in the
data, and subsequent eigenvectors sequentially partition
the remaining variability (Figure 2). However, these pat-
terns may not be readily physically interpretable, because
statistical patterns are not guaranteed to be matched to
any single physical process. In fact, a single eigenvec-
tor could contain information related to multiple physi-
cal processes. Therefore, to ease physical interpretation,

F I G U R E 2 Explained variance of the first five unrotated
empirical orthogonal functions (EOFs) (blue with dot hatching) and
varimax rotated EOFs (red with line hatching), derived from UKV
daytime forward-modelled attenuated backscatter coefficient 𝛽m

data at 111.7 m above ground level [Colour figure can be viewed at
wileyonlinelibrary.com]

varimax rotation (Kaiser, 1958; Richman, 1986; Jolliffe and
Cadima, 2016) is performed on a limited number of lead-
ing vectors in e. Varimax finds a new eigenvector rotation
that maximises the sum of the variances of the squared
loadings. Effectively, varimax redistributes the explained
variability and identifies a new set of eigenvectors ei, so
that more unique spatial patterns are represented across
fewer (or a single) eigenvector (Richman, 1986; Neal and
Phillips, 2009; Figure 2). Here, only the ei that explain
more than 1% of the total variability in the original dataset
are analysed. This threshold balances the need to retain
as much of the original variability as possible while limit-
ing the number of ei that require physical interpretation.
The selection criterion also limits the creation of mul-
tiplets (i.e., sets of ei that effectively describe the same
phenomena) (Wilks, 2011).

Before varimax rotation is performed, the ei are scaled
by 𝜆

1∕2
i

(‖‖‖ei
‖‖‖ = 𝜆

1∕2
i

)
to “load” the vectors. The individ-

ual elements of scaled eigenvectors (ei,k, where k = 1, … ,
n) are hereafter referred to as loadings. This scaling effec-
tively incorporates the information about the explained
variability of ei into the newly rotated eigenvectors (see
table 12.3 in Wilks (2011)). Although it is possible for vari-
max rotation to maintain the orthogonality of ei, the scal-
ing used here means ei are not orthogonal and may be cor-
related (Wilks, 2011). As the eigenvectors are created with
respect to space—and to be consistent with the literature
(e.g., Jolliffe and Cadima, 2016; Qiao et al., 2018)—the
retained, rotated, and loaded eigenvectors are hereafter
referred to as EOFs.

Following varimax rotation, rotated PCs are calculated
using regression (Field, 2009):

PCi = x′
(

S−1 ⋅ EOFi
)

(1)

where x′ is the original, mean-centred dataset and
S−1⋅EOFi act as PC coefficients for PCi. As S is often an
ill-conditioned matrix and unsuitable for inversion, to cal-
culate S−1 we take the Moore–Penrose pseudo-inverse of S
using singular-value decomposition (Strang, 1988):

S−1 = VΣ−1UT (2)

Spearman correlation coefficients r are calculated
between EOFs and PCs to identify EOF multiplets for
interpretation.

To aid interpretation, the relations between EOFs and
different meteorological variables are explored. For each
EOF, x is subsampled twice in time: when the paired PC
scores are (a) above the 90th percentile and (b) below the
10th percentile. These two data distributions are assumed
to represent the meteorological conditions associated with
an EOF or its inverse, respectively.

http://wileyonlinelibrary.com
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2.4 Ward CA

CA is used with PCA output to find geographic regions
of similar 𝛽m variability, based on the spatial patterns
captured. The geographic clusters that CA produces can
then be interpreted to aid ALC network design. Agglom-
erative Ward minimum variance CA is chosen here, as
this clustering method merges grid cells into groups based
on their similarity (Ward, 1963; Wilks, 2011). Across the
24 model levels analysed, all the unrotated eigenvectors
(uEOFs) that explain more than 1% of the total variabil-
ity of their respective model level are selected and used
collectively as CA inputs (i.e., 2,075 m model level and
below). This will produce a single horizontal CA map.
Although rotated EOFs are analysed to identify individ-
ual spatial patterns of variability (Section 3.1), uEOFs are
used as input to the clustering as they contain the same
statistical information on spatial variability but are statisti-
cally independent, and therefore better suited for statistical
analysis.

