University of
< Reading

A model-driven approach to machine
learning and software modeling for the loT

Article
Published Version
Creative Commons: Attribution 4.0 (CC-BY)

Open Access

Moin, A. ORCID: https://orcid.org/0000-0002-8484-7836,
Challenger, M., Badii, A. and Ginnemann, S. (2022) A model-
driven approach to machine learning and software modeling
for the loT. Software and Systems Modeling, 21. pp. 987-1014.
ISSN 1619-1366 doi: https://doi.org/10.1007/s10270-021-
00967-x Available at https://centaur.reading.ac.uk/103317/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing.

To link to this article DOI: http://dx.doi.org/10.1007/s10270-021-00967-x

Publisher: Springer

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement.

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

University of
< Reading

Reading’s research outputs online

Software and Systems Modeling
https://doi.org/10.1007/s10270-021-00967-x

THEME SECTION PAPER l‘)

Check for
updates

A model-driven approach to machine learning and software modeling
for the loT

Generating full source code for smart Internet of Things (loT) services and cyber-physical
systems (CPS)

Armin Moin'® - Moharram Challenger? - Atta Badii® - Stephan Giinnemann*

Received: 19 March 2021/ Revised: 1 December 2021 / Accepted: 7 December 2021
© The Author(s) 2022

Abstract

Models are used in both Software Engineering (SE) and Artificial Intelligence (AI). SE models may specify the architecture at
different levels of abstraction and for addressing different concerns at various stages of the software development life-cycle,
from early conceptualization and design, to verification, implementation, testing and evolution. However, Al models may
provide smart capabilities, such as prediction and decision-making support. For instance, in Machine Learning (ML), which is
currently the most popular sub-discipline of Al, mathematical models may learn useful patterns in the observed data and can
become capable of making predictions. The goal of this work is to create synergy by bringing models in the said communities
together and proposing a holistic approach to model-driven software development for intelligent systems that require ML.
We illustrate how software models can become capable of creating and dealing with ML models in a seamless manner. The
main focus is on the domain of the Internet of Things (IoT), where both ML and model-driven SE play a key role. In the
context of the need to take a Cyber-Physical System-of-Systems perspective of the targeted architecture, an integrated design
environment for both SE and ML sub-systems would best support the optimization and overall efficiency of the implementation
of the resulting system. In particular, we implement the proposed approach, called ML-Quadrat, based on ThingML, and
validate it using a case study from the IoT domain, as well as through an empirical user evaluation. It transpires that the
proposed approach is not only feasible, but may also contribute to the performance leap of software development for smart
Cyber-Physical Systems (CPS) which are connected to the IoT, as well as an enhanced user experience of the practitioners
who use the proposed modeling solution.

Keywords Model-driven software engineering - Domain-specific modeling - Analytics modeling - Machine learning -
Internet of things - Cyber-physical systems

1 Introduction

Communicated by L. Burguefio, J. Cabot, M. Wimmer & S. Zschaler. As software and information/data-intensive systems, such as

59 Armin Moin Cyber-Physical Systems (CPS), which are highly complex
moin@in.tum.de systems of systems [16], become smarter through incorpo-
rating Artificial Intelligence (Al), and more pervasive via the

Moharram Challenger
moharram.challenger @uantwerpen.be

Atta Badii s

. . Department of Computer Science, University of Antwerp &
atta.badii @reading.ac.uk

Flanders Make, Flanders, Belgium

Stephan Gﬁnn@emann d 3 Department of Computer Science, University of Reading,
guennemann @in.tum.de Reading, UK

Department of Informatics, Technical University of Munich, Department of Informatics and Munich Data Science
Munich, Germany Institute, Technical University of Munich, Munich, Germany

Published online: 19 January 2022 @ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-021-00967-x&domain=pdf
http://orcid.org/0000-0002-8484-7836

A. Moin et al.

Internet of Things (IoT) with billions of networked devices
[2], we observe an increasing need for integration and liai-
son between the Software and Systems Engineering (SSE)
community on the one side and the Al, including the Data
Analytics and Machine Learning (DAML) community on
the other side. To this aim, two research directions moti-
vated by the following broad research questions are evolving
simultaneously: (i) How to enhance SSE through AI (e.g.,
DAML)? For instance, the field of Mining Software Repos-
itories (MSR), which deals with applying DAML methods
and techniques to large amounts of data that are stored in
various formats in the software source code and bug reposi-
tories, in order to make software development more efficient,
serves as an example for this direction. (i) How can Al e.g.,
DAML benefit from SSE approaches and paradigms, such as
Model-Driven Software Engineering (MDSE), also known
as Model-Based Software Engineering (MBSE)? This work
lies at the intersection of the said research directions since
it aims to bring both communities together and contribute to
each one.

Due to the abstraction and the automation that they
can provide, software models in the context of the MDSE
paradigm, especially the Domain-Specific Modeling (DSM)
methodology [26] with full code generation play an important
role in the highly complex and very large software systems of
today. In particular, in the IoT domain, where distributed sys-
tems with heterogeneous hardware and software platforms,
programming languages and communication protocols are
the norm, one can better perceive the additional value of
models and domain-specific MDSE [20,46]. Prior work in the
literature, such as ThingML [14,20,34,49], HEADS [24,33]
and p-Kevoree [15] (see Sect. 3) concentrated on domain-
specific MDSE for the [oT/CPS domain. However, the main
shortcoming of these models is that they cannot support the
ever-increasing DAML requirements of software systems, in
particular, in the IoT/CPS domain where massive datasets
and data streams are being generated by the sensors and
other devices. We argue that the Domain-Specific Model-
ing Languages (DSML) for the IoT/CPS have to include
DAML concepts and offer access to the APIs of libraries and
frameworks for DAML on the modeling layer. Otherwise, the
DAML functionalities of smart, data-driven IoT Services and
CPS applications need to be implemented separately either
in a manual way or using other ‘silo’ DSMLs. However, this
would be in contrast to the DSM goal concerning being able
to generate every artifact out of the abstract MDSE models,
through model-to-code/model-to-text and model-to-model
transformations, in an automated, integrated and seamless
manner.

Furthermore, DAML models, such as Probabilistic Graph-
ical Models (PGM) or Artificial Neural Networks (ANN) are
not capable of acting as software models for the entire system,
e.g., for modeling a complete smart [oT service or smart CPS

@ Springer

application. Bishop [6] proposed Infer. NET [29], which was
a DSML, based on the probabilistic programming paradigm,
in order to treat PGMs as both ML models and software mod-
els in the sense of domain-specific MDSE, where the entire
software solution is generated out of the model. However,
the main drawback of such an approach is that PGMs and
other families of ML models are not expressive enough to be
capable of modeling the entire system for IoT and CPS use
case scenarios.

In contrast, we enhance software models, in order to make
them capable of creating, training, deploying and re-training
ML models as necessary for [oT use cases. However, the pro-
posed approach is not tied to any specific vertical problem
(application) domain. This means, the proposed solution can
be deployed in diverse vertical domains, such as smart health-
care and smart energy systems. This is in accordance with
the nature of CPS, which are cross-domain by definition, and
the 10T, that is an interconnection of all such cross-domain
systems of systems [16,46].

The original idea was proposed previously in our posi-
tion paper [31], as well as our poster/extended abstract [32].
In this work, we elaborate on the proposed approach more
thoroughly, illustrate our implementation of the prototype
that serves as the proof-of-concept, as well as the valida-
tion of the proposed approach. Hence, the contribution of
this paper is twofold: (i) We validate the research hypothesis
that software developers using the MDSE paradigm, particu-
larly the DSM methodology, may have their software models
enhanced with the capability to automatically produce and
train ML models, and deal with them. Simultaneously, we
maintain the feasibility of full source code generation in an
automated way. The said ML models may affect the behav-
ioral models of software systems. This is validated using a
case study. (ii) In addition to the feasibility of the proposed
approach, we validate the hypothesis that it contributes to
the performance leap of software development in the IoT
domain and leads to a higher level of satisfaction regarding
the user experience of the practitioners (i.e., software devel-
opers, data scientists, etc.) who use the proposed approach.
This is validated through an empirical evaluation by a number
of external experts.

We provide our open-source prototype, called ML-
Quadrat, with sufficient documentation and samples to facil-
itate using this as a platform to let both software developers
and ML practitioners support new IoT platforms and ML
libraries. This shall lead to open innovations and gener-
ate synergies in both the SSE and Al communities. Using
the proposed approach, the SSE community is empowered
with the state-of-the-art ML methods and techniques out-
of-the-box, while the ML community can obtain access to
the scalable, robust and efficient Software Engineering (SE)
solutions, based on best practice. The integration of the said
models from SE and ML is conducted in a seamless manner

MDE for ML and Software

that does not require any knowledge and skills in the par-
ticular APIs of the underlying platforms and libraries. For
instance, to generate Python code for ML, based on the APIs
of different libraries and frameworks, one does not need to be
familiar with their specific APIs. Our DSML abstracts from
those platform-specific APIs, hence offering a higher layer of
abstraction, i.e., the modeling layer. Different model-to-code
transformations, also known as code generators can gener-
ate the entire source code for various DAML libraries and
frameworks, e.g., Scikit-Learn [40] and Keras [9] with the
TensorFlow [1] backend in a fully automated manner.

Moreover, since our work is built based on the open-
source ThingML [49] project, we also inherit their code
generators (‘compilers’) for various platforms, programming
languages and protocols. ThingML [49] can generate code
in Java, C (Posix, Teensy, Arduino), C++, Javascript and
Go. Further, they support not only the Hypertext Trans-
fer Protocol (HTTP), but also the more suitable applica-
tion layer communication protocols for resource-constrained
IoT-devices, namely the Constrained Application Protocol
(CoAP) for one-to-one communications and the Message
Queuing Telemetry Transport (MQTT) protocol for many-
to-many communications following the publish-subscribe
pattern. In this work, we extend their approach, including
the meta-model, as well as the code generation framework
to enable generating Python code for supporting the required
DAML functionalities.

The rest of this paper is structured as follows: Sect. 2
provides the required background on the IoT/CPS and the
preliminaries on analytics modeling, as well as software
modeling. Moreover, Sect. 3 reviews the state of the art and
points out the gap in the literature that is being addressed by
the present work. We propose our novel approach in Sect. 4
that is followed by presenting the open-source prototype in
Sect. 5. Further, we validate the above-mentioned research
hypotheses in Sect. 6. Finally, we conclude and suggest future
work in Sect. 7.

2 Background

2.1 The Internet of Things (loT) and cyber-physical
systems (CPS)

The original World Wide Web (WWW) was developed in
1989 to enable automated information-sharing between sci-
entists in universities and institutes around the globe [7].
The term Web 2.0 was introduced in 1999 [12] as user-
generated content on the web gained more attention. In
2001, Web 3.0 or the Semantic Web was introduced [3]. This
was an extension of the web to support machine-readable
multi-media content development on the web, i.e., semantic
data that could be processed and understood by comput-

ers, such that they can conduct reasoning supported by the
semantic markup. To this aim, the World Wide Web Con-
sortium (W3C) promoted a set of standards, such as the
Resource Description Framework (RDF) that could enable
data from heterogeneous sources to be shared and reused
across applications, websites and mobile apps. These seman-
tic technologies let concepts, objects and their relationships
be formally represented through meta-data, e.g., via ontolo-
gies. Today, the fourth generation of the web, i.e., Web 4.0,
which is better known as the Internet of Things (IoT), is being
gradually formed. The IoT is an expansion of the Internet
into new domains, devices and objects (i.e., things), such as
Radio-Frequency Identification (RFID) tags, sensors, actu-
ators, mobile phones, etc. which through unique addressing
schemes are able to interact and perhaps also cooperate with
each other to reach common goals [2].

Another related but slightly different notion is Cyber-
Physical Systems (CPS). Similar to the IoT systems, CPS,
which are highly complex systems of systems that possess
both physical and virtual (cyber) components [16], consist
of heterogeneous and distributed platforms, such as various
embedded micro-controllers. As more CPS are being con-
nected to the Internet (IoT), we no longer need to distinguish
between the two notions of CPS and IoT. Nevertheless, there
is no consensus on the exact definition of CPS and its bor-
ders and/or possible overlaps with the IoT. The US National
Institute of Standards and Technology (NIST) Special Pub-
lication on CPS and the IoT [17] also highlighted this fact
and pointed out that CPS and the IoT have ‘distinct origins
but overlapping definitions, with both referring to trends in
integrating digital capabilities, including network connectiv-
ity and computational capability, with physical devices and
systems’.

CPS have by nature special capabilities, known as the
so-called cross-*, live-* and self-* capabilities. The cross-*
capabilities, include cross-domain, cross-technology, cross-
organization and cross-functional. Moreover, the live-* capa-
bilities comprise live-re-configuration, live-re-deployment,
live-update, live-enhancement and live-extension. Further,
the self-* capabilities are self- documenting, self-monitoring
/diagnosis, self-optimizing, self- healing and self-adapting
/training [46].

Since CPS involve both the physical and the virtual
(cyber/digital) worlds, modeling them is quite challenging.
For instance, in the physical world, the dynamics of the
system is captured by a set of variables that change their
values continuously over time. The dependencies between
these variables are captured by continuous functions that
are expressed by differential calculus and integration the-
ory, where time is represented by real numbers. By contrast,
digital systems can be modeled as discrete event systems
with a number of states. They can be modeled, e.g., via state
machines or Petri-Nets. Thus, in digital systems, time is dis-

@ Springer

A. Moin et al.

crete. Furthermore, in such systems, the notion of causality,
i.e., the logical dependencies between the events, might be
more sophisticated than the notion of time [16,50]. Finally,
Papatheocharous et al. [38] proposed a closely related and
similar concept to CPS in their position paper, called Feder-
ated Embedded Systems (FES).

In this work, we focus on modeling IoT services that
require smart capabilities through Machine Learning (ML).
As a motivating example, let us consider a condition-based
monitoring system of a hydraulics system in an industrial
facility. The goal is to conduct predictive maintenance via
ML models that are trained on the data that are acquired
from a number of various sensors (e.g., multiple pressure and
temperature sensors), thus enabling the prediction of possi-
ble future faults of the system by the ML models. Moreover,
there exist a number of virtual sensors, whose values are not
directly measured by any physical sensor device, but they are
calculated based on other sensor measurements. One exam-
ple is the cooling efficiency. There is no sensor to measure
this quantity explicitly, but it is calculated according to the oil
temperature at the cooler, one of the temperature sensors, as
well as the ambient temperature. Helwig et al. [25] elaborated
on this condition-based monitoring system that is deployed
in Germany.

