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Continual learning for multimode dynamic process
monitoring with applications to an

ultra–supercritical thermal power plant
Jingxin Zhang, Donghua Zhou, Fellow, IEEE, Maoyin Chen, and Xia Hong, Senior Member, IEEE

Abstract—This paper introduces a novel sparse dynamic inner
principal component analysis (SDiPCA) based monitoring for
multimode dynamic processes. Different from traditional multi-
mode monitoring algorithms, a model is updated for sequential
modes by memorizing the significant features of existing modes.
By adopting the concept of intelligent synapses in continual
learning, a loss of quadratic term is introduced to penalize the
changes of mode–relevant parameters, where modified synaptic
intelligence (MSI) is proposed to estimate the parameter impor-
tance. Thus, the proposed algorithm is referred to as SDiPCA–
MSI. When a new mode arrives, a set of normal samples should
be collected. The previous significant features are consolidated
without explicitly storing training samples, while extracting new
information from the current mode. Consequently, SDiPCA–
MSI can provide outstanding performance for successive modes.
Characteristics of the proposed approach are discussed, in-
cluding the computational complexity, advantages and potential
limitations. Compared with several state-of-the-art monitoring
methods, the effectiveness and superiorities of the proposed
method are demonstrated by a continuous stirred tank heater
case and a practical industrial system.

Note to Practitioners—Multimode process monitoring is in-
creasingly significant as industrial systems generally operate in
varying operating conditions. However, most researches focus
on multiple local monitoring models for complex multimode
processes and assume that data of all possible modes are available
and stored before learning. When similar or new modes arrive,
local models are rebuilt corresponding to each mode and the
model’s capacity would increase with the continuous emer-
gence of modes. Adaptive methods are a branch of multimode
monitoring algorithms, but they strive to extract information
of the current mode to ensure the monitoring performance
while forgetting the previously learned knowledge gradually.
This paper proposes a novel sparse dynamic inner principal
component analysis with continual learning ability for multimode
dynamic process monitoring, where modified synaptic intelligence
is developed to measure the parameter importance accurately. It
requires limited computation and storage resources for successive
modes, which is convenient for practical applications. Similar to
current multimode process monitoring algorithms, a set of data
should be collected before learning a new mode, which may bring
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difficulties to real–time monitoring. For industrial systems, such
as large-scale power plants and chemical systems, the proposed
method has outstanding ability to monitor successive dynamic
modes.

Index Terms—Multimode dynamic process monitoring, sparse
dynamic inner principal component analysis, modified synaptic
intelligence, continual learning ability

I. INTRODUCTION

For the sake of enhanced operational safety, advanced sensor
technologies and data-driven process monitoring have received
widespread attention in complex industrial systems [1]. These
systems are dynamic in nature and the internal variables are
time-correlated [2]. There are many researches devoted to dy-
namic process monitoring [3]–[5]. Canonical variate analysis
(CVA) was proposed for nonlinear dynamic processes, where
a state space model was established [3]. Two layered mixture
Bayesian probabilistic principal component analysis (PCA)
was presented to deal with non-Gaussian dynamic data, where
data were divided into several clusters and a mixture model
was built within each cluster [6]. Besides, dynamic inner PCA
(DiPCA) was introduced to extract dynamic and static latent
variables and adopted for dynamic process monitoring [7], [8].

Industrial systems generally operate under multiple modes
due to changing of raw materials, market demands, etc [9]–
[11]. Therefore, multimode process monitoring has undergone
tremendous development recently [12]–[14], which can be
divided into single–model schemes and multiple–model ap-
proaches [10], [15]. Most single–model methods remove the
multimodality features by a transformation function [11], [16]–
[18] and then establish a single monitoring model. When a
novel mode arrives, the transformation function needs to be
relearned. Alternatively, adaptive models are built to track the
multiple data distribution based on the successive data [19].
However, they fail to monitor the varying modes because the
features may change dramatically in the entire dataset and
adaptive methods are effective for slow changing data [20].
Adaptive methods forget the previous information gradually to
leave more space for the current mode. When the previously
similar modes appear, the relevant learned knowledge has been
overlapped and the model is difficult to track the changes
quickly [11], [18]. Furthermore, enough data are required
to update the model adaptively when a novel or similar
mode arrives [21], [22]. Multiple–model schemes have been
widely researched and in general these simply extend the
aforementioned (single mode) dynamic monitoring algorithms
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where a local model is built within each corresponding mode
[14], [23]–[25]. For instance, structure dictionary learning was
investigated for process monitoring and mode identification,
where the common pattern and mode–specific pattern of
each mode were extracted [14]. An improved mixture of
probabilistic PCA (IMPPCA) could be utilized for multimode
monitoring [26], where the mode could be identified by the
posterior probability automatically. In [12], the multiple modes
were separated by lazy learning and the residuals between the
actual and predicted outputs were employed to detect faults
for nonlinear dynamic processes. Mixture of CVA (MCVA)
was developed for multimode dynamic processes, where the
augmented data were divided by Gaussian mixture models
(GMMs) and the local CVA model was built within each GMM
[27]. Besides, dynamic latent variable model was proposed
for multimode processes, where hidden Markov model was
adopted to identify mode [2]. However, the aforementioned
multiple–model methods require that historical data cover
all possible modes, which is expensive and time-consuming
[10], [14]. In practical applications, novel modes may ap-
pear especially for the systems with a short operating time.
Moreover, similar modes may also occur continually. When
a new or similar mode arrives, sufficient samples should be
collected and a local model is established to monitor the
corresponding mode. In the worst case, the historical data are
required to be stored before learning and the monitoring model
may be retrained from scratch [14], [26]. Thus, the model’s
capacity must increase significantly to cope with the successive
emergence of modes, and so do the associated computational
and storage costs. Therefore, it is essential to investigate
effective methods for monitoring successive similar or novel
modes, where the computation time and storage resources
are constrained while acceptable monitoring performance is
guaranteed.

Similar to learning successive modes, humans and animals
learn new knowledge continually from novel sequential tasks
[28] and the previously learned information is still preserved
simultaneously. Besides, the previous knowledge is beneficial
for learning the new information quickly when the tasks are
similar to some extent. Motivated by this learning manner,
continual learning has received wide attention recently [29]–
[33], which could potentially lend to solutions in multimode
process monitoring algorithms. Specifically for successive
modes, where the new modes are allowed to emerge continu-
ously and the model could adapt to the changing modes [29]–
[31]. Continual learning aims to learn the model continually
by assimilating new information while preserving the learned
knowledge [28]. The fundamental issue addressed by contin-
ual learning is catastrophic forgetting, where the previously
learned knowledge may be interfered by new information and
the performance is reduced on previous modes [28], [32], [33].
The concept of intelligent synapses in continual learning is
aimed at adapting new information while storing the previ-
ously learned features. The superiorities of continual learning
were analyzed in [15] and then continual learning was applied
it to multimode process monitoring, where elastic weight
consolidation (EWC) settled the catastrophic forgetting issue
of PCA for successive modes and the prominent performance

was acquired. The proposed method is short for PCA–EWC.
However, it assumes that data follow multivariate Gaussian
distribution and are stationary in each mode. The importance
measure depends on the point estimate of Fisher information
matrix [15], [30], which is naturally intractable in most cases.