For each k grid box, the unrotated eigenvector load-
ings from each uEOF (ei,k) are combined into new vec-
tors. CA is performed on these new vectors. The initial
k separate groups (each with one variable member) are
iteratively paired and merged to reduce the number of
clusters until j specified clusters remain. The clusters are
merged according to the minimum sum of squared dis-
tances between all cluster variable elements and clus-
ter centroids (i.e., merging the two most similar clus-
ters). The loadings represent the amount of original vari-
ability explained across x, both positive and negative,
and are larger for uEOFs that explain more. The var-
ied loading of uEOFs also provides a benefit to the CA.
Vectors scaled with larger loadings have a larger range
of values, which effectively gives those uEOFs larger
weights in the CA (Kaufman and Rousseeuw, 2005). This
means that cluster groups are weighted more towards
important uEOFs that explained more of the original
variability.

Central to the network design is the number of clus-
ters to produce by the CA. This number should be
set equal to the number of sensors to be deployed in
the network. As Ward CA minimises the total variance
within groups (Ward, 1963), one instrument per cluster
is expected to optimise representation. In our analysis,
EOFs are scaled relative to the total variability at each
height (i.e., not weighted with respect to other heights).
Therefore, all heights are considered equally important
when clustered. Alternatively, elbow, silhouette, or gap
statistic methods could be used with a dendrogram to
help inform the optimum number of clusters to use if
the number of sensors to be deployed is not already
known.

3 RESULTS

3.1 Spatial variability
of forward-modelled attenuated
backscatter 𝜷m

The PCA with varimax rotation for the daytime period pro-
duced between four and seven EOFs for each model level
in both models that explained more than 1% of variability
in the original dataset. In general, similar EOF patterns are
identified across different heights. Examples of common
daytime EOF patterns from the UKV (Figure 3) and the LM
(Figure 4) are shown for the 111.7 m agl model level. At this
height, five EOFs are needed to explain the 𝛽m variance.

EOF patterns derived from both NWP models are
strongly related to wind speed and direction. The high-
est loadings in each EOF (Figures 3a–e and 4a–e) are
associated with areas downwind of aerosol emission
sources (cf. Figures 3f and 4f) leading to an increase
in aerosol and, consequently, 𝛽m. As most aerosol emis-
sion sources are located near the centre of the domain
(i.e., the most urbanised area), the highest EOF loadings
are usually found near the domain edges. For example,
the highest loadings in EOF1 are in the northwest of
the domain (Figure 3a) as EOF1 is most prevalent under
south–southeasterly winds (Figure 5a). The 28 case-study
days used to derive the EOFs cover a wide range of wind
directions and speeds (Figure 5), and therefore the impor-
tance of horizontal advection to 𝛽m variability is highly
likely at these NWP scales. A full day and night composite
of wind speed and direction over all cases is in Figure S1.