In line with the above-mentioned vision of the IoT, we
assume that this system will be connected to the IoT in
the future. In other words, each of the sensors and actua-
tors involved will be directly connected to the Internet (IoT).
One advantage of this will be the possibility of letting the
condition-based monitoring systems deployed at multiple
facilities or sites of one customer or a group of customers
cooperate to the benefit of all of them. This might involve
sharing their data to enhance the prediction performance
of the ML models that are created and trained for differ-
ent hydraulics systems. However, in the case that privacy
concerns and regulations discourage or prohibit sharing raw
data, they may use federated ML techniques, through which a
number of systems deployed at various sites may cooperate in
order to create a more capable joint ML model without shar-
ing any raw data. The proposed approach in this work enables
the modeling infrastructure for edge analytics and federated
ML since it allows augmenting any arbitrary thing with one
or more data analytics component. Figure 1 illustrates the
said hydraulics system that includes a primary working cir-
cuit and a secondary cooling and filtration circuit, as well as
the predictive maintenance system for condition-based mon-
itoring of the hydraulics system. The entire system is a CPS
that is connected to the Internet (IoT). This use case sce-
nario is an example of typical smart IoT services that can
be modeled and their implementations can be automatically
generated using the proposed approach.

@ Springer

2.2 Analytics modeling

Analytics modeling is a term that stands in contrast to ana-
lytics operations. In fact, the core focus of the data analytics,
also known as the Knowledge Discovery and Data Mining
(KDD) community is on analytics modeling, which involves
developing new algorithms, methods and techniques to man-
age and analyze data, e.g., for business intelligence, decision
making support, optimization, predictive maintenance and
so forth. One of the fields that has recently very much
helped them in achieving their goal is ML (especially its
sub-discipline deep learning). Data scientists and ML engi-
neers often practice analytics modeling. They usually offer
the software that produces and trains DAML models, and
are called (DAML) model producers. However, in order to
deploy and use DAML models in real-world systems, we
also need data engineers, who together with software engi-
neers, database engineers/designers and system engineers
take other aspects, such as the performance and scalability
of the entire system into account. The tasks of data engineers
that mainly involve large-scale data analytics and processing
(often referred to as big data analytics) are grouped under
the umbrella term analytics operations. Data engineers often
provide the software that consume or use DAML models,
thus called (DAML) model consumers, also known as scor-
ing engines [42]. Note that in the stream processing (i.e.,
online learning) scenarios, where training the DAML model
shall be an ongoing process that needs to be performed in a
live manner, the boundaries between the mentioned groups
of tasks may sometimes become blurred.

In the DAML community, the notion of models is gener-
ally understood as the abstractions about the observed data
that can help in understanding, analyzing and managing the
data to generate value, e.g., to generate plausible instances
of such data in order to make predictions. Leskovec et al.
[28] referred to several common approaches to models in
this community. For instance, one may define such a model
as an underlying probability distribution, from which the
observed data are presumably drawn. This is called the sta-
tistical approach. Alternatively, one may consider a model
for a dataset to be a summarization or an approximation of
its data instances. Further, some models represent a dataset
by its most extreme examples. Those are called feature-based
models. Finally, ML models that are currently widely used in
analytics modeling—and are the main focus of this work—
may come from diverse families, e.g., linear models, decision
trees, ensemble models, such as random forests, kernel-based
models, e.g., Support Vector Machine (SVM), Artificial Neu-
ral Networks (ANN) and Probabilistic Graphical Models
(PGM) [5]. Deep ANNs with several hidden layers are cur-
rently widely used in the industry. Also, Bayesian Deep
Learning [51] is a promising approach for many industrial
IoT/CPS use cases.

MDE for ML and Software

A t f) I)

1 2 3 4
115 bar 110 bar 100 bar 90 bar
Predictive
Maintenance
ﬁ (Condition
VE“’b - Valfel Valfe2 Valfe3 Valyed Monitoring)
ibration
Sensor (VS) Node 1
== < D
[ca] [} 3 [ca] [ca] [N [ca]
Temperature Variable Metallic Flow Sensor Pressure Temperature Fjiter 1
Sensor (TS) LoadValve contamination (FS)1 Sensor (PS) Sensor (TS)
5 un Sensor 3 2
:]
O)) &%) & W
i Pressure Ce inati
Valve 10
Main Pump (MP) 1 Sensor (PS) Sensor (PS) Sensor (TS) Sensor (CS]
1 2 1

Electric
Power
Steering
(EPS) Motor
Power
| Sensor l ‘

|

Orifice

Val Val Val

Orifice

Orifice Orifice

(a) The primary working circuit

1
ca
Pressure
Sensor (PS)

—o/c

Metallic
Contamination
Sensor
(MCS)

Fliter 2

Secondary Circuit
Pump (SP) 1

{1t
Orifice

(b) The secondary cooling and filtration circuit

Fig.1 Predictive maintenance of a hydraulics system [25]

Furthermore, we need to clarify the terminology on
model-based ML. Until recently (and even broadly today),
model-based ML was (and is) understood as ML approaches
that contrary to the so-called instance-based (also known as
memory-based) ML approaches, they do not require storing
any instances of the observed dataset that is used for training
for the future uses. This means, the so-called model-based
ML approaches, such as ANNs, have the ability to completely
learn the recognized patterns in the data and function inde-
pendently of the observed data, once training is done. In
contrast, instance-based approaches, e.g., SVMs require at
least part of the observed dataset even after training in order
to be able to work [5].

However, a nuanced notion of model-based ML, which is
in line with the understanding of the SSE community from the
term model-based, emerged with Infer.Net [6,29]. According
to this notion, which is also deployed here, model-based ML
can be used with any ML model architecture, regardless of
being instance-based or not.

T

Pressure

S
Combined
0il quality
and Particle
measurement
System
(COPS)
Ca
Temperature cooler ©1 Pressure Temperature
Sensor (PS) Sensor (TS) Sensor (PS) Sensor (TS)
5 3 6 4 /\\
Flow Sensor
(FS) 2

Orifice Orifice

Orifice

o’))

Orifice

2.3 Software modeling

In the SSE community, models are abstractions that describe
the architecture of a software/system. Here, we are interested
in software systems. Therefore, we concentrate on software
models. Models can be at different levels of abstraction, thus
having different degrees of details. Moreover, models may
focus on different aspects of software systems. As long as
a model can address the concerns of a stakeholder, it is
interesting and relevant. A model instance shall conform
to a meta-model, which specifies the syntax (and maybe
also part of the semantics) of the corresponding modeling
language. A modeling language might be general purpose,
such as the Unified Modeling Language (UML) standard,
or domain-specific, e.g., ThingML [49]. According to the
ISO/TIEC/IEEE 42010:2011 standard [27] for the architecture
descriptions in systems and software engineering, an archi-
tecture description is made of one or often more architecture
views. Several (software architecture) model instances may
belong to one architecture view, which addresses one or sev-

@ Springer

A. Moin et al.

eral concerns of a stakeholder or a group of stakeholders.
Based on the said standard, each architecture view is gov-
erned by one architecture viewpoint, which frames one or
several concerns of a stakeholder or a group of stakeholders.

Further, if we consider the UML diagram notations, we
observe that they can be categorized into two broad groups: (i)
structural diagrams, e.g., the Class diagram, the Component
diagram and the Object diagram; (ii) behavioral (including
interaction) diagrams, e.g., the Activity diagram, the State
machine diagram and the Use case diagram. The UML Activ-
ity diagram might be used for modeling the workflows (i.e.,
the flow of control) or data flows (i.e., the flow of data).

However, in this work, we are interested in Domain-
Specific Modeling (DSM) with automated full code genera-
tion [26],a MDSE approach that has been adopted both by the
ThingML methodology [20,49] and ourselves [30-32]. Nev-
ertheless, there exist other approaches to software modeling
which either do not promise automated full code generation
(e.g., they just generate a skeleton), or do not consider mod-
els as the central artifacts, i.e., they are not model-driven
(model-based), but rather use models for specific tasks, such
as designing, early prototyping and documentation. In this
work, we are not interested in such approaches.

3 Related work

Raising the level of abstraction to hide the complexity, and
providing partial or full automation—e.g., via model-to-code
transformations for code generation out of software mod-
els, or via model-to-model transformations for transforming
one model to another model conforming to a different meta-
model—are two pillars of the MDSE paradigm, which treats
software models as first-class citizens. Both of the said pil-
lars have already been introduced to some extent in the field
of DAML as well. Raising the level of abstraction has been
practiced through libraries and frameworks with higher level
APIs. For instance, TensorFlow [1] offers a powerful API for
deep learning using various advanced methods, while Keras
[9] provides yet a higher layer of abstraction, which sup-
ports both the APIs of TensorFlow and other deep learning
frameworks, e.g., Theano [48]. Moreover, DAML work-
flow designers, such as KNIME [4] and RapidMiner [44],
and visualization toolkits, such as TensorBoard [47], offer
a graphical and abstract layer beyond the code. However,
none of the mentioned approaches followed the systematic
and holistic approach of the MDSE paradigm, where models
include the necessary information regarding the entire appli-
cation, and model-to-code transformations are often capable
of generating the software implementation out of them. The
workflows in KNIME [4] and RapidMiner [44] or the Com-
putational Graphs (CG), also known as the Data-Flow Graphs
(DFG) in TensorBoard [47], which is the visualization toolkit

@ Springer

for TensorFlow [1], never address any aspect or concern
beyond DAML. Last but not least, some workflow designers,
e.g., KNIME [4] provide the partial code generation function-
ality for DAML.

Furthermore, the idea of Model-Interchange Formats,
such as Predictive Model Markup Language (PMML) [43],
Portable Format for Analytics (PFA) [41,42] and Open
Neural Network Exchange (ONNX) [37] is relevant to the
principles and common practices of MDSE. PMML is an
XML-based standard of the Data Mining Group (DMG) [13],
which comes in the form of an XML-schema and is already
supported by more than 30 vendors world wide. Also, PFA
is an emerging standard of the DMG, which offers a much
higher degree of flexibility and power compared to PMML.
First, unlike PMML, that only supports a limited set of
DAML models, PFA provides a DSL that enables the imple-
mentation of any DAML method. Second, with PFA one
may model an entire workflow or pipeline, not just a single
DAML model. In addition, ONNX supports building Artifi-
cial Neural Networks (ANN) models from various libraries
and frameworks, e.g., TensorFlow [1], Keras [9], PyTorch
[39], Scitkit-Learn [40], MXNET [8], Caffe2 (which is now
part of PyTorch [39]), XLA (which is a domain-specific
compiler for linear algebra that can accelerate TensorFlow
models), Core ML (that allows integrating ML models into
the iOS apps) and the Microsoft Cognitive Toolkit (previ-
ously known as CNTK) in an interoperable manner.

The second pillar of MDSE, namely automation, has been
also applied to the DAML field. Infer.Net [6,29] proposed
the idea of using ML models, specifically PGMs, as MDSE
models, thus generating the entire software implementation
automatically out of them. They only supported C# for code
generation. Although this approach to ML has so far been the
most relevant approach to the MDSE paradigm, it has a major
shortcoming for real-world IoT/CPS applications, where the
expressiveness of PGMs and other ML models does not suf-
fice to model the entire software system and generate the full
source code out of the model instances.

Moreover, as set out in Sect. 1, ThingML [14,20,34,49]
and HEADS [24,33] supported the MDSE paradigm, specif-
ically the DSM methodology [26] for full code generation
in the IoT/CPS domain. While they mainly focused on the
design-time of software systems, other approaches, such as
u-Kevoree [15] concentrated on Models @ Runtime, thus fad-
ing out the borders between the design-time (modeling-time)
and the runtime of IoT services. The major shortcoming of
all of the said approaches is the lack of DAML support at the
modeling level. In other words, the users of those DSMLs
may not deploy the APIs of DAML libraries and frameworks
in their software models. Hence, there is no seamless inte-
gration between the software models and the DAML models.
In this work, we fill in this gap in the literature. We allow the
DAML functionalities to be offered both by the cloud and by

MDE for ML and Software

Table 1 Related work in the literature compared to the proposed approach (ML-Quadrat)

Description Work Full code gen. DAML support 0T / CPS domain Model type
ML libraries and frameworks TensorFlow [1], Keras [9], v DAML models
Scitkit-Learn [40], etc.
DAML workflow designers KNIME [4], RapidMiner [44], v DAML models
etc.
Model Interchange Formats PMML [43], PFA [41,42], v DAML models
(MIF) ONNX [37]
“Model-based” ML Infer.Net [6,29] v v ML (PGM) & SE
models
MDE4 IoT ThingML [14,20,34,49] and v v SE models
HEADS [24,33]
Models@ Runtime u-Kevoree [15] v Limited SE models
Models@ Runtime + ML GreyCat [18] v v Limited SE & DAML models
MDE4 IoT + ML ML-Quadrat [30] v v v SE & DAML models

the edge devices. Therefore, our model-driven approach also
supports edge analytics and federated learning by design.

The original idea of enhancing MDSE models for inte-
grating ML models and software models has been proposed
in our previous work, i.e., the position paper [31] and
the poster/extended abstract [32]. In addition, Benoit et
al. [10] proposed a conceptual reference model for MDE
of data-centric systems that helped in identifying different
models, mainly ML models and software/system models,
as well as their roles in the software/system life-cycle. In
this manuscript, we formalize our prior work [31,32], real-
ize its proof-of-concept and validate the underlying research
hypotheses (see Sect. 1).

Further, based on the Kevoree Modeling Framework
(KMF) and p-Kevoree [15], Hartmann et al. [21-23] pro-
posed GreyCat [18], which integrated ML with software
models in MDSE. Their idea and concepts were relevant to
the work of Moin et al. [31,32]. However, they only supported
Java and Javascript/Typescript code generation, which was
not sufficient for our purpose since we aim to cover code gen-
eration for the entire IoT systems that often consist of a range
of heterogeneous IoT platforms, which may not be capable
of running any Java Virtual Machine (JVM) at all, due to
their resource constraints. Therefore, we build our approach
on ThingML [14,20,34,49].