Against this background, this paper has proposed a novel
algorithm, referred to as sparse dynamic inner principal com-
ponent analysis with modified synaptic intelligence (SDiPCA–
MSI). To our best knowledge, DiPCA furnishes interpretability
and prediction performance [7], [8], but relevant algorithms for
multimode process monitoring are still deficient. Sparse rep-
resentation is relevant for enhancing the model interpretability
and reduce forgetting, where mode–sensitive parameters or
effective changes to parameters are fewer [29], [33]. Therefore,
we consider sparse DiPCA (SDiPCA) with continual learning
ability for multimode dynamic monitoring, where the model
captures new information and retains the learned knowledge
simultaneously. Intuitively, the proposed method consolidates
the changes in important parameters to monitor past modes,
while allowing the unimportant parameters to learn the future
modes. Moreover, modified synaptic intelligence (MSI) is
proposed to evaluate the parameter importance, which is cal-
culated along the learning trajectory and equivalent to the sen-
sitivity to the loss [34], [35]. Similar to traditional multimode
process monitoring approaches [21]–[23], [26], [27] and PCA–
EWC [15], when a new mode arrives, a set of data onto the
new mode should be collected before updating the SDiPCA–
MSI model, thus delivering difficulty to unseen modes for
online implementation. Besides, the significant information
of existing modes is preserved when a new mode is trained,
which allows it monitor the previous modes accurately based
on one model and may also aid the learning of future relevant
modes.

The contributions of this paper are summarized as follows:

a) Based on SDiPCA, this work investigates the continual
learning ability for multimode dynamic processes, where
the number of modes and samples per mode cannot be
known a priori. The model is updated continually by
consolidating new information while preserving the previ-
ously learned knowledge, thus the computation and storage
expenses are limited with the increasing number of modes.

b) This paper proposes a novel estimation of importance
measure, which is obtained by the intermediate parameters
during the learning process. Compared with traditional
synaptic intelligence (SI), MSI is more accurate and the
random initialization makes it more feasible to acquire the
optimal SDiPCA–MSI model parameters.

The rest of this paper is organized as follows. Section II
initially presents the framework of DiPCA and basic concept
of SI–based continual learning, followed by a formal problem
statement of this paper. Section III presents the procedure of
the proposed method for successive modes. Comparative ex-
periments, computational complexity, strengths and potential
limitations are discussed in Section IV. A continuous stirred
tank heater (CSTH) process and a practical coal pulverizing
system are adopted to illustrate the effectiveness in Section V.
The concluding remarks are given in Section VI.
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Fig. 1. Illustration of gradient decent optimization: (a) The trajectory for mode M1; (b) The trajectory when training the same model on the second mode
M2 subsequently; (c) The trajectory when minimizing the summed loss from both modes (green) and gradients from each mode (red and blue) [29].

II. PROBLEM STATEMENT

A. DiPCA preliminaries

DiPCA [7] is aimed at extracting a set of dynamic latent
variables that explain most dynamic variations of the data. Let
x ∈ Rm be a sample vector of m variables and data matrix
X ∈ RN×m with N samples. DiPCA starts with extracting the
most predictable information by a vector autoregressive (VAR)
model, referred to as the inner model, so that the dynamic
relationship is characterized. Define the latent variables as

tk = xkw (1)

where w ∈ Rm is the weight vector with ‖w‖2 = 1. The
current latent variables could be described by the past ones,
namely,

tk =

s∑
i=1

βitk−i + rk (2)

where rk is the Gaussian white noise at kth instant, s is
the autoregressive order, or the number of time lags. Let
β = [β1 · · · βs]T , ‖β‖2 = 1. Based on (1) and (2), the
prediction of the dynamic inner model is presented by:

t̂k =

s∑
i=1

xk−iwβi

= [xk−1 · · · xk−s] (β ⊗w)

where ⊗ denotes the Kronecker product. The dynamic latent
variables are extracted by maximizing the covariance between
tk and t̂k, namely,

1

N − s

N∑
k=s+1

wTxTk [xk−1 · · · xk−s] (β ⊗w) (3)

Construct the matrices from X ,

X(i) =
[
xTi xTi+1 · · · xTN−s+i−1

]T
, i = 1, . . . , s+ 1 (4)

Z =
1

N − s

[
X(1) X(2) · · · X(s)

]
(5)

Let X(s+1) be denoted as X̃ , the objective of maximizing (3)
is equivalent to

min J(w,β) = −wT X̃
T
Z (β ⊗w)

s.t. ‖w‖2 = 1, ‖β‖2 = 1
(6)

A recursively reduced data set is defined based on X and
the optimization issue (6) is repeated until extracting l dynamic
latent variables. In this paper, s and l are determined by [7].

B. Sparse DiPCA with SI for multimode dynamic processes

This work investigates SDiPCA with continual learning
ability for multimode dynamic processes, without access to
entire data sets. Moreover, the proposed algorithm aims to si-
multaneously monitor all modes with improved interpretation.

Denote multiple modes MK , K = 1, 2, . . .. For ease of
exposition, in each mode MK , it is assumed there are NK
samples in data set matrix XK ∈ RNK×m and the dynamic
order s is the same for all modes. Clearly, with X set as XK ,
from which X̃K and ZK can be constructed by (4) and (5).
Define the local SDiPCA cost function for the Kth mode, as

J̃K(θ,XK) = −wT X̃
T

KZK (β ⊗w) + λ1‖w‖1 + λ2‖β‖1
(7)

in which θ = [wT ,βT ]T , λ1 and λ2 are associated positive
regularization parameters. Increasing λ1 and λ2 will drive
some parameters inw or β to zeros, leading to a sparse model.

The objective function (7) is directly based on data from
each single mode, which means that at any time only a single
mode is covered by the model parameters. To build a model
that is able to track all modes, a novel composite cost function
J(θ) will be defined by employing continual learning [33]–
[35] and a novel efficient algorithm is proposed in Section
III for multimode SDiPCA, which can adapt to a new mode
without forgetting information learned from old modes, under
the constraint that data from all past modes are not accessible.

For convenience, it is assumed that J(θ) has been defined
as appropriate, we now briefly introduce the SI algorithm
of combating forgetting in terms of parameter optimization
trajectory in changing data environment. The gradient–based
methods are efficient to acquire the optimal parameter θ. SI
calculates the importance measure for each parameter along
the optimization trajectory, which reflects the sensitivity of
each parameter to the loss [34]. Given an infinitesimal update
δ (k) at kth iteration, the change in loss is approximated by

J (θ (k) + δ (k))− J (θ (k)) ≈
∑

i
gi (k) δi (k)

where g = ∂J
∂θ is the gradient, δi (k) = θi (k) − θi (k − 1).