A second factor determining the shape of the EOFs
is topography. London, located in a river valley, is situ-
ated between the Chiltern Hills (north) and North Downs
(south and southeast) (Figure 1), so its elevation is rela-
tively low compared with its surroundings (>200 m above
sea level; Figures 3a–e and 4a–e). The EOF1, EOF2, and
EOF4 spatial patterns occur when air is advected onto the
hills in the northwest, southeast, and northeast, respec-
tively. As the air is forced upward, part of the detected
𝛽m variability is explained by the RH response to air tem-
perature reduction. But the advected air also increases
mMURK locally, where background emissions are typically
low. As exp(𝛽m) is proportional to RH and 𝛽m ∝ mMURK,
the advection increases the local variation of 𝛽m. For
example, if an air parcel with mMURK = 24 μg⋅kg−1 is
advected onto a hill with background concentration of
mMURK = 18 μg⋅kg−1, and raised adiabatically by 100 m
such that RH increases from ∼80 to 85%, 𝛽m increases
locally by ∼1.2× 10−6 m−1⋅sr−1. This combined orographic
effect and advection of aerosol emitted from the major
sources (middle of the domain; Figure 3f) increases 𝛽m
in areas surrounding the city. The spatial variability of
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F I G U R E 3 Examples of the main loaded, rotated empirical orthogonal function (EOF) patterns that typically occur across different
model heights, derived from the UKV (1.5 km) during the daytime (colour) with topographic contours (lines, 30 m dashed). EOFs explain
decreasing variability (% in top right) of the original dataset (111.7 m above ground level): (a) EOF1; (b) EOF2; (c) EOF3; (d) EOF4; (e) EOF5;
(f) mMURK background aerosol emissions (μg⋅m−2⋅s−1) climatology for July. London Urban Meteorological Observatory automatic lidar and
ceilometer network (Figure 1) shown as dots and labels in the domain centre [Colour figure can be viewed at wileyonlinelibrary.com]

𝛽m, mMURK, and RH for EOF1 from the UKV is shown in
Figure S2.

The general distribution of loadings in the EOFs across
the London domain are similar for the two NWP models,
as the synoptic winds are the most important factor driv-
ing the spatial patterns. Whereas the LM EOFs have more
spatial detail in the loading distribution around complex
orography (Figure 3b cf. Figure 4b), the UKV topographic
resolution is sufficient to generate orographic uplift and
the associated peak in loadings.

EOF1 and EOF2 for both NWP models, across each of
the model levels analysed, explain a large amount of the
total variability (typically between ∼25–40% for EOF1 and
∼20–40% for EOF2). EOF3 explains ∼13–25% of the total
variability in 𝛽m and can be linked to two processes that
increase 𝛽m: relatively higher RH in the southwest, and
high aerosol variability in the centre of the domain. This
EOF often occurs with low winds speeds or northeasterlies

(Figure 5). In the UKV above 471.7 m, the two processes
are instead represented by two separate EOF patterns, here
labelled as EOF3 sub-patterns, EOFUKV,3–1 (peak in load-
ings in the southwest of the domain driven by RH) and
EOFUKV,3–2 (peak loadings in the centre of the domain
driven by urban aerosol exchange) (Figure S4). In the LM,
EOFLM,5. is most similar to EOFUKV,3–2 from the UKV, with
respect to the loading spatial distribution.

EOFUKV,3–2 and EOFLM,5 likely portray rural–urban dif-
ferences in vertical aerosol transport and changes in RH.
PC time series corresponding to these EOFs peak with
lower wind speeds, suggesting vertical aerosol transport
is more important when wind speeds are low. Positive PC
scores indicate higher 𝛽m over the city, and negative scores
indicate higher 𝛽m in the surrounding rural areas. Below
111.7 m (not shown), soon after SR, the PC scores are high,
which reflects the greater build-up of mMURK overnight
in urban areas compared with the rural surroundings.

http://wileyonlinelibrary.com
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F I G U R E 4 As Figure 3, but derived from the London Model (300 m) [Colour figure can be viewed at wileyonlinelibrary.com]

Greater buoyancy over built-up areas due to greater urban
heat and roughness, in the absence of higher wind speeds,
encourages greater upward transport of mMURK and 𝛽m
in the domain centre. This vertical redistribution reduces
the near-surface build-up of mMURK, and consequently
emphasises the urban–rural difference.

Above 111.7 m, EOFUKV,3–2 and EOFLM,5 PC scores typ-
ically have a diurnal pattern, and are low after SR, peak
midday, and decrease before SS (Figure S5a). Furthermore,
the scores also increase later after SR and decrease sooner
before SS for level heights further from the surface (Figure
S5b). This smaller range (later rise, lower fall) of PC scores
at greater heights could reflect the extra time required for
boundary-layer mixing processes to reach greater heights
and to entrain the existing residual layer while redistribut-
ing relatively high near-surface concentrations of mMURK
further vertically. Again, this suggests the importance of
mMURK emissions and ABL dynamics in determining the
variability of 𝛽m.