Finally, Table 1 compares the related work in the literature
with the proposed approach. As we can see, the proposed
approach, ML-Quadrat has all the benefits of the state of the
art in MDE for the IoT (MDE4IoT), namely ThingML [14,
20,34,49] and HEADS [24,33], but can also support DAML
and integrate DAML models with the SE models.

4 Proposed approach

In this section, we propose a novel approach to MDE for
both analytics modeling (with a focus on ML) and soft-
ware modeling, particularly for the IoT use case domain.
In the following, we first illustrate the overall architecture of
the proposed approach in Sect. 4.1. Then, we formalize the
proposed approach in Sects. 4.2, 4.3 and 4.4. As stated in
Sects. 1 and 3, we extend the open-source ThingML project
[14,20,34,49], including the abstract syntax, i.e., the meta-
model (grammar), the concrete syntax (model editors) and
the semantics that are mostly realized in the model-to-code
transformations, also known as code generators (‘compil-
ers’). The proposed approach and its implementation (see
Sect. 5) are backward compatible, thus interoperable with
the ThingML [49] (and HEADS [24]) models and code gen-
erators. In particular, we augment the meta-model (grammar)
of the DSML of ThingML [49] with a new component, called
Data Analytics (DA), which is responsible for enabling Data
Analytics and Machine Learning (DAML) at the modeling
level, such that practitioners using the DSML can obtain
access to the APIs of the DAML libraries and frameworks
(e.g., Scikit-Learn [40] and Keras [9]) in their software mod-
els at the design-time. To this aim, we also have to extend
the action types of ThingML [49] (see Sect. 4.3). Addition-
ally, we extend the Java code generator of ThingML [49] to
generate Python code as well. The Python code, which is
seamlessly integrated with the Java code, is responsible for
realizing the DAML functionalities, using the APIs of Scikit-
Learn [40] and Keras [9] (the latter with the TensorFlow [1]
backend).

@ Springer

A. Moin et al.

4.1 Overall architecture

The UML Component diagram that illustrates the logical
view of a number of key functional software components is
presented in Fig. 2. Most of them were also present in the prior
work, ThingML [49]. However, we adapted and extended
them. According to the legend of the diagram, the unchanged,
adapted/extended, and generated components are depicted in
blue, red and green, respectively. Here, we skipped the rest
of the code generators that are inherited from the ThingML
[49] project, e.g., the C/C++ code generators.

Most importantly, we introduce the DAML concepts and
functionalities into the DSML grammar in the Xtext frame-
work as the main innovation concerning the meta-model
(grammar). We discuss the new elements, such as the new
action types in Sects. 4.3 and 5. Many other components
besides the modeling language grammar, shown in Fig. 2,
such as the Ecore meta-model, the model editors, namely,
the textual model editor in the Eclipse Modeling Framework
(EMF), the tree-based model editor in the EMF, and the web-
based textual model editor (in-browser), as well as the parser
are generated automatically out of this grammar.

The UML Class diagram in Fig. 3 presents part of the
abstract syntax (i.e., grammar or meta-model) of the pro-
posed DSML.! Except for the Data Analytics class, the rest
has been adopted from the prior work, ThingML [49]. There-
fore, we allow each of the things to optionally include one or
more Data Analytics (DA) components that are in charge of
carrying out DAML tasks, such as predictions. The focus of
the DAML part is mainly on the ML methods and statistical
inferences rather than simple analytics via some basic statis-
tics or rule-based engines. Currently, we handle supervised
and unsupervised ML.

Finally, Fig. 4 depicts the UML Activity diagram that
shows the usual workflow for deploying the proposed
approach in the software development process of smart, data-
driven IoT services.

4.2 Analytics models (focused on ML models)

We define an ML model, called DM (the abbreviation of
Data Model) used in analytics modeling as follows:

DM = (v, P,®,H,I) ey

Here, v is an argument that indicates the structure or
family type of the ML model DM, e.g., Decision Tree
(DT), Probabilistic Graphical Model (PGM) or Multi-Layer

I Note that almost every class, e.g., State Machine, Data Analytics, etc.
is in practice associated with the Platform Annotation class. However,
to prevent the figure from becoming cluttered, those associations are
not shown here.

@ Springer

Perceptron (MLP) Artificial Neural Network (ANN), P is
a set which contains all of the parameters of the model
DM with their respective values, @ indicates the sequence
of ML features (i.e., ML attributes and their values) with
their respective data types, H is the set of all hyperparam-
eters, e.g., the optimization or learning algorithm ¢ that
shall be used to train the model DM, the choice of the
error/loss/cost/objective function e, the batch size bs, the
number of epochs ne, the learning rate lr if applicable, etc.,
and [is the set of additional information or meta-data about
the model and/or the data. / might include the following
items: (i) Whether the model is already trained, if applica-
ble what the training stage is and when the time of the last
training was; (ii) The paths or URIs/URLs of the dataset(s)
used for training, validation and testing; (iii) Whether any of
the data instances has a label (in that case the last item of the
sequence of features @ indicates the ML class labels and its
data type;z) (iv) If the dataset is sequential, e.g., time series,
so that the order of the data instances matter; (v) Whether
the training is performed online, i.e., stream processing or
offline, i.e., batch processing. In the former case, the dataset
is virtually unbounded, whereas in the latter case, the dataset
is bounded.

Analytics modeling involves designing the model DM,
and then training it, which means using ¢ and other hyperpa-
rameters in H to fine-tune the values of the parameters in P,
so that DM can then make reasonable predictions Y .4 for
the previously unobserved data instances, say X, Where
the amount of the error/loss, e for the prediction of DM given
the unobserved inputs, i.e., pred (DM, X;ey) remains below
a certain threshold ¢:
DM=(v,P,®,H,I), train(DM) — Ele(pred(DM, Xpew))]<e€

@

Here, E is the expected value and e is the error/loss, which
might be defined according to various metrics, e.g., the Mean
Absolute Error (MAE), also known as the L1-norm for regres-
sion:

|
e==> 15—yl 3)
i=1

In the equation above, n is the number of data instances,
¥; is the predicted numerical label by DM for the i;, data
instance, and y; is the actual numerical label of this data
instance.

As mentioned, the choice of the metric for e, e.g., MAE,
is specified in the hyperparameters H. Moreover, hyperpa-
rameter tuning is an important part of the analytics modeling

2 We also support array labels/outputs. In the future, we plan to support
Sequence-to-Sequence models as well (see Sect. 7).

MDE for ML and Software

IXtextModelEditorService

IXtextModelEditorService

IEMFIntegration- IEMFIntegration-
Service Service
<<component>>]
Ecore
Meta-Model in the

Eclipse Modeling

IModelService

IParserService

o—

IModelParserService

hdl

<<component>>
Web-Based Textual

Model Editor

IModelService

Framework (EMF)

<<component>> IXtextWebModel- i

. e P s IParserGenService |[EMETree-

Editor Editor-

IParser- Service

GenService
IModelParserServic:
IParser- IParserGenService
GenService
IModelParserService Z]

<<component>> <<External_Component>> IEMFTree-

Parser ANTLR Editor-

IXtextWebModelEditorService Service

]

<<component>>
EMF Tree-Based

Model Editor

IModelParserService

IModelService

IParserService
IModelService

‘ O

©

z] Z]
Legend Unchanged Generated

Fig.2 The UML Component diagram illustrating the logical architecture view of the proposed approach

Fig.3 The UML Class diagram
showing part of the meta-model
of the proposed DSML

PlatformAnnotation |0..*
- 1

v sends/receives

0.*
Message

PropertyAssign
0.

0.1

/ sets

ThingFragment

0..%

has A includes A

1 0.*

v has

0.*

Parameter|0.*

Y\ models behavior

—

< has

1
< uses/interacts with |StateMachine

[DataAnalytics |-
——

g —

@ Springer

A. Moin et al.

Model the
software
structure

Model the
software
behavior

Support
target
platform(s)

DAML required

Model the
DAML
component(s)

Desired ML method not there

Desired ML method pre-defined

Augment software
model with
references to the
pre-trained ML
model & library
(black-box ML)

Choose an ML
model
architecture

Interact
with |
use the
Run the model-to-code [JIEREVIMIEEe/ gene-

transformations rated
Run the loT
generated service
build script

Software
model valid &
complete?

Deploy & run
the loT
service

Fig. 4 The UML Activity diagram illustrating the usual workflow of
using the proposed approach

practices. Currently, this has to be done manually. In the
future, we plan to support more Automated ML (AutoML)
functionalities to offer automated hyperparameter tuning too
(see Sect. 7).

If the data instances are labeled, the task is a supervised
ML task, thus the prediction implies finding the correct class
label for a new, previously unobserved data instance. How-
ever, if the data instances do not possess class labels, it is
called an unsupervised ML task. For instance, in the case
of clustering, which is an example for unsupervised learn-
ing, prediction refers to finding the right cluster for each new
datainstance. In many applications, only some instances may
already have class labels and some or many of them may not
have one. This latter case is called semi-supervised learning.
Further, a supervised ML task with numerical class labels is
called regression, whereas a supervised ML task with cate-
gorical class labels is known as classification.

4.3 Software models (in domain-specific MDSE for
the loT)

We define a software model, or more precisely a software
architecture model instance, called SM as shown in Equa-
tion 4, where ¥ is the set of structural elements, and B is the
set of behavioral elements.

@ Springer

SM = (¥, B) “4)

However, since we are interested in domain-specific
MDSE with automated full code generation, we augment the
said software model formulation with a set of annotations, A
and a set of configurations, C, thus as defined in Equation 5.

SM = (A,¥,B,C) (5)

Annotations The Annotations (A) often help attach addi-
tional semantics to model instances. For example, one may
specify which of the available library (API) choices for a
certain task, such as ML methods, or the communication
protocols shall be used for code generation. This means,
if, for example, both Scikit-Learn and Keras offer a certain
ML model/algorithm, which is desired, e.g., the MLP-ANN,
one may choose through an annotation whether the APIs of
Scikit-Learn or the APIs of Keras must be generated by the
model-to-code transformation that generates Python code.

Structural elements The structural elements (¥) specify
the static aspect of the software system. In the IoT/CPS
context (see the use cases in Sect. 6.1), ¥ consists of the
things T (in the sense of IoT cloud and edge devices in a
distributed system), and for each thing t; € T, the ports P;
for communication with other things t;, j # i, the mes-
sages M, associated to each port for message-passing, and
the properties or local variables I';. Each message m), €
M, must have a direction (inbound/outbound) and may
include one or more parameter(s) par(m Pij) € Par(m vi;).
Both the properties/variables y;; € I and the message
parameters par(mp;) € Par(mpij) are typed, e.g., integer,
float/double, String, etc. How each of the mentioned types in
the model instance shall be translated or mapped to the spe-
cific types of the target platforms for code generation, e.g.,
whether the type integer shall be mapped to short, int or long
in Java, must be set through the annotations a; € A.

Behavioral elements The behavioral elements (B) specify
the dynamic aspect of the software system. We consider a
Finite-State Machine (FSM) (also known as a finite-state
automaton) model, called FSM; = B; for the behavior of
each of the things t; € T. We define the FSM model as
follows:

FSM:(2757SOa87F7H) (6)

Here, X is a set of inputs (explained below) which must
be finite and non-empty by definition, S is a set of states
for the thing 7; € T which is also finite and non-empty,
so € S is an initial state that must be specified, § : S x
Y — S is the state-transition function, /' € § is a (possibly
empty) set of final states, and I7 is a set of actions (illustrated

MDE for ML and Software

below). In this work, we assume the finite-state automaton
to be deterministic, i.e., given an input and a particular state,
there will be only one output state for the transition function
8, not a set of states.

Moreover, since we adopt the event-driven programming
paradigm, which is a natural fit for reactive and interactive
IoT systems, the inputs o; € X; in FSM; = B; (i.e., the
behavioral model of 7; € T) are basically events, e.g., the
incoming messages sent from other things 7; € T, j # i to
7;. However, the actions 77; € IT may be diverse actions, such
as printing a text in the standard output, storing a message
mp, or one of the parameters of a message par(m Pij) ina
local variable (property) y;; of the thing, or sending a mes-
sage from 7; to another thing 7 € T, k # i. The new action
types that we added to the existing DSML of ThingML [49]
are the following ones for DAML: (i) DA_Preprocess: This
action results in pre-processing the data and making them
ready for training the ML model. (ii) DA_Train: This action
leads to performing ML model training. (iii) DA_Predict:
This action enables asking the ML model for prediction.
(iv) DA_Save: This action supports appending the predic-
tion of the ML model to the dataset that was used for training
the ML model. Please note that the trained ML models that
are resulted from the DA_Train action will be serialized and
stored in any case regardless of the DA_Save action.

Configurations The configurations (C) include a set of
instantiations of the things, which is analogous to object
instantiation from the classes in the Object-Oriented Pro-
gramming (OOP) paradigm. Also, it is at this place of the
model instance where the desired connections between the
ports of the instantiated things are set out. Last but not least,
configurations may optionally also include annotations, e.g.,
specifying which model-to-code transformations shall be
used for code generation, and/or which communication pro-
tocols shall be employed (e.g., MQTT, HTTP, CoAP). Hence,
we define a configuration C; for t; € T as follows:

Ci=(Ag.0,58) (N

In Equation 7, Ac; is the set of annotations for the config-
uration, ® is the set of instances of things and & is the set
of connectors between the ports of two things. Each instance
6 € © has an instance name and a type, i.e., the correspond-
ing thing t; € T. Further, a connector £ € & has a starting
point, i.e., a thing instance and its port ,.p;, as well as an
end point, i.e., another thing instance and its port 6. py.

Finally, in the adopted domain-specific MDSE methodol-
ogy with full code generation in an automated manner (see
[20,26]), the assumption is that the software model SM con-
tains sufficient amount of information (i.e., it is semantically
complete) and is syntactically correct (i.e., it is valid) accord-
ing to the meta-model or the context-free grammar of the

modeling language, so that the model-to-code transforma-
tions can generate the entire implementation of the software
for the respective target hardware and software platforms out
of the model instance SM. Formally, this means:

AA, is_valid(SM) & is_complete(SM) — A(SM)

= full_source_code @

Here, A is a model-to-code transformation, is_valid
returns a Boolean value that is true if and only if the model
instance is valid, and is_complete returns a Boolean value
that is true if and only if the model instance is complete.
The parser and the model editor that we inherited from the
ThingML project [49] and extended in this work concerning
the DAML functionalities, support the user of the DSML to
design a valid and complete model instance that conforms
to the meta-model (grammar) of the DSML. The user of the
DSML receives the possible error messages, warnings and
hints for each of the lines of the textual model instance if
applicable.