The change in loss over the entire trajectory is calculated by
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Algorithm 1 Update parameter by APG: [Θk+1] = F
(
Θk,ϕk−1, tk, tk−1, α

ϕ,∇ϕg (·) , g (·)
)

1: yk = ϕk +
tk−1

tk
(zk −ϕk) +

tk−1−1

tk

(
ϕk −ϕk−1

)
2: Calculate zk+1 = proxh,ty (yk − t

y
k∇ϕg (yk)) by (38) and (39), tyk = f (αϕ, υyk ,∇ϕg (yk)) by (21), and υyk is updated by (22);

3: Calculate vk+1 = proxh,tϕ (ϕk − t
ϕ
k∇ϕg (ϕk)) by (38) and (39), tϕk = f (αϕ, υϕk ,∇ϕg (ϕk)) by (21), and υϕk is updated by (22);

4: ϕk+1 =

{
zk+1, if g (zk+1) ≤ g (vk+1)
vk+1, otherwise

∑
k

g (k)
T
δ (k) =

∑
i

∑
k

gi (k) δi (k)

=−
∑
i

$i

Equivalently,

$i =
∑
k

(θi (k)− θi (k − 1))
−∂J
∂θi (k)

(8)

In multimode dynamic process monitoring using SI, con-
sider the data block is received in the order of their mode
index. When Kth mode arrives (K ≥ 2), data of current mode
and the previously learned model parameters are available. It is
intractable to acquire the true summed loss of previous modes
based on all data. In this paper, a surrogate loss JK−1total is
introduced to approximate the total loss of previous (K − 1)
modes [34]. During the stage of Kth mode, our loss function
J(θ) of K modes under SI framework is approximated by

JKtotal (θ) =J̃K (θ,XK) + γKJ
K−1
total

(
θ̂
K−1

, $̂K−1

)
=J̃K (θ,XK) + γK

∑
i

$̂K−1
i

(
θi − θ̂K−1i

)2 (9)

where θ̂
K−1

and $̂K−1 are the estimated parameter vector
and corresponding importance measure vector for the previous
K − 1 modes, with θ̂K−1i and $̂K−1

i being the entries at the
ith dimension, respectively. γK > 0 is the hyper-parameter
that balances the previous modes and the current one. The
choice of γK is data dependent. A larger γK maintains more
information to previous modes. A smaller one is more adaptive
to current mode, yielding to better local fit to current mode
with better online performance.

The total objective (9) combines local recent mode objective
J̃K , with model of the past modes via model parameters θ̂K−1i

and $̂K−1
i represents the importance measure of θi for all

previous modes, without access to past data. After learning
the Kth mode, it is updated by (35) in Appendix A, namely,

$̂K
i ≈

$K
i(

θ̂Ki − θ̂
K−1
i

)2 + $̂K−1
i (10)

which is initialized as $̂0
i = 0. $K

i denotes the difference of
losses before and after training θi for the Kth mode from (8),
which accumulates the change of loss J̃K along the parameter
optimization trajectory.

The illustration of applying SI to multimode dynamic pro-
cesses is interpreted by considering two successive modes. The
optimization trajectory of mode M1 is described in Fig. 1(a).
When modeM2 arrives, the traditional manner only considers
mode M2 if one model is built, thus leading to great loss on

mode M1 in Fig. 1(b). Significantly, this work aims to build
a continually updated model with continual learning ability,
which preserves the learned knowledge and extracts the critical
features of the current mode simultaneously. As depicted in
Fig. 1(c), the total loss of two modes is considered to acquire
the appropriate parameters for both modes. Without loss of
generality, it can be extended to more successive modes.

III. SDIPCA–MSI FOR PROCESS MONITORING

In this section, MSI is proposed firstly and then SDiPCA–
MSI is presented. The algorithm deals with multimode data
sets in consecutive order of modes K = 1, 2, .... Hence, the
model is developed initially when K = 1, followed by that
of any mode (K ≥ 2), which recursively updates the model
from (K−1) modes. Thus, the SDiPCA–MSI framework can
be unified for any mode (K ≥ 1). Finally, the training and
associated online monitoring phases are summarized.

A. Modified SI

Clearly a key issue is to optimize (9) and estimate $̂. Up
to the Kth mode, the surrogate loss is defined as

JKtotal (θi) = $̂K
i

(
θi − θ̂Ki

)2
According to (36) in Appendix A, $̂K

i is calculated by

$̂K
i =

JKtotal
(
θ0i
)
− JKtotal

(
θ̂Ki

)
(
θ0i − θ̂Ki

)2
=

$K
i(

θ0i − θ̂Ki
)2

(11)

where $K
i is the difference of the losses JKtotal before and

after training and can be computed by (8). The initial value
θ0i of the optimization problem can be selected randomly under
the constraints. When θ0i = θ̂K−1i , the importance measure is
calculated by (37).

It has been illustrated that (11) is more accurate than (10)
in Appendix A. Compared with SI [34], MSI provides two
distinctions: a) MSI utilizes the total loss (9) of all modes
to estimate the importance measure while SI uses the loss
(7) of the current mode. Because (9) is the exact optimization
objective, it is easier to calculate than (7); b) The initialization
of MSI is random while the initial setting of SI is the optimal
value of the last mode. Since the objective of SDiPCA–MSI is
nonconvex and nonconcvae, random initialization is beneficial
for seeking the appropriate model parameters.
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Algorithm 2 Optimization procedure of SDiPCA–MSI

Input: Data XK , l, s, paramaters of mode MK−1

{
WMK−1

,ΓMK−1
,ΩMK−1

}
Output: Weight matrix WMK

, regression coefficient matrix ΓMK
, the importance measure ΩMK

, projection matrix PMK

Initialization: Random unit vectors β0 and w0

for j = 1, 2, · · · , l do

1) Let wK−1, βK−1, $̂ be the jth line of WMK−1
, ΓMK−1

and ΩMK−1
, respectively. Ω̄ = diag($̂), θ̂

K−1
=
[(
wK−1

)T
,
(
βK−1

)T ]T ;

2) Initialize β1 = β0, w1 = w0, zw1 = w0, zβ1 = β0, $1 = 0, t1 = 1, t0 = 0, αw = 0.005, αβ = 0.005, αν = 0.2, tw0 = twy0 = 10−4,
tβ0 = tβy0 = 10−4, ν1,1 = 0, ν2,1 = 0, υwy0 = 0, υw0 = 0, υβy0 = 0, υβ0 = 0, k = 1;

3) Let Θw1 =
{
w1,zw1 , t

wy
0 , tw0 , υ

wy
0 , υw0

}
and Θβ1 =

{
β1,z

β
1 , t

βy
0 , tβ0 , υ

βy
0 , υβ0

}
, construct the objective function according to (13) and (14);

4) Calculate optimal w and β based on the predicted covariation:
while the issue (13) is not converged do

a) Update w, [Θwk+1] = F
(
Θwk ,wk−1, tk, tk−1, α

w,∇wg (wk,βk) , g(wk,βk)
)

in Algorithm 1, g(wk,βk) and ∇wg (wk,βk) are
calculated by (15) and (17) respectively;

b) Update β, [Θβk+1] = F
(

Θβk ,βk−1, tk, tk−1, α
β ,∇βg (wk+1,βk) , g(wk+1,βk)

)
in Algorithm 1, g(wk+1,βk) and∇βg (wk+1,βk)

are calculated by (15) and (18) respectively;

c) tk+1 =

√
4(tk)

2+1+1
2

;
d) Update Lagrange parameters: ν1,k+1 = ν1,k + αν∇ν1g (wk+1), ν2,k+1 = ν2,k + αν∇ν2g

(
βk+1

)
;

e) Construct θk+1 = [wTk+1,β
T
k+1]T , ∇θg (θk+1) =

[(
∇wg(wk+1,βk+1)

)T
,
(
∇βg(wk+1,βk+1)

)T ]T ;

f) Calculate the importance measure: $k+1 = $k −
(

(∇θg (θk+1))T � (θk+1 − θk)T
)T

;
g) k = k + 1;

end while
5) Let t = XKw, p = XT

Kt
/
tT t. Deflate XK as XK := XK − tpT ;

6) The importance measure is normalized by (24) and denoted as $̂j . The loading vector is labeled as pj , the weighted vector is w∗j , the regression
coefficient is β∗j . Let w0 = w∗j , β0 = β∗j ;

end for
WMK

=
[
w∗1 w∗2 · · · w∗l

]
, ΓMK

=
[
β∗1 β∗2 · · · β∗l

]
, ΩMK

= [$̂1 $̂2 · · · $̂l], PMK
= [p1 p2 · · · pl]

For convenience, we use the vector form to describe the
importance measure, namely,

$ =
∑
k

(
(−∇θJ (θk))

T � (θk − θk−1)
T
)T

(12)

where � denotes the Khatri-Rao product.