EOFLM,5 tends to represent a greater proportion of total
𝛽m variability than its UKV counterpart EOFUKV,3–2, as
urban effects are better resolved by the higher resolution

of both the urban characteristics and aerosol emission
sources in the LM ancillaries. Aerosol and emission
ancillaries with a native resolution of 1 km are coarsened
for use in the UKV (to 1.5 km) and interpolated for the
LM (to 300 m). Higher resolution LM ancillaries are likely
to provide greater variability in 𝛽m, particularly where
emission sources are more heterogeneous.

For the nocturnal analysis, as with the daytime, the
EOFs are derived from PCA with varimax rotation. Again,
EOFs relate strongly to wind speed, wind direction, emis-
sion source location, and orography (not shown), with
peak loadings in similar positions. However, there are
some differences between the daytime and night-time
EOFs.

Between model heights 325.0 and 955.0 m, several
EOFs display wavelike patterns that are not present dur-
ing the day; for example, EOF2 at 417.7 m in both models
(Figure 6), which generally occurs under northwesterly
winds. Similar wave structures are found in EOFs asso-
ciated with southerly winds (not shown). These patterns
likely represent gravity waves produced as northwesterly
flow passes over the Chiltern Hills (northwest London

http://wileyonlinelibrary.com
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F I G U R E 5 Paired daytime wind roses of UKV
model wind speed (m⋅s−1) and direction (degrees) for
each rotated empirical orthogonal function (EOF) at
model height 111.7 m (Figure 3): (a) EOF1; (b) EOF2; (c)
EOF3; (d) EOF4; (e) EOF5. Wind speeds are temporally
sampled when the scores for each PC are above the 10th
percentile, and spatially sampled across the domain
(wind characteristics most associated with each EOF).
Bins extend from low inclusive and high exclusive (key).
Radial axis (%) frequency of occurrence by wind
direction bin. See Figure S1 for a composite of all wind
speeds [Colour figure can be viewed at
wileyonlinelibrary.com]

domain; Figure 3f) (Figure 6a), which is in agreement with
earlier studies using UKV and LM data for the Greater
London area (Lapworth and Osborne, 2016; 2019). Grav-
ity waves can occur in statically stable conditions and have
been found in EOFs derived from large-eddy simulations
of the planetary boundary layer under weakly convective
conditions (Wilson, 1996). Using lidar observations Gibert
et al. (2011) found gravity waves to cause fluctuations in
RH, which would translate into 𝛽m variability captured by
the EOFs.

The presence of waves is visible in the w-wind com-
ponent when the PC scores for EOF2 are >4 (e.g.,
Figure 6c,d). Under clear-sky conditions at night, the
boundary layer is more likely to be stable, which can
reinforce the presence of gravity waves (Wallace and
Hobbs, 2006). The unstable daytime conditions limit their
formation (Figures 3 and 4). However, the frequency and
spatial prevalence of the gravity waves in the NWP model
data may be too large compared with reality, leading to
an overrepresentation in the EOFs. Both models have
been found to overestimate atmospheric stability over the

urban area of London, which is caused by an underestima-
tion of the anthropogenic heat emissions (Bohnenstengel
et al., 2014). Further, the simpler one-tile urban surface
scheme used for the LM simulations also tends to underes-
timate London’s sensible heat fluxes in the evening (Her-
twig et al., 2020). Thus, the gravity waves are likely a less
important phenomenon than implied by the EOFs derived
from the NWP model data.