4.4 Al-enhanced MDSE models (for smart loT
services)

Recall that we define a software model as shown in Equa-
tion 5. However, this corresponds to the classic approach to
software systems, which tend to exhibit a pre-defined/fixed,
stationary or static structure and behavior. Many intelligent
systems today, especially for the IoT/CPS use case scenar-
ios, pose a degree of dynamicity, where their structure and/or
behavior may change, based on the runtime situation, e.g., the
data coming from the surrounding environment. Therefore,
either their structure or their behavior, or maybe even both,
may be affected by the Al components of the system over
the time. The proposed approach in this manuscript deploys
ML to let the software model become adaptable. In other
words, we propose considering ¥ and/or B as functions of
ML models. We call this AI/ML-enhanced software model,
Smart Software Model (SSM), and formalize it in the fol-
lowing way:

SSM = (A, fu(DMy), fp(DM>), C) ©))

Here, DM and D M, are two ML models for learning and
controlling the dynamicity of the structure and the behavior
of the smart software model, respectively. Thus, the structure
and the behavior turn into functions of these ML models.

In the present work, we remove DM for simplicity, and
only employ ML for the behavior of the software model.
Thus, we consider the simplified form below for our current
implementation and validation (D M> is renamed to DM):

SSM = (A, ¥, fp(DM), C) (10)

@ Springer

A. Moin et al.

In Equation 10, DM is considered to be the ML model
as defined in Equation 1, @ is the sequence of ML fea-
tures (attributes) of the ML model, < ¢, ¢, -+ >, and
¢;i € I, ie., the ML features are chosen from the local
variables (properties) of the respective thing t. Note that
if the data instances are labeled, i.e., we have a supervised
ML task (either classification or regression), as mentioned
in Sect. 4.2, the last item of the sequence of ML features @
is considered as the class label, which shall be predicted by
the ML model for new data instances. In practice, the local
variables (properties) y; € I may be used in order to store
the incoming messages and/or their parameters, so that they
can be employed as ML features. Also, they can be used for
storing the prediction of the ML model, e.g., to be used in
a message, or to trigger an action by the same or another
thing.

5 ML-quadrat: open-source prototype

In this section, we present our open-source prototype, called
ML-Quadrat, which implements the proposed approach. This
prototype is used for the case study that is illustrated in
Sect. 6.1. The source code, the documentation and a number
of examples are available in our Github repository [30] under
the terms of the Apache License Version 2.0. Our prototype
is built on top of the ThingML project [49], which is also
based on the Eclipse Modeling Framework (EMF) and the
Xtext framework.

Furthermore, we offer a web-based version of the proto-
type that is not included in the open-source distribution, but is
available upon request for the reproducibility of the results of
the empirical evaluation in Sect. 6.2. The web-based interface
helps us conduct the experiments with the external evaluators
as they do not need to install any software on their side, but
simply use the web application in their web browsers.

In the following, we first illustrate the abstract syntax and
the concrete syntax of the DSML in Sects. 5.1 and 5.2, respec-
tively. Then, we explain the model-to-code transformations
(code generators) that realize the semantics and generate
the full source code out of the software model instances,
in Sect. 5.3. Further, we elaborate on the DAML matters,
specifically on the ML methods that are supported out-of-
the-box in the DSML, as well as how to deploy them, in
Sect. 5.4. However, we also enable the practitioners (e.g.,
software developers, data scientists and ML experts) who use
the proposed approach, to deploy any arbitrary ML method
in the so-called Black-box ML mode. This is explained in
Sect. 5.5. Finally, in Sect. 5.6 below, we demonstrate a sample
IoT service, which is a basic client-server interaction (ping-
pong) to highlight the advantages of our work compared to
the prior work, ThingML [49].

@ Springer

5.1 Abstract syntax of the DSML

The abstract syntax of the proposed DSML is defined in its
grammar that is implemented with the Xtext framework. This
is available in the source code repository of the open-source
project on Github [30].3 The Ecore meta-model of the DSML
is generated automatically out of the Xtext grammar. As men-
tioned in Sect. 4.1, Fig. 3 depicts part of the meta-model of
the DSML using a UML Class diagram.

As stated in Sect. 4, the Data Analytics class that is shown
in Fig. 3, which realizes DM in Equation 1 (see Sect. 4.2),
was not present in the prior work, ThingML [49]. This is
explained in Sect. 5.4 and via the sample IoT service that is
illustrated in Sect. 5.6. However, the rest has been adopted
from the ThingML project [49] and partially extended to
make it compatible with the proposed approach.

Most importantly, the imperative action language of
ThingML [49] that supports event-driven programming on
the state machines, which realize the behavioral models (i.e.,
B in Sect. 4.3) of things, is extended. Using this action lan-
guage, one may specify which actions (see IT in Sect. 4.3)
must be taken upon the occurrence of a particular event, such
as upon the receipt of a certain message type on a specific
port of a thing. For example, a state transition might hap-
pen due to the event. Also, various types of actions, such as
conditional actions, loop actions, print actions, etc. were pos-
sible with the prior work. However, we introduced the new
action types that were named in Sect. 4.3 in order to enable
the DAML functionalities, namely creating and running the
data pre-processing pipeline (i.e., DA_Preprocess), conduct-
ing ML model training (i.e., DA_Train), making predictions
using the trained ML models (i.e., DA_Predict), and option-
ally saving the predictions in the dataset (i.e., DA_Save).*
Sect. 5.6 illustrates this using a simple example.

Additionally, Thing (Thing Fragment), Platform Annota-
tion, Port, Message, Parameter and Property (see Fig. 3)
realizet € T,a € A, p € P,m € M, par(m) € Par(m)
and y € I',respectively, that are mentioned in Sect. 4.3. Last
but not least, other elements, such as Function and Property
Assign, as well as those which are not shown in Fig. 3, fall
outside of the scope of the focus of this work, thus can be
found in the related work, for example, [14,20,34,49].

5.2 Concrete syntax and model editors

We provide three model editors. First, a model editor, based
on Xtext, is available in the EMF. This posses a textual
concrete syntax, as well as the syntax highlighting and auto-

3 See https://github.com/arminmoin/ML-Quadrat/blob/master/ML2/
language/thingml/src/org/thingml/xtext/ ThingML.xtext.

4 Trivially, DA_Preprocess and DA_Train are skipped in the case of a
pre-trained ML model (see Sect. 5.5).

https://github.com/arminmoin/ML-Quadrat/blob/master/ML2/language/thingml/src/org/thingml/xtext/ThingML.xtext
https://github.com/arminmoin/ML-Quadrat/blob/master/ML2/language/thingml/src/org/thingml/xtext/ThingML.xtext

MDE for ML and Software

Fig.5 The textual model editor,
showing part of a sample model
for the PingPong example (see
Sect. 5.6)

}

= thing PingServer includes PingPongMsgs {

= provided port ping service {
receives ping
sends pong

S required port da service {

sends query

receives prediction positive, prediction negative

}

property client ip address: String
//property client ip address: Int32
property malicious client: Boolean

S statechart PongServerBehavior init GetPing {

on entry print

“Ping/Pong Server Started!\n"

S state GetPing {

S internal event e: ping service?ping

action

= do

client ip address = e.ip
print("Checking if the client is a malicious one...\n")
da service!query(client ip address)

end

S transition -> Pong
event da service?prediction negative

S transition -> Ignore
event da service?prediction positive

}

e state Pong {
S on entry do

print "Got ping from:

" + client_ip address + “\n"

print "Sending Pong...\n'

complete features, and can give a number of hints and tips
to help the practitioner (i.e., the user of the modeling tool)
in designing a valid and complete model instance, out of
which code generation for a working IoT service with the
desired functionality is feasible. Figure 5 shows this model
editor. Second, we offer a tree-based (form-based) model
editor through the EMF. This is automatically generated in
the EMF out of the Ecore meta-model of the DSML, which
is itself generated automatically out of the Xtext grammar
of the DSML. The tree-based model editor is demonstrated
in Fig. 6. While the textual version might be more suit-
able for developers, the tree-based editor might suite domain
experts of the target IoT domains without software develop-
ment skills well, so that they can modify certain properties
of the software model instances, e.g., for the maintenance,
upon possible future changes in the requirements. Last but
not least, we develop a web-based prototype using the Java

Servlets technology and the Xtext web integration. This
web application offers a textual model editor with the auto-
complete feature and some basic syntax highlighting. This is
depicted in Fig. 7.

5.3 Semantics and model-to-code transformations

Part of the semantics of the DSML are included in the
model-to-code transformations (i.e., A in Sect. 4.3), also
known as code generators or compilers, and the associated
constraint-checking mechanisms, which shall execute before
the code generation. In addition, another part of the seman-
tics is integrated into the grammar or meta-model, to enable
type-checking and enforcing certain constraints at the design-
time through the model editors (i.e., before executing the
code generators). Furthermore, a number of annotations (i.e.,
A in Sect. 4.3), e.g., concerning the datatype mappings on

@ Springer

A. Moin et al.

Fig.6 The graphical, EMF [t Resource Set

tree-based model editor, ~ |2 platform:/resource/Demo_ML2/model/ML2_Demol_PingPong.thingml
showing part of a sample model + 4 Model

for the PingPong example (see » 4 Object Type String

Sect. 5.6) 4 Primitive Type Boolean
4 Primitive Type Int32
< Thing PingPongMsgs
4 Thing PingClient
4 Thing PingServer
< Provided Port ping_service

v v v w

4

Required Port da_service

~ 4 Property client_ip_address
<4 Type Ref false
~ 4 Property malicious_client
<4 Type Ref false
» 4 Composite State PongServerBehavior
» < Thing PingPongDataAnalytics
» 4 Configuration SmartPingPongCfg

Selection | Parent List Tree Table Tree with Columns

& Tasks [T] Properties %

Name Eda_service

Optional ixfalse
Receives 4+ Message prediction_positive, Message prediction_negative
Sends 4 Message query

Welcome to the web-based demo of ML-Quadrat!

Java Script must be enabled in your web browser. Please read the documentation. Press Ctrl+Space to use the auto-complete feature of the textual model editor.

- -
115
116 |}
117
118 | thing PingPongDataAnalytics includes PingPongMsgs {
119
120 provided port da_service {
121 receives query
122 sends prediction_positive, prediction_negative
123 3}
124
125 property client_ip_address: String
126 property client_code: Int32
127 property prediction: Boolean = false
128
129 data_analytics dal
130 @dalib "scikit-learn" {
131 labels ON
132 features client_ip_address,client_code,prediction
133 prediction_results prediction
134 dataset "data/ip_dataset_with_timestamps.csv”
135 automl OFF
136 sequential TRUE
137 timestamps ON
138 preprocess_feature_scaler StandardScaler
139 model_algorithm nn_multilayer_perceptron my_nn_mlp(activation relu, optimizer adam, loss SparseCategoricalCrossentropy)
140 training_results “data/training.txt"
141 3}
142
143 statechart PingPongDataAnalyticsBehavior init Preprocess {
144
145 on entry print "Ping-Pong Data Analytics Started!\n"
146
147 state Preprocess {
148 on entry do
149 print "Ping-Pong Data Analytics: Data Preprocessing\n"
150 da_preprocess dal
151 end
152 transition -> Train
153 3}
154
Load Sample Model Download Model Upload Model (.thingml) Choose File no file selected

Fig.7 The web-based prototype, showing part of a sample model for the PingPong example (see Sect. 5.6)

@ Springer

documentation

Generate Code

Download Code

MDE for ML and Software

specific target platforms, the choice of specific libraries for
DAML, particular communication protocols, and model-to-
code transformations are allowed on the modeling layer.

The proposed approach supports code generation in
Python and Java. The Python code is responsible for the
DAML functionalities of the target IoT services, and sup-
ports the APIs of Scikit-Learn [40] and Keras [9] with the
TensorFlow [1] backend. The model-to-code transformations
are implemented in Java and Xtend (which is a modern vari-
ant of Java). They can be found in our Github repository
[30].°

5.4 Supported ML methods and techniques

The proposed approach allows each thing to possess one or
more components for DAML. Thus, it supports not only
analytics in the cloud, but also edge analytics. Unlike the
behavioral component of things, i.e., the state machine (stat-
echart), the DAML component, called Data Analytics (DA)
is not mandatory. To exhibit DAML capabilities, a thing
has to include a data analytics section in its model. This
component that realizes DM in Equation 1, might affect the
behavior of the thing, modeled via the corresponding state
machine. As mentioned before, this corresponds to fp(DM)
in Equation 10. In other words, the behavior of the thing
becomes a function of the DAML model. Hence, if a thing
has a data analytics part, this part shall emerge before the
state machine section in the textual model instance, so that
the actions specified in the state machine may use and refer
to the data analytics component.

Below, we list and briefly explain the possible parameters
and options in the said data analytics section of the ML-
enhanced software model instances that conform to the meta-
model (grammar) of the proposed DSML (see Figs. 9 and 10):

1. Data_analytics: This parameter determines the name of
the DAML component, e.g., da_1.

2. Dalib: The optional @dalib annotation specifies the
name of the library or framework which must be used
for DAML. If this is absent, or it is set to auto, or the
desired ML method is not implemented in the selected
library, the tool will try to automatically select the best
option in the Automated ML (AutoML) mode (i.e., if
AutoML is ON, see below).

3. Labels: This is a binary parameter. If it is ON, it implies
that the ML task is supervised. Hence, the last item on the
list of features (see below) will be considered as the label.
If the data type of that item, defined as the data type of
the corresponding property (local variable) of the thing
is numeric, e.g., Integer or Float/Double, then the ML

3> See https://github.com/arminmoin/ML-Quadrat/tree/master/ML2/
compilers/python_java.

task is a regression task. Otherwise, it is a classification
task. Furthermore, if the parameter is set to OFF, then the
task is unsupervised, e.g., clustering. This parameter also
partially realizes I as referred to in Sect. 4.2.