B. SDiPCA–MSI

When the mode MK appears (K ≥ 1), data XK are
collected. According to (9), the objective is

min
θ

JKtotal(θ) = J̃K (θ,XK) + γKJ
K−1
total

(
θ̂
K−1

, $̂K−1
)

s.t. wTw = 1,βTβ = 1
(13)

where J̃K (θ,XK) is calculated by (7) and

γKJ
K−1
total

(
θ̂
K−1

, $̂K−1
)

=γ1,K
(
w −wK−1)T Ω̄w

(
w −wK−1)

+ γ2,K

(
β − βK−1

)T
Ω̄β

(
β − βK−1

)
in which θ̂

K−1
=

[(
wK−1)T ,(βK−1)T]T is the optimal

parameter of mode MK−1. $̂K−1
w ∈ Rm and $̂K−1

β ∈ Rs
are the importance measures of w and β respectively. Then,

$̂K−1 =

[(
$̂K−1
w

)T
,
(
$̂K−1
β

)T]T
, Ω̄w = diag($̂K−1

w ),

Ω̄β = diag($̂K−1
β ) and Ω̄ = diag($̂K−1). γ1,K and γ2,K

are the regularization coefficients about w and β.

The augmented Lagrange function of (13) is depicted as

J̃Ktotal(θ,XK)

=−wT X̃
T

KZK (β ⊗w) + ν1
(
wTw − 1

)2
+ ν2

(
βTβ − 1

)2
+λ1‖w‖1 + γ1,K

(
w −wK−1)T Ω̄w

(
w −wK−1)

+ λ2‖β‖1 + γ2,K

(
β − βK−1

)T
Ω̄β

(
β − βK−1

)
(14)

The issue (14) is nonconvex and nonsmooth, which is
intractable to compute the gradient directly. Then, we adopt
accelerated proximal gradient (APG) to optimize (14) [36].

APG algorithm: The proximal gradient descent algorithm
is shown in Appendix B for reference. Similar to proximal gra-
dient descent, (14) is divided into the smooth part gK(w,β)
and the nonsmooth part h(w,β).

gK(w,β)

=−wT X̃
T

KZK (β ⊗w) + ν1
(
wTw − 1

)2
+ γ1,K

(
w −wK−1)T Ω̄w

(
w −wK−1)+ ν2

(
βTβ − 1

)2
+ γ2,K

(
β − βK−1

)T
Ω̄β

(
β − βK−1

)
(15)

h(w,β) = λ1‖w‖1 + λ2‖β‖1 (16)

Accordingly, the gradients with respect to parameters are

∇wg =
∂gK
∂w

=−
(
GK,β +GT

K,β

)
w+4ν1w

(
wTw − 1

)
+ 2γ1,KΩ̄w

(
w −wK−1)

(17)
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TABLE I
DISCUSSION OF PARAMETERS

Parameters Illustrations
l = 0 SDiPCA is transformed to SPCA, and only static latent variables are considered.
l = m Only dynamic latent variables are extracted.
λ1 = 0, λ2 = 0 SDiPCA is transformed to traditional DiPCA.
γ1,K = 0, γ2,K = 0 SDiPCA–MSI is transformed to SDiPCA.
γ1,K →∞, γ2,K →∞ Information of current mode MK is neglected and the learned knowledge of previous modes is preserved.

∇βg =
∂gK
∂β

=−(Is ⊗w)
T
ZTKX̃Kw+4ν2β

(
βTβ − 1

)
+ 2γ2,KΩ̄β

(
β − βK−1

)
(18)

∇ν1g =
∂gK
∂ν1

=
(
wTw − 1

)2
(19)

∇ν2g =
∂gK
∂ν2

=
(
βTβ − 1

)2
(20)

where GK,β = X̃
T

KZK (β ⊗ Im).

For the nonsmooth part h, the proximal gradient of the L1

regularization term is determined by soft threshold [37] and
calculated by (39). Motivated by Adam [38], the step size
is calculated adaptively to accelerate the convergence rate,
namely,

tk =f (α, υk,∇gk)

=α

/(√(
τ2υk + (1− τ1) ‖∇gk‖2

)/
(1− τ2) + ε

)
(21)

where υk is updated by

υk = τ2υk−1 + (1− τ2)‖∇gk‖2 (22)

in which ∇gk is the corresponding gradient at kth iteration,
α is constant, τ1 = 0.9 and τ2 = 0.999. ε is added to avoid
ill–conditioning issues with ε = 10−8. The procedure of APG
is summarized in Algorithm 1.

Modified synaptic intelligence: Recall (12), the importance
measure is computed by

$ =
∑
k

(
(−∇θg (θk))

T � (θk − θk−1)
T
)T

(23)

where θk =
[
wT
k ,β

T
k

]T
, wk and βk are the

updated parameters after kth iteration. The objective
function g is calculated by (15). ∇θg (θk) =[
(∇wg (wk,βk))

T
, (∇βg (wk,βk))

T
]T

, which is calculated
based on (17) and (18). After the training procedure, each
element of $ is normalized by [33]

$̂i = max

(
0,

$i

(∆θi)
2

+ ζ

)
(24)

where ∆θi is the total change of ith variable for mode MK ,
1 ≤ i ≤ s+m. ζ > 0 is added to avoid ill–conditioning
issues. Similar to (11), the importance measure is normalized
in (24) to ensure that the regularization term shares the same
unit with the true objective function.

To make the dynamic latent variables mutually uncorrelated,
the parameters of each latent variable are estimated greedily.
The solution procedure for (13) is summarized as the inner–
loop of Algorithm 2, where its out–loop iterates over the
number of latent variables with index l. The optimal parame-
ters are denoted as WMK

, ΓMK
, PMK

, ΩMK
. Obviously,

ΘMK
= [WMK

; ΓMK
]. After the training procedure fin-

ishes, we lose the access to data XK . Note that when K = 1,
ΩM0 = 0. There is no need to provide WM0 and ΓM0 . Here,
the total loss JKtotal is actually the loss function of mode M1

and Algorithm 2 is also applied to solve the optimization issue.
We discuss the influence of regularization coefficients and

the number of dynamic latent variables l in Table I. Specif-
ically, the hyperparameters γ1,K and γ2,K play an important
role in distributing the importance of sequential modes. When
the Kth mode is especially significant, the values of γ1,K and
γ2,K would be small. Here we mainly focus on the perfor-
mance of the current mode. If the current mode is regarded
as unimportant by prior knowledge, the hyperparameters may
be large to forget the current information gracefully.

