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A B S T R A C T   

Decarbonisation plans largely rely on the electrification of energy-intensive sectors such as transport, which has 
raised both concerns and hopes about the implications for (peak) electricity demand. Particularly so when it 
comes to the potential impact that private EV charging might have on residential demand patterns. On the one 
hand, the more pessimistic view suggests that this could substantially increase the demand experienced during 
peak periods, exacerbating the problems associated with such peaks. On the other hand, the more optimistic view 
suggests that mass uptake of EVs could offer the opportunity to integrate them as distributed storage units. There 
is evidence of the fact that synchronisation of practices associated with the use of energy-intensive devices is 
largely to blame for the occurrence of large peaks in demand; the question of whether this is likely to be the case 
for EV charging as well remains. This paper adds to the literature on the analysis of the synchronisation of 
energy-related practices with an in-depth analysis commuting behaviour, using driver commuters as a case study. 
Cluster analysis is used to identify those commuters with distinctive commuting schedules, and socio- 
demographic profiling of clusters is carried out with a view to identifying any meaningful correlations that 
could help target policy interventions. Three characteristic commuting patterns were identified, with clearly 
distinguishable features in terms of the timing of commuting trips. The analysis of the energy-relevant activities 
shows that arrival times have a noticeable impact on the scheduling and distribution of periods of engagement in 
such activities.   

1. Introduction 

The temporal organisation of daily practices is determined to a large 
extent by the institutionalised rhythms that rule everyday life. Perhaps 
the most prominent example of such rhythms is the one imposed by the 
typical working schedules. 

In recent years – prior to the COVID-19 pandemic – we had started to 
see an increasingly stronger push for the flexibilisation, or reduction in 
the rigidity of institutionally timed work-related events [1–3]; the onset 
of the COVID-19 pandemic has only accelerated this. Despite all this, we 
are yet to see a significant impact on the temporalities of working ar-
rangements, as typical working schedules are still collectively main-
tained by the vast majority of the workforce [4,5], with significant 
implications in terms of both time and energy use [6]. 

Over the last 30 years, approximately 85% of UK workers have been 
employed on typical full-time contracts [7], which normally entail fixed 

contracted hours, and are commonly referred to as ‘9-to-5 jobs’ in some 
western countries. The inherent regularity of such contractual ar-
rangements has clearly had significant bearing on the observed patterns 
of commuting and the peaks in traffic congestion. While these institu-
tionally imposed working - and commuting - rhythms are also bound to 
have an impact on the timing of everyday domestic energy consumption 
[8], the less obvious implications of commuting patterns for the timing 
of practices in the home and energy consumption have been largely 
overlooked to date. However, in the context of the ongoing energy 
transition, this is becoming increasingly hard to ignore, particularly in 
the case of those workers who typically drive to work. 

Like in most countries in the Global North, driving to work is the 
preferred mode of commuting in the UK; for over 50% of those UK 
workers on typical full-time contracts, the car is the default choice 
(Fig. 1). While the private vehicle fleet is currently dominated by in-
ternal combustion engine-powered units, these are being gradually 
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replaced by electric vehicles (EVs). As the share of EVs increases, the 
usage patterns of private vehicles are expected to have a growing impact 
on the power consumption patterns of residential users. As of yet, 
however, there is no consensus as to what extent and how will EV 
charging affect residential demand, and peak load in particular. The 
mass uptake of EVs has raised both concerns and hopes about the po-
tential implications for peak demand load [9]. On the one hand, the 
more pessimistic view suggests that EVs pose a severe threat to the grid, 
and according to recent estimates, it is expected that they could increase 
peak demand load in the UK by as much as 30 GW by 2050 [10]. On the 
other hand, the more optimistic view suggests that EVs offer an un-
precedented opportunity to enhance the grid's capabilities by inte-
grating EVs as distributed energy storage units – an approach commonly 
referred to as V2G (vehicle-to-grid) – which would allow for a more 
effective use of renewable energy sources during daytime and peak 
shaving during evening periods [11]. 

Peak demand mitigation has become a priority on the decarbon-
isation agenda due to the costly implications, both in economic and 
environmental terms, of catering for ‘peaky’ energy consumption pat-
terns. On the one hand, the occurrence of peaks typically results in 
congested low-voltage distribution networks, which would have to be 
substantially reinforced in order to address infrastructure constraints. 
On the other hand, in countries where dispatchable clean power gen-
eration assets (such as hydro) are scarce or non-available, peak demand 
is commonly met by carbon-intensive peaker plants. Concerns around 
the carbon implications of peak demand have recently been com-
pounded by the potential effects of EV charging as people return home 
by car after work in the evening time (e.g. [10,12–16]). An in-depth, 
joint analysis of the relation between commuting and other activity 
patterns could shed light on how social rhythms affect the fundamental 
temporal characteristics of the observed patterns. 