4. Features: This is a list of the properties (local variables)
of the thing which shall be considered as the ML features
(attributes). The local variables might include the mes-
sages or parameters of the messages that shall be received
from other things. As stated above, these are all consid-
ered as ML features only if Labels is OFF. In the case
that Labels is ON, then the last item is not considered
as a feature, but rather as the label (i.e., the class label
for classification, or the target value for regression). This
parameter realizes @ as introduced in Sect. 4.2. Simulta-
neously, the features are properties (local variables) of the
corresponding thing, thus also partially realizing y € I”
in Sect. 4.3.

5. Prediction_results: This parameter determines the prop-
erty (local variable) of the thing in which the prediction
result, i.e., the output of the ML model prediction must be
stored. Note that the properties were denoted by y € I"
in Sect. 4.3. The value of this property can be then later
used in the actions of the state machine, in order to let
the ML model affect the behavior of the thing.

6. Dataset: The path of the dataset on the file system that
shall be used for training the ML model. This must be
a CSV (Comma-Separated Values) file without a header
line.

7. AutoML: This is a binary parameter indicating whether
the AutoML mode must be used. If set to ON, a number of
AutoML functionalities will be supported that can assist
the practitioner, especially the novice users in the DAML
field. By default, this is set to OFF.

8. Sequential: This is a Boolean parameter that indicates
whether the input data are sequential, e.g., time series,
where the order of data instances matter. In this case,
shuffling and cross-validation must be avoided. This
parameter partially realizes I as referred to in Sect. 4.2.

9. Timestamps: This binary parameter states if the data
instances have timestamps or not. If this is ON, it has at
least two implications. First, if new messages or parame-
ters shall be appended to the dataset (using the DA_Save
action), timestamps will be automatically added by the
tool. Second, the DAML method will be informed that
the first column in the dataset, i.e., the CSV file, must
be considered as the timestamp. The expected format
is dd-mm-yyyy HH:MM:SS, e.g., 17-03-2021 22:49:06
for March 17, 2021 at 10:49:06 pm. Obviously, if the
timestamps parameter is ON, it is very likely that we are
dealing with time series, i.e., sequential data.’ Therefore,

6 Note that the reverse does not always hold, as e.g., DNA data are

sequential, but not time series data.

@ Springer

https://github.com/arminmoin/ML-Quadrat/tree/master/ML2/compilers/python_java
https://github.com/arminmoin/ML-Quadrat/tree/master/ML2/compilers/python_java

A. Moin et al.

if the sequential parameter is not specified, the AutoML
service of the tool, if it is set to ON, will automatically
set the sequential parameter to True. However, if the user
explicitly states that sequential is False, then the decision
will not be overridden. The timestamps parameter also
partially realizes /I as referred to in Sect. 4.2.

10. Preprocess_feature_scaling: This parameter specifies
the feature scaling technique that must be used in the data
preparation (pre-processing) pipeline. If it is not men-
tioned, in the case that AutoML is ON, then the best
choice of scaling for the respective ML model/algorithm
(see below) will be selected. For instance, for the higher
performance of Artificial Neural Networks (ANNs), hav-
ing numerical data that possess a relatively similar scale
is an extremely important factor. Thus, for example, stan-
dardization (also known as the Z-Score normalization) is
automatically set in the AutoML mode. This parameter
partially realizes H as set out in Sect. 4.2.

11. ML Model/Algorithm: Here, one can specify the par-
ticular ML method, including the ML model architecture
(family) that must be deployed, e.g., Multi-Layer Per-
ceptron (MLP) ANN, Decision Tree, etc. Additionally,
the hyperparameters, e.g., the choice of the error/loss
function (e), the learning/optimization algorithm (¢), the
learning rate (/r), etc. might be given in parenthesis. Each
family of ML models may have a different set of possi-
ble hyperparameters. The auto-complete feature (usually
activated by pressing the Control and Space keys together
for the textual model editors) helps in finding the possible
options. Further, the documentation of the prototype, as
well as the API documentations of the target frameworks
and libraries (e.g., Scikit-Learn) must be studied. Also, a
number of exception handling and logging mechanisms
are available to support the user of the tool. This param-
eter realizes v, as well as H in Sect. 4.2. The parameters
of the ML model (i.e., P in Sect. 4.2) are controlled by
the hyperparameters (H) during the learning process.

12. Training Results: This is the path of the text file in which
the log of ML model trainings shall be stored. The log
includes information about the time of each training and
the chosen ML model/algorithm. This parameter also par-
tially realizes / mentioned in Sect. 4.2.

‘We can see how the above-mentioned parameters are used
in practice in the basic example provided in Sect. 5.6 below.

Currently, the following ML models and algorithms are
supported for supervised ML (i.e., for labeled data) out-
of-the-box: (i) Linear Regression, (ii) Logistic Regression
for linear classification, (iii) Naive Bayes (the Gaussian,
Multinomial, Complement, Bernoulli and Categorical vari-
ants), (iv) Decision Tree (both Regressor and Classifier), (v)
Random Forest (both Regressor and Classifier), (vi) the Mul-

@ Springer

tilayer Perceptron (MLP) ANN. The APIs of Scikit-Learn are
used for the items (i) to (v). However, for the MLP ANN, i.e.,
(vi) both Scikit-Learn and Keras are supported. By default
Keras will be used for this family of ML models. However,
the user may explicitly set the library for DAML to Scikit-
Learn to override this recommended setting. This is possible
through the annotation dalib at the data_analytics section of
the model instance. Moreover, a number of other techniques,
e.g., for data preparation, specifically standardization or nor-
malization of the numerical features using various methods
are provided.

Moreover, the unsupervised ML methods that are also
pre-defined, thus supported out-of-the-box are as follows:
(1) K-Means, (ii) Mini-Batch K-Means, (iii) DB-SCAN, (iv)
Spectral Clustering and (v) Gaussian Mixture Model. The
APIs of the Scikit-Learn library are used for enabling them.

If the desired ML model, algorithm or technique is not
pre-defined, one may either extend the open-source prototype
(see the online documentation on Github [30]), or use the so-
called Black-box ML mode (also known as the hybrid/mixed
MDSE/non-MDSE mode) as described in Sect. 5.5 below. In
the latter case, one can bring any arbitrary pre-trained ML
model and connect it to the MDSE model.

5.5 The black-box ML (hybrid/mixed
MDSE/non-MDSE) mode

Suppose that one does not want to use an existing ML method
which is already available in our prototype, or has already an
existing, pre-trained ML model that they want to deploy. In
this case, the Black-box ML mode, also called the hybrid
or mixed MDSE/Non-MDSE mode shall be preferred. The
drawback here is that the software model will not have any
clue about the deployed ML method. Therefore, the ML
model seems to the software model as a black-box. How-
ever, the advantage is that the user of the DSML will achieve
a much higher degree of flexibility concerning ML. Hence,
they may, in principle, introduce any pre-trained ML model
with any arbitrary architecture and trained with any learning
algorithm, and connect or plug it into the software model.

This can be done by using a parameter, called black-
box_ml and setting its Boolean value to true. In this case,
using the model_algorithm and the training_results param-
eters will not be allowed in the data analytics section of the
model instance as no training is required by the Al-enhanced
MDSE model. The pre-trained ML model has to be stored in
a separate directory. The path of this directory must be given
through a parameter, called blackbox_ml_model in the data
analytics section of the model instance. The pre-trained ML
model might have been trained with or without the proposed
approach. Moreover, the ML method which is imported from
the corresponding DAML library must be specified using a
parameter, called blackbox_import_algorithm.

MDE for ML and Software

5.6 Sample loT service

In this section, we illustrate an example from the ThingML
project [49], and elaborate on the shortcomings of ThingML
[49] by showing our extended (smart) version of this exam-
ple. Moreover, this sample IoT service was among the use
cases which we originally used to create our DSML and mod-
eling tool. However, the use cases that are provided in the case
study in Sect. 6.1 are deployed for validating the proposed
approach.

Ping-Pong This example originally came from the ThingML
project [49]. In a distributed system, there exist two nodes,
called things, that are connected to the IoT: (i) the ping client
and (ii) the pong server. The things are involved in a basic
client-server interaction, where the server simply waits for
incoming ping messages from the client. As soon as a ping
message arrives, the server responds with a pong message.

Smart Ping-Pong We argue that in a real-world scenario
with an enormous number of clients, which may send a ping
message to the server, the example above can be enhanced
via ML, in order to prevent the so-called Distributed Denial
of Service (DDoS) attacks. Hence, we introduce a new thing
that is responsible for DAML, in order to predict if a client
is prone to be an attacker or not. Upon receiving a ping mes-
sage, the server consults this new thing, which might even be
athing fragment for the server, to see if the ping message shall
be responded to with a pong or it would be safer to ignore
the request, and perhaps even put the client in a blacklist
for a certain period of time. Note that this was not possi-
ble using the ThingML DSML [49], whereas our extended
version supports DAML at the modeling level. Using the
proposed DSML, one may enhance the model instance to
become capable of DAML.

Figure 8 depicts the state machines that model the behav-
iors of the ping client, the pong server and the data analytics
server.

Below, we demonstrate part of the model instance for the
smart ping-pong example (see Figs. 9 and 10. The full model
instance may be found in our Github repository.’

Finally, the user documentation available in our Github
repository [30] provides further details for creating the
desired smart IoT services using our modeling tool, as well
as for getting involved in the development of the prototype
as a contributor.

7 See https://github.com/arminmoin/ML-Quadrat/blob/master/
ML2/org.thingml.samples/src/main/thingml/ML2_Demo_PingPong.
thingml.

6 Validation and evaluation

Section 1 set out the underlying research hypotheses that
must be assessed and validate in this work. They lead to the
following Research Questions (RQ): RQ1. Can we enhance
software models in domain-specific MDSE with the capabil-
ity to automatically produce and train ML models, and deal
with them, while maintaining the feasibility of full source
code generation? RQ2. Will enhancing the software models
and integrating them with the ML models contribute to the
performance leap of software development in the [oT domain
and lead to a higher level of satisfaction of the practitioners
who use the proposed approach?

RQI that is concerned with the feasibility of the proposed
approach is assessed using a case study with two use case
scenarios in Sect. 6.1. The research method here involves the
implementation, simulation and testing of working examples
[36]. Further, RQ2 is assessed through an empirical user eval-
uation with four external volunteers in Sect. 6.2. Finally, we
discuss the possible threats to validity in Sect. 6.3.

6.1 Case study

The selected use case scenarios are from the domain of
IoT/CPS, specifically smart energy systems in smart homes.
The residential building, which is the data source, is located
in the United Kingdom (UK). The data are publicly available
through the REFIT datasets [35,45]. We use the data from
House/Building 1 from this dataset, which is a single-family
dwelling with two inhabitants (a couple). Various sensors
have recorded different conditions in their environment over a
period of 21 months starting from October 2013. The parame-
ters of interest here are the individual loads (i.e., active power
measured in Watts) of the following electrical appliances, as
well as the aggregate load, i.e., the total power consumption
of the entire house. The samples are recorded at a frequency
of 0.125 Hz, i.e., once every 8 seconds. They include the
following loads: (i) fridge, (ii) freezer-1, (iii) freezer-2, (iv)
washing machine, (v) dishwasher, (vi) computer, (vii) tele-
vision site, (viii) electric heater, and (ix) washer dryer.
Some electricity providers, especially those who possess
smart grids may offer certain discounts if the electrical appli-
ances with higher consumption levels are avoided during the
peak hours. Let us assume, there exists a database server
that reads the values of the smart meters periodically and
stores them for various smart home and ambient assisted liv-
ing use cases. In this case study, we consider a smart grid
that is also granted access to read this database. For them, it
is only important whether a certain high energy consuming
appliance, e.g., the washer dryer has been turned on during
the peak hours or not. The exact power consumption does
not really matter. However, due to various reasons, such as
sensor malfunctions, power or network outages, or database

@ Springer

https://github.com/arminmoin/ML-Quadrat/blob/master/ML2/org.thingml.samples/src/main/thingml/ML2_Demo_PingPong.thingml
https://github.com/arminmoin/ML-Quadrat/blob/master/ML2/org.thingml.samples/src/main/thingml/ML2_Demo_PingPong.thingml
https://github.com/arminmoin/ML-Quadrat/blob/master/ML2/org.thingml.samples/src/main/thingml/ML2_Demo_PingPong.thingml

A. Moin et al.

Fig.8 The state machines
modeling the behaviors of the
three things of the smart
ping-pong example

“Thing” Server

“Thing” Client

event: prediction_negative

N

Pong sent

event: pong

¢ -
Message
printed

Get
Ping Pong
> IP address
blacklisted
event:
prediction_ Ignore
positive
“Thing”
Data
Analytics

Data prepared

Pre- »
process

Prediction done

ML model
trained

Ready

7S
-

event: query

failures, one might be faced with several missing values in
the database. There exist different approaches to imputation
of missing values in time series data. In this work, we deploy
ML models as explained below, in order to predict the state
(ON/OFF) of the washer dryer when the data are missing.
Nevertheless, if the numerical value of the missing items
must be estimated, e.g., in order to improve the quality of
predictions of the ML models for other missing values in the
future, then regression can be used (see scenario 3 below).

We consider four different scenarios (see below): (i) Clas-
sification, (ii) Clustering, (iii) Regression, and (iv) Black-box
ML. In each case, the model instance comprises twelve
things: the nine electrical home appliances above, the said
database server, as well as a meter that measures the aggre-
gate load of the entire house, and a DAML server, which
is responsible for the predictions of possible missing values
in the database. In fact, in practice, the database server and
the DAML server may or may not be deployed on the same
physical node. Moreover, a gateway could be deployed at
the entrance of the house. However, since the IoT advocates
direct machine-to-machine communications and direct con-
nections of the devices using their unique addresses [2], we
skip the gateway in the present implementation. Figure 11
illustrates the overall architecture of the system.

Each meter sends the active power of the corresponding
appliance to the database server every eight seconds. Further,
the DAML server sends a query to the database server in a
periodic manner (e.g., once every 15 minutes), asking for the

@ Springer

latest sensor readings, i.e., the active powers of the nine appli-
ances and the aggregate load of the house. Once the DAML
server receives the response of the database server, which
includes the ten requested values as message parameters, the
DAML server can make a prediction about the missing values
that are marked, for example, by NaN in the database.