C. Monitoring model

Define R = WMK

(
P T
MK

WMK

)−1
, T = XKR. Form

the T i, i = 1, · · · , s + 1, from T in the same way with
(4). Similar to (2), we establish the relationship between the
predictable latent scores T s+1 and the past T 1,T 2, · · · ,T s:

T s+1 =
s∑
i=1

T iΦs+1−i +E

=T̄ sΦ +E

(25)

where T̄ s = [T 1 T 2 · · · T s], Φ = [Φs Φs−1 · · · Φ1]. Φ is
estimated by original least squares, namely,

Φ̂ =
(
T̄
T
s T̄ s

)−1
T̄
T
s T s+1 (26)

Algorithm 3 Training procedure of SDiPCA–MSI
1: Calculate the mean value and standard deviation of the training

data, and normalize them with zero mean and unit variance;
2: For mode MK , solve the optimization issue (13) by Algorithm

2 and the parameters are updated by APG in Algorithm 1;
3: Build a VAR model for latent scores by (25)–(26) and T s+1 is

predicted by (27);
4: Calculate the prediction error matrix E by (31) and perform

PCA, namely, E = T rP
T
r +Er;

5: Calculate the monitoring statistics by (29) and (32), and the
corresponding thresholds are estimated by KDE.
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Algorithm 4 Online monitoring procedure of SDiPCA–MSI
1: Preprocess the testing data based on the mean value and standard

deviation of normal training data;
2: Calculate the dynamic latent scores by (25), the predictable latent

scores by (27) and the dynamic residual matrix by (28);
3: Calculate two monitoring statistics by (29) and (32);
4: Judge the operating condition: all statistics are lower than the

thresholds, the process is normal. Otherwise, the process is faulty.

Then, T s+1 is predicted by

T̂ s+1 = T̄ sΦ̂ (27)

The dynamic residual matrix V is computed by:

V = T − T̂ s+1 (28)

Monitoring the latent dynamic score matrix T directly may
lead to high false alarms. Thus, a monitoring index is built
through V and defined as

T 2
ϕ = vTΦvv (29)

Φv =
P vΛ

−1
v P

T
v

Jth,T 2
v

+
I − P vP

T
v

Jth,SPEv

(30)

where P v is the principal component matrix by PCA, and
Λv = 1

NK−s−1V
TV . Jth,T 2

v
and Jth,SPEv are the thresholds

of two statistics T 2
v and SPEv based on PCA, respectively.

The static prediction error is

E = Xs+1 − T s+1P
T (31)

Similar to (29), an index is designed to monitor the static error

T 2
c = eTΦce (32)

Φc =
P rΛ

−1
r P

T
r

Jth,T 2
r

+
I − P rP

T
r

Jth,SPEr

(33)

where P r is the principal component matrix. Perform PCA on
E, then E = T rP

T
r +Er and Λr = 1

NK−s−1T
T
r T r. Jth,T 2

r

and Jth,SPEr are the thresholds of T 2
r and SPEr.

The thresholds are calculated by kernel density estimation
(KDE) [26]. When a novel mode arrives, similar to current
multimode process monitoring methods, partial normal data
should be collected and then the model is updated offline
in Algorithm 3. Since the previously learned knowledge is
relevant for learning the current mode, enough data are not
required before learning [21], [22]. The monitoring phase is
summarized in Algorithm 4.

IV. DISCUSSION

A. Comparative experiments

Take three successive modes as an example to illustrate
the superiorities of SDiPCA–MSI in Table II. Four typical
multimode algorithms are selected for comparison, namely,
PCA–EWC [15], RPCA [19], IMPPCA [26] and MCVA [27].
SDiPCA–MSI, PCA–EWC and RPCA are adaptive methods
based on a single model, while IMPPCA and MCVA belong
to multiple–model methods.

For Situations 1–11, we illustrate the catastrophic forgetting
issue of SDiPCA and continual learning ability of SDiPCA–
MSI for sequential modes. Specifically, we get the model A
after training the modeM1 by SDiPCA. When the modeM2

arrives, a set of data should be collected and the model is
updated by assimilating new information while retraining the
learned features. Therefore, the model B is expected to monitor
two modes simultaneously and then the backward transfer
ability is reflected. For Situations 4 and 5, the comparison
aims to interpret the catastrophic forgetting issue of SDiPCA,
which reveals that the model for one mode underperforms for
another mode. Hence, the performance of Situation 5 should
be poor. In the most ideal case, the performance of Situation
2 is better than that of Situation 4, which indicates that the
learned knowledge of previous modes may aid the learning of
future relevant modes. Aforementioned analysis could also be
applied to Situations 6–11. For PCA–EWC, the experimental
procedures of Situations 12–17 are analogous to those of
SDiPCA–MSI. We intend to compare the continual learning
ability between PCA–EWC and SDiPCA–MSI. RPCA is uti-
lized for comparison, as it fails to track the dramatic changes
in multimode processes. The model is updated based on new
data and the previous information is forgotten gradually.

Similar to most multiple–model algorithms, IMPPCA and
MCVA identify the modes and build the local monitoring
model within each mode. Data from all possible modes
are required before learning, which is expensive and time-
consuming. Take IMPPCA as an instance, MCVA shares

TABLE II
COMPARATIVE SCHEMES FOR CASE STUDY

Methods Training sources
(Model + Data)

Model
label

Testing
sources

Situation 1 SDiPCA M1 A M1

Situation 2 SDiPCA–MSI A + M2 B M2

Situation 3 SDiPCA–MSI - B M1

Situation 4 SDiPCA M2 C M2

Situation 5 SDiPCA - C M1

Situation 6 SDiPCA–MSI B + M3 D M3

Situation 7 SDiPCA–MSI - D M1

Situation 8 SDiPCA–MSI - D M2

Situation 9 SDiPCA M3 E M3

Situation 10 SDiPCA - E M1

Situation 11 SDiPCA - E M2

Situation 12 PCA M1 F M1

Situation 13 PCA–EWC F + M2 G M2

Situation 14 PCA–EWC - G M1

Situation 15 PCA–EWC G + M3 H M3

Situation 16 PCA–EWC - H M1

Situation 17 PCA–EWC - H M2

Situation 18 RPCA M1 I M1

Situation 19 RPCA I + M2 J M2

Situation 20 RPCA J + M3 L M3

Situation 21 IMPPCA M1, M2 M M1

Situation 22 IMPPCA - M M2

Situation 23 IMPPCA M1, M2, M3 O M1

Situation 24 IMPPCA - O M2

Situation 25 IMPPCA - O M3

Situation 26 MCVA M1, M2 P M1

Situation 27 MCVA - P M2

Situation 28 MCVA M1, M2, M3 Q M1

Situation 29 MCVA - Q M2

Situation 30 MCVA - Q M3
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the similar design procedure. For Situations 21 and 22, a
model is established based on data from modesM1 andM2,
thus delivering optimal performance for the learned modes.
When a new mode M3 appears, sufficient data are collected
and then the model is retrained based on data from three
modes. However, there are various unknown modes in practical
systems. Storing all data and retraining the model seems to be
expensive and less efficient [32]. To be consistent with other
approaches, we calculate the global statistics of MCVA similar
to [26] instead of Bayesian inference probability.

B. Computational complexity

The computation focuses on Algorithm 2. The term flam, a
compound operation including one addition and one multipli-
cation, is utilized to reflect operation counts [15].

For mode MK , the computational complexity is described
as follows. The calculation of X̃

T

KZK needs (NK − s)m2s
flam before iteration. For w, the gradient (17) requires m3s+
2m2+4m flam. The objective (13) needs m2s+ms+5m+2s
flam for each iteration. Thus, the calculation of Algorithm 1
needs 2m3s+(4+2s)m2 +(2s+22)m+4s+10 flam in total
for each iteration. With regard to β, the gradient (18) needs
m2s2+4s flam for each iteration. The calculation of Algorithm
1 requires 2m2s2 + (2m2 + 2m + 22)s + (4m + 10) flam
in total for each iteration. The step 4) in Algorithm 2 needs
2sm3+(2s2+2s+6)m2+(4s+28)m+(28s+32) flam. The
calculation of step 5) in Algorithm 2 needs 3NKm+NK flam.
Assume the objective function converges after ktotal iterations,
it requires (2sm3 + (2s2 + 2s+ 6)m2 + (4s+ 28)m+ (28s+
32))ktotal + (3NKm+NK + (NK − s)m2s)l in total.