This paper adds to the small but growing literature on the relation 
between the synchronisation of practices and peak demand [17]. The 
purpose of this study is to investigate the varying nature of these periods 
of high societal synchronisation, often referred to as ‘hotspots’ [18], 
with a view to further unpack the temporal dynamics within those pe-
riods with the highest density of practices. Previous studies have indi-
cated that the temporal location of such hotspots of social practice are 
determined by a combination of institutionalised rhythms and people's 
own routines [19], which implies that a closer inspection of the dis-
aggregated activity patterns should reveal measurable differences across 
certain groups of people with shared preferences. And the differences in 
the temporalities of such patterns should, in turn, be reflected on the 
observed in-home energy consumption patterns, as these are strongly 
correlated [6,20]. These issues, however, have not been studied in detail 
in the past. Thus, in order to start shedding some light on these issues, 
this paper focuses on a particular case study, namely the analysis of the 
effects of commuting patterns of full-time workers who typically use 

their car for commuting to work. 
The choice of car commuters in full-time employment as a case study 

is due to the following reasons: 1) workers on full-time contracts are, at 
least in principle, more tightly constrained by institutionalised rhythms 
of typical working schedules [18]; and 2) the car use patterns of those 
who typically drive to work are more likely to have a direct impact on 
the potential charging patterns for EVs [21]. On this basis, the research 
questions guiding our analysis are as follows:  

• To what extent do different preferences in commuting patterns affect 
the temporalities of other in-home energy-related activities during 
peak demand periods?  

• Are the identified differences likely to have an impact in terms of the 
timing of energy use associated with such energy-related activities?  

• Are there any meaningful correlations between the identified 
commuting patterns and socio-demographic factors that could be 
used to target policy interventions?  

• Given the predominance of car commuters, how are these differences 
likely to affect EV charging patterns? 

To address these questions, our analysis looks at the overall levels of 
engagement in different activities throughout the day, as well as the 
distributions of the start time, duration, and end time of the periods of 
activity, which allows for a more direct comparison of the temporal 
characteristics of the observed activity patterns. The daily activity pat-
terns of car commuters are then grouped based on an agglomerative 
clustering approach, with a view to identifying any substantial differ-
ences in commuting patterns across the groups of car commuters that 
could lead to differences in the levels of in-home energy-related activ-
ities during peak energy demand periods. 

In the next section, we offer a brief overview of a set of concepts 
arising from the social practice theory literature that underpin the 
rationale for the analysis that this paper reports on. We then introduce 
the data and analysis approach in the following section. We then present 
the results of the implementation of optimal-matching clustering (a 
sequence analysis technique) on the dataset, and profile the resulting 
clusters. We conclude by discussing the findings and the potential im-
plications for energy and transport demand management. 

2. Temporalities of everyday life: conceptualising evening peaks 
and practice hotspots 

Collectively maintained social rhythms underlie the fundamental 
temporal characteristics of social practices relating to duration and 
sequence [18,23]. It is the existence of such rhythms what gives rise to 
the perceived rigidity of the daily temporal structures and the time 
dependence of the ordering of social practices [17]. 

The need for allocating and scheduling practices within designated 

Fig. 1. Commuting modal split in the UK as a percentage of Trips per person per year. 
Source: Table NTS0409 [22]. 
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time frames creates temporal ‘hotspots’ [18]. These manifest themselves 
in the form of peaks in demand that accommodate such practices. 

Time is often conceptualised as a finite resource that is consumed by 
the practices that encompass everyday life. Hotspots are thus charac-
terised by the compression of certain tasks into the perceived time 
frames so that time can be ‘saved’ for other practices. In a way, hotspots 
are a response to the perceived ‘time squeeze’ which results from the 
‘felt need’ to follow institutional and social rhythms [28]. 

Full-time workers are arguably one of the most susceptible groups to 
this compliance pressure. Typical working arrangements, such as the 
concept of the ‘9-to5 job’, impose a certain temporal structure to the 
daily rhythms of full-time workers. The occurrence of hotspots, how-
ever, is not solely determined by the institutional rhythms that rule 
everyday life. Personal routines co-exist and are interdependent with 
social rhythms [19]. Therefore, even if hotspots are located within 
predictable parts of the day and/or week, their duration and frequency 
vary. Consequently, the ‘time squeeze’ features varying intensity. 

In principle, hotspots are powerful explanations of peak periods. The 
synchronicity and sequencing of practices underpins peaks in energy 
demand [13,14,24]. There is also some evidence that the ‘time squeeze’ 
tends to encourage time-saving practices that tend to be energy- 
intensive [15–17]. In practice, studies on peak energy demand typi-
cally consider what happens in the home in isolation from patterns of 
travel, car use and commuting, reflecting a broader disconnect between 
energy and transport studies, where only a couple of studies have drawn 
attention to this issue [18,19]. For instance, time use studies attempt to 
understand what constitutes peak demand by connecting residential 
electricity demand with energy-related activities carried out while at 
home [25,30–32]. In parallel, transport research has examined evening 
commutes in relation to the timing of work [33]. 