In the following, we illustrate the said scenarios. The
full implementations of the respective model instances are
included in the supplementary material of this work.3

Scenario 1: classification (supervised ML)

We assume that the loads or active powers of the above-
mentioned appliances are given together with the aggregate
load of the house for time #;. The task is to predict the binary
status (ON/OFF) of the washer dryer at time #;. The status
of the washer dryer is used for the binary class labels of
samples in the training dataset. We let the software model
train the supervised ML model using 80% of the available
data. Thus, we keep 20% of samples for testing the ML
model. This is common practice in ML. For example, the
Scikit-Learn [40] library offers the train_test_split method
that is widely used [19]. This method, by default, dedicates
25% of the data to the test dataset unless another value is
set for the test_size parameter. However, many practition-
ers simply follow the Pareto Principle that is also called

8 See https://doi.org/10.5281/zenodo.5501356.

https://doi.org/10.5281/zenodo.5501356

MDE for ML and Software

Fig.9 Part of the model
instance of the smart ping-pong /* This is a part of the model instance. The full model
example instance is available in the Git repository on Github. =*/

thing PingPongDataAnalytics includes PingPongMsgs {
/* The messages are not shown here, but defined in a thing
fragment, called PingPongMsgs. x/

provided port da_service { /* This port communicates with the
da_service port of pingServer. */
receives query /* This port may receive a query message from
pingServer. */
sends prediction_positive, prediction_negative /* This port
may send a response to pingServer. The response might be
positive, i.e., malicious prediction or negative, i.e.,
non-malicious prediction. */

}

/* The properties are the local variables of the thing. */
property client_ip_address: String /* The IP address of
pingClient is a String. */

property client_code: Int32 /% This is just a secret integer
code that is shared between pingClient and pingServer or
alternatively a serial ID number for the ping message. */

property prediction: Boolean = false /* This Boolean property
shall store the prediction of the DAML model and is
initialized as false here. This mean, by default, the
client is non-malicious. */

data_analytics dal /* Please see Section 5.4. */
@dalib "scikit-learn" {
labels ON
features client_ip_address,client_code,prediction
prediction_results prediction
dataset "data/ip_dataset.csv"
automl OFF
sequential TRUE
timestamps OFF
preprocess_feature_scaler StandardScaler
model_algorithm nn_multilayer_perceptron my_nn_mlp
(activation relu, optimizer adam, loss
SparseCategoricalCrossentropy)
training_results "data/training.txt"

statechart PingPongDataAnalyticsBehavior init Preprocess {

/* The statechart specifies the behavior of this thing.
Since this thing is responsible for DAML, its behavior
can be modeled via a Finite-State Machine (statechart)
that has four states: preprocess, train, ready and
predict. Initially, the Preprocess state is necessary to

do the data preparation. x*/

on entry print "Ping Pong Data Analytics Started!\n"
state Preprocess {
on entry do
print "Ping Pong Data Analytics: Data Preprocessing\n"
da_preprocess dal /* This action carries out the actual
data preprocessing / preparation. */
end
transition -> Train /* This leads to the transition of the
state machine (statechart) to the next state, Train.

*/

@ Springer

A. Moin et al.

Fig. 10 Part of the model
instance of the smart ping-pong
example (continued)

}

}

state Train {
on entry do
print "Ping Pong Data Analytics: Training\n"
da_train dal /* This action performs the training of the
DAML model. */
end
transition -> Ready /* Once the training is done, the thing
shall switch to the Ready (or idle) state to simply
keep waiting for the incoming queries. */

}

state Ready {
on entry do
print "Ping Pong Data Analytics: Ready for Prediction\n"
end
transition -> Predict
event m: da_service?query
/* As soon as a message is received on the da_service port,
the thing must switch to the Predict state. */
action do
/* Additionally, the following actions must be taken. */
client_ip_address = m.client_ip /* First, the value of
the message parameter, called client_ip needs to be
stored in the thing property (local variable)
client_ip_address. x/
client_code = m.client_code /* Second, the value of the
message parameter, called client_code must be stored
in the thing property (local variable) client_code. */
end

}

state Predict {

on entry do

print "Ping Pong Data Analytics: Predicting\n"

da_predict dal(client_ip_address, client_code) /* This
action asks the DAML model to make a prediction. */

if (prediction==false)

da_service!prediction_negative() /* If the prediction is
false, send the prediction_negative message to
pingServer, stating that pingClient is not likely to be
an attacker. */

else

da_service!prediction_positive() /* Otherwise, send the
prediction_positive message to pingServer, stating that
pingClient is prone to be an attacker. */

end

transition -> Ready /* In any case, switch back to the Ready

(i.e., idle) state. */

on exit da_save dal /* This optional action results in
appending the prediction to the dataset (CSV file). */

}

the 80/20 rule, which states that in most cases, 80% of sequential (namely time series) data and the order of the data
effects come from 20% of causes. Further research will be instances matters. The supervised ML method deployed in
needed to see if a different split would yield better or worse this example is the Multi-Layer Perceptron (MLP) classi-
results. Moreover, please note that we do not shuffle the fier from the Artificial Neural Networks (ANN) family with
data, i.e., we do not randomly split the data since they are one hidden layer of size 100, the Relu activation function,

@ Springer

MDE for ML and Software

Fig. 11 The overall architecture
of the target system for the case
study

the Adam optimizer, the Sparse Categorical Cross Entropy
loss function, and the default values for the rest of the argu-
ments/parameters of this ML method in the Scikit-Learn
library.

The created software model instance has 545 lines in the
textual form. The model-to-code transformations generate
4, 032 Lines of Code (LoC) out of this. The generated source
code contains 3, 875 lines of Java code and 157 lines of
Python code. The latter is responsible for the DAML func-
tionalities and is seamlessly integrated with the Java code
using the Java Process Builder API. Note that the scenarios
below also exhibit the same number of LoC since we generate
the APIs of the DAML library (in this case Scikit-Learn) and
only the name of the ML method, as well as certain param-
eters/arguments change (but the number of the lines of code
remain unchanged).

Furthermore, training the said ML model took 3, 552 sec-
onds, and it performed with 100% accuracy on the unseen test
data (the ground truth comes from the mentioned open data,
i.e., the REFIT datasets [35,45]). Typical ML performance
metrics include but are not limited to accuracy, precision,
recall and F1-Measure. In the case of binary classification,
with the positive and negative classes, these are defined as
follows:

TP + TN
Accuracy = (11)
TP 4+ TN + FP 4+ FN
. TP
Precision = —— (12)
TP 4 FP
o TP
Recall = Sensitivity = ——— (13)
TP + FN
2.Precision.Recall
Fl-Measure — recision.Reca (14)

Precision + Recall

Database
Server

predictions

request_
loads

DAML
Server

In the equations above, TP, TN, FP, and FN are the True-
Positive, True-Negative, False-Positive and False-Negative
number of cases, respectively.

In the said experiment, the other ML performance metrics,
namely the precision, recall and F1-Measure were 99.9%,
100% and 99.9%, respectively. The high performance was
foreseeable given the fact that the ML task was not challeng-
ing for the MLP ANN classifier that is a highly capable one.
In any case, the focus of this case study is not on measuring
the performance of the ML methods since we only deploy the
APIs of the target libraries for this purpose. The focus is rather
on showing the feasibility of the proposed approach through
the working examples. Hence, the reported performance fig-
ures in this section serve only for information purposes and
are not supposed to contribute to the validation.

Scenario 2: clustering (unsupervised ML)

Again, we assume that the loads or active powers of the
above-mentioned appliances are given together with the
aggregate load of the house for time #;. Also, we have the
same task, namely predicting whether the washer dryer is ON
or OFF at time #;. However, the training dataset this time has
no labels for the data instances. This means, we do not know
which sample in the training data belongs to the case when
the washer dryer has been OFF and which one corresponds to
the ON state of the washer dryer. The goal is to use the avail-
able data to train a clustering ML algorithm that can group the
instances into two clusters: cluster A and cluster B. Cluster
A, which we call it cluster O in the dataset corresponds to the
OFF state of the washer dryer. In contrast, cluster B, which
we call it cluster 1 in the dataset means the washer dryer has
been ON. Note that 0 and 1 here are just the labels or names

@ Springer

A. Moin et al.

Fig.12 The data analytics part
of the software model instance
in textual form

data_analytics dal

/74
labels OFF

@dalib "scikit-learn" {
//@dalib "keras-tensorflow" {

features fridge load, freezerl load, freezer2 load, washing machine load,
prediction_results washer dryer status
dataset "data/REFIT housel reordered clustering.csv"

automl OFF
sequential TRUE
timestamps ON

preprocess_feature_scaler StandardScaler
model_algorithm k_means my k means(n_clusters 2, random_state 10)
training_results "data/training.txt"

Fig. 13 The data analytics part
of the software model instance
in the EMF tree-based editor

» 4 Property aggregate_load
» < Property washer_dryer_status

v <4 Data Analytics dal

4 Platform Annotation dalib

v 4 KMeans my_k_means

<4 Integer Literal 2
<4 Integer Literal 10
» 4 Composite State DAML_SrvBehavior

» 4 Thing Fridge

Selection Parent List Tree Table Tree with Columns

¥ Tasks [Properties 3

Name
Value

for the clusters and have no numerical interpretations. The
unsupervised ML method deployed in this example is the K-
Means clustering method with the values 2 and 10 provided
for the arguments/parameters regarding the desired number
of clusters and the random state of the algorithm, respectively.
For the rest of the arguments/parameters of the method, the
default values for this method in the Scikit-Learn library are
considered.

Furthermore, training the said clustering model took only
13 seconds (extremely fast compared to the supervised model
above), and it performed with 92% accuracy on the unseen
test data.

Figures 12 and 13 show a small part of the corresponding
software model instance using the textual and the tree-based
views of the concrete syntax in the Eclipse Modeling Frame-
work (EMF).

Scenario 3: regression (supervised ML)

This use case scenario is very similar to the first scenario
above. However, instead of predicting the ON/OFF class

@ Springer

'=dalib
'=scikit-leam

labels, the task is to predict the numerical values of the
active power of the washer dryer. We deployed the MLP
ANN Regressor in Scikit-Learn.

For measuring the performance of regression, the typical
error measures, Mean Absolute Error (MAE), also known as
the L1-Norm, as well as the Mean Squared Error (MSE), also
known as the L2-Norm or the Euclidean Norm are common
choices. These are defined as follows:

I .
MAE =~ % | §i =i | (15)
i=1
1 n
MSE =~ (5 =y’ (16)
i=1

Here, n is the number of data instances, y; is the predicted
numerical label for the i — rh data instance, and y; is the
actual numerical label for this data instance.

The achieved MAE and MSE in the experiment above
were 10.1 and 29, 962.1, respectively.

MDE for ML and Software

Fig. 14 The data analytics part
of the software model instance
that shows the black-box ML

mode in textual form VA
labels OFF

data_analytics dal

@dalib "scikit-learn" {
//@dalib "keras-tensorflow" {

features fridge load, freezerl load, freezer2 load, washing machine load,
prediction_results washer dryer status

blackbox_ml true

blackbox_ml_model "pre trained/pre trained ml model.pickle"
blackbox_import_algorithm “from sklearn.cluster import KMeans"
//blackbox label encoder "pre trained/pre trained label encoder.pickle"

Table 2 The expertise levels of the evaluators

Eval # Software engineering DAML MDSE IoT/CPS
1 High High Low Low
2 Medium Low Medium Medium
3 High High Low Low
4 Medium Low Medium Medium

Scenario 4: black-box ML

We train an unsupervised ML model without using the pro-
posed approach. Thus, we develop the ML part manually.
However, we use the same dataset. Then, we connect the
pre-trained ML model to the software model using the black-
box ML mode. The rest is the same as the unsupervised
ML scenario above (including the performance). Figure 14
demonstrates a small part of the respective software model
instance.

6.2 Empirical evaluation

We ask four external experts in software engineering to use
and evaluate our DSML through a number of experiments
in a four-hour one-on-one video call over the Internet with
short breaks in between. Two of them have a background in
ML as well. Moreover, two of them work in academia and
the other two work in the industry. Further, two out of four
possess a PhD, whereas the rest have a Master’s degree. Last
but not least, they all belong to the age group of 25-39 years
old, and one of them is a female. Table 2 illustrates the self-
reported levels of expertise of the evaluators in various fields,
collected before carrying out the user experiments.

The evaluators are familiar with Java and Python program-
ming. However, none of them has any background knowledge
in the deployed DSMLs (neither in ThingML [49] nor in
ours). During the four-hour sessions with the evaluators,
we first deliver a 50-minute tutorial for using the proposed
DSML, as well as the prior work on which we built our
DSML, namely ThingML [49]. To this aim, we have already
prepared a few samples, including a ‘HelloWorld’ exam-
ple. Moreover, we offer them our web-based prototype (see

Sect. 5). We ask each evaluator to work on two tasks in three
modes: (a) Using pure manual software development (i.e., no
MDSE); (b) Using the prior work, namely ThingML [49];
(c) Using the proposed DSML. We change the orders of the
tasks, as well as the orders of the modes for the four par-
ticipants to avoid any bias and make the experiments fair.
Both tasks are based on the case study set out in Sect. 6.1
above. However, in the first task, we ask the evaluator to
use supervised ML (specifically classification as in the first
scenario in Sect. 6.1), whereas in the other task we ask for
unsupervised ML (specifically clustering as in the third sce-
nario in Sect. 6.1). Recall that the use case scenario that was
depicted in the case study in Sect. 6.1 involved 12 things.
Implementing each of them gives the evaluator one point.
An incomplete, but satisfactory implementation might result
in 0.25, 0.5 or 0.75 points, depending on the completeness
and correctness of the implementation. Also, implementing
the DAML component of each thing (if it should have any)
has one extra point (which may be granted only partially,
depending on the status of the implementation as mentioned
before). Table 3 summarizes the obtained points of the eval-
uators for all tasks and modes. For each task, they have 75
minutes time, which includes 25 minutes per each mode.
During the experiments, they may maintain their access to
their resources, e.g., the tutorials on the Internet and their
own prior work, to make the experiments similar to the real-
world practices of software developers and ML experts (e.g.,
data scientists).

For the pure manual developments (i.e., in mode a), we
ask them to use Python for the ML part, with the APIs of
the Scikit-Learn library and the ANN MLP classifier for the
supervised task (i.e, task 1), as well as the K-Means cluster-
ing method for the unsupervised task (i.e., task 2). For the
rest of their manual implementations, they are free to choose
between Python and Java. However, in mode b, they must
deploy our web-based interface that offers the DSML and
the code generators of ThingML (i.e., the prior work [49])
too, and implement the ML part manually in Python, so that
their Python code can call the Java APIs of the generated
Java code. Finally, in mode c, no manual development will
occur. They only use our web-based interface that offers our
DSML and code generators to create their model instances.