C. Virtues and potential limitations

To illustrate the proposed method comprehensively, virtues
and potential limitations are outlined. The advantages are
summarized as follows:

1) Different from most multiple–model schemes [12], [13],
[23], [26], [27], a single model is updated based on the
previously learned knowledge and the current data when
a novel mode arrives. Besides, it delivers the forward
and backward transfer ability for successive dynamic
modes. The learned knowledge is preserved to monitor
the previous modes, which may be valuable to enhance
the performance for future relevant modes.

2) SDiPCA–MSI shares similar advantages with DiPCA,
such as robustness to collinearity, interpretability, predic-
tion performance, etc [7], [8].

3) The importance measure (11) is more accurate than
(10) of SI. Besides, MSI has more choices about the
initialization of optimization issues, which is relevant for
acquiring the optimal model parameters. Compared with
[35] and [15], the importance measure is estimated when
the learning finishes, without decoupling the importance
measure and the optimization issue.

Some potential limitations are discussed below:
1) Since the objective function is nonconvex, only the local

optimal parameters are acquired [7].

2) SDiPCA-MSI requires the similarity among modes and
may fail once the modes are especially diverse [29]. In
this case, it is essential to build another monitoring model.

3) Similar to most multimode monitoring methods [15],
[21], [22], a set of data should be collected before relearn-
ing, which may cause trouble to real–time monitoring.
Briefly, the proposed method is not able to monitor novel
modes without any relevant information. To our best
knowledge, this issue may be inevitable only by data,
which could be settled by data and prior knowledge.

4) The mode is identified by prior knowledge, which is
generally available in industrial systems. It has been men-
tioned that new modes and faults are indistinguishable
without prior data from their modes [10]. Thus, it is more
reliable to identify modes by data and expert experience.

V. CASE STUDIES

A. CSTH

The CSTH process is a nonlinear dynamic process and
serves as a preferred benchmark for multimode process moni-
toring [10], [14], [39]. The CSTH model was built and relevant
introduction was presented in [40]. The CSTH process mixes
the hot water and cold water well to satisfy the demand.
Three critical variables, namely, level, temperature and flow,
are manipulated by PI controllers. Six related variables are
selected for monitoring in this paper.

The comparative experiments have been designed in Table
II. Two cases are considered and the operating settings are
listed in Table III. For each case, three modes arrive sequen-
tially. For each mode, 1000 normal samples are collected and
1000 testing samples are generated as follows:

1) Case 1: the level is added by 0.04 from 501st sample;
2) Case 2: the temperature is added by 0.055 from 501st

sample.
For case 1, SDiPCA–MSI enables to monitor successive

modes accurately. When two or more modes appear, the
model is updated by consolidating new information while
preserving the previously learned knowledge. Specifically, the
FDRs of Situations 2 and 3 are 99% and 100%. The FDRs of
Situations 6–8 are more than 93% and satisfactory. Meanwhile,
the FARs are especially low. However, SDiPCA may fail
to monitor multiple modes based on a single model. For
instance, the FARs of Situations 5 and 11 are 18.40% and
53.20%. The learned experience of previous modes may be
overwritten when a new mode is learned, which leads to abrupt
performance decrease. PCA–EWC monitors multiple modes

TABLE III
NORMAL OPERATING MODES OF CSTH

Case
number

Mode
label

Level
SP

Temperature
SP

Hot water
valve

Case 1
M1 9 10.5 4.5
M2 12 8 4
M3 12 10.5 5.5

Case 2
M1 13 12 5.5
M2 12 11 5
M3 12 13.5 6
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Fig. 2. Monitoring charts of case 2

based on a single mode, but the performance is unconvincing.
For Situation 13, the FDR is 74.40% and the monitoring model
cannot detect the fault accurately. For Situation 17, the FAR
is 51%, which means that partial faulty samples are mistaken
for normal samples. For Situations 18–20, RPCA model is
updated based on the successive data, but it is not able to track
the rapid changes in the entire dataset. The normal changes
are mistaken for faults and the FARs are basically 100%. With
regard to IMPPCA and MCVA, the faults can be detected
precisely and timely. According to the scheme designed in
Table II, IMPPCA and MCVA monitor the learned modes, and
the performance should be excellent. The simulation results
are summarized in Table IV. Partial monitoring charts are
shown in Figure 1 in the supplementary material owing to
space limitation.

For case 2, the FDRs of Situations 2 and 3 approach
100%. The model D trained by SDiPCA–MSI is capable of
monitoring three modes and the FDRs are favorable. Although
the model C is able to monitor two modes, the model E
fails to detect three faults simultaneously. This phenomenon
reveals the catastrophic forgetting issue of SDiPCA, where the

information of previous modes is overlapped by new features.
Moreover, the FDR of Situation 6 is 99.00% while the FDR of
Situation 9 is 66.06%. It indicates that SDiPCA–MSI furnishes
the forward transfer ability for future relevant modes, where
the learned knowledge of previous modes may be beneficial
for enhancing the monitoring performance of new modes.
Briefly, the simulation results of Situations 1–11 illustrate
the continual learning ability of SDiPCA–MSI for successive
modes. For Situations 12–17, the FDRs of PCA–EWC are
excellent, but the FARs are a little higher than SDiPCA–MSI.
Similar to case 1, RPCA fails to monitor the multiple modes
accurately. IMPPCA performs notably on case 2 and the FARs
are less than 12.20%. MCVA is unable to supply prominent
performance. Specifically, the FDR and FAR of Situation 27
are 29.52% and 28.71%, which signifies that normal data
and faulty samples cannot be separated. Besides, the FDR of
Situation 29 is 30.92%. Partial monitoring charts are depicted
in Fig. 2 and more charts are illustrated in Figure 2 in the
supplementary material.

In conclusion, SDiPCA–MSI alleviates the catastrophic
forgetting issue of SDiPCA. The model is updated continually
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TABLE IV
FDRS (%) AND FARS (%) FOR CSTH AND THE COAL PULVERIZING SYSTEM

