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Abstract 

The current work investigated the effects of oxide- and nitride-based silicon nanoparticles 

on the water absorption and dielectric breakdown characteristics of low density polyethylene 

(LDPE). The results showed that hydrophobic LDPE, when added with silicon dioxide 

nanoparticles, became prone to water absorption. In contrast, LDPE, when added with silicon 

nitride nanoparticles, attracted much less water. These water absorption behaviors consequently 

affected the breakdown characteristics of the materials, where LDPE with silicon dioxide 

nanoparticles showed lower breakdown strength than LDPE with silicon nitride nanoparticles. 

These differences are discussed based on the surface chemistries of the nanoparticles. 
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1.0 Introduction 

Dielectric nanocomposites have been reported to possess favorable dielectric properties that 

the dielectric community has long been waiting for, such as improved partial discharge resistance, 

treeing propagation, space charge build-up and dielectric breakdown performance [1-10]. Due to 

the effect of nanostructuration, extensive particle surface areas are anticipated to be present around 

nanometer-sized fillers. Consequently, properly engineered surface states of nanoparticles, which 

commonly serve as the interfacial region between the nanoparticles and the polymer, would allow 

nanocomposites to function as unique high voltage electrical insulation materials [11-21].  

Since the dielectric properties of nanocomposites are closely associated with the 

mechanisms at the nanoparticles’ surface, several interfacial models have been suggested in 

attempts to explain the electrochemical features (i.e., chemical processes that result in changes in 

electrical properties) of nanocomposites. These include the diffuse electrical double layer model 

[13, 22, 23], the multi-core model [14], the multi-region structure model [24] and the dual layer 

model [25]. Although each of the models has different viewpoints in relation to the interfacial 

region of nanocomposites, they exhibit a common element: the interfacial layer most adjacent to 

the nanoparticles is the key to controlling the dielectric behavior of nanocomposites. This 

highlights the importance of controlling the surface state of nanoparticles in engineering the 

dielectric properties of nanocomposites. 

The mechanisms at the interfacial region of nanocomposites, largely affected by the 

nanoparticles’ surface state are, however, far from being understood. Although the presence of the 

interfacial region has often been regarded as the main factor leading to the distinct dielectric 

properties of nanocomposites, it may also act as a preferred location for the aggregation of water 

molecules. For example, Zhang and Stevens [26] studied the dielectric behavior of nanoalumina-

filled polyethylene upon water absorption and reported that dielectric loss peaks associated with 
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absorbed water in unfilled and nanoalumina-filled polyethylene appeared at different frequencies 

and had different dynamics. Similar observations were reported for the case of nanoalumina-filled 

epoxy in comparison with unfilled epoxy. Zhang and Stevens [26] therefore suggested that water 

absorption behaviors in nanocomposites were different from unfilled polymers. Specifically, the 

interfacial region in nanocomposites, which was not found in unfilled materials, was likely to be 

the site for the aggregation of water molecules. 

Zou et al. [27] also discovered that epoxy/silica nanocomposites absorbed significantly 

more water than unfilled epoxy when exposed to humid environmental conditions. The extra water 

was found to be located around the surface of silica nanoparticles, resulting in the presence of water 

shells surrounding the nanoparticles. Conversely, filler particles that have surfaces that were 

functionalized to be hydrophobic reduced considerably the amount of absorbed water in 

nanocomposites under the same conditions of humidity. Similar observations were reported by 

Huang et al. [28] for the case of polyethylene/silica nanocomposites. 

Meanwhile, Fabiani et al. [29] investigated the effect of nanoparticle drying on water 

contents of nanocomposites and reported increased permittivity and loss in samples added with wet 

nanoparticles compared to samples added with dried nanoparticles. These adverse dielectric effects 

were thought to be more pronounced in nanocomposites containing high aspect ratio fillers than in 

nanocomposites containing low aspect ratio fillers. Therefore, the presence of the 

nanoparticle/polymer interphase may negatively affect the overall dielectric performance of 

nanocomposites. 

The recent work of Lau et al. [30, 31] demonstrated that polyethylene/silica nanocomposites 

absorbed significantly more water than unfilled polyethylene. Consequently, the permittivity and 

loss tangent of the nanocomposites increased with increasing duration of water immersion. 