@ Springer

A. Moin et al.

Table 3 The scores of the 4

evaluators (Eval. #1-4) Task-mode Eval. #1 Eval. #2 Eval. #3 Eval. #4 Total score Max.
I-a 1 1 2 2 6 52
1-b 0.5 5.5 3.25 10.25 19.5 52
I-c 2.25 2 5 12 21.25 52
2-a 0 1 2.25 4.25 52
2-b 2.25 1.25 4 9.5 52
2-c 2.25 1.25 5 13.5 52

The full source code can be generated automatically. For the
ML part, we currently generate Python code that is automat-
ically integrated with the rest of the generated code.

As illustrated in Table 3, using the proposed approach (see
the rows 1-c and 2-c) has increased the scores of the eval-
uators, both compared to the prior work (see the rows 1-b
and 2-b) and to the pure manual software development (see
the rows 1-a and 2-a). The last column illustrates the total
sum of the maximum possible scores for all of the evalua-
tors, whereas the one before last column shows the total sum
of the scores achieved by the evaluators in the experiments.
Thus, we argue that the proposed approach may contribute to
the improvement of the software development process effi-
ciency. According to the experiments, the performance leap
has been around 25% on average, compared to the prior work
(i.e., ThingML [49]) and around 236% compared to the pure
manual software development (see Sect. 6.3). We believe that
the selected ML task was rather easy and only for one plat-
form. One should be able to perceive a greater value in our
proposed approach once heterogeneous IoT cloud and edge
platforms need to be deployed. In the conducted experiments,
many evaluators just started working on the DAML part from
the very beginning. This should have resulted in a smaller dif-
ference between the productivity of software development in
modes b and c. Nevertheless, even 25% productivity leap can
still justify deploying the proposed approach.

Finally, we ask the opinions of the evaluators about their
overall experience and satisfaction through a brief question-
naire at the end of the session. Compared to the prior work
(ThingML [49]), two evaluators (#1 and #4) rated their level
of satisfaction about the proposed approach as high. More-
over, the other two evaluators chose the option medium.
The options were high, medium and low. In contrast, when
compared to pure manual software development, one of the
evaluators selected the option /ow. However, they empha-
sized that this answer is given the current exercises since the
selected IoT platforms were not heterogeneous and it was
rather easy for them to implement it manually. The other
evaluators chose the answer options high, medium and again
high concerning this question. Hence, all in all, we argue that
the proposed approach may contribute to the user experience
and satisfaction of the practitioners.

@ Springer

6.3 Discussion and threats to validity

The conducted experiments in Sects. 6.1 and 6.2 validated
the first and the second hypotheses, respectively. First, we
provided the proof-of-concept and showed the feasibility
of enhancing MDSE models in the DSM methodology for
developing IoT services with ML models if Artificial Intel-
ligence (Al), in particular ML capabilities are required.
Second, we verified empirically that the ML-enhanced soft-
ware models used with the proposed approach can lead
to performance leap for software development in the IoT
domain and a higher satisfaction level of the practitioners
compared to the prior model-driven work, namely ThingML
[49] and the pure manual software development.

Recall that we claimed that DAML models (i.e., DM in
Equation 1) may affect the behavioral models of software sys-
tems (i.e., B in Equation 4. This was shown formally through
Equation 10. The way that the ML models, e.g., the ones cor-
responding to the above-mentioned use case scenarios for the
case study in Sect. 6.1 can affect the behavioral models of
software is through the use of the action type DA_Predict in
the actions of the state machines (statecharts) that specify the
behavioral models of the respective things. The supplemen-
tary material of this paper® shows the use of this action type
for all of the depicted use case scenarios in Sect. 6.1.

One key strength of this work for the SE community is
expected to be that they gain access to the DAML methods
and techniques out-of-the-box and can deploy them in their
software models for the IoT. However, the major limitation is
that ML methods cannot perform well if their hyperparam-
eters are not tuned properly and/or the data that are used
for training them are not prepared well. Therefore, more
advanced AutoML features, e.g., concerning automated or
semi-automated hyperparameter choices and tuning, as well
as data preparation, e.g., for high-dimensional and non-i.i.d
(independent and identically distributed) data are necessary
(see Sect. 7).

Further, a major advantage of this work for the DAML
community is assumed to be that they can become involved
in large-scale IoT projects easier as they will be able to work

9 See https://doi.org/10.5281/zenodo.5501356.

https://doi.org/10.5281/zenodo.5501356

MDE for ML and Software

with the abstract software models that are easier to under-
stand, adapt and use for them. Moreover, they may introduce
any desired pre-trained ML model with any arbitrary archi-
tecture, learning algorithm and technique. This shall bring
them a lot of flexibility as they will not be limited to the pre-
defined options. However, the implication for them (as well
as for the SE community) is that they have to be familiar with
the DSML of the modeling tool and be willing to model their
desired software using this DSML.

There exist a number of possible threats to the validity
of the research results. First, we validated the first research
hypothesis through a case study in Sect. 6.1. We showed the
feasibility of the proposed approach via a number of working
examples with different use case scenarios. Although this is
a well-established research method in engineering research
(see, e.g., [36]), we only had one overall case study domain
(namely, smart energy data for smart home) and the selected
case study and vertical application domain might not be rep-
resentative enough for the entire domain of IoT/CPS. Thus,
the generalized conclusions made here about the entire target
domain might not be rigorous.

Second, the empirical evaluation conducted in Sect. 6.2
involved only four professionals. Consequently, the conclu-
sions drawn may not hold for a larger sample group. In
particular, the ideal research design should have involved
randomized controlled experiments. However, our study was
neither randomized nor had any control group. In contrast,
we used convenience sampling and invited four independent,
external volunteers to participate in our empirical evalua-
tion. Further, the tasks chosen for the experiments were only
two rather similar programming tasks with simple DAML
requirements and no combination of heterogeneous resource-
constrained IoT devices. This was due to the time and
resource constraints for the experiments with the experts,
but might be biased. Ideally, the tasks should have been
more diverse and possibly more tasks would have been
required, in order to be fair to different participants with
different strengths. Additionally, we swapped the task and
mode orders. However, we cannot rule out possible biases as
a result of working on one task in a certain mode, e.g, using
our DSML, and then in the following slot on the same task,
but in a different mode, e.g, via pure manual software devel-
opment. Also, it is clear that the time constraint may have an
impact on the performance of evaluators in these tasks. For
example, the manual task (namely, the a mode) is expected
to require more time than the tasks in the b mode and the
¢ mode. Therefore, allotment of the same amount of time
may not work ideally in all the modes. Finally, this was an
exploratory user study/pilot study and a more rigorous eval-
uation with more evaluators is required in the future. Hence,
the achieved preliminarily results might not be sufficient to
perform a quantitative analysis.

7 Conclusion and future work

In this manuscript, we proposed a novel approach to marry the
models in Artificial Intelligence (Al), specifically Machine
Learning (ML), with the models in Software and Systems
Engineering (SSE), particularly in Model-Driven Software
Engineering (MDSE) following the Domain-Specific Mod-
eling (DSM) methodology with full code generation. We
showed how MDSE models can be integrated with ML mod-
els, thus become capable of producing and/or dealing with
ML models. We concentrated on the Internet of Things (IoT)
and Cyber-Physical Systems (CPS) domains, where both ML
and MDSE are widely used. However, the proposed Domain-
Specific Modeling Language (DSML), which is built based
on the prior work in the literature, ThingML [14,20,34,49],
is not tied to any specific vertical application domain. Simi-
lar to the ThingML project [49], we also supported full code
generation in an automated manner through our ready-to-use
model-to-code transformations. In addition to inheriting the
code generators of ThingML [49], we introduced a Python
and Java code generator that can generate the APIs of the
Scikit-Learn [40] and Keras [9] libraries and frameworks for
ML.

The two research questions concerning the feasibility and
the impact of the proposed approach were validated through
the case study and the empirical user evaluation in Sect. 6,
respectively. It transpired that the proposed approach can
lead to a higher performance and a better experience of the
practitioner (e.g., software developer) for developing smart,
data-driven IoT services. However, as stated in Sect. 6.3, a
large-scale user study in the form of a randomized controlled
experiment is required in the future.

The proposed approach has a number of limitations that
can be addressed in future work. First, we supported super-
vised and unsupervised ML, whereas semi-supervised ML in
which the data are only partially labeled is also desirable and
beneficial in many use cases. Second, the pre-defined ML
methods can be extended, e.g, with kernel methods, such
as Support Vector Machines (SVM), Probabilistic Graphical
Models (PGM), as well as more advanced ANN archi-
tectures, such as Long Short-Term Memory (LSTM) for
Sequence-to-Sequence and End-to-End ML models. Third,
more target platforms, programming languages and libraries
can be supported. For instance, a pure Java code generator
that uses the Java libraries WEKA or MOA (Massive Online
Analysis) for DAML can be beneficial. Similarly, a pure
Python code generator that does not have to mix the Python
and Java codes for the IoT service might be advantageous for
certain use cases, where Java might not be desired or useful.
Last but not least, more advanced AutoML functionalities,
e.g., concerning data preparation, as well as automated or
semi-automated hyperparameter tuning will be very useful,

@ Springer

A. Moin et al.

in particular for software developers who might be novice in
the field of DAML.

Further, we implemented one specific variant of the pro-
posed approach in Sect. 4, where the DAML model may have
an impact on the behavioral model of the software. However,
it would be interesting to explore and realize other setups,
e.g., where the DAML model might affect the structure of the
software model, or even both the behavior and the structure.
For instance, Pigem [11] studied how ML can be employed
to learn finite-state machines. Hence, there might be some
potential in adopting such approaches and integrating them
with the proposed approach to make the MDSE models even
more intelligent. In fact, this would mean letting them learn
the behavioral model of the software, in part or completely,
on their own, using the existing data, instead of having the
practitioner (i.e., the user of the DSML) specify it.

Finally, by enabling every thing to possess one or more
DAML components, we have enabled the modeling infras-
tructure for deploying edge analytics and federated learning.
This paves the way for future work to provide a complete
solution to supporting federated ML in the proposed DSML.

Acknowledgements This work is partially funded by the German Fed-
eral Ministry for Education and Research (BMBF) through the Software
Campus initiative (project ML-Quadrat). We are sincerely grateful to
our external evaluators, Fatma Bozyigit from Izmir Bakircay Univer-
sity, Turkey, Burak Karaduman from University of Antwerp, Belgium,
Andrei Mituca from DriotData UG, Germany, as well as the anonymous
evaluator. The authors would like to also thank Stephan Rossler from
Software AG and Marouane Sayih (alumnus of the Technical University
of Munich) for their collaboration and support.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Data availability The authors are committed to the open science initia-
tive. Therefore, the entire research data are available as open data under
the terms of the Creative Commons Attribution 4.0 International license
at https://doi.org/10.5281/zenodo.5501356.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro,
C., Corrado, GS, Davis, A., Dean, J., Devin, M., Ghemawat, S.,

@ Springer

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

Goodfellow, 1., Harp, A., Irving G., Isard, M., Jia, Y., Jozefowicz,
R., Kaiser, L., Kudlur, M., Levenberg, J, Mané, D., Monga, R.,
Moore, S., Murray, D., Olah, C., Schuster, M., Shlens J., Steiner,
B., Sutskever, 1., Talwar, K., Tucker, P., Vanhoucke, V, Vasudevan,
V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke M.,
Yu, Y., Zheng, X.: TensorFlow: Large-scale machine learning on
heterogeneous systems. http://tensorflow.org/, software available
from tensorflow.org (2015)

. Atzori, L., lera, A., Morabito, G.: The internet of things: a survey.

Comput. Netw. 54(15), 2787-2805 (2010)

. Berners-Lee, T., Hendler, J.: Publishing on the semantic web.

Nature 410, 1023—4 (2001). https://doi.org/10.1038/35074206

. Berthold, M.R., Cebron, N., Dill, F., Gabriel, T.R., Kotter, T., Meinl,

T., Ohl, P., Thiel, K., Wiswedel, B.: KNIME—the Konstanz Infor-
mation Miner: Version 2.0 and Beyond. SIGKDD Explor Newsl.
11(1), 26-31 (2009). https://doi.org/10.1145/1656274.1656280

. Bishop, C.M.: Pattern Recognition and Machine Learning (Infor-

mation Science and Statistics). Springer-Verlag, Berlin (2006)

. Bishop, C.M.: Model-based machine learning. Philos. Trans. R.