Case
number Methods

CSTH The coal pulverizing system

Case 1 Case 2 Case 3 Case 4 Case 5

Indexes FDR FAR FDR FAR FDR FAR FDR FAR FDR FAR
Situation 1 SDiPCA 100 9.60 99.00 0.80 99.82 0 94.12 3.76 100 0.37
Situation 2 SDiPCA–MSI 99.00 0.40 98.39 1.41 100 0.48 98.16 0 100 0.18
Situation 3 SDiPCA–MSI 100 3.60 99.20 1.20 99.82 0.56 99.11 7.52 100 0.63
Situation 4 SDiPCA 100 6.00 98.59 1.40 100 0.64 98.16 0 100 0.09
Situation 5 SDiPCA 100 18.40 99.20 1.00 100 38.16 98.76 9.02 100 55.13
Situation 6 SDiPCA–MSI 93.37 1.80 99.00 2.60 86.09 0 100 5.96 99.78 0.10
Situation 7 SDiPCA–MSI 99.40 0.40 100 8.60 99.82 0.19 96.74 6.02 100 2.62
Situation 8 SDiPCA–MSI 94.38 4.60 100 8.80 99.88 5.28 98.49 0 100 0.45
Situation 9 SDiPCA 100 15.00 66.06 0.60 86.49 0 100 9.44 100 0.31
Situation 10 SDiPCA 100 2.80 92.87 0.40 100 59.77 99.90 27.07 100 72.88
Situation 11 SDiPCA 100 53.20 93.17 0.40 100 68.80 98.66 1.68 100 15.64
Situation 12 PCA 99.20 0 100 6.40 99.45 0 93.69 0 100 0.37
Situation 13 PCA–EWC 74.40 4.60 100 7.40 100 6.24 99.17 32.77 99.71 13.55
Situation 14 PCA–EWC 97.40 7.60 100 5.20 99.64 20.30 99.65 14.29 100 5.63
Situation 15 PCA–EWC 100 14.40 100 5.20 91.31 0 100 1.49 99.34 0.71
Situation 16 PCA–EWC 100 2.20 100 11.20 99.45 15.41 98.82 1.50 100 4.88
Situation 17 PCA–EWC 100 51.00 100 11.20 100 2.72 98.67 27.73 99.71 11.82
Situation 18 RPCA 100 99.00 100 99.80 100 100 100 100 100 100
Situation 19 RPCA 100 100 100 100 100 100 100 100 100 100
Situation 20 RPCA 100 100 100 100 100 100 100 100 100 100
Situation 21 IMPPCA 100 0.80 100 5.80 99.45 0 94.33 0 100 0.37
Situation 22 IMPPCA 100 4.20 100 12.20 100 35.84 97.67 0 99.71 15.27
Situation 23 IMPPCA 100 3.00 100 8.00 99.45 0 94.57 6.02 100 1.75
Situation 24 IMPPCA 100 5.60 99.60 7.40 100 39.84 97.67 0 99.71 3.66
Situation 25 IMPPCA 100 5.60 98.20 6.00 87.95 0 100 11.06 99.56 18.11
Situation 26 MCVA 100 3.20 97.79 5.20 100 43.61 96.16 0 100 1.12
Situation 27 MCVA 100 0.60 29.52 28.71 90.14 10.34 100 57.89 52.91 1.12
Situation 28 MCVA 100 1.60 98.59 1.60 100 27.44 98.57 27.82 100 0.63
Situation 29 MCVA 100 0.80 30.92 0.20 100 4.64 97.67 0 100 3.45
Situation 30 MCVA 100 9.80 94.38 6.60 88.12 0 100 26.96 99.78 0.51

based on the learned knowledge and new data when a new
mode arrives, thus delivering optimal performance for succes-
sive modes. Since similarity exists among different modes, the
learned knowledge of previous modes may contribute to build-
ing an accurate monitoring model for future new modes. PCA–
EWC is also an effective algorithm with continual learning
ability for multimode processes, where the data are required
to be stationary and Gaussian distributed in each mode. Thus,
the performance is worse than the proposed method in mul-
timode dynamic systems. Moreover, the importance measure
of SDiPCA–MSI is easier to estimate than PCA–EWC. As a
typical adaptive method, RPCA is capable of dealing with slow
normal variations but fails to track the dramatic changes in the
entire dataset. IMPPCA provides the superior effect for this
CSTH case. MCVA is unsatisfactory in some situations. For
IMPPCA and MCVA, the model needs to be retrained from
scratch when a new mode appears. They require considerable
computation and storage resources for numerous modes, which
makes it inappropriate for practical industrial systems.

B. The coal pulverizing system

In this paper, one unit of the 1000-MW ultra–supercritical
thermal power plant is adopted to illustrate the effectiveness
of SDiPCA–MSI, namely, the coal pulverizing system. The
thermal power plant locates at Zhoushan, Zhejiang Province,
China. The coal pulverizing system includes coal feeder, coal
mill, rotary separator, raw coal hopper and stone coal scuttle,

Fig. 3. Schematic diagram of the coal pulverizing system

as shown in Fig. 3. The product of the coal pulverizing system,
namely, the pulverized coal, should be provided with optimal
temperature and coal fineness.

This paper investigates the abnormalities from outlet tem-
perature (case 3), rotary separators (case 4) and the coal
feeders (case 5). To reduce false alarms and enhance detection
accuracy, the variables are selected based on the professional
knowledge and practical experience. The data information
is summarized in Table V. For notation simplification, the
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TABLE V
EXPERIMENTAL DATA OF THE PRACTICAL COAL PULVERIZING SYSTEM

Case
number Key variables Mode

number NoTrS NoTeS Fault
location Coal type Fault cause

Case
3

9 variables: pressure of air powder
mixture, outlet temperature, primary
air pressure and temperature, etc.

M1 1080 1080 533 Yinni Hot primary air electric damper failure
M2 1440 1440 626 Aomeng Air leakage at primary air interface
M3 1440 2880 384 Aomeng Fluctuation of hot primary air control valve

Case
4

9 variables: rotary separator speed and
current, coal feeding capacity, bearing
temperature, etc.

M1 2880 2160 134 Aomeng Large vibration
M2 2880 720 120 Aomei Cooling fan trip of inverter cabinet
M3 2880 1080 806 Aomeng Frequency conversion cabinet short circuit

Case
5

14 variables: current and speed of coal
feeder, rotary separator speed and
current, coal feeding capacity, etc.

M1 2520 1440 801 Aomeng The coal feeder belt is broken
M2 2160 1440 1101 Shenhun Coal block of the coal pipe
M3 2160 1440 984 Aomeng The coal feeder does not drop coal

numbers of training and testing samples are denoted as NoTrS
and NoTeS, respectively. The coal type switching is adopted as
the basis for mode transformation, which could be estimated
by the instantaneous coal feed and the total volume of coal.
Since the coal plan is designed in advance based on market
demand and characteristics of coal, it is feasible to get the coal
consumption information in real time. Intuitively, the mode
information is available for this case. The monitoring results
of three cases are summarized in Table IV.

For case 3, partial monitoring charts are depicted in Fig. 4
and more charts are listed in Figure 3 in the supplementary
material. SDiPCA–MSI can monitor two modes accurately
and the FDRs are higher than 99% for Situations 2 and 3.
However, the FAR of Situation 5 is 38.16%, which indicates
that the model C of mode M2 fails to detect the fault in
mode M1. Similar monitoring performance occurs in three
successive modes. The FARs of Situations 10 and 11 are
higher than 59%, which implies that the model E of mode
M3 can not distinguish the real fault from normal samples
in other modes. For Situations 6–8, SDiPCA–MSI is able to
monitor three modes simultaneously, and the performance is
comparable with Situations 1, 4 and 9. Actually, the significant
information from three modes is preserved in model D, which
is sufficient to deliver superior performance. For PCA–EWC,
the FDRs are more than 90%, but the FARs of Situations 14
and 16 are 20.30% and 15.41%, respectively. Moreover, RPCA
is not able to monitor the multimode processes and the FARs
are 100%. For IMPPCA, the FARs of Situations 22 and 24 are
higher than 35%. For MCVA, the FARs of Situations 26 and
28 are 43.61% and 27.44%, respectively. Although the model
is retrained based on all mode data, two methods still fail to
monitor multiple modes accurately.