The starting point of this paper is that the (evening) peaks in resi-
dential energy-related activity and return journeys from work cannot be 
treated in isolation. We propose methods and data sources which enable 
a cross-sectoral analysis of the dynamics of energy-related activity, and 
therefore, the associated demand. Understanding what gives rise to the 
observed energy demand loads calls for a comprehensive analysis of the 
reality of the unfolding of in-home energy-related activity patterns 
which, we contend, entails a combined analysis of (car) commuting 
patterns and energy-related activities in the home. In line with other 
empirical papers [8,34–36], we operationalise practices' enactment in 
terms of activities. This is not only consistent with the methodological 
time use approach described in the following section, but also with a key 
aspect of practice hotspots, which is the fact that they are better un-
derstood as groups of people performing activities synchronously. 
Others have pointed to the importance of focusing on clustering and 
grouping as part of research on congestion and peaks [37]. And based on 
the same reasons, we mobilise clustering techniques and socio- 
demographic profiling of clusters as ways to interpret how hotspots 
materialise. 

3. Data and methods 

In order to quantitatively analyse the relationship between 
commuting activity and in-home activity, we make use of temporally 
resolved daily activity sequences such as the time diaries collected as 
part of time-use surveys. 

This paper reports on the analysis of the UK Time-Use Survey (TUS) 
data for the identification of driving commuting patterns and mapping 
of the effects of such patterns on the temporalities of other in-home daily 
activity profiles. 

Characteristic commuting patterns were identified through the 
implementation of an optimal matching clustering algorithm on the TUS 
daily activity sequences. 

The optimal matching of the commuting activity profiles was based 
on the dynamic hamming approach introduced by Lesnard [38,39]. This 
was previously applied to the identification of the ‘collective rhythms’ of 

social processes such as the scheduling of work [3,39] and vehicle use 
[40]. It is thus well-suited to the investigation of the social rhythms of 
commuting. 

3.1. Data pre-processing and selection of analysis sample 

Time-use surveys are studies that look specifically at how people 
spend their time. Survey recruitment is typically done at the household 
level, and the sample selection procedures aim at gathering the most 
statistically representative sample of the population of a given country. 
To ensure the representativeness of everyday life, respondents are asked 
to complete time diaries for (typically) two days – one work day and one 
weekend day – and different households are asked to complete diaries 
for different days of the week throughout the duration of the survey. 

The analysis carried out in this paper is based on the UK TUS sample 
for 2014/2015, which is the most recent year available at the time of the 
analysis [41]. This particular TUS dataset contains time diaries for one 
weekday and one weekend day, where the activities of over 11,000 in-
dividuals were reported every 10 min. 

Crucially for the analysis presented in this paper, the UK TUS data 
provides information not only on the start and end time of commuting 
trips, but also on the modes of transport used by the different survey 
respondents. In addition to time diaries, TUS studies also collect some 
basic socio-demographic information on the households taking part in 
the study, such as age, working status and income. Based on this infor-
mation, we filter the TUS dataset to select a sub-sample of respondents 
that reported being full-time employees and living in households owning 
a car. 

Preliminary processing of the TUS data [41] confirmed that a 
considerable proportion of those full-time workers with access to a car 
actually use their car(s) to commute to work. The sample selection was 
carried out as follows. Firstly, out of all respondents, we identified all 
potential car commuters; that is, respondents over the minimum legal 
driving age with access to a car. Secondly, we identify those respondents 
who reported being full-time workers. Finally, we selected the diaries 
corresponding to weekdays where at least one driving commuting ac-
tivity episode was reported. We thus end up with a final sample size of N 
= 2129, which corresponds to 28.5% of all potential car commuters. 

The analysis is restricted to weekday diaries only as we are interested 
in the relation between peaks in commuting activity and in-home en-
ergy-related activities, both of which occur during weekdays. While 
there are some instances of commuting activity reported in weekend 
diaries, the bulk of commuting activity undoubtedly occurs during 
weekdays. And while evening peaks of in-home energy-related activity 
also occur during weekends, they are considerably higher during 
weekdays [29]. 

Through the re-coding and processing of TUS diaries we obtain a set 
of daily activity profiles for a number of activities, including commuting 
to/from work. In the resulting dataset, each activity sequence consists of 
144 intervals 10 min long, corresponding to a 24-hour period starting 
from 4:00 h on a given day and ending at 3:50 on the following day. 
While the overall daily activity profiles contain the information about all 
the activities, isolated activity profiles (e.g. the commuting activity 
profile) are extracted for the purpose of comparing them more closely, 
and thus highlight their differences. 

3.2. Clustering of daily activity profiles 

After filtering and restructuring of the TUS dataset, we implemented 
an optimal matching algorithm on the daily commuting activity profiles, 
in order to estimate the dissimilarity (or ‘distance’) between sequences, 
based on the Dynamic Hamming Distance approach developed by Les-
nard [26,27]. We then used pairwise distance estimates as input for the 
clustering analysis, with the aim to determine whether certain charac-
teristic commuting patterns can be distinguished among the driving 
commuters in our sample (for a similar approach see Mattioli et al. 
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[40]). 
Optimal Matching (OM) is a sequence analysis technique used to 

assess the similarity of sequences of events. From a data analytics point 
of view, our dataset corresponds to a set of discrete categorical time 
series, and these can be compared based on metrics that assess the level 
of similarity of any two given sequences through elementary editing 
operations such as insertion, deletion and substitution. The (weighted) 
number of operations required to transform a sequence into another 
provides a metric of dissimilarity, enabling the clustering of the time 
diaries [38]. 