Soc. A 371(1984), 1-17 (2013). https://doi.org/10.1098/rsta.2012.
0222

. CERN The birth of the web. https://home.cern/science/computing/

birth-web. Accessed 06-09-2021

. Chen, T, Li, M., Li, Y., Lin, M., Wang, N., Wang, M., Xiao,

T., Xu, B., Zhang, C, Zhang, Z.: Mxnet: A flexible and efficient
machine learning library for heterogeneous distributed systems.
(2015) arXiv:1512.01274

. Chollet, F., et al. Keras (2015). https://keras.io
. Combemale, B., Kienzle, J., Mussbacher, G., Ali, H., Amyot, D.,

Bagherzadeh, M, Batot, E., Bencomo, N., Benni, B., Bruel, JM.,
Cabot, J., Cheng, B., Collet, P, Engels, G., Heinrich, R., Jézéquel,
JM., Koziolek, A., Mosser, S., Reussner R., Wimmer, M.: A hitch-
hiker’s guide to model-driven engineering for data-centric systems.
IEEE Software. https://doi.org/10.1109/MS.2020.2995125 (2020)
de Balle Pigem, B.: Learning finite-state machines — statistical
and algorithmic aspects. Ph.D. thesis, Universitat Polit‘ecnica de
Catalunya, Spain. https://borjaballe.github.io/other/phdthesis.pdf
(2013)

DiNucci, D.: Fragmented future. Print 53(4), 32 (1999)

DMG (2021) Data Mining Group (DMG). http://dmg.org.
Accessed 09-03-2021

Fleurey, F., Morin, B., Solberg, A., Barais, O.: Mde to manage
communications with and between resource-constrained systems.
In: Whittle, J., Clark, T., Kiihne, T. (eds.) Model Driven Engineer-
ing Languages and Systems, Springer Berlin Heidelberg, Berlin,
Heidelberg, pp. 349-363 (2011)

Fouquet, F., Morin, B., Fleurey, F., Barais, O., Plouzeau, N.,
Jezequel, J.M.: A dynamic component model for cyber physical
systems. In: Proceedings of the 15th ACM SIGSOFT Symposium
on Component Based Software Engineering, Association for Com-
puting Machinery, New York, NY, USA, CBSE ’12, pp. 135-144.
https://doi.org/10.1145/2304736.2304759 (2012)

Geisberger, E., Broy, M. (eds) Living in a networked world.
Integrated research agenda Cyber-Physical Systems (agendaCPS).
acatech STUDY, Herbert Utz Verlag, Munich, Germany (2014)
Greer, C., Burns, M., Wollman, D., Griffor, E.: Cyber-physical
systems and internet of things. https://doi.org/10.6028/NIST.SP.
1900-202 (2019)

GreyCat: Next-Gen Live Analytics using Temporal Graph. (2018)
https://github.com/datathings/greycat. Accessed 02-09-2021
Géron, A.: Hands-On Machine Learning with Scikit-Learn, Keras,
and TensorFlow. O’Reilly Media, CA 95472, USA (2019)
Harrand, N., Fleurey, F., Morin, B., Husa, K.E.: ThingML: A lan-
guage and code generation framework for heterogeneous targets.
In: Proceedings of the ACM/IEEE 19th International Conference

https://doi.org/10.5281/zenodo.5501356
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://tensorflow.org/
https://doi.org/10.1038/35074206
https://doi.org/10.1145/1656274.1656280
https://doi.org/10.1098/rsta.2012.0222
https://doi.org/10.1098/rsta.2012.0222
https://home.cern/science/computing/birth-web
https://home.cern/science/computing/birth-web
http://arxiv.org/abs/1512.01274
https://keras.io
https://doi.org/10.1109/MS.2020.2995125
https://borjaballe.github.io/other/phdthesis.pdf
http://dmg.org
https://doi.org/10.1145/2304736.2304759
https://doi.org/10.6028/NIST.SP.1900-202
https://doi.org/10.6028/NIST.SP.1900-202
https://github.com/datathings/greycat

MDE for ML and Software

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

on Model Driven Engineering Languages and Systems, MODELS
16 (2016)

Hartmann, T., Moawad, A., Fouquet, F., Le Traon, Y.: The next
evolution of mde: a seamless integration of machine learning
into domain modeling. In: 2017 ACM/IEEE 20th International
Conference on Model Driven Engineering Languages and Sys-
tems (MODELS), p. 180. https://doi.org/10.1109/MODELS.2017.
32 (2017)

Hartmann, T., Fouquet, F., Moawad, A., Rouvoy, R., Traon, Y.L.:
Greycat: efficient what-if analytics for data in motion at scale.
arXiv:1803.09627 (2018)

Hartmann, T., Moawad, A., Fouquet, F., Le Traon, Y.: The next
evolution of MDE: a seamless integration of machine learning into
domain modeling. Softw. Syst. Model. (SoSyM) 18, 1285-1304
(2019). https://doi.org/10.1007/s10270-017-0600-2

HEADS: Heterogeneous and Distributed Services for the Future
Computing Continuum. (2015) https://cordis.europa.eu/project/id/
611337. Accessed 01-09-2021

Helwig, N., Pignanelli, E., Schiitze, A.: Condition monitoring of
a complex hydraulic system using multivariate statistics. In: 2015
IEEE International Instrumentation and Measurement Technology
Conference (I2ZMTC) Proceedings, pp. 210-215, https://doi.org/
10.1109/12MTC.2015.7151267 (2015)

Kelly, S., Tolvanen, J.P.: Domain-Specific Modeling: Enabling Full
Code Generation, 1st edn. Wiley, Hoboken (2008)

ISO/IEC/IEEE 42010:2011 Systems and software engineering -
Architecture description. Standard, ISO/IEC/IEEE (2011). https://
www.iso.org/standard/50508.html

Leskovec, J., Rajaraman, A., Ullman, J.D.: Mining of Massive
Datasets, 2nd edn. Cambridge University Press, USA. http://www.
mmds.org (2014)

Minka, T., Winn, J.M., Guiver, J.P., Zaykov, Y., Fabian, D., Bron-
skill, J.: InferNET 0.3. Microsoft Research Cambridge. http://
dotnet.github.io/infer (2018). Accessed 08-09-2020

ML-Quadrat: ML2. (2020). https://github.com/arminmoin/ML-
Quadrat. Accessed 12-09-2020

Moin, A., Rossler, S., Giinnemann, S.: Thingml+: augmenting
model-driven software engineering for the internet of things with
machine learning. In: Hebig R, Berger T (eds) Proceedings of
MODELS 2018 Workshops, co-located with ACM/IEEE 21st
International Conference on Model Driven Engineering Languages
and Systems (MODELS 2018), Copenhagen, Denmark, Octo-
ber, 14, 2018, CEUR-WS.org, CEUR Workshop Proceedings, vol.
2245, pp. 521-523 (2018) http://ceur-ws.org/Vol-2245/mde4iot_
paper_5S.pdf

Moin, A., Réssler, S., Sayih, M., Giinnemann, S.: From
things’ modeling language (thingml) to things’ machine learn-
ing (thingml2). In: Guerra, E., Iovino, L. (eds) MODELS ’20:
ACM/IEEE 23rd International Conference on Model Driven Engi-
neering Languages and Systems, Virtual Event, Canada, 18-23
October, 2020, Companion Proceedings, ACM, pp. 19:1-19:2
(2020) https://doi.org/10.1145/3417990.3420057

Morin, B., Fleurey, F.,, Husa, K.E., Barais, O.: A generative mid-
dleware for heterogeneous and distributed services. In: 2016 19th
International ACM SIGSOFT Symposium on Component-Based
Software Engineering (CBSE), pp. 107-116 (2016) https://doi.org/
10.1109/CBSE.2016.12

Morin, B., Harrand, N., Fleurey, F.: Model-based software engi-
neering to tame the IoT jungle. IEEE Softw. 34(1), 30-36 (2017).
https://doi.org/10.1109/MS.2017.11

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

Murray, D.: A data management platform for personalised real-time
energy feedback. In: Proceedings of 8th International Conference
on Energy Efficiency Domestic Appl Lighting (EEDAL), pp. 1-15
(2015)

Newman, W.: A preliminary analysis of the products of HCI
research, using pro forma abstracts. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, Association
for Computing Machinery, New York, NY, USA, CHI 94, pp. 278-
284 (1994)

ONNX: Open Neural Network Exchange. (2021). https://github.
com/onnx. Accessed 09-03-2021

Papatheocharous, E., Axelsson, J., Andersson, J.: Issues and
challenges in ecosystems for federated embedded systems. In:
Proceedings of the First International Workshop on Software Engi-
neering for Systems-of-Systems, pp. 21-24. https://doi.org/10.
1145/2489850.2489854 (2013)

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito,
Z.,Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differ-
entiation in pytorch. In: NIPS-W (2017)

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion,
B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V.,
Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M.,
Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach.
Learn. Res. 12, 2825-2830 (2011)

PFA: Portable Format for Analytics. (2021) http://dmg.org/pfa/
index.html. Accessed 09-03-2021

Pivarski, J., Bennett, C., Grossman, R.L.: Deploying analytics with
the portable format for analytics (PFA). In: Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, Association for Computing Machinery, New
York, NY, USA, KDD 16, pp. 579-588. https://doi.org/10.1145/
2939672.2939731 (2016)

PMML.: Predictive Model Markup Language. (2021) http://dmg.
org/pmml/v4-4-1/GeneralStructure.html. Accessed 09-03-2021
RapidMiner (n/a) Depth for Data Scientists, Simplified for Every-
one Else. https://rapidminer.com. Accessed 08-09-2021

REFIT: REFIT datasets. https://www.refitsmarthomes.org/
datasets/. Accessed 01-09-2020(2015)

Schaetz, B.: The role of models in engineering of cyber-physical
systems—challenges and possibilities. In: CPS20: CPS 20 years
from now-visions and challenges, CPS Week (2014)
TensorBoard (n/a) TensorFlow’s visualization toolkit. https:/www.
tensorflow.org/tensorboard. Accessed 08-09-2021

Theano Development Team: Theano: A Python framework for
fast computation of mathematical expressions. arXiv e-prints
arXiv:1605.02688 (2016)

Things Modeling Language: ThingML (2015) https://github.com/
TelluloT/ThingML. Accessed 29-04-2020

Time and causality in interactive distributed systems (lecture slides)
(2008). https://wwwS.in.tum.de/~huckle/Broy.pdf . Accessed 06-
09-2021

Wang, H., Yeung, D.Y.: A survey on bayesian deep learning. ACM
Comput. Surv. (2020). https://doi.org/10.1145/3409383

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer

https://doi.org/10.1109/MODELS.2017.32
https://doi.org/10.1109/MODELS.2017.32
http://arxiv.org/abs/1803.09627
https://doi.org/10.1007/s10270-017-0600-2
https://cordis.europa.eu/project/id/611337
https://cordis.europa.eu/project/id/611337
https://doi.org/10.1109/I2MTC.2015.7151267
https://doi.org/10.1109/I2MTC.2015.7151267
https://www.iso.org/standard/50508.html
https://www.iso.org/standard/50508.html
http://www.mmds.org
http://www.mmds.org
http://dotnet.github.io/infer
http://dotnet.github.io/infer
https://github.com/arminmoin/ML-Quadrat
https://github.com/arminmoin/ML-Quadrat
http://ceur-ws.org/Vol-2245/mde4iot_paper_5.pdf
http://ceur-ws.org/Vol-2245/mde4iot_paper_5.pdf
https://doi.org/10.1145/3417990.3420057
https://doi.org/10.1109/CBSE.2016.12
https://doi.org/10.1109/CBSE.2016.12
https://doi.org/10.1109/MS.2017.11
https://github.com/onnx
https://github.com/onnx
https://doi.org/10.1145/2489850.2489854
https://doi.org/10.1145/2489850.2489854
http://dmg.org/pfa/index.html
http://dmg.org/pfa/index.html
https://doi.org/10.1145/2939672.2939731
https://doi.org/10.1145/2939672.2939731
http://dmg.org/pmml/v4-4-1/GeneralStructure.html
http://dmg.org/pmml/v4-4-1/GeneralStructure.html
https://rapidminer.com
https://www.refitsmarthomes.org/datasets/
https://www.refitsmarthomes.org/datasets/
https://www.tensorflow.org/tensorboard
https://www.tensorflow.org/tensorboard
http://arxiv.org/abs/1605.02688
https://github.com/TelluIoT/ThingML
https://github.com/TelluIoT/ThingML
https://www5.in.tum.de/~huckle/Broy.pdf
https://doi.org/10.1145/3409383

A. Moin et al.

Armin Moin is a doctoral

researcher of the chair for Data
Analytics and Machine Learning
(DAML) at the department of

Informatics of the Technical Uni-
versity of Munich (TUM) in Ger-
many. His research is at the inter-
section of Machine Learning and
Software Engineering, in particu-
lar domain-specific Model-Driven
Software Engineering (MDSE) for
smart Internet of Things (IoT) ser-
vices and Cyber-Physical Systems
(CPS). He is a reviewer of confer-
ences and journals, such as PLOS

ONE, SoftwareX and Expert Systems with Applications.

e

N

Moharram Challenger is a tenure-
track assistant professor in the
Department of Computer Science
at the University of Antwerp, Bel-
gium. His research interests
include domain-specific modeling
languages, model-driven engineer-
ing, multi-agent systems, cyber-
physical systems and the IoT. Pre-
viously, he was a postdoc
researcher at the University of
Antwerp, Belgium. Moreover, he
received his Ph.D. in IT from the
International Computer Institute at
Ege University, Turkey in Febru-

ary 2016. He has led several national and international research
projects, e.g., in Turkey and Belgium.

@ Springer

Atta Badii is a professor in Secure
Pervasive Technologies at the
Department of Computer Science
of the University of Reading,
United Kingdom (UK). He has
established a track record of key
contributions to over 40 projects,
including more than 30 large-scale
collaborative research programmes.
He has coordinated over 12 large-
scale international projects funded
by a variety of sources including
the UK Engineering and Physical
Sciences Research Council, the
UK Ministry of Defence Grand

Challenge and the European Commission.

Stephan Giinnemann is a pro-
fessor at the Department of Infor-
matics of the Technical University
of Munich in Germany and Direc-
tor of the Munich Data Science
Institute. His research focuses on
making machine learning reliable,
thus, enabling its safe and robust
use, e.g., for graphs/networks and
temporal data. He acquired his
doctoral degree in Computer Sci-
ence at RWTH Aachen, Germany
in 2012. Also, he has been an
associate of Carnegie Mellon Uni-
versity, USA, and a researcher at

the Simon Fraser University in Canada and Siemens AG in Germany.

	A model-driven approach to machine learning and software modeling for the IoT
	Generating full source code for smart Internet of Things (IoT) services and cyber-physical systems (CPS)
	Abstract
	1 Introduction
	2 Background
	2.1 The Internet of Things (IoT) and cyber-physical systems (CPS)
	2.2 Analytics modeling
	2.3 Software modeling

	3 Related work
	4 Proposed approach
	4.1 Overall architecture
	4.2 Analytics models (focused on ML models)
	4.3 Software models (in domain-specific MDSE for the IoT)
	4.4 AI-enhanced MDSE models (for smart IoT services)

	5 ML-quadrat: open-source prototype
	5.1 Abstract syntax of the DSML
	5.2 Concrete syntax and model editors
	5.3 Semantics and model-to-code transformations
	5.4 Supported ML methods and techniques
	5.5 The black-box ML (hybrid/mixed MDSE/non-MDSE) mode
	5.6 Sample IoT service

	6 Validation and evaluation
	6.1 Case study
	Scenario 1: classification (supervised ML)
	Scenario 2: clustering (unsupervised ML)
	Scenario 3: regression (supervised ML)
	Scenario 4: black-box ML

	6.2 Empirical evaluation
	6.3 Discussion and threats to validity

	7 Conclusion and future work
	Acknowledgements
	References