3.2 Application of spatial variability
to network design

To find geographic regions with similar 𝛽m variability,
Ward CA (Ward, 1963; Wilks, 2011) is performed using
the uEOFs for day/night, and for UKV/LM separately,
with the cluster numbers (n) set to 5, 7 and 20. For
example, Figure 7 shows the daytime UKV clustering of
n = 7 clusters, ordered from the largest (1) to the smallest
area (7).

http://wileyonlinelibrary.com
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F I G U R E 6 Nocturnal empirical orthogonal function EOF2 at the 471.7 m model level derived separately from (a) UKV and (b)
London Model. Horizontal cross-section of w-wind component when EOF2 principal component scores are >4 on October 23, 2018,
2300 UTC (at 471 m) from (c) UKV and (d) London Model [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 7 Ward cluster
analysis (n = 7 clusters) of
unrotated empirical orthogonal
function (EOFs) from principal
component analysis of daytime
𝛽m. Colour patches numbered
from the largest (C1) to the
smallest (C7) derived from (a,
c) UKV and (b, d) London
Model; (a, b) location of cluster
with topographic contours
(lines, 30 m dashed), and (c, d)
topographic variation in each
cluster. Note frequency (y-axis)
varies. All EOFs included
explain ≥1% of the variability
in modelled attenuated
backscatter coefficient [Colour
figure can be viewed at
wileyonlinelibrary.com]

The UKV and LM cluster maps are similar. Both
have clusters located over the city centre and in the
surroundings for different wind directions (Figure 7). The
clusters are spatially confined, which is likely because

the covariance of eigenvector values between neighbour-
ing grid cells is relatively high compared with grid cells
that are further apart. The central LM cluster (7, CLM,7) is
smaller than its UKV counterpart (CUKV,5), which could be

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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related to the higher loadings over central London com-
pared with its surroundings in the first LM uEOF, and
more nuanced skill possible with the smaller grid reso-
lution. The clusters split into three elevation range types
(Figure 7c,d): (a) wide range, in the northwest and south-
east; (b) small range and low elevation, for most of the
others; and (c) predominantly higher elevation, in the
south.

Qualitatively, the boundaries between adjacent clus-
ters follow the topographic contours for n = 7 (notably
CUKV,1, CUKV,7 and CLM,5, CLM,6; Figure 7), which is the
same for other cases (n = 5 or n = 20) analysed. When
n = 20 (Figure S6), the smaller clusters align with more
detailed topographic features (e.g., valley variations and
hill tops, CUKV,12 in the southwest). CA results are also sim-
ilar between day and night, despite the wavelike patterns
in night-time EOFs (Figure S7).

To better understand the near-surface 𝛽m variabil-
ity (cf. variability in the full vertical domain as used in
Figure 7, additional daytime cluster maps are produced,
using EOFs from model height of (a) 5.0 m only, and (b)
5.0–111.7 m inclusively (Figure S8). Unlike the clusters
in Figure 7, near-surface clusters have a greater east–west
elongation and appear to be more tightly constrained by
local near-surface emission sources, which also have an
east–west elongation due to the presence of Heathrow
Airport (west), the city centre (middle), and several emis-
sions sources near the River Thames (east) (Figures 4f
and 5f). Comparison of near-surface clusters with clusters
in Figure 7 highlight that near-surface 𝛽m variability is
influenced more by local-scale emission sources, whereas
clusters derived using the full sampled height domain are
affected by larger-scale processes.

The CA maps can be used to inform the deployment
of ALC instruments. As Ward clustering aims to minimise
the variability in 𝛽m within a cluster, one logical approach
would be to locate a single ALC instrument in each cluster.
Using the maps and wind roses together to assess aerosol
advection patterns can help prioritise deployment. For
example, larger clusters and those with frequent upwind
advection would come first. A network of seven ceilome-
ters deployed for data assimilation into the UKV could
be distributed with one in the city centre, to observe the
urban plume, and the other six in the surrounding hills
(one in each cluster). Instruments in rural areas would
monitor both advected aerosol emissions upwind from the
city and the subsequent orographic lifting effect. If only
two instruments are deployed, the CA maps derived in
this study would suggest one in the city (CUKV,5), and a
second in the northwest cluster (CUKV,1) given the rela-
tively large cluster size and high frequency of southeast-
erlies. At night, the cluster shapes and areal extents can
change. Therefore, where possible, the recomendation is

to use both day and night CA maps when selecting a site
location.