The clustering of activity patterns was based on the PAM (parti-
tioning around medoids) algorithm, which is a variant of the k-means 
partitional algorithm better suited to the analysis of categorical time 
series [42]. Just as k-means, the PAM algorithm attempts to minimise 
the within-cluster variance. The criteria are similar to the Ward's mini-
mum variance method, only that the variance is weighted by the average 
number of points in the clusters. 

The optimal number of clusters was determined based on a cluster 
separation score known as the silhouette coefficient [43], which is a 
measure of how well matched are the analysed sequences to the clusters 
they have been assigned to. 

3.3. Mapping the relationship between commuting and activity patterns 

Each of the identified clusters groups those respondents whose ac-
tivity patterns share some resemblance in terms of the overall levels of 
activity throughout the day; particularly when it comes to their 
commuting patterns. However, addressing the research questions that 
motivated this study requires a more detailed mapping of the potential 
effects of commuting patterns on other in-home activity patterns. Thus, 
in addition to the analysis of overall levels of activity throughout the 
day, we also look at the distribution of the start time, duration, and end 
time of the periods of activity. This allows for a more direct, quantitative 
comparison of the temporal features that characterise the observed ac-
tivity patterns. 

In order to obtain such distributions, we identify the relevant periods 
of activity in each of the daily activity diaries, from which their dura-
tion, start and end times can be extracted, and their corresponding 
distribution with respect to the time of day can be constructed. Based on 
these distributions, we are able to determine the times of day where 
most people start making their way to work or back home, and also the 
most likely times for this to happen on a given workday. Thus, the issue 
of studying the impact of commuting patterns on other in-home activ-
ities is reduced to the analysis of such distributions. 

In the following section, we present the graphical representations of 
the daily activity profiles and distributions described in this section, and 
further discuss the implications of the differences observed across the 
identified groups of car commuters. 

4. Results 

4.1. Overall distribution of start times of driving commuting trips 

The analysis of the distribution of start times of driving commuting 
trips during the typical work day highlights the level of heterogeneity in 
commuting patterns (Fig. 2). As expected, there are certain times of day 
where peaks in commuting activity occur (i.e. morning and evening rush 
hours). However, the shape of this distribution of start times of 
commuting trips also gives a clear indication of markedly different 
commuting patterns, particularly around the evening commuting 
period. Unlike the morning peak, where a gradual but steady increase 
followed by a sharp decrease in commuting activity is observed, the 
evening peak is characterised by a rather discontinuous progression 
towards the absolute peak, surrounded by pronounced albeit consider-
ably smaller surges in activity levels. In practice, this is a reflection of the 
differences in working arrangements of individual workers, as well as 
the diversity of evening activity schedules. 

4.2. Clustering of daily activity profiles 

The clustering analysis was implemented multiple times to search for 
the solution with the optimal number of clusters, splitting the travel 
activity profiles into 2 through to 6 clusters. The three-cluster solution 
was found to be the optimal split, as shown by Figs. 3 and 4 below. 

The qualitative comparison between the commuting activity profiles 
of individual clusters in Fig. 3 shows that when the number of clusters 
exceeds 3, the distinctive features of the different clusters begin to ‘fade 
into the noise’. No improvement was seen when the number of clusters 
was further increased, and 6 clusters was chosen as arbitrary cut-off 
point for the purposes of illustrating this in Fig. 3. 

Fig. 4, on the other hand, is the result of a quantitative comparison 
between the different implementations of the clustering analysis where a 
cluster separation score – namely, the average of the silhouette co-
efficients – is assigned to each clustering solution. The score is a measure 
of how similar a given activity sequence is to sequences in its own 
cluster, relative to those in other clusters. Higher values indicate a better 
match of the different points to their own cluster. Therefore, as Fig. 4 
indicates, the three cluster solution is the optimal one. 

Fig. 2. Blue line: overall distribution of travel start times of driving commuting trips with respect to the time of day for a typical weekday; red line: average levels of 
active home occupancy during weekdays in the UK; black line: typical winter weekday electricity load profile for the average UK domestic customer – adapted from 
[20], based on data from ELEXON Ltd. [44]. 
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The three-cluster solution highlights different commuting patterns 
that can be summarised as follows. Cluster 1 (‘Earlier commuting’) ac-
counts for 32% of the analysis sample and characterised by two rather 
spread-out peaks, in the morning between 6:00 and 9:00, and in the 
afternoon between 14:00 and 16:00. Cluster 2 (‘Later commuting’ - 
37%) shows somewhat more pronounced peaks at around 8:00 and 
18:00. The third cluster (‘Staggered commuting’ – 31%) is similar to 
Cluster 2 in terms of timing of the morning peak, but shows a less clearly 
defined peak in the afternoon, with higher levels of commuting activity 
around the overlap between the evening peaks of Clusters 1 and 2. 

The choice of label for this third cluster is best understood with the 
help of Fig. 5, which shows the levels of travel (driving) activity asso-
ciated with other purposes than just commuting to/from work. Unlike 
most workers in the ‘Earlier’ and ‘Later’ commuting clusters, who 
appear to go straight home from work, workers in cluster 3 report less 

commuting activity during the evening. However, as Fig. 5 shows, 
cluster 3 shows significantly higher levels of ‘other’ travel around the 
time where one would expect the journey home from work to take place. 
This kind of behaviour is consistent with people who are making stops 
on their way home for things like picking up kids or going to the shops, 
etc. – hence the ‘Staggered commuting’ label. Due to the way the time 
use diaries are structured, this tends to result in a shorter duration of 
‘driving home from work’ episodes in the evening, even though people 
are effectively ‘trip chaining’, i.e. conducting other activities on their 
journey home from work. 

4.3. Mapping the relationship between commuting and activity patterns 

The overall levels of commuting activity provide an indication of 
when most people are making their way to/from work. However, in 

Fig. 3. Clustering of driving commuting activity profiles from TUS data; comparison between solutions with 2, 3, 4 & 5 clusters. Individual profiles correspond to the 
relative proportion of commuters at a given time of day. Profiles have been normalised to allow for better comparison. The shaded region indicates the period where 
the most critical differences are observed. 

Fig. 4. Cluster separation scores for the implementation of the clustering al-
gorithm for 2 to 6 clusters. Fig. 5. Daily profiles of driving activity associated with non-commuting travel.  
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order to get a better sense of the impact of commuting patterns on the 
other activities that are typically carried out on a given workday, our 
analysis looks at the distribution of the start and end times of the periods 
of commuting. As Fig. 6 shows, there is nearly a 2-hour difference be-
tween the most common times at which ‘early’ and ‘late’ commuters 
start making their way home after work. However, it would appear that, 
on average, ‘late commuters’ have shorter commutes than ‘early 
commuters’. 

While those workers on the ‘staggered commuting’ cluster report less 
‘commuting only’ episodes, when they do, they feature a similar pattern 
to ‘early commuters’ in terms of the most common start and end times of 
their commuting episodes. However, since their ‘effective’ evening 
commuting trips tend to be staggered, or broken down in between 
multiple stops along the way, their activity patterns tend to be more 
consistent with the behaviour of ‘late commuters’ as we discuss below. 

The analysis of the in-home activity patterns of survey respondents in 
the different clusters reveals clear differences between them in terms of 
both the timing of activities and the rates of engagement in different 
activities throughout the day (Fig. 7). For example, ‘early commuters’ in 
Cluster 1 tend to start watching TV, prepare food, and wash dishes 
earlier than individuals in other clusters. Conversely, ‘late commuters’ 
in Cluster 2 have earlier and more concentrated ‘personal care’ activities 
in the morning, and tend to eat later in the evening. Interestingly, the 
three clusters show a remarkably similar distribution in terms of the 
time of day when people go to sleep. A total of 16 activities were ana-
lysed, including those shown in Fig. 7 and others like laundering and 
household upkeep. The examples in Fig. 7 were selected as they show 
the sharpest contrasts across all clusters. 

While ‘early’ and ‘staggered commuters’ tend to start their evening 
commuting trips earlier (Fig. 6), Fig. 7 shows that their overall behav-
iour is rather similar to that of ‘late commuters’ when it comes to do-
mestic activities such as ‘food preparation’, ‘TV watching’, ‘eating’ and 
‘dishwashing’. 

Another interesting point of comparison when it comes to assessing 
the impact of the commuting patterns is the estimate of ‘available time’ 
while at home after coming back from work. A way of estimating this is 
through the analysis of the distribution of start (or end) times of certain 
activities, such as driving back home in the evening and sleeping. The 

purpose of this analysis is to show whether differences in the timing of 
home arrival determine the total amount of available time during the 
evening. 

Fig. 8 confirms that the start times of the sleeping periods at the end 
of the day are quite similar across clusters of commuters. However, the 
distribution of home arrival times is much less regular. This suggests that 
‘late commuters’ in Cluster 2 have on average much less time than ‘early 
commuters’ to undertake domestic activities, which might lead to a 
peakier distribution of their domestic energy demand associated with 
the concentration of energy-intensive activities around the evening ac-
tivity ‘hotspot’. 

4.4. Socio-demographic profiling of clusters 

Previous studies have highlighted the fact that differences in socio- 
demographic characteristics have a measurable impact on the intra- 
personal variability of travel behaviour (e.g. [45]), as well as in the 
electric load profile (e.g. [46]). In the context of policy-making, having 
access to this kind of information may prove particularly useful as it 
could help in identifying priority target groups and developing policy 
portfolios better suited to different segments of the population. To that 
end, we conducted a descriptive analysis of the three clusters of car 
commuters to investigate the potential differences between them. The 
profiling of the clusters focuses on four socio-demographic variables 
available from the data, namely: household composition, household 
income, gender and age. The focus on these particular variables is a 
compromise between those socio-demographic characteristics previ-
ously identified as relevant (see for instance [45]), those available from 
the TUS data, and those for which significant differences were identified 
based on the sample used in this analysis. 

Eight household composition categories were used to classify TUS 
respondents in the original study; we have used the same categories here 
(see Fig. 9). In order to compare the distributions across clusters, two- 
sample Chi-squared tests were carried out. According to the Chi- 
squared cross-testing of the distributions associated with the different 
clusters (Table 1), the distribution of cluster members across the eight 
household composition categories appears to be consistent across the 
three clusters of commuters with a 99% confidence. Unsurprisingly, 

Fig. 6. Left: distribution of start times of driving commuting periods; right: distribution of home arrival times. The red bands in each plot indicate the periods over 
which the weighted average of start/end times was calculated. 
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Fig. 7. Daily profiles of the rate of activity engagement (i.e. percentage of cluster members that carry out the activity) throughout the day for a set of 6 activities.  

Fig. 8. Left: distribution of home arrival times; right: distribution of start times of sleeping periods. The red bands in each plot indicate the periods over which the 
weighted average of start/end times was calculated. 
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couples (with or without dependent children) are the predominant 
group. The proportional distribution is consistent with national figures 
[47]. 

Regarding the distribution of workers with respect to their age 
(Fig. 10), no major differences were identified across clusters by simple 

inspection. The age distribution of ‘early commuters’ (Cluster 1) is 
slightly skewed towards the middle-age (45–65) band, meaning that 
there is a slightly lower proportion of younger (17–35) commuters 
compared to ‘late’ and ‘staggered commuters’ (Clusters 2 and 3, 
respectively). However, according to the Chi-squared cross-testing of the 
distributions associated with the different clusters (Table 2), the only 
statistically significant differences are observed between the distribu-
tions of ‘early’ and ‘late commuters’. 

The gender breakdown of individual clusters is provided in Table 3 
below. As the table shows, all three clusters are rather balanced. How-
ever, the subtle differences observed in terms of gender composition, 
along with the activity patterns discussed above (primarily Figs. 3, 5 & 
6) would appear to be consistent with the behaviours typically associ-
ated with particular genders. For example, the ‘late commuters’ (cluster 
2) are more likely to be male than female. In contrast, women are 
overrepresented among ‘staggered commuters’ (cluster 3), which 
consistently show higher levels of trip chaining in the evening commute, 
likely due to stops along the way associated with caring responsibilities 
and household upkeep (e.g. shopping). The chi-squared tests for the 
comparison of these two clusters reveal that their differences are sta-
tistically significant. 

Household income distribution is also remarkably similar across the 
three clusters (Fig. 11), with the majority of commuters reporting a total 
monthly household income in the range of £2000–£3500. Median in-
come is also consistent with the national figures for the same year where 
the Time-Use Survey was carried out [48]. As the p-values in Table 4 
suggest, there are no statistically significant differences across the 
different clusters. 

4.5. Estimating the impact of unrestricted EV charging 

Previous studies on EV charging preferences have shown that for 
many EV users charging immediately after arriving home has become a 
habit, with roughly 60% of EV users stating that their preferred charging 
start time lies between 5 pm and 8 pm [14]. While charging does not 
always take place within this (peak) period, charging events that do take 
place during peak times account for roughly 30% of the total [14]. 

As the results above show, car commuting behaviour shows signifi-
cant differences, so how are these differences likely to affect the EV 
charging behaviour? Based on the methodology developed by Quian 
et al. [49], we carry out some ‘back of the envelope’ calculations in order 
to determine the potential impact of EV charging on the typical resi-
dential load profile. It should be noted, however, that this set of esti-
mates represents a ‘worst case scenario’, where unrestricted private EV 
charging is experienced and driver commuters do indeed initiate EV 
charging shortly after arriving home. 

In order to produce these estimates, we assume that commuters 
initiate EV charging 20 min after their arrival at home, where the delay 
accounts for any other activities taking priority over the ‘pulg-in’ event 
such as unboarding and unloading the vehicle. Obviously, not every 
single EV will be charged every single day, so we limit these estimates to 
calculating the impact of 10% and 20% of the fleet charging around the 
same arrival time. 

As the estimates in Fig. 12 show, there are significant potential in-
creases to the demand load during peak times, especially in the case of 
the ‘early commuting’ cluster. These are summarised in below in 
Table 5. Regardless of the cluster, however, we observe that this addi-
tional load results in much sharper rises towards the evening peak which 

Fig. 9. Distribution of cluster members with respect to household composition.  

Table 1 
Chi squared cross-test matrix of household composition distributions.  

p-Values Cluster 1 Cluster 2 Cluster 3 

Cluster 1  0  0.559  0.067 
Cluster 2  0.559  0  0.016 
Cluster 3  0.067  0.016  0  

Fig. 10. Distribution of cluster members with respect to age.  
Table 2 
Chi squared cross-test matrix of age distributions.  

p-Values Cluster 1 Cluster 2 Cluster 3 

Cluster 1  0  0.0003  0.4527 
Cluster 2  0.0003  0  0.4741 
Cluster 3  0.4527  0.4741  0  
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would certainly add to the burden on the network infrastructure at an 
already challenging time. 

It is worth noting that producing a perfectly accurate estimate of the 
impact of EV charging on the residential demand load profile falls 
beyond the scope of this paper, and indeed would merit its own, inde-
pendent analysis. Therefore, the estimates provided above should be 
taken with a healthy dose of caution and should not serve as the basis of 
any definitive conclusions. 

5. Discussion and conclusion 

Our study builds on previous efforts to characterise separately resi-
dential peak demand and patterns of vehicle usage. Previous research 
has found that the employment status of car users can be used as a 
primary discriminator between patterns of vehicle use [40]. Our anal-
ysis reveals that there are also significant differences in the temporal 
characteristics of the commuting patterns of certain groups of car 
commuters. In particular, it has shown that both the peaks of commuting 
activity and the typical times of home arrival are clearly differentiated 
across three clusters of commuters, with e.g. a cluster of ‘late com-
muters’, accounting roughly for 37% of the full-time worker population, 
who arrive at home rather late. Moreover, our study shows that the 
temporal differences in such patterns have significant impacts on the 
levels of engagement in other energy-related activities in the course of 
the evening, with e.g. ‘late commuters’ more likely to eat, wash dishes 
and watch TV at a later hour. It should be noted that the results of this 

analysis have only started to uncover these issues, and are only repre-
sentative of the group of commuters used as a case study, namely, car 
commuters in full-time employment. Therefore, the analysis can only 
draw conclusions about the impact of the activity patterns of this 
particular segment of the population. While the proportion of the pop-
ulation that falls into the category selected for this case study is sub-
stantial, any further generalisations need to be based on a more 
comprehensive analysis that extends to the remaining segments. 

The importance of the potential impact of the EV charging patterns of 
this segment of the population, however, remains high. While the total 
share of vehicles with commuting-dominated usage patterns in the UK is 
just under 50% [40], these commuting patterns may have significant 
implications for domestic energy consumption patterns as the share of 
EVs continues to increase. Previous studies on the quantification of the 
recharging behaviour of EVs have found that, overall, there is currently 
minimal recharging during off-peak hours. More importantly, private 
users' peak demand is consistently registered during the evening peak at 
home recharging points [15,21,50]. Based on the assumption that un-
restricted EV charging occurs immediately after commuters arrive 
home, our estimates show that with as little as 20% of the EV fleet 
initiating charging, peak demand load could increase by nearly 40%. 
The potential percentage increase on peak demand is highest for those 
commuters in the ‘late commuting’ cluster, which would appear to be 
the dominant car commuting group. It is therefore clear that without 

Table 3 
Gender breakdown of individual clusters.   

Female Male 

Cluster 1  54%  46% 
Cluster 2  48%  52% 
Cluster 3  55%  45%  

Fig. 11. Distribution of cluster members with respect to household income.  

Table 4 
Chi squared cross-test matrix of income distributions.  

p-Values Cluster 1 Cluster 2 Cluster 3 

Cluster 1  0  0.597  0.225 
Cluster 2  0.597  0  0.639 
Cluster 3  0.225  0.639  0  

Fig. 12. Estimates of the likely impacts of EV charging on the typical load 
profile. Each panel corresponds to one of the commuter clusters identified in 
Section 4.2. In all panels the continuous line represents the Typical winter load 
profile for Class 1 customers [44], the dashed line represents the likely impact 
of 10% of the EV fleet initiating charging around the indicated time, and the 
dotted line represents the likely impact of 20% of the EV fleet initiating 
charging around the indicated time. The vertical line indicates the centre of the 
distribution of charging start times. 

Table 5 
Percentage increase in peak demand load resulting from 10% and 20% EV 
charging.   

Cluster 1 Cluster 2 Cluster 3 

10% EV penetration  12.57%  17.98%  14.85% 
25% EV penetration  27.62%  37.52%  31.73%  
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timely and well-designed policy interventions, these patterns will 
continue to put pressure on existing generation resources and may 
eventually push local power grids beyond capacity [15,51,52]. 

From a policy perspective, a number of previous studies have arrived 
at the conclusion that encouraging a shift to overnight charging may be 
the only sensible way of managing peak demand as the share of EVs 
grows [12–15]. While overnight charging could indeed result in better 
levels of capacity utilisation in the grid [53], it could also result in a new 
set of complications [40]. For example, as we move towards higher 
levels of transport electrification, other segments of the vehicle fleet, 
such as vans and buses, will arguably have a greater need to use capacity 
at this time of day. Based on the commuting activity profiles identified in 
our analysis, which could very well serve as a proxy for (the most part 
of) vehicle usage patterns, it is clear that providing better and more 
abundant opportunities for EV charging while at work, or more gener-
ally during the day, needs to be a key priority for policy. This would 
allow for a more effective use of grid capacity at times where usage is 
low, relative to the evening peak, and a more effective usage of any 
surplus output from renewable power sources. 

An in-depth study of the synchronicity (both in time and space) of the 
periods of car use (and non-use) is key to assessing the potential for a 
flexible management of the demand loads associated with EV charging. 
Our study has focused on the temporal aspects of this problem, and our 
results suggest that attempts to encourage off-peak and flexible charging 
behaviour may benefit from focusing on a much more diverse set of 
times of day and types of users than are typically the subject of current 
research and policy discourses. Future developments of charging infra-
structure will undoubtedly have a strong influence on the opportunities 
for managing the demand loads associated with EVs. Perhaps in an ideal 
scenario, an EV charged at work could be driven home where it could 
then help meet the demands during peak periods (V2G). However, if the 
opportunities for EV charging at work are not there and charging during 
peak times prevails, this post-work charging could amount to about 30% 
of the peak load in the UK in the future [10]. 

Our analysis of the socio-demographic composition of the three 
identified clusters shows that there are no significant differences be-
tween the different types of commuters in terms of income and house-
hold composition. However, statistically significant differences were 
found when it comes to the distribution of commuters with respect to 
age and gender, with the ‘early commuters’ (cluster 1) slightly domi-
nated by middle-aged workers, and the ‘staggered commuters’ (cluster 
3) slightly dominated by female workers. In terms of the socio- 
demographic profiling of the identified groups of commuters, there is 
a key limitation worth discussing. Although the TUS data stems from a 
representative sample of UK households, sub-samples may suffer from 
under- or over-representation of certain groups. Consequently, the 
strength of the correlations with particular characteristics may be 
affected, which in turn might explain the fact that some of the differ-
ences observed between clusters are rather subtle. Other recent studies 
on the segmentation of workers based on the overall frequency of their 
work-related travel activity [45] have found stronger correlations be-
tween work-related travel patterns and socio-demographic variables in 
significantly larger datasets. This is an indication that the presence of the 
groups identified in our study should be further investigated whenever 
the collection of additional data offers the opportunity, as this will allow 
to either challenge or support the findings. As previous studies have 
already pointed out [45,54,55], once groups are identified, it is possible 
to further investigate their response to certain situations and types of 
policy, which in turn allows better-targeted policies to emerge. 

The socio-demographic profiling of clusters provides interesting re-
sults that are in line with the insights from travel behaviour research (e. 
g. showing an association between female gender and trip-chaining). 
However, it should be noted that our primary interest lies in the anal-
ysis of commuting and other activity patterns as a reflection of the 
energy-relevant everyday practices of the working population. The 
choice of clustering commuters based on the temporalities of their 

commuting patterns is thus an attempt to shift the focus towards the 
everyday practices as the main unit of analysis. This in turn, offers the 
possibility to establish more explicit links between the study of mobility 
choices and social rhythms, and explore in more depth the implications 
of the prevailing commuting practices on the energy consumption 
associated with the practices typically carried out while at home. The 
breakdown into socio-economic groups also prompts questions around 
the relationship between socio-economic categorisations and the study 
of social practices. The role of socio-demographic profiling in the 
context of social practice theory is debated and unresolved [56]. In this 
context, however, socio-demographic profiling is, in principle, useful as 
it is a way of enabling the study of the variation of commuting in relation 
to different work arrangements. The findings pose questions as to 
whether mixing practice-level investigations with socio-demographic 
profiling is an approach suitable enough for revealing variation in the 
rhythms of everyday life. 

Contrary to the somewhat intuitive expectation that the relative 
similarities in people's needs would entail that they need to engage in 
the same kind of activities and spend a similar amount of time doing so - 
meaning that a later home arrival time would entail a later end of the 
day - it would appear that the time available to the different users is 
generally determined by their time of arrival at home (see Fig. 7). If we 
equate the end of the day with the start of the sleeping periods, we can 
see that this time remains virtually unchanged across the three clusters. 
This is a significant finding which could be interpreted differently 
depending on traditionally separate disciplinary contexts. In time- 
geography, the individual is seen as a unit performing activities 
sequentially. Individuals' sequences of activities are constrained by 
priorities around sleep and meals, work schedules and opening hours of 
service providers, other household members' needs and abilities [57]. 
This means that this finding can be interpreted as evidence of how 
dominant priorities (e.g. sleep) shape the sequence and duration of in-
dividual activities. Conversely, in social practice theory, ‘time squeeze’ 
is a term which describes a density of social practices within specific 
frames of time [58]. The volume of time required to complete sets of 
tasks regarded as ‘necessary’ explains the distribution of practices in 
time. 

As discussed in Section 2, institutionalised social rhythms induce the 
creation of practice hotspots [18]. This study provides evidence in 
support of the realisation that the exact temporal location of such hot-
spots of social practice is determined by a combination of the institu-
tional rhythms and people's own routines [19]. Moreover, this result in 
combination with the seemingly invariable time where the ‘active day’ 
comes to an end would appear to point out that the perceived ‘time 
squeeze’ might be felt more intensely for some. From an energy 
perspective, this ‘temporal squeezing’ of evening activity is arguably 
undesirable, as it might result in the development of ‘peakier’ energy 
consumption patterns that put more pressure on already strained energy 
systems and reduce the potential for harnessing demand flexibility from 
the residential consumer population. The findings of our study thus 
highlight the need for better conceptualisations of the temporal rhythms 
of everyday practices and activity patterns, as further neglecting this 
may result in rather narrow and prescriptive ways of attempting to 
promote the flexibilisation of electricity consumption patterns. 
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