Although the addition of nanosilica to polyethylene resulted in significant water uptake 
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(presumably due to the presence of the interphase) compared to unfilled polyethylene, surface 

functionalization of nanosilica using trimethoxy(propyl)silane coupling agent was found to 

improve matters, with less water uptake, lower permittivity and lower loss tangent. Similar findings 

were reported by Hosier et al. [32] with the use of silicon nitride nanoparticles in place of 

functionalized silica nanoparticles. These findings lead to the suggestion that the surface states (or 

more precisely, the surface chemistries) of nanoparticles are vital in establishing the interfacial 

region of nanocomposites, which subsequently determine  the materials’ dielectric behaviors.  

To date, published literature on the effect of water absorption in relation to the breakdown 

characteristics of polyethylene nanocomposites is relatively scarce. Although polyethylene itself is 

hydrophobic, the addition of nanoparticles could alter the water absorption behavior of the resulting 

nanocomposites due to the presence of the interfacial region between the nanoparticles and polymer 

that could act as a preferred site for the aggregation of water molecules [33]. Consequently, the 

presence of water can have detrimental effects on the otherwise improved electrical properties of 

dielectric materials [34-37]. In the current work, the tendency for hydrophobic low density 

polyethylene (LDPE) to absorb water upon nanoparticle addition was investigated. Two types of 

nanoparticles with different surface chemistries, i.e., silicon dioxide (SiO2) and silicon nitride 

(Si3N4), were added respectively to LDPE to explore the interfacial mechanisms with regard to 

water absorption and breakdown characteristics of the resulting nanocomposites.  

 

2.0 Experimental 

2.1 Materials and sample preparation 

The polymer used in the experimental work was LDPE (Titanlene LDF200YZ, (Lotte 

Chemical Titan). The nanoparticles used were silicon dioxide (SiO2) nanopowder and silicon 

nitride (Si3N4) nanopowder, obtained from NanoAmor. The Si3N4 nanoparticles had a 
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manufacturer-quoted average particle size of 15-30 nm. For the SiO2 nanoparticles, two 

manufacturer-quoted average particle sizes were considered, i.e., 20 nm and 80 nm – these SiO2 

nanoparticles were referred to as 20SiO2 and 80SiO2, respectively, hereafter. Figure 1 illustrates 

that SiO2 nanoparticles typically contains Si-O-Si bonds [38-41] while Si3N4 nanoparticles 

typically contains Si-N-Si bonds [42-44]; this will be further discussed later.  

 

 
 

 
 

Figure 1. Surface chemistries of (a) SiO2, (b) Si3N4. 
 

Nanocomposite samples were prepared using a mechanical mixing method. The desired 

amount of 20SiO2, 80SiO2 or Si3N4 nanoparticles was mixed with LDPE in a laboratory two-roll 

mill at a temperature of 140 ºC for 15 min. Samples for water immersion tests and breakdown 

measurements were then prepared using a hydraulic laboratory press at a temperature of 160 ºC 

and a load of 3 ton. The thickness of the prepared samples was 100 µm. 

(a) 

(b) 
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2.2 Characterization 

The prepared samples were immersed in distilled water and, at different time periods, were 

removed and dried with tissues, followed by sample weighing and DC breakdown testing. The 

sample weights (typically 0.5 g) were monitored using a 4-digit analytical balance (OHAUS 

PA214C); repeated measurements indicate an uncertainty in all measurements of about ±0.04%. 

The percentage increase in mass for each sample was calculated using the following equation: 

% 𝑀𝑎𝑠𝑠 = |
𝑀𝑤 − 𝑀𝑎

𝑀𝑎
|  × 100% (1) 

where Mw is the weight of a water absorbed sample while Ma is the weight of the sample prior to 

water immersion. 

DC breakdown testing was conducted by placing a test sample between two opposing 6.35 

mm diameter steel ball-bearing electrodes immersed in Hyrax Hypertrans transformer oil to prevent 

surface flashover. A DC voltage with a step voltage of 2 kV every 20 s was applied until the sample 

experienced breakdown. Fifteen breakdown tests were performed on each type of material. The 

voltage obtained from each measurement was divided by the sample thickness at the breakdown 

point in order to obtain the breakdown field. The resulting dielectric breakdown data were 

statistically analyzed assuming two-parameter Weibull statistics [45, 46]. 