The aforementioned analysis also applies to cases 4 and 5.
For case 4, the detection results of SDiPCA–MSI and SDiPCA
are excellent except for Situation 10, where the FAR is
27.07% and the catastrophic forgetting of SDiPCA is reflected.
Besides, the FARs of Situation 6 and Situation 9 are 5.96% and
9.44%, which implies that the previously learned knowledge
contributes to enhancing the monitoring performance of future
new modeM3. For PCA–EWC, the FARs of Situations 13, 14
and 17 are relatively high. That is, SDiPCA–MSI is superior to
PCA–EWC. IMPPCA performs excellently and only the FAR
of Situation 25 is more than 10%. For MCVA, the FARs of
Situations 27, 28 and 30 are higher than 26%. Similarly, for

case 5, the FARs of Situations 5, 10 and 11 are high, which
indicate that the information of previously learned modes
is overlapped by new data. SDiPCA–MSI outperforms other
methods, where the FDRs approach 100% and the FARs are
lower than 3%. For PCA–EWC, the FARs of Situations 13
and 17 are higher than 10%. Besides, RPCA is not able to
monitor the process accurately and the FARs are 100%. For
IMPPCA, the FARs of Situations 22 and 25 are higher than
15%. For MCVA, the FDR of Situation 27 is 52.91%. Owing
to space limitation, the monitoring charts of cases 4 and 5 are
illustrated in Figures 4 and 5 in the supplementary material.

Overall, SDiPCA–MSI delivers the most advantageous per-
formance for successive modes among five methods. The
previously learned knowledge is consolidated without storing
training samples while assimilating information from new
modes, thus avoiding abrupt performance degradation for pre-
vious modes. When similar modes recur, the proposed method
can build an accurate model based on limited new data because
partial significant information has already been preserved in
the learned model. Although PCA–EWC furnishes contin-
ual learning ability for multimode processes, the monitoring
performance is not satisfactory because it requires that data
are stationary and Gaussian distributed in each mode. RPCA
fails to monitor the modes and track the process adaptively.
As the representatives of multiple–model schemes, IMPPCA
and MCVA cannot monitor multiple modes accurately. In
addition, the model needs to be retrained on all normal data
when a new mode appears and all data are required to be
stored. In terms of detection accuracy, storage and computation
resources, SDiPCA–MSI provides optimal performance for
industrial systems.

VI. CONCLUSION

This paper presented a novel extension of DiPCA with
continual learning ability for multimode dynamic process
monitoring, where sparse representation is adopted to enhance
model interpretability and modified synaptic intelligence is
developed to measure the parameter importance. The proposed
SDiPCA–MSI method extracts the significant information of
new modes while retaining the previously learned knowledge
simultaneously, thus avoiding abrupt performance decrease
for the learned modes. Different from traditional multimode
processes, data from all modes are not required to be available
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Fig. 4. Monitoring charts of case 3

before learning and the model enables to adapt to the changing
modes. Besides, virtues and potential limitations are analyzed
to understand the proposed algorithm thoroughly. Although
the mode identification depends on prior knowledge, it is
reliable and convenient because the relevant information has
already existed during the operating process. Compared with
several typical multimode algorithms, the effectiveness and
superiorities of the proposed method have been illustrated by
a CSTH case and a practical coal pulverizing system.

In future, we would investigate the automatic mode iden-
tification based on data and prior knowledge for multimode
dynamic processes. Besides, the novel modes with little infor-
mation would be studied for online monitoring.

APPENDIX

A. Deviation of importance measure
Assuming that the surrogate loss for each parameter up to

Kth mode, JKtotal (θi), is defined by a quadratic function. It
can be decomposed into two terms as

JKtotal (θi) ≡ $̂K
i

(
θi − θ̂Ki

)2
= J̃K (θi) + γKJ

K−1
total (θi)

(34)

where J̃K (θi) is the loss for the current Kth mode, JK−1total (θi)
is the surrogate loss for previous (K − 1) modes.

1) Synaptic intelligence [34]: The importance measure $̂K
i

is calculated by

$̂K
i =

J̃K (θi) + γKJ
K−1
total (θi)(

θi − θ̂Ki
)2

θi = θ̂K−1i
J̃K

(
θ̂K−1i

)
(
θ̂K−1i − θ̂Ki

)2
=
J̃K

(
θ̂K−1i

)
− J̃K

(
θ̂Ki

)
(
θ̂K−1i − θ̂Ki

)2 +
J̃K

(
θ̂Ki

)
· $̂K−1

i

JK−1total

(
θ̂Ki

)
=

$K
i(

θ̂K−1i − θ̂Ki
)2 +

J̃K

(
θ̂Ki

)
· $̂K−1

i

JK−1total

(
θ̂Ki

)
≈ $K

i(
θ̂K−1i − θ̂Ki

)2 + $̂K−1
i

(35)
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where $K
i is the difference between the losses J̃K (θi) in (7)

for the only Kth mode before and after training, and calculated

by (8). Note that JK−1total

(
θ̂Ki

)
=
(
θ̂K−1i − θ̂Ki

)2
· $̂K−1

i ,

JK−1total

(
θ̂K−1i

)
= 0. Since J̃K

(
θ̂Ki

)
6= JK−1total

(
θ̂Ki

)
in most

cases, the estimation (35) of importance measure is inaccurate.
2) Modified synaptic intelligence: For MSI, the importance

measure $̂K
i is calculated by

$̂K
i =

JKtotal (θi)(
θi − θ̂Ki

)2
θi = θ0i JKtotal

(
θ0i
)(

θ0i − θ̂Ki
)2

=
JKtotal

(
θ0i
)
− $̂K

i

(
θ̂Ki − θ̂Ki

)2
(
θ0i − θ̂Ki

)2
=
JKtotal

(
θ0i
)
− JKtotal

(
θ̂Ki

)
(
θ0i − θ̂Ki

)2
=

$K
i(

θ0i − θ̂Ki
)2

(36)

where the initial setting θ0i is random but satisfies the con-
straints. According to (34), JKtotal

(
θ̂Ki

)
= 0, $K

i is calculated
by (8) and the loss function is JKtotal (θi) in (9). Obviously,
(36) is more accurate than (35).

When θ0i = θ̂K−1i , (36) can be reformulated as

$̂K
i =

JKtotal

(
θ̂K−1i

)
− JKtotal

(
θ̂Ki

)
(
θ̂K−1i − θ̂Ki

)2
=

$K
i(

θ̂K−1i − θ̂Ki
)2

(37)

where $K
i is the difference between the losses JKtotal (θi) for

all modes before and after training. Although (37) and (35)
share the same initial setting, (35) is an approximated value
and generally inaccurate. That is to say, (37) is more accurate
than (35).

B. Proximal gradient descent

For a nonsmooth objective function, it is decomposed into:

f (θ) = g (θ) + h (θ)

where g (θ) is differential but h (θ) is nondifferentiable. The
proximal function is defined as

θ+ = arg min
z

1

2t
‖z − (θ − t∇g (θ))‖22 + h (z)

:=proxh,t (θ − t∇g (θ))

where the proximal function prox is defined as [36]

proxh,t (θ) = arg min
z

1

2t
‖z − θ‖22 + h (z)

If h (θ) = λ‖θ‖1, the proximal gradient can be calculated
by the soft threshold

proxh,t (θ) = arg min
z

1

2t
‖z − θ‖22 + λ‖θ‖1

=Sλt (θ)
(38)

where Sλt (θ) has an analytical solution [37]:

[Sλt]i =

 θi − λt, θi > λt
0, |θi| ≤ λt
θi + λt, θi < λt

(39)

where t is the step size.
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