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Abstract

Data assimilation is an inverse problem that seeks to optimally combine information from a set

of observations with a first guess analysis to generate the best estimate of the current state of a

dynamic system. It is an essential part of numerical weather prediction because the accuracy of a

model forecast is closely tied to the accuracy of the initial conditions. Thus, the goal of this the-

sis is to enhance our ability to assimilate satellite brightness temperatures through development

of bias correction (BC) methods to remove systematic errors from the observations and model

background.

In the first part of the thesis, we introduce an innovative BC method that uses a Taylor series

polynomial expansion of the observation-minus-background (OMB) departures to remove linear

and nonlinear conditional biases from all-sky satellite infrared brightness temperatures. Passive

monitoring experiments reveal that variables sensitive to the cloud top height are the most effec-

tive BC predictors and that higher-order Taylor series terms are necessary to account for complex

nonlinear biases in the OMB departures. Active data assimilation experiments using the nonlinear

BC method show that the model background is most improved when higher-order cloud-sensitive

predictors are employed.

Following this work, we use the Lorenz-63 model to develop a model bias estimation method

based on an asymptotic expansion of the model dynamics for small time scales and small pertur-

bations in one of its parameters. The model bias estimators are subsequently used to improve the

model background error covariance matrix used during the data assimilation step. It is shown

that the combination of a static matrix with a dynamic matrix that varies with time leads to more

accurate model analyses and forecasts. Together, results from this thesis demonstrate that bias

predictors derived from polynomial expansions of modeled and observed variables can improve

the performance of data assimilation systems.
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Chapter 1

Introduction

1.1 Motivation

Numerical weather prediction (NWP) models simulate the evolution of the atmosphere and other

aspects of the earth system using a set of partial differential equations and various parameteriza-

tion schemes that together account for processes occurring within and at the boundaries between

the atmosphere, land, and ocean. The dynamic and thermodynamic characteristics of the atmo-

sphere at a given location, and how they evolve with time, are typically described using Newton’s

law of motion for fluid air and the laws of thermodynamics. These continuous nonlinear partial

differential equations are generally impossible to solve exactly; therefore, numerical approxima-

tions are used to transform them into discrete difference equations suitable for use in NWP mod-

els (Strikwerda 2004; Mengaldo et al. 2019). Because many environmental processes are either too

complex to adequately represent using these equations or occur at spatial and temporal scales that

are too small to be fully resolved on the model grid, parameterization schemes are used to esti-

mate their statistical impact on the resolved variables (Stensrud 2007). Parameterization schemes

account for a wide range of unresolved processes such as turbulent mixing in the planetary bound-

ary layer, the evolution of cloud hydrometeors as cloud systems grow and decay, and the transfer

of electromagnetic radiation through the atmosphere and its interaction with clouds, aerosols, and

the earth’s surface.

Despite the numerous challenges associated with simulating complex and chaotic processes,

such as those that occur in the atmosphere, the accuracy of NWP model forecasts has substantially

increased during the past several decades. For example, Magnusson and Kallen (2013) showed
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that the average accuracy of a 3-day forecast generated using the 1980 version of the European

Centre for Medium-range Weather Forecasts (ECMWF) operational modeling system could be

obtained in a 6-day forecast using the 2010 version of the system. This extension of the same

forecast skill to longer lead times greatly enhances the utility of the model forecasts by providing

stakeholders and the general public additional time to prepare for adverse weather conditions. A

recent study by Hoffman et al. (2018) has shown that forecast errors have continued to decrease

during the past 10 years at all of the major operational weather forecasting centers, and that the

errors are much smaller than they were 40 years ago.

The notable increase in forecast skill can be attributed to advancements in many areas, such

as improvements made to the forecast models through development of more sophisticated param-

eterization schemes and to increases in spatial resolution, both of which permit a more accurate

representation of physical processes. The development of advanced data assimilation capabilities

has proven to be equally important because the more effective assimilation of various observations

has greatly improved the accuracy of the datasets that are used to initialize NWP model forecasts

(Magnusson and Kallen 2013). All other things being equal, the accuracy of a model forecast is

closely tied to the quality of the initial and lateral boundary conditions that it is provided. Thus,

efforts to further improve the accuracy of these datasets through the more effective assimilation of

existing observations are critical for gaining additional increases in forecast skill. This is especially

true in cloudy regions where model errors remain large due to the tendency for nonlinear error

growth and the difficulties associated with assimilating satellite brightness temperatures affected

by clouds (McNally 2002; Geer and Bauer 2011). Indeed, most observations impacted by clouds

and precipitation are currently not being assimilated at global NWP centers (Yang et al. 2016).