 

3.0 Results 

3.1 Water uptake characteristics 

3.1.1 Changes in absorbed water over water immersion period 

Figure 2 shows the water uptake characteristics of LDPE with 20SiO2, 80SiO2 and Si3N4. 

For referencing purposes, unfilled LDPE showed negligible water absorption effects. However, 
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adding 20SiO2 to LDPE resulted in an increase in the material’s mass upon water immersion. After 

three days of water immersion, the mass of LDPE with 3 wt% of 20SiO2 increased as much as 

0.93%.  The mass of the sample increased to 1.73% after immersing in water for 15 days. By adding 

10 wt% of 20SiO2 to LDPE, the water absorption effects became more apparent than the 3 wt% 

equivalent counterparts – the water uptake percentage increased to 1.61% and 2.01% after three 

and fifteen days of water immersion, respectively. The addition of 80SiO2 to LDPE also resulted 

in an increase in the material’s mass upon water immersion. Nevertheless, the water uptake 

characteristics of LDPE with 80SiO2 and LDPE with 20SiO2 were similar. 

Although the addition of Si3N4 to LDPE resulted in an increase in the material’s mass upon 

water immersion, the increase is much less compared to LDPE with 20SiO2 or 80SiO2. After three 

days of water immersion, the mass increase for LDPE with 1 wt% and 3 wt% of Si3N4 was 

negligibly small (~0.08%). Generally, the water absorption effects of LDPE with Si3N4 became 

more apparent with an increasing amount of Si3N4. After 20 days of water immersion, LDPE with 

5 wt% of Si3N4 showed an increase of 0.68% water absorption, much less than the water absorption 

effects of LDPE with 20SiO2 and 80SiO2. 
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Figure 2. Percentage increase in mass for LDPE with 20SiO2, 80SiO2 and Si3N4, with unfilled LDPE as a 

reference 

 

3.1.2 Changes in absorbed water over nanoparticle loading levels 

Figure 3 shows the plot of the mass increase (or water absorption) for LDPE with 20SiO2, 

80SiO2 andSi3N4 over different nanoparticle loading levels after immersing in water for different 

time periods. Apparently, the water uptake capability of LDPE with Si3N4 was different from that 

of LDPE with 20SiO2 and 80SiO2. The mass of LDPE with Si3N4 did not increase much for the 

amount of nanoparticles up to 3 wt%. Meanwhile, the mass of LDPE with 20SiO2 and 80SiO2 

increased up to 1% for nanoparticle loading level of 3 wt%. Nevertheless, the mass increase became 

less steep between 3 wt% and 10 wt% of nanoparticle loading level. Similar trends of water 
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absorption over nanoparticle loading levels were observed after the samples were immersed in 

water for fifteen or twenty days. 

 
Figure 3. Percentage increase in mass for LDPE with 20SiO2, 80SiO2 and Si3N4 over different nanoparticle 

loading levels for different water immersion periods 

 

3.2 Breakdown characteristics 

3.2.1 Breakdown strength of unfilled LDPE 

Figure 4a shows the breakdown strength of unfilled LDPE upon water immersion for 0, 3 

and 15 days (the Weibull parameters are shown in Table 1). Considering the uncertainties in 

Weibull analysis, the breakdown strength of unfilled LDPE was not affected upon water immersion. 

The unaltered breakdown strength of unfilled LDPE was further confirmed by another batch of 

similar LDPE sample immersed in water for 0, 3, 8 and 20 days (see Figure 4b). 
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Figure 4. Breakdown strength of (a) unfilled LDPE samples upon water immersion for 0, 3 and 5 days, (b) 

another batch of similar LDPE samples upon water immersion for 0, 3, 8 and 20 days 

 

Table 1. Weibull parameters for unfilled LDPE upon different water immersion periods 

 