4 CONCLUSIONS

To assess what drives spatial variations in aerosol (and
RH), within the boundary layer across a region in and
around a megacity under cloud-free conditions, a method
is developed to identify common spatial patterns of vari-
ability. The attenuated backscatter coefficient is modelled
using the aerFO operator with input from two NWP
models at different resolutions: the 1.5 km Met Office
UKV and the 300 m research LM for a domain around
Greater London, UK. PCA with varimax rotation is used
for two periods (day, night) to create EOFs for each model
level.

PCA results are combined with CA to identify areas of
similar aerosol variability. The CA results can be used with
wind roses to identify potential locations for ALC instru-
ments to maximise uniqueness of observations across a
network, with respect to observing features at spatial scales
larger than the model resolution used, for the purpose of
data assimilation and evaluation.

Common patterns in attenuated backscatter coefficient
variability are identifiable across different model levels
during both day and night, with similar results for both
NWP models.

From the analysis of 28 days clear-sky case-study days,
it is concluded that:

• Spatial variability in modelled attenuated backscatter
coefficient 𝛽m can be mostly explained by orography,
transport of aerosols from source locations (mainly in
city centre) and wind direction.

• The urban–rural difference in attenuated backscat-
ter coefficient is most pronounced under low wind
speeds and advection, allowing vertical boundary-layer
dynamics to redistribute relatively higher urban
near-surface aerosol concentrations over the city.

• Possible gravity waves influence the spatial variability of
attenuated backscatter coefficient in the residual layer
at night in both NWP models, through fluctuations in
RH.

• Results with the coarser resolution NWP model (1.5 km)
are comparable to the higher resolution (∼300 m) NWP
model, though the higher resolution NWP benefits from
higher resolution orography.

• NWP models could potentially indicate more vari-
ability in the attenuated backscatter coefficient across
a city if model inputs (i.e., ancillaries) have higher
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resolution (e.g., aerosol emissions). For example,
improved urban energy balance fluxes from anthro-
pogenic heat emissions and heat storage could improve
the representation of urban–rural contrasts.

• CA identifies distinct regions (clusters) of similar
attenuated backscatter coefficient variability to inform
instrument placement of a network for data assimila-
tion into NWP models.

• CA results are similar between day and night, despite
the wavelike patterns in night-time EOFs.

• When creating five or more clusters, the cluster shape
and sizes relate to orography, aerosol emissions, and
wind direction. One cluster is located in the domain
centre (city), and others in surrounding rural areas with
high orography.

• Near-surface clusters relate more to aerosol emissions
due to greater local-scale influence, whereas clusters
using the full vertical information can be influenced
more by larger-scale influences.

• We recommend placing one instrument in the city to
observe the urban plume and others in the rural sur-
roundings, with priority given to the larger clusters and
clusters with higher frequency of downwind aerosol
advection from the city.

• Identification of distinct regions is mostly constrained
by NWP model resolution and the spatial scales of
features it can effectively resolve. To inform network
design for ALCs to observe smaller spatial features,
higher resolution NWP models are needed.

The PCA-CA technique is highly adaptable and could
be modified or used in a wider variety of applications.
The technique could be used on subsamples of NWP data
to focus on better capturing information for particular
meteorological situations or regions. For example, sub-
sampling for above-average aerosol events, or the upper
extent of the boundary layer where observations can
be sparse in urban areas (Barlow, 2014). In addition,
the PCA-CA technique could aid the spatial interpreta-
tion of verification statistics. The CA highlights spatial
regions where the model grid cells covaried most similarly;
therefore, the spatial applicability of verification statis-
tics using ALC instruments located in identified cluster
regions can be better understood. The PCA-CA technique
could be applied to other meteorological variables, beyond
aerosols (e.g., cloud base and boundary-layer heights), to
inform network design that can target variability in those
variables.

As two NWP models were used, the sensitivity of clus-
ter maps to model biases was only partially explored.

Therefore, future work should consider generating cluster
maps from more NWP models to better understand this
sensitivity and ideally reduce the impact of model bias on
instrument placement.
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