Neglecting observations impacted by clouds is problematic however because they tend to be lo-

cated in dynamically active regions where more accurate initial conditions could help constrain

potentially rapid error growth during the forecasts. Therefore, one of the primary objectives of

this thesis is to improve the accuracy of model initialization datasets through the more effective

use of cloud-sensitive satellite infrared brightness temperatures in data assimilation systems. This

goal will be accomplished through development of a novel all-sky bias correction method that is

able to remove complex biases from these important observations prior to their assimilation.
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1.2 Data Assimilation

Data assimilation refers to a mathematical technique that seeks to optimally combine imperfect

observations with a model background or ”first guess” that also contains errors in order to deter-

mine the best estimate of the atmospheric state and lower boundary conditions associated with

the land and ocean surfaces. Output from a short-range model forecast is typically used as the

first guess because it provides a more complete representation of the atmospheric conditions and

is necessary to make the inverse problem well-posed given that the number of observations is typ-

ically much smaller than the dimension of the NWP model. Various data assimilation methods

have been developed during the past 60 years ranging from simple methods such as optimal in-

terpolation (Gandin 1962) to more complex methods such as variational data assimilation (Lewis

and Derber 1985; Le Dimet and Talagrand 1986; Klinker et al. 2000) and the ensemble Kalman

filter (EnKF; Evensen 1994; Houtekamer and Mitchell 1998). More recently, hybrid data assimi-

lation methods that combine aspects of the variational and ensemble approaches have also been

developed (e.g., Buehner et al. 2010; Clayton et al. 2013). All of these latter methods include co-

variance information that can be used to update unobserved variables, thereby allowing remotely

sensed observations such as satellite brightness temperatures to be assimilated. This is important

because satellite observations are collectively the most important observation type assimilated in

most operational NWP modeling systems (Bauer et al. 2010).

Though various mathematical perspectives can be used to discuss theoretical aspects of data

assimilation, the most common approach is to view it as a Bayesian estimation problem. Varia-

tional data assimilation methods seek the solution that maximizes the a posteriori probability p(x|y)

through minimization of a quadratic cost function J(x). For 3-dimensional variational (3DVAR)

assimilation, where all of the observations valid during a given assimilation window are assimi-

lated at the same analysis time, this leads to the following cost function:

J(x) =
1
2
(x−xb)

TB−1(x−xb)+
1
2
(H(x)−y)TR−1(H(x)−y), (1.1)

where x ∈ Rn and xb ∈ Rn are the model analysis and background vectors, B ∈ Rn×n and R ∈ Rm×m

are the model background and observation error covariance matrices, H is the observation opera-

tor that maps from the model space to the observation space, y∈Rm is the observation vector, n∈N

is the dimension of the model space, and m ∈ N denotes the number of observations. Because the
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NWP model and observations contain errors, the model background xb and observations y only

approximate the true system state xtrue:

xb = xtrue +εb +βb (1.2)

y = H(xtrue)+εo +βo, (1.3)

where εb ∈ Rn and εo ∈ Rm represent random errors in the model background and observations,

respectively, and βb ∈ Rn and βo ∈ Rn refer to their biases. In most data assimilation systems, the

model background and observations are assumed to be unbiased or that any biases in the datasets

can be removed using suitable bias correction methods. The model background and observation

error covariance matrices can then be defined as B = E[εb(εb)
T ] and R = E[εo(εo)

T ], where E is the

expectation operator.

If the above framework is extended to four dimensions (4DVAR) so that the observations can

be incorporated at their exact time of measurement, the cost function becomes:

J(x0) =
1
2
(x0−xb)

TB−1(x0−xb)+
1
2

N

∑
i=1

(Hi(xi)−yi)
TR−1

i (Hi(xi)−yi) (1.4)

where x0 ∈ Rn is the model state at the beginning of the assimilation window, xi = M(x0) ∈ Rn is

the model state at each observation time ti obtained through integration of the numerical model

M from the initial state x0 at time t0, Hi and Ri ∈ Rm×m are the observation operator and error co-

variance matrix for the ith observation yi, and N is the total number of observations. This is the

standard formulation for strong-constraint 4DVAR where the numerical model M is assumed to

be perfect. The first term on the righthand sides of (1.1) and (1.4) measures the departure of the

analysis vector from the model background, weighted by the inverse of the background error co-

variances. Likewise, the second term in each equation measures the departure of the observations

from their corresponding model equivalents, weighted by the inverse of the observation error co-

variances. Iterative approaches such as the conjugate gradient method (Hestenes and Stiefel 1952)

are typically used to find the solution that minimizes the cost function J(x).

The B matrix in variational data assimilation systems has traditionally been used to represent

average conditions over a long period of time; however, this means that it cannot properly capture

the true background uncertainty at a given time if it deviates strongly from climatology, such as

often occurs in dynamically active regions. Because of this limitation, some operational weather
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forecasting centers have developed new methods to generate B that allow it to better capture the

true uncertainty during a given assimilation cycle. One way this is accomplished is by combin-

ing information about current atmospheric conditions from a reduced resolution ensemble with

a static (e.g., climatological) higher-resolution B matrix (Isaksen et al. 2010). An alternative ap-

proach is to use an EnKF data assimilation system where B is updated during each assimilation

cycle using an ensemble of full-resolution model forecasts integrated from the previous analysis

time. By using an ensemble to approximate the forecast uncertainty, an EnKF is a Monte Carlo

implementation of the Bayesian update problem, which can be expressed as:

p(a)(x|y) = p(b)(x)p(o)(y|x)
p(y)

, (1.5)

where p(a)(x|y) is the posterior probability distribution conditioned on the observations y, p(b)(x)

is the prior probability distribution, p(o)(y|x) is the observation error distribution conditioned on x,

and p(y) is the probability distribution of the observations. Because the observations are assumed

to be independent of the current model state x, p(y) can be set to a constant value. We then want

to find the model analysis x that maximizes the posterior probability p(a)(x|y). This is equivalent

to finding the posterior state that best represents the new observations y and the prior state. The

probability distributions are usually assumed to be Gaussian, which leads to:

p(b)(x) =
1√

2π|B|n
exp

(
− 1

2
(x−xb)

T B−1(x−xb)
)
, (1.6)

and

p(o)(y|x) = 1√
2π|R|m

exp
(
− 1

2
(y−h(x))T R−1(y−h(x))

)
, (1.7)

Then, from Bayes theorem, the posterior probability distribution becomes:

p(a)(x|y) ∝ exp
(
− 1

2
(x−xb)

T B−1(x−xb))−
1
2
(y−h(x))T R−1(y−h(x))

)
, (1.8)

where we ignore the constants multiplying the exponents in (1.6) and (1.7) because they are inde-

pendent of x. The maximum likelihood of the posterior analysis is the x that maximizes the terms

in the exponent of (1.8).

In an EnKF system, the ensemble mean analysis xa ∈ Rn during a given assimilation cycle is

then solved using:

xa = x f +K(y−H(x f )), (1.9)
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where x f ∈ Rn is the forecast ensemble mean and K is the Kalman gain matrix given by:

K = P f HT(HP f HT +R)−1 (1.10)

Here, P f ∈ Rn×n denotes the forecast error covariance matrix, which is equivalent to the back-

ground error covariance matrix B used in variational data assimilation methods except that it has

the important distinction of varying with time, thereby allowing it to better capture the true uncer-

tainty in the model background. An EnKF is a sequential data assimilation method that is a Monte

Carlo approximation of the extended Kalman filter (Kalman 1960) where the true covariance ma-

trix is replaced by the sample covariance matrix computed from an ensemble. This approximation

allows it to be implemented very efficiently and to scale well to the very large dimensions used

by modern geophysical models (Houtekamer and Zhang 2016). Covariance localization methods

are typically used to make the ensemble less rank deficient and to limit the impact of spurious

correlations