Sample α (kV/mm) β 

Unfilled LDPE: 0 day 254 ± 9 14 ± 5 

Unfilled LDPE: 0 day 235 ± 10 11 ± 4 

Unfilled LDPE: 3 days 241 ± 6 18 ± 7 

Unfilled LDPE: 3 days 261 ± 23 6 ± 3 

Unfilled LDPE: 8 days 234 ± 16 8 ± 5 

Unfilled LDPE: 15 days 240 ± 6 17 ± 6 

Unfilled LDPE: 20 days 254 ± 25 6 ± 3 

 

3.2.2 Breakdown strength of LDPE with 20SiO2 

Figure 5a shows the breakdown strength of LDPE with 3 wt% of 20SiO2 (the breakdown 

strength of unfilled LDPE from Figure 4a are re-shown as grey colored background). The 

(a) (b) 
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breakdown strength of LDPE with 3 wt% of 20SiO2 was not as high as that of unfilled LDPE. In 

addition, the breakdown strength of LDPE with 3 wt% of 20SiO2 reduced with increasing water 

immersion periods. A similar breakdown trend was also observed for LDPE with 10 wt% of 20SiO2 

(see Figure 5b; the breakdown strength of unfilled LDPE from Figure 4a and LDPE with 3 wt% of 

20SiO2 from Figure 5a are re-shown as grey colored background). Furthermore, the reduction of 

breakdown strength was more apparent for LDPE with 10 wt% of 20SiO2 compared to LDPE with 

3 wt% of 20SiO2. The Weibull parameters for LDPE with 20SiO2 are shown in Table 2. 

 

 
 

Figure 5. Breakdown strength of LDPE with (a) 3 wt% of 20SiO2 upon water immersion for 0, 3 and 15 

days (unfilled LDPE from Figure 4a are re-shown as grey colored background), (b) 10 wt% of 20SiO2 upon 

water immersion for 0, 3 and 15 days (unfilled LDPE from Figure 4a and LDPE with 3 wt% of 20 nm SiO2 

from Figure 5a are re-shown as grey colored background) 

 

(a) (b) 
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Table 2. Weibull parameters for LDPE with 3 wt% and 10 wt% of 20SiO2 upon water immersion for 0, 3 

and 15 days 

 

Sample α (kV/mm) β 

3 wt% 20SiO2: 0 day 109 ± 8 7 ± 3 

3 wt% 20SiO2: 3 days 77 ± 5 9 ± 3 

3 wt% 20SiO2: 15 days 68 ± 5 7 ± 3 

10 wt% 20SiO2: 0 day 87 ± 9 5 ± 2 

10 wt% 20SiO2: 3 days 68 ± 4 8 ± 3 

10 wt% 20SiO2: 15 days 66 ± 4 7 ± 3 

 

3.2.3 Breakdown strength of LDPE with 80SiO2 

Figure 6a shows the breakdown strength of LDPE with 3 wt% of 80SiO2. Again, the 

breakdown strength of the samples reduced with increasing water immersion periods. A similar 

trend was also observed for LDPE with 10 wt% of 80 SiO2 (see Figure 6b). Again, the reduction 

of breakdown strength was more apparent for LDPE with 10 wt% of 80SiO2 compared to LDPE 

with 3 wt% of 80SiO2. The Weibull parameters for LDPE with 80SiO2 are shown in Table 3. 
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Figure 6. Breakdown strength of LDPE with (a) 3 wt% of 80SiO2 upon water immersion for 0, 3 and 15 

days (unfilled LDPE from Figure 4a are re-shown as grey colored background), (b) 10 wt% of 80SiO2 upon 

water immersion for 0, 3 and 15 days (unfilled LDPE from Figure 4a and LDPE with 3 wt% of 80 nm SiO2 

from Figure 6a are re-shown as grey colored background) 

 
Table 3. Weibull parameters for LDPE with 3 wt% and 10 wt% of 80SiO2 upon water immersion for 0, 3 

and 15 days 

 

Sample α (kV/mm) β 

3 wt% 80 nm SiO2: 0 day 160 ± 8 9 ± 4 

3 wt% 80 nm SiO2: 3 days 130 ± 6 11 ± 4 

3 wt% 80 nm SiO2: 15 days 95 ± 7 7 ± 2 

10 wt% 80 nm SiO2: 0 day 107 ± 8 6 ± 3 

10 wt% 80 nm SiO2: 3 days 75 ± 4 8 ± 3 

10 wt% 80 nm SiO2: 15 days 68 ± 3 6 ± 3 

 

