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SCHATTEN CLASS HANKEL OPERATORS ON THE
SEGAL-BARGMANN SPACE AND THE BERGER-COBURN
PHENOMENON

ZHANGJIAN HU AND JANI A. VIRTANEN

ABSTRACT. We give a complete characterization of Schatten class Hankel op-
erators H; acting on weighted Segal-Bargmann spaces F2(y) using the notion
of integral distance to analytic functions in C™ and Hérmander’s O-theory.
Using our characterization, for f € L° and 1 < p < oo, we prove that H; is
in the Schatten class S, if and only if H IS Sp, which was previously known
only for the Hilbert-Schmidt class S2 of the standard Segal-Bargmann space
F2(p) with ¢(z) = a|z|%.

1. INTRODUCTION AND MAIN RESULTS

We denote by F? the (classical) Segal-Bargmann space of Gaussian square-
integrable entire functions on C" and let P be the orthogonal projection of L?
onto F2. For a bounded function f, the Hankel operator

Hy = (I —P)My

is a bounded linear operator on F?, where Mg = fg is the multiplication operator
and I is the identity operator. In addition to F2, which is a central subject in
quantum physics, we also consider Hankel operators on weighted Segal-Bargmann
spaces. Besides intrinsic interest in operator theory, the treatment of weighted
spaces may be useful to understand more complicated quantum phenomena.

A unique feature in the theory of the Segal-Bargmann space is the property that
the Hankel operator Hy is compact if and only if H is compact when f € L>. This
result of Berger and Coburn [4] is not true for Hankel operators on the Bergman
space or the Hardy space. In [27], Zhu conjectured that a possible explanation
for this difference is the lack of bounded analytic functions on the entire complex
plane, which was indeed confirmed recently in [11]. A natural question then arises
as to whether an analogous phenomenon holds true for Hankel operators in the
Schatten classes S, (defined in Section 2.4). This was answered in the affirmative
for the Hilbert-Schmidt class Se by Bauer [3] while Xia and Zheng [25] stated
that the remaining cases “appear to be rather challenging.” In this paper (see
Theorem 1.2), we prove that Hy € S, if and only if Hy € S, when 1 < p < o0,
which we refer to as the Berger-Coburn phenomenon on S,.
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2 ZHANGJIAN HU AND JANI A. VIRTANEN

Bauer’s proof in [3] is elementary and similar to Stroethoff’s characterization of
compact Hankel operators in [24]. The proof further depends heavily on the prop-
erties of the Hilbert-Schmidt norm, which makes Bauer’s techniques unsuitable for
the other Schatten classes. Instead, our approach is based on the characterization
of the Schatten class membership of single Hankel operators, given in Theorem 1.1,
which curiously had not been established before despite analogous results for Hankel
operators on the Bergman space due to Luecking [21].

While Theorems 1.1 and 1.2 are new even in F?, we prove them for Hankel
operators on weighted Segal-Bargmann spaces F%(y), which include all standard
Segal-Bargmann and Fock-Sobolev spaces defined below. Regarding terminology,
we note that F2(¢) are also referred to as Fock spaces and Bargmann-Fock spaces.

1.1. Main results. The weighted Segal-Bargmann space F2(y) consists of all
entire functions f : C* — C that belong to L?(p) = L?*(C" e 2%dv), where
@ : C" — C is a suitable weight and dv is the Lebesgue measure on C™.

In this paper, we consider real-valued weights ¢ € C2(C™) that satisfy the prop-
erty that there are two positive constants m and M such that

(1.1) mwy < i(“)ggo < Mwyg

in the sense of currents, where wy = i99|z|? is the Euclidean-Kihler form on C™.
The expression (1.1) is also denoted by i09¢ ~ wy and it simplifies to the form
m < Ap < M, where Ay is the Laplacian of ¢, when n = 1. Notice that the
standard weights p(2) = az|? with a > 0 (see, e.g., [27]) satisfy (1.1) and each
Fock-Sobolev space F>™ consisting of entire functions f for which 9% f € F? for all
multi-indices |a| < m (see [6]) can also be viewed as a F%(p) with some ¢ satisfying
(1.1).

As above, we denote by P the orthogonal (Bergman) projection of L?(¢) onto
F2(¢). Let T' = span{K : z € C"}, where K, = K-, 2) is the reproducing kernel
of F2(¢) (see Section 2.1), and consider the class of symbols

S = {f measurable on C" : fg € L*(p) for g € r}.

Given f € S and g € I, the Hankel operator Hy is well defined, and since I is dense
in F2(y), it follows that Hy = (I — P)M; is densely defined on F(i). Notice that
clearly L>*° C S.

To state our main results, we define

1
2

= in 1 — h)? "
(12) G (N)=) = hGH(BEZﬂ“)) <|B(Z,7')| /B(z,r) s dv) (e

for f € leoc (the set of all locally square integrable functions on C™), where
H(B(z,r)) is the set of all holomorphic functions on B(z,r) = {w € C": |z —w| <
r}and [B(z,7)| = [, dv.

For 0 < s < oo, the space IDA® (Integral Distance to Analytic Functions) consists
of all f € L? _ such that

loc

(1.3) [fllpas = G- (f)]

for some r > 0. We write BDA for IDA®. The space VDA consists of all f € L
such that lim,_,., G,(f)(z) = 0 for some r > 0.

The spaces IDA® with s < oo (and their generalizations IDA®? with the con-
vention that IDA® = IDA*?) were introduced in [13], while the notion of bounded

Ls <00



SCHATTEN CLASS HANKEL OPERATORS 3

distance to analytic functions (BDA) was introduced by Luecking [21] in the context
of the Bergman space.

We can now state our main results on Schatten class Hankel operators.

Theorem 1.1. Let 0 < p < oo and suppose that o € C?*(C") is real valued with
i00p ~ wy. Then for f € S, the following statements are equivalent:

(A) Hf: F?(p) — L?(p) is in Sp.

(B) f € IDAP.

B)
(C) Jou IHp(E)|P dv(z) < oo, where k() = \/K% is the mormalized repro-

ducing kernel.
Furthermore,

(1.4 7L, = e = { [ 18001 002}

Theorem 1.2. Suppose p € C?(C") is real valued, 100p ~ wy, and 1 < p < oc.
Then for f € L™, Hf € Sy, if and only if Hy € S, with the S,-norm estimate

(1.5) |Hflls, < CllHylls,,
where the constant C' is independent of f.

Notice that Theorem 1.2 fails in general if the symbol f is not bounded—see [3]
for an example.

1.2. Outline and further results. In the next section we provide preliminaries
on the reproducing kernel, which includes global and local estimates, a consequence
of Hérmander’s existence theorem, and we also extend the decomposition theorem
in [13] for IDA functions. In Section 3, we briefly introduce Toeplitz operators
and state a description of their Schatten class properties. Section 4 extends our
recent results in [13] on boundedness and compactness of Hankel operators, and we
compare them to the results of Stroethoff [24] for bounded symbols in the setting of
the classical Segal-Bargmann space F2.

In Section 5, we prove our characterization of Schatten class Hankel operators
using the decomposition theorem and other preliminary results, theory of Schatten
class Toeplitz operators, and various estimates together with the general theory
of Schatten class operators. As a consequence, when ¢(z) = «|z|?, we obtain a
characterization in a familiar form that agrees with one of the main results in [3]
obtained previously only when p = 2.

In Section 6, we recall briefly the results in [16, 25] on the simultaneous mem-
bership in S, of the Hankel operators H; and H? acting on F2, and extend them
to F%(¢) using Theorem 1.1.

In Section 7, we prove our result on the Berger-Coburn phenomenon using the
Ahlfors-Beurling operator (to obtain the estimates ||0f]z» < ||0f|zr) together
with our characterization of Schatten class Hankel operators.

On the methodological level, it is worth noting that the previous techniques
employed in [3, 4, 11, 25], such as the use of Weyl operators, limit operators or
explicit formulas for the Bergman kernel, seem insufficient to obtain our character-
izations even in setting of the classical Segal-Bargmann space F?. In relation to
the Bergman space A2, Luecking [21] gave a characterization for Hy on A? of the
unit disk to be in .S, when 1 < p < oo, and further indicated that his proofs can be
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extended to handle any bounded strongly pseudoconvex domain in C”. Luecking’s
work and in particular the concept that he referred to as the “bounded distance
to analytic functions” are of fundamental importance to our characterizations (see
also [20] for bounded strongly pseudoconvex domains).

While several aspects of the theory of Hankel operators on the Segal-Bargmann
space are different from A? and H?, there are also many similarities, such as the
role of BMO-type spaces and their decompositions, which we use to closely track
the results for the Bergman space.

2. PRELIMINARIES

2.1. The reproducing kernel function. Let ¢ € C?(C") be a real-valued weight
such that i00p =~ wp, see (1.1). Most of the basic properties of F?(yp) can be
derived from the following weighted Bergman inequality (see Proposition 2.3 of [23]
for further details).

Lemma 2.1. For each r > 0, there is a constant C > 0 such that

e <o [ |r@e o] ae

B(z,r)
for all f € F?(yp).

It follows from the preceding lemma that for any z € C", the mapping f — f(2)
is a bounded linear functional on F?(y) and hence there is a unique K, in F?(y)
which satisfies the reproducing property f(z) = (f, K,) for all f € F?(¢). The
function K, is referred to as the reproducing kernel of F2(y). It is often called the
Bergman kernel.

Lemma 2.1 also implies that F%(¢) is a closed subspace of L?(¢). We denote by
P the orthogonal projection of L?(y) onto F2(ip). Notice that

PR = (PRI = [ F)K (2 w)e 2 du(w)
Cﬂ,
for f € L*(¢) and z € C™.
If p(2) = az]? is a standard weight with o > 0, then it is easy to see that
|K(z7w)|efa|z|27a\w\2 _ efa\sz\f"

for z,w € C™. For the general weights ¢ that we consider, this quadratic decay is
known not to hold (even in dimension one), and it is, in fact, expected to be very
rare (see [7]). However, it turns out that the following estimates for the reproducing
kernel will be sufficient for us.

Lemma 2.2. There exist positive constants 6 and Cy, depending only on n, m and
M such that

(2.1) |K (2, w)| < Cre?@Hee=0lz=wl for g1l 2 w e C",
and there exists positive constants Co and ro such that
(2.2) |K (2, w)| > Coe?+ew)

for z € C" and w € B(z,r9).
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The estimate (2.1) appeared in [7] for n = 1 and in [8] for n > 2, while the
inequality (2.2) can be found in [23]. Notice that Lemma 2.2 implies that

(2.3) K(z,2) ~ e 2 eCm
For z € C™, recall that we write
K('> Z)
k() = -l
K(z,2)

for the normalized reproducing kernel. Then

kz(g)e—%’(f)‘ < Ce ¢ lim k() =0

|z| =00

(2.4)

uniformly in £ on compact subsets of C™, and

1 1
(25) 20 < Kl < CEO, 2 < il < C
for z € C". Here | - [|p,, stands for the norm of LP(¢) = LP(C", e P¥dv) when
1 <p < oo, ||fllooe = lIfe" %L, and we write || - |2, = || - || for simplicity
throughout.

We record one more estimate that will be needed for our study of Hankel opera-
tors. For this purpose, denote by L?O 1 () the family of all (0, 1)-forms on C™ with

coefficients in L2(p).
Lemma 2.3 (Hérmander). Suppose that ¢ € C?(C") is real valued and i00p ~

wo. Then there is a constant C > 0 such that for every 0-closed (0,1)-form w €
L?O 1)(), there exists a solution u of Ou = w for which

ue=?|” dv <C we=?|? dv.
| |
(Cn (Cn

Proof. Let Q = C". The assumption i0dp(z) > mi09|z|? implies that 2m is a lower
bound for the plurisubharmonicity of 2. Now Theorem 2.2.1 of [15] completes the
proof. O

2.2. Lattices and separated sets in C". A sequence {w;} of distinct points in
C™ is called separated if

B({uw;}) = inf fu; = wi| > 0.

For r > 0, we call a sequence {w;} in C" an r-lattice if |J; B(w;,7) = C" and
B(wj, ﬁ) N B(wg, ﬁ) = () whenever j # k.
Given r > 0 and wy € C", set

(2.6) A= {wl—i-\;ﬁ(m—i—is):m,sezn}.

It is easy to see that A is an r-lattice. For K € N fixed, we write
{w1—|—(21,...,zn) €A:0< Rez;,Imz; <K\;ﬁ} = {wy,...,wgen},

and for 1 < k < K27,

Ay = {warK\;ﬁ(eris):m,sGZ"}.
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Then
K Kr
(2.7) A:kL:JlAk, AjﬂAk:Q] if j#£k, |a—0b> % ifa,b € Ay and a # b.

For f,e € L?(¢p), the tensor product f ® e as a rank one operator on L2(yp) is
defined by

feelg)=(g,e)f, g€ L?(p).
Lemma 2.4. Given r > 0, there is some constant C > 0 such that if A is a

separated set in C™ with §(A) > r and if {eq : a € A} is an orthonormal set in
L?(yp), then

<C.

Zka@)ea

a€A

L2(p)=L(p)

Proof. With the same proof as that of Lemma 2.4 in [12], we get

Z Nk

a€A

<C ||{)‘a}a€A||12 )

where the constant depends only on the separation constant §(A). In addition, for
g € L%(yp), Parseval’s identity implies

> Hg.ea)® < llgll* < oo

a€N
Therefore, we have
2 2
H <Z ko ® ea> @) =D (g ea)ka]| <CY llg,ea)* < Clgl?,
acA aen aen
which completes the proof. [l

2.3. Properties of IDA. The spaces IDA® were defined above in (1.3) and here we
list their basic properties. We start with a remark that follows from Corollary 3.8
of [13] when s > 1 while the other cases can be proved similarly.

Remark 2.5. Let 0 < s < co. Then the spaces IDA®, BDA and VDA are inde-
pendent of r and different values of r give equivalent norms on each space.

For f € L, set

MQ,T(f)(Z) = { ‘B(i,’l")‘ Ber) f|2d’0} .

Notice that, for r > 0 fixed, by Lemma 3.5 in [13], there is a constant C such that
for f € L% _ it holds that f = f; + fo with f; € C(C") and

loc

(28)  [01(2)] + M2, (|0f1])(2) + Mz (f2)(2) < CGa2r(f)(2), 2 € C™

In addition, the following decomposition theorem plays an important role in our
analysis.
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Theorem 2.6. Suppose 0 < s < co, and f € L2 .. Then f € IDA® if and only if

loc*

f admits a decomposition f = f1 + fo such that

(2.9) fre CHCM), [0fi] + Mo (Df1) + Mar(f2) € L*
for some (or any) r > 0. Furthermore,
(2.10) Iflipas = inf {[0fi]lLe + | Moy ()l }

where the infimum is taken over all possible decompositions f = f1 + fo that satisfy
(2.9) with a fized r.

Proof. When 1 < s < 00, the conclusion is only a special case ¢ = 2 of Theorem 3.6
and Lemma 3.5 in [13]. A careful check of their proofs shows that the remaining
cases 0 < s < 1 and s = oo can be proved similarly. |

2.4. Schatten classes. We finish this section with a brief look at Schatten classes.
Recall that for a bounded linear operator T' : H; — Hs between two Hilbert spaces,
the singular values s;(T") of T" are defined by

(2.11) s;(T) =inf{||T — K| : K : Hi — Hs, rank K < j},

where rank K denotes the rank of K. The operator T is compact if and only
if s;(T) = 0. For 0 < p < oo, we say that T is in the Schatten class S, and
write T' € S, (Hy, Ho) if || T|5 = 3272, (s;(T))” < oo, which defines a norm when
1 < p < oo and a quasinorm otherwise. Note that S, are also called the Schatten-
von Neumann classes or trace ideals (see [26] for further details).

3. SCHATTEN CLASS TOEPLITZ OPERATORS
Given a Borel measure i on C", we define the Toeplitz operator T}, with symbol
1 as

T.f(z) = K(z,w)f(w)e 2*®du(w), fe F*(p)and z € C".
Cn
When dpu(z) = g(z) dv(z) and g is a complex-valued function, the induced Toeplitz
operator is denoted by Tj.

Given an operator T' € B(F2(p), L2(p)), we set T(z) = (Tk., k). For a positive
Borel measure o on C™ and r > 0, we define
i) = [ oo 2o
C’VL
and since |B(z,7)| ~ r?", we simply set

Anlz) = / dp (zeCm).
B(z,r)

For a positive Toeplitz operator T, € B(F?(¢), L*(p)), it is easy to verify that
T, =[.
The proof of the following lemma can be found in [12] and [17].

Lemma 3.1. Let p be a positive Borel measure on C" and let 0 < p < co. Then
the following statements are equivalent:

(A) pelLpr.

(B) piy € LP for some (or any) r > 0.
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(C) {1ir(a;)}52, € 1P for some (or any) r-lattice {a;}52,.
Furthermore, it holds that
17l e = Al = [[{7r(a;)}52 ], -

In our analysis we need the following result on Schatten class Toeplitz operators.
It was proved in [17] for the generalized weights and in [27] for the standard weights.

Theorem 3.2. Let 0 < p < 0o, u be a positive Borel measure on C" and suppose
that o € C*(C") is real valued with 100p ~ wy. Then the Toeplitz operator T, on
F2(¢) belongs to S, if and only if fi, € L? for some (or any) r > 0. Furthermore,

(3.1) 1 Tulls, = Iz |l e
4. BOUNDEDNESS AND COMPACTNESS OF HANKEL OPERATORS

While the thrust of our present work is in the Schatten class properties, we also
extend some of the recent results in [13] on boundedness and compactness of Hankel
operators on F2(¢p).

The collection of all bounded (and compact) operators from H; to H is denoted
by B(Hy, Hs) (and by K(Hy, Hy), respectively). The corresponding operator norm
is denoted by ||T|| 1, — &, -

Lemma 4.1. Suppose 0 < p < 1,0 < s < oo andr > 0. There is a constant C
such that, for i a positive Borel measure on C™, Q a domain in C", and g € H(C"),

it holds that »
(o) <o e
Q Qf

where QOF =, cqy B(2,7).

When Q = C" and p = 1, the preceding result is just Lemma 2.2 in [12]. For
general Q and 0 < p < 1, the proof is similar to that of Lemma 4.2 in [13], although
we note that the weights in the present work are slightly more general.

Lemma 4.2. Suppose 0 < p < oo, and f € S NIDAP with the decomposition [ =
fi+ f2 as in (2.8). Then Hy, and Hy, are well defined onT' = span{K, : z € C"},
and

(4.1) 1Hy, (9)ll < Cllgdfill and ||Hy,(9)ll < Cllgfall for g€T.

Proof. For g € I" and z € C", taking p = s = 1 and replacing ¢ with 2¢ in Lemma
4.1, we get

/ 9K || foldv < C / (9K e2° M, (f2)dv.
Cn Cn

Notice that M, (f2) is increasing with ¢t. If p > 1, with p’ being the conjugate of
p, we have

/ |9 fallK:]e™*¢dv < Cl[Mar(f2)l| Lo lgll2pr ol K ll2pr o < 00
Cn

If 0 < p <1, by Lemma 4.1 again,

p
( / ng|e—2¢|f2dv) <0 [ \gK.Pe e (f2)dv
n C’!L

< O Mz (f2) Lo 1911B0 o = 1B o < 00
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This implies that Hy,, and hence also Hy, = H; — Hy,, are both well defined on I'.
Now for g € T', if 0 < p < 2, then

5B <€ [ oo s B

< Ol Mz ([0£1 D175 911 o < 00

(4.2)

If p > 2, applying Holder’s inequality with ¢ = £ and ¢’ we obtain

1

sl e { [ loe P Mo (@rly e}
< My (353Dl e < o

(4.3)

Hence gdf; is a O-closed (0, 1)-form with L?(¢) coefficients. Notice also that since
OHy, (g9) = g0f1 and Hy, (g9) = frg—P(f19) LF?(p), Hy, (g) is the canonical solution
of the equation Oou = gofi. Now, by Lemma 2.3 there is a solution ug € L?(p) of
Ou = gdfy such that |lug|| < C||gdf1]|. Hence, ug — Hy, g € F?(¢), which implies
that Hy g 1 uo — Hy, g. Therefore,
=02

(4.4) 1H f,glI* = [luoll® — lluo — Hy, gll* < lluol® < C ||gdf1]|" -
Similarly to (4.2) and (4.3), we can show that ||gfz2| < oo, and so

[1Hy, (9)]| < llgfll < o0,

which completes the proof. O

Before stating our result on boundedness and compactness, we note that previ-
ously Li [19] used the Henkin-Ramirez formula to obtain conditions for boundedness
of Hankel operators acting on the classical Segal-Bargmann space. However, some
basic estimates involving the Henkin-Ramirez formula in Li’s approach are unavail-
able for the more general weights ¢ that we consider.

Theorem 4.3. Suppose that ¢ € C%(C") is real valued and i0dp ~ wy. Then for
[ €S8, Hy € B(F?(p), L*(p)) if and only if f € BDA; and Hy € K(F?(p), L*(¢))
if and only if f € VDA. Furthermore, for r > 0,

IH || F2(o)—L2(0) 2= 1 flgDA -
Proof. Suppose f € BDA. As in (2.8), we decompose f = f1 + fo with
fr e CHCM),  [0f1] + My, (f2) < CGap(f)(2).
For g € T', by Lemma 4.2,
(4.5) 1Hs, (9)] < Clgdfi]| < ClAfillz=Ilgll-
Therefore, Hy, € B(F?(yp), L?(¢)) with the norm estimate
[H 172 (o) L2(0) < ClIOfill Lo
Similarly,

(4.6) [Hy, (9)]l < llgfall < Ol M2y (f2)llg]l-
Therefore, Hy € B(F?(¢), L*(¢)) with the norm estimate

Il Hsllp2(o)—r200) < Cllfllgpa -
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Conversely, suppose Hy € B(F?(p), L*(¢)). Then for 0 < r < ry, by Lemma
2.2,

1
f_ Ep(sz)

(4.7) awxaso{é( m} < C|lHy (k)]

z,r)
This and the fact that ||k,|| = 1 implies f € BDA with
Iflpa < ClHlF2(0)>L2(0)-
The proof for the compactness can be carried out as that of Theorem 4.1 in
[13]. O
Our next theorem is an analog of Stroethoff’s main result in [24] for the gener-

alized weights and unbounded symbols.

Theorem 4.4. Suppose p € C%(C") is real valued and 100y ~ wy. Then for f € S,
Hy € B(F%(¢), L*(p)) if and only if

sup [|(I — P) (fk2)[| < oo
zeCn

with the norm estimate

(4.8) [H |l F2(o)—L2(0) sup. (I = P) (fk)II-

Further, Hy € K(F?(p), L*(¢)) if and only if
lim [[(Z — P) (fk.)]| = 0.

Proof. Suppose f € S. If Hy € B(F%(p), L?(¢)), then trivially
I = P) (k) < 1Hyll P20y 220 [Rall < CllH [l 72(0) 5 22(0)-
Conversely, by Theorem 4.3 and the estimate (4.7), we have
[HfllF2(o)—22(0) = 1Gr(F)llLe < sup (I = P) (fk)II-
The other equivalence can be proved similarly. [

For a fixed z € C", define the shift 7, : C* — C™ by 7.(w) = w + 2. Then
fr for.(w) = f(w+ 2) for w € C*. In the classical Segal-Bargmann space F?,
we have

(4.9) [H (k)| = (I = P) (for)l

for all f € S (see Corollary 1.1 in [3]). Using this observation, we obtain the
following corollary.

Corollary 4.5. Let o(z) = $|z|?. For f € S, Hy € B(F*(p), L*(¢)) if and only
if sup,ecen |[(I — P) (f o 72)|| < oo with the norm estimate

(4.10) [Hf |l p2(p)—12(p) = sup (I =P)(for)l|.
Further, Hy € K(F?(p), L?(¢)) if and only if
lim (1= P)(f or.)] = 0.
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Remark 4.6. (i) Notice that the preceding result on compactness implies the
analogous results in [11] and [24] where the symbols were assumed to be bounded.
(ii) It should be noted that the norm estimate in (4.10) is similar to the estimate
in Luecking’s main result for the Bergman space (and also for the standard weights);
see Thereom 1(b) of [21].
(iii) It would be interesting to know whether the previous corollary remains true
for more general weights.

5. PROOF OF THEOREM 1.1

In this section we prove our characterization of Schatten class Hankel opera-
tors. For this purpose we need one more lemma. Given a € C" and r > 0,
let L?(B(a,r),e ??dv) be the Lebesgue space on B(a,r) with respect to measure
e~ 2¢dv, and let A?(B(a,r),e”2#dv) be the weighted Bergman space of all holomor-
phic functions in the space L?(B(a,r),e~2?dv). We denote by P, , the orthogonal
projection of L?(B(a,r),e %?dv) onto A%(B(a,r),e 2?dv).

Given f € L*(B(a,r),e ??dv), we extend P, ,.(f) to C" by setting

Par(f)lcm\B(asry = 0.
It is easy to verify that
Piof=Porf and (f Parg) = (Parfg)
for f,g € L?(y).
Lemma 5.1. For f,g € L?(p), it holds that
(5.1) (f =Pf, xB@n9 — Parg) = {f = Parf, XB@a.)9 — Pa,rg)-

Proof. For h € F?(p), it is trivial that P, (k) = Xp(a,nh. Then for f,g € L?(p),
we have <h7 XB(a,r)9 — Pa,rg> =0, and hence

(f=Pf, XB(a,r)9 — Pa,rg> = <XB(a,r)fa XB(a,r)9 — Pa,rg>
= <XB(a7r).f - Pa,?"fv XB(a,r)9 — Pa,rg>-

From this (5.1) follows. O

Proof of Theorem 1.1. (B)=-(A). For f € IDA?, decompose f as in (2.8). Notice
that by Lemma 4.2, both Hy, and Hy, are well defined on F?(yp). We claim that

(5.2) 1Hplls, + 1 Hplls, < Cllflmar,

which gives the desired estimate

(5.3) 1515, < C (1H4 s, + 1Hplls, ) < Clflloas.

To prove (5.2), set ¢ = |0f1| or ¢ = |fo|. By Theorem 3.2, the positive Toeplitz
operator Tjg2 is in Sg. Now we consider the multiplication operator My : F2(p) —
L?(yp) defined as

My(f) = of.
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For ¢ = |0fi|, using the inequality in (4.2) with the exponential 224Tpp < 2 and
Hélder’s inequality, for g € F?(yp) we have

_ 2p 2 — 2
|glof1]]| 7 < C/C lge™%| 35 My (|0 f1|) 2¥7 dv

2p —_ ﬁ
<l { [ s @npraf
C’IL

Similar estimate holds for ¢ = |f2|. Thus, My is bounded from F?(p) to L%(¢p).
Now, for g, h € F?(y), it holds that

(M Mg, by = (Mg, Myh) = /(C ghl6[2dv = (Tiyp2g.h),

which in turn gives M3 My = Tj42. Thus, My € Sp,, and applying Theorem 2.6, we
get
[1Mglls, < ClIMar(8)llLe < Cllf ITpar-
This together with (4.1) give the norm estimate in (5.2).
(A)=(B). Suppose f € S and Hy € S,(F?(¢), L*(¢)). We will prove that

(5-4) [fllmar < Cl|Hyls,-

For this purpose, we borrow an idea from the proof of Proposition 6.8 in [9]. By Re-
mark 2.5, it suffices to prove (5.4) for some r € (0,7¢), where ¢ is as in Lemma 2.2.
To do this, let A be an r-lattice as in (2.6), and decompose A = UiAy, as in (2.7)
with K > 2/n so that B(a,7) N B(b,r) =0 if a # b and a,b € Ag.

We deal with the case 0 < p <1 first. Since

Hy € Sp(F?(), L*(9)) € B(F?(), L*()),
Theorem 4.4 shows that fk, — P(fk,) € L% .. Clearly P(fk,) € H(C"), so
fka € L*(B(a,r),e”*?dv) and P, ,(fk,) € A*(B(a,r),e”**dv),
which implies that ||Xg(a,r)fka — Pa,r(fka)| < 0o. Now for a € Ay, set
XB(a,r) fka—Pa,r(fka)
|

IXB(a,m fka—Pa,r(fka)ll if HXB(a,r)fka - Pa,r(fka)” 7& 07
0 if HXB(a,r)fka - Pa,r(fka)” =0.

It is easy to see that ||g.|| <1 and (ga,gp) = 0if B(a,r)NB(b,r) = 0. Let J be any
finite sub-collection of Ay, and let {e,}acs be an orthonormal set of L?(¢). Define

A=) ea®@ga: L*(p) = LP(p).
acJ

It is trivial to see that A is of finite rank and
(5.5) [AllL2(p)—»r2(0) < 1.
We now define another operator T : L?(¢) — F?(p) by

T:Zka@)ea.

a€J

Since A is separated, by Lemma 2.4, there is a constant C' depending only on n and
r such that

(5.6) ||| L2y F2(p) < C.
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It is easy to verify that

(5.7) AHT = Z (Hikr,ga)ea@er =Y + Z,
a,7e€J
where
(5.8) Y = Z(kaa,ga>ea®ea, Z = Z (Hfkr, ga) €a @ er.
acJ a,T€J, aF#T

By Lemma 5.1 and Lemma 2.2,

<kaazga> <fk _P(fk ) >
< B(ar _Pa,r(fka)vga>
= |xs = Por(fka) |
] Ly () .
L2(B(a,r),dv)

Further, by definition,

(Hrosgu) > €| 1 = - Pas(k) > G, (f)(a).

L2?2(B(a,r),dv)
Thus, there is an N independent of f and J such that
(5:9) VI, = 3 (Hykag)” = N 3 Gl )@
acJ acJ
On the other hand, for 0 < p < 1, applying Lemma 5 of [22] gives
(5.10) 1215, < S [H ke gl
a,7€J, a#T

Let Qu, be the Bergman projection of L?*(B(a,r),dv) onto the Bergman space
A%(B(a,r),dv). Then

b Qun () € A2(B(a,r),dv) = A(B(a,1), ¢ 2dv),
and further fk; — P, (fk;) and Py, (fk;) — krQqrf are orthogonal in the space
L?(B(a,r),e”2¢dv). Thus, for a,7 € C", by Parseval’s identity, we get
| fkr — Pa,r(fkT)||L2(B(a7r)7ef2sod7j) <||fkr — kTQa,rf||L2(B(a,r),e—2wdv) .
Hence, by Lemma 5.1,
[(Hykr, ga)| = [{fkr = P (fkr) , ga)l
= |(XB(a)fhr — Par (fkr) . 9a)|
<\ fks = Par (fkr)||L2(B(a,,«),e—2wdv)
< b = ke Qur (P oy 2ea
< sup ’kr(f)eiw‘ Hf_Qa,r (f)||L2(B(a,r),dv)

£€B(a,r)

<Ce 1T f = Qanr (f)HL2(B(a7r),dU) :
Notice also that
|f — Qar (f)||L2(B(a,r),dv) =G, (f)(a).
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Since B(r,r) N B(a,r) =0 for a,7 € J with a # T,
Y e#erice 3[Rt
TeJ, T#a TE€J, T#a B(r, 7”)

<c [ e Fllaye) =c.
(Cn

Therefore, by (2.7) and (2.4),
1ZIl5, < > e PTG (f)(a)

a, T€J, aFET

<Y G(Hp Y el

acJ T€J, T#a

<e KNG (fap S e Fle

acJ TeJ, T#a

< Ce VTN G (f)(a),

acJ
and hence, we can pick some K sufficiently large so that
P N »
(5.11) 1215, < 5 > Gr(£)@)
acJ
Using the estimate
IYlls, <21lAH;TI[g, +22lls,
(see (6.9) in [9] for example), we see that
NG () (@) < 2| AHT|S +—ZG (a)?.
acJ acJ

Since .J is finite, we have

(5.12) NZG a)? < 4| AH;T|

which can be further estimated, using (5.6), as follows

(5-13)  AHTI < 1A= () p2(o) IS, 1T 2 ) 2 () < C I H Nl -
Puting (5.12) and (5.13) together and applying the duality between [' and >, we
obtain

Y Ge(Ha) < CHyl, -

acJ

The constants C' above are all independent of f and J. Hence,

(5.14) > GeHa)? < ClHG, -

a€Ny
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Now take A to be an Z-lattice similar to (2.6), which can be viewed as a union of
4™ r-lattice. Then

Gy(oravsy [ Gylpra
g 2 o
<cY sw GNP
ach z€B(a,%)
<o Gy < CHL, |
acA
and so, for 0 < r < rg, we have

Gy (f)Pdv < C||Hy% -

Cn
Therefore, by Theorem 2.6, for each r > 0, it holds that
(515) L Gelayav< e, .

Now we treat the case 1 < p < oo. Let {e, : a € Ay} be an orthonormal basis of
F?(y) and define linear operators T' and B by setting

T=> ka®ea: L*(p) = F*(¢),

a€A
and
B=Y ga®eq: L*(p) = L*()
a€N
where

XB(a,r H (ka) :
0o = { ||X§Ea,,r;H;(ka)H if ||XB(a,7‘)Hf(ka)H #0
0, if [[XB(a,r) Hy(ka)|l = 0.
Since ||ga|| <1 and (gq,g-) = 0 when a # 7, it follows that
Bl L2 () L2(0) < 1.
For Hy € Sy, by Theorem 4.4, we have lim. , ||xB(z,r) Hf(k2)|| = 0. Since

(B*My,., , HfTeq,ea) = (XB(ayHiT(€a), B(€a)) = |IXB(a,r)Hf(ka)ll,

and

<B*MXB(a,T)HfT€a7€b> =0 fora#b,
B*M,,. ., HfT is a compact positive operator on L*(p). Theorem 1.27 of [26]
yields

Z [(B* My, HiTeq, e0)|” < ||B*M,
a€Ag

HeT|[5 < ClH, -

B(a,r)

Thus, using (4.7), we have
Y GN@P <C Y IIxnanHrka)llP

a€ly a€Ay
= > (B My, HiTeq,ea)|” < C | Hll%,
aENg

which gives (5.14) for 1 < p < oco. From this, with the same approach as in the
other case, we obtain the desired conclusion in (5.15).
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(B)=(C). Suppose f € IDAP, and decompose f = fi + f2 as in the implication
(B)=(4). N

For 0 < p <2, applying (4.4) and Lemma 4.1 for du = |8f1| dv, we get

JRLISIRE
(C’n.

<L

<C - dv(z)/n
<C | Mz (0f1)(€)Pdv(§).

ke[ Pr©F a) dula

b)) Ma, (9£1)(€)7do(€)

(C’n.
This gives
(5.16) /C 1) o < C [ Mo @FR)EPA0(E) < C -
Similarly,

|Hp (k)P < C ( [ e Mz,r(f2)2dv> :
< C/(C |koe™?[" Mo (f2)Pdv.
Integrating both sides with respect to z over C™, we get
ean) [ R EP0E <O [ Mo (e < Ol e
For 2 < p < o0, by (4.4),
|y, (k) < C{Bf [k k2

- Tyt

(SIS
(SIS

< c<(:qaf1|2) kk> .

[ i <¢ [ { () k)t

Therefore,

(5.18)

< C|Tag| oy <€ 10000,
< C o -
Similarly,
VH g (R)IP < (1l k) < ((Tgge)  heskic)
and so
o1 o VRGP < 0

< CIMap (| f2Dllpe < Cllf llipar-
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Combining the estimates (5.16)—(5.19) gives

(5.20 [ 1 e)Pdu) < €5 1o

(C)=(B). By (4.7) and (2.10), we have
(5.21) 1 £llpar < C/(C [ H p(k2)||Pdv(z).

Finally, the Sp-norm equivalence in (1.4) follows from (5.3), (5.15), (5.20) and
(5.21). The proof is completed. O

Similarly to Corollary 4.5, restricting to the classical Segel-Bargmann space, we
have the following corollary, which was obtained only for p = 2 in [3].

Corollary 5.2. Suppose p(z) = $|z|* and 0 < p < co. Then for f € S, Hy € S,
if and only if [, |(I — P)(f o7.)||” dv(z) < co. Furthermore,

1

(5:22) ils, = { [ 1= Py o duta)

6. SIMULTANEOUS MEMBERSHIP OF Hy AND Hy IN S,

In the setting of the classical Segal-Bargmann space F?, for 0 < p < oo and
J €S, both Hy and Hy are in S, if and only if

(6.1) /n (SD(f o1,))! dv(z) < oo,

where 7,(w) = w + z and the standard deviation SD(g) of g € L?(C",du) with
du(z) = 7T7”67|Z|2dv(z) is defined by

5 1/2 9y 1/2
5D(9)={/ g—/ gdu‘ du} ={/C Igl2du—‘/(C gdu‘}

(see [16, 25]). In [10], the result for 1 < p < oo was extended to symmetrically-
normed ideals Sg, that is, it was proved that Hy, Hy € So if and only if

(6.2) O ({J(f;u)buezen) < o0,

where @ is a symmetric norming function,

{/Q+u |15 = s (z)}m,

and Q = {(x1 +iy1,...,Tn +iyn) €C" 1 21, y1,...Tn,yn € [-1,2)}.
To compare the mtuatlon with weighted Segal-Bargmann spaces, we say that
fe L isin IMO® with 0 < s < 00 if MOs,,.(f) € L® for some r > 0, where

1/2
MOs,.(f)(2) = (wln . )If—ﬁ(2)|2dv>

and ﬁ is the average function defined on C" by
-~ 1
fr(z) =
|B(Z7 T)| B(z,r)

For further details on these spaces, see [14].

fdv.
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The following lemma shows the connection between IMO and IDA.

Lemma 6.1. Suppose 0 < p < co. Then for f € L2 _(C"), f € IDA? and f € IDA?
if and only if f € IMOP. Furthermore,

I fllpar + | Fllipar = || fllivos-

Proof. The conclusion for 1 < p < oo is essentially Proposition 2.5 in [14]. As be-
fore, denote by @, the Bergman projection of L?(B(z,r),dv) onto A%(B(z,r), dv).
If feLl (C"),set hy =Q.,(f) and , ho = Q. ,(f). Then

B o Mol = Gt

where f; = f and fg = f. Set c( ) = 3Re(hy + ho)(z) + 3ilm(hy — he)(z). As
shown in the proof of Proposition 2.5 of [ 4],

1

{|B(1 - C(z)zdv} < C{GH () + G (D)}

25 T)| B(z,r)

Hence,
fdv dv < \Bzr|/zr‘f 2)|* dv

Z T |/ (z,7)
< C(G(N)2) + G ()

This implies, for 0 < p < oo, ||f||IMOP <C {Hf”IDAP + HT”IDAP} .
_ The reverse inequality follows from the fact that ||f|ipa» < | f[lmor since
||f||IDAP < ||fHIMOp by definition. O

Z T)‘ B(z,r)

Theorem 6.2. Let 0 < p < oo and suppose ¢ € C?(C") is real valued with
i00p ~ wy. Then for f € S, the following statements are equivalent.

(A) Both Hy, Hs € Sy(F(), L*(10)).

(B) f eIMOP.
Furthermore,
(6.3) 1Hflls, + [1H7lls, = 1 fllmor -
Proof. Given f € S and 0 < p < 00, the equivalence between (A) and (B) together
with the norm estimates (6.3) follow from Theorem 1.1 and Lemma 6.1. g

For Hankel operators acting on F2, the conditions in (6.1) and (6.2) are of course
equivalent to (B), but notice that the latter equivalence can be proved directly.

7. PROOF OF THEOREM 1.2

In this section we prove the Berger-Coburn phenomenon for Schatten p-class
Hankel operators when 1 < p < oo. For this purpose we employ the Ahlfors-
Beurling operator which is a well-known Calderén-Zygmund operator on LP(C),
1 < p < o0, defined as follows

S =~ [ (gf_(ijdv(gx

where p.v. means the Cauchy principal value. See [1] and [2] for further details.
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Lemma 7.1. Suppose 1 < p < co. Then there is a constant C' depending only on
p such that, for f € C>(C*")NL>® and j =1,2,--- ,n,
0] 0
(7.1) ‘ of of
0z 0%

Lr - ‘ Lp .

Proof. We take n = 1 temporarily. Let f € C?(C) N L*>. If H%HL = 0, then
f € H(C)N L*>, which implies f is constant and the estimates in (7.1) follow. So
we suppose H%HL > 0. Take ¢(r) € C*°(R) to be decreasing such that ¢ (z) =

for x <0, ¢(z)=0forx > 1, and 0 < —¢’'(z) < 2 for x € R. For R > 0 fixed, set
Yr(z) = ¥(x — R). Now for f € C?(C") N L, define fr(z) = f(2)vr(|z]). It is
trivial that fr(z) € C%(C), the set of C? functions on R? with compact support.
From Theorem 2.1.1 in [5] we have

1 Ofr

Ine) = 55 | eZS AN dE

Notice that % =R gf —+ faw;“. By Lemma 2 on page 52 in [1], we get
8fR . afR - af 8'¢)R

12 e =3( ) @ =5 (vmgl) @+s (152) @

Now for r > 0 and |z| < r, when R is sufficiently large, it holds that

dun 1l 3R £l
T<f az><z)§ (R 1)? /R§|g|gR+1d”(5)§ R

and hence

OVR
0z L2 (D(0,r),dv) Oz || 1

On the other hand, by the boundeness of T on L? (see for example, Theorem 4.5.3
in [2], or the estimate (11) on page 53 in [1 ]) we get

f of
(7.4 ()| <c|eed]| <c|E| -
From (7.2 ) and (7.4) we obtain
H o P
0z LP(D(0,r),dv) 0z LP(D(0,r),dv) 9Z || 1
Therefore,
& J52].. =<5,
Now for n > 2 and f € L> N C?(C"), from (7.5)
of [ _ / of nl
L z@ aer= [ avte) [|756.60] wiea)
<c dv@)/ o] wie.
(Cn—l

This implies (7.1) for j = 1. Similarly, we have (7.1) for j = 2,...,n, which
completes the proof. [
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Proof of Theorem 1.2. Suppose 1 < p < oo and Hy € S,. By Theorem 1.1, we
have

1fllpar ~ [[Hyl|s, < oo.
We decompose f = f1 + f2 as in (2.8). Then, since Ms,.(f2) = Ma,,(f2) € LP, we
have H? € Sp and
2
(7.6) 1Hz,|ls, < Cl[M2r(f2)l[zr < C|f DA

In addition, since f € L™, as in (5.3) of [13], we may assume

[f1llzee < Cllfllze=,
where the constant C is independent of f. We now apply Lemma 7.1 to obtain

o oh cll2f
823- ﬁzj (9,2]

Lp Lp

This and (5.2) yield
(7.7) 157 lls, < Cl10 fille < ClOfillLe < Cllfllpar-
It follows from (7.6), (7.7) and Theorem 1.1 that
|HF|ls, < Cllflpar < C|[Hf|s,,
which completes the proof. O
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