3.2.4 Breakdown strength of LDPE with Si3N4 

Figure 7a shows the breakdown characteristics of LDPE with 1 wt% of Si3N4. Before 

subjected to water immersion, the breakdown strength of LDPE with 1 wt% of Si3N4 was 244 

(a) (b) 
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kV/mm, similar to the breakdown strength of unfilled LDPE. After immersing in water for 3 days, 

the breakdown strength of LDPE with 1 wt% of Si3N4 reduced drastically to 130 kV/mm. Further 

reductions of the breakdown strength were observed after LDPE with 1 wt% of Si3N4 was 

immersed in water for 8 and 20 days. 

Figure 7b shows that the breakdown trend for LDPE with 3 wt% of Si3N4 is similar to that 

of LDPE with 1 wt% of Si3N4. However, the addition of 5 wt% of Si3N4 to LDPE significantly 

reduced the breakdown strength of the material to 180 kV/mm (see Figure 7c). Again, the 

breakdown strength of the samples reduced with increasing water immersion periods. The Weibull 

parameters for LDPE with Si3N4 are shown in Table 4. 
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Figure 7. Breakdown strength of LDPE with (a) 1 wt% of Si3N4 upon water immersion for 0, 3, 8 and 20 days 

(unfilled LDPE from Figure 4a are re-shown as grey colored background), (b) 3 wt% of Si3N4 upon water 

immersion for 0, 3, 8 and 20 days (unfilled LDPE from Figure 4a and LDPE with 3 wt% of Si3N4 from Figure 

7a are re-shown as grey colored background), (c) 5 wt% of Si3N4 upon water immersion for 0, 3, 8 and 20 days 

(unfilled LDPE from Figure 4a, LDPE with 1 wt% of Si3N4 from Figure 7a and LDPE with 3 wt% of Si3N4 from 

Figure 7b are re-shown as grey colored background) 

(c) 

(a) (b) 
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Table 4. Weibull parameters for LDPE with 1 wt%, 3 wt% and 5 wt% of Si3N4 upon water immersion for 

0, 3, 8 and 20 days 

 

Sample α (kV/mm) β 

1 wt% Si3N4: 0 day 244 ± 20 6 ± 2 

1 wt% Si3N4: 3 days 130 ± 15 4 ± 2 

1 wt% Si3N4: 8 days 101 ± 9 7 ± 4 

1 wt% Si3N4: 20 days 105 ± 9 6 ± 2 

3 wt% Si3N4: 0 day 249 ± 20 6 ± 2 

3 wt% Si3N4: 3 days 87 ± 8 5 ± 2 

3 wt% Si3N4: 8 days 108 ± 15 4 ± 4 

3 wt% Si3N4: 20 days 106 ± 15 3 ± 2 

5 wt% Si3N4: 0 day 180 ± 10 8 ± 4 

5 wt% Si3N4: 3 days 92 ± 9 5 ± 2 

5 wt% Si3N4: 8 days 76 ± 7 6 ± 3 

5 wt% Si3N4: 20 days 76 ± 5 7 ± 2 

 

4.0 Discussion 

The behavior at the interphase of nanocomposites depends significantly on the interfacial 

layer most adjacent to nanoparticles, which in turn is closely related to the surface chemistry of the 

nanoparticles [13, 14, 22-25]. In the current work, two types of silicon-based nanoparticles with 

different chemical compounds, i.e., oxide (SiO2) and nitride (Si3N4), were investigated to 

understand the key phenomena associated with changes in nanoparticle surface chemistries. In 

Figure 1a, it was illustrated that SiO2 nanoparticles typically contains Si-O-Si bonds. Due to their 

electronegativity, the oxygen (O) atoms on the SiO2 surface can form stable chemical bonds with 

almost all elements to give the corresponding oxides. Naturally, the O atoms have a high tendency 

to form hydrogen bonding with water molecules. Consequently, SiO2 is prone to water adsorption, 

where surface hydroxyl (OH) groups tend to be present on the surface of SiO2 when exposed to air 

or water surroundings. Indeed, available literature [32, 61] showed that SiO2 adsorbed significant 

amount of water even when stored under ambient conditions, suggesting that water can readily be 

partitioned to polar SiO2 surfaces. 
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Meanwhile, Si3N4 nanoparticles typically contains Si-N-Si bonds, as illustrated in Figure 

1b. According to the Pauline scale [47], the electronegativity of an N atom is 3.04, less than that of 

an O atom (3.44). Therefore, the affinity of the N atoms on the surface of Si3N4 to attract water 

molecules is lower, albeit that Si3N4 exposed to air can form an oxide film on its surface, where 

the oxidation film can thus react with water [42, 48]. This was also reported in previous findings 

[32, 61] where, under ambient conditions, Si3N4 adsorbed little water compared to SiO2. Therefore, 

the water adsorption effects were much less pronounced for Si3N4 compared to SiO2. The results 

from the current water immersion test were, indeed, in line with the above illustrated surface 

chemistry changes. LDPE is hydrophobic in nature, so it repels rather than absorbs water [49]. 

Consequently, no appreciable changes in mass were observed for unfilled LDPE. Since unfilled 

LDPE was not affected by its surrounding water, the breakdown strength of unfilled LDPE 

remained similar upon water immersion.  

Meanwhile, most nanoparticles are hydrophilic in nature. The addition of hydrophilic 

nanoparticles to hydrophobic LDPE would render the resulting nanocomposite material to become 

hygroscopic – having tendency to absorb or adsorb water from surroundings. Based on the current 

experimental work on LDPE with 20SiO2 or 80SiO2, an increase in the materials’ mass was 

recorded upon water immersion. The increase in mass could be attributed to the presence of water 

within LDPE/SiO2 interphase, since OH groups tend to be formed on the surface of SiO2. With 

increasing water immersion periods, more water molecules could reside within the interphase, and 

this negatively affected the breakdown strength.  

The presence of water within nanocomposites are not unusual and was anticipated by Zou 

et al. [27] and Fabiani et al. [29] through their proposed water shell models, where layers of water 

were expected to surround nanoparticles (at the interphase). Rowe [50] suggested the “interphase 

aging scenario”, whereby water that diffused into composites would reach the particle/polymer 
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interphase where it accumulated, thus forming a network of semi inter-connected water pathway 

at the interphase. Percolation of water through the interphase would then occur, and an electrical 

path would appear through the sample, initiating conduction current and a runaway mechanism 

that would lead to electrical breakdown. Indeed, Hosier et al. [51, 52] reported increased electrical 

conductivity, dielectric loss and permittivity, thus reduced breakdown strength, as a consequence 

of increased water absorption in polyethylene/silica nanocomposites. A progressive reduction in 

breakdown strength with increasing moisture content was also observed by many other researchers 

[53-55], in agreement with the current findings. 

The use of nanometer-size fillers commonly leads to the presence of more extensive 

interfacial areas [12], hence higher amounts of absorbed water. While using SiO2 with a larger 

manufacturer-quoted diameter, i.e., 80SiO2, was expected to reduce the water absorption effect due 

to its smaller overall interfacial areas compared to 20SiO2, this was not apparent in the current 

work. This imply two possibilities. First, the water absorption characteristics were similar in LDPE 

with 20SiO2 and 80SiO2, indicating that they absorbed water in a similar way. Second, the water 

absorption characteristics were different in LDPE with 20SiO2 and 80SiO2, but these characteristic 

change was difficult to be measured directly from the current experiment. The latter is thought to 

be more relevant, since the breakdown strength of LDPE with 80SiO2 was higher than that of LDPE 

with 20SiO2 counterparts, thus indicating less water molecules within the LDPE with 80SiO2. 

Significantly, the addition of Si3N4 to LDPE resulted in much less water absorption when 

compared to the addition of 20SiO2 or 80SiO2 to LDPE. In this regard, different surface chemistries 

governing of Si3N4 and SiO2 is important. Since the affinity of N atoms on the surface of Si3N4 to 

attract water molecules is lower than O atoms on the surface of SiO2, water is less attractive to the 

surface of Si3N4. Nevertheless, the presence of the interphase region in LDPE with Si3N4 could 

still serve as a preferable site for the aggregation of water molecules. Since this region would 
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nevertheless contain water upon water immersion, the breakdown strength of LDPE with Si3N4 

would be negatively affected. It is noteworthy that the breakdown strength of LDPE with Si3N4 

significantly decreased although very few water was absorbed. This could be a consequence of the 

formation of a percolating water network that enhanced electrical conductivity in well dispersed 

Si3N4-based nanocomposites; in SiO2-based nanocomposites, a percolating network was not 

formed due to particle aggregation [32]. Consequently, small changes in water content could 

manifest themselves as major changes in electrical performance. 

The breakdown strength of LDPE reduced with increasing amounts of SiO2 or Si3N4 

loading levels. This has often been associated with nanoparticles aggregation [56, 57]. Nevertheless, 

the current breakdown results indicated that the same sample, when immersed in water, could result 

in much lower breakdown strength. Therefore, although the aggregation of nanoparticles could 

negatively affect the breakdown strength of nanocomposites, the presence of water could also be 

detrimental to the breakdown strength of the materials. Furthermore, an apparent increase in mass 

could be noticed for LDPE with 10 wt% of SiO2 than 3 wt% of SiO2. This could be related to 

increased interphase volumes (and therefore increased water contents) as a consequence of 

increased nanoparticles amounts. The breakdown strength of LDPE with higher SiO2 loading levels 

was consequently further reduced. 

In the previous work [58, 59], changes in the permittivity values of nanoparticles were 

demonstrated to affect the electric field distribution within nanocomposites, thus the breakdown 

performance. Generally, nanoparticles with permittivity values higher than polymers showed 

distorted electric field intensity within the resulting nanocomposites, and the distortion effect 

amplifies if the permittivity of nanoparticles further increases. So, the breakdown strength of a 

material is commonly reported to be inversely proportional to the permittivity of the material [60]. 

In the current work, however, the permittivity of Si3N4 (7.5) was higher than SiO2 (3.9), but adding 
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Si3N4 to LDPE resulted in higher breakdown strength than adding SiO2 to LDPE even before the 

water immersion test. The current results are, nevertheless, consistent with the work of Hosier et 

al. [61] in comparing the breakdown strength of polyethylene containing Si3N4 and SiO2. Hosier et 

al. [32, 61] suggested that as-received Si3N4 nanoparticles were generally drier than as-received 

SiO2 nanoparticles under ambient conditions, so the overall permittivity of polyethylene/Si3N4 

nanocomposites was lower than polyethylene/SiO2 nanocomposites. Consequently, the effects of 

nanofillers’ permittivity on the breakdown strength of nanocomposites were overshadowed by the 

effects of water surrounding the nanofillers. It is therefore important to note that, while addressing 

permittivity mismatches between the nanoparticles and the polymer is crucial in nanocomposites, 

efforts to eliminate water on nanoparticles’ surface or within the nanocomposite interphase are of 

equal importance. This is because water could readily be adsorbed onto the surface of nanoparticles, 

creating a volume of water within the interphase, thus jeopardizing the dielectric properties of 

nanocomposites.  

 

5.0 Conclusions 

The current work demonstrated that the addition of oxide- and nitride-based silicon 

nanoparticles to LDPE could alter the material’s water absorption behavior. While LDPE itself is 

hydrophobic, LDPE when added with SiO2 nanoparticles, became prone to water absorption. In 

contrast, LDPE with Si3N4 nanoparticles attracted much less water. These water absorption 

behaviors consequently affected the breakdown properties of the materials, where LDPE with SiO2 

nanoparticles showed lower breakdown strength than LDPE with Si3N4 nanoparticles. The 

observed changes in the water absorption and breakdown characteristics of the nanocomposites 

were attributed to the interfacial mechanisms of the nanocomposites, in particular, in relation to 

surface chemistries of SiO2 and Si3N4. Significantly, the results from the breakdown tests showed 
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that understanding nanoparticles’ surface chemistry and hence the nanocomposite interphase, in 

relation to its water absorption (or adsorption) behavior is particularly important, since the presence 

of water in any dielectrics is strongly undesirable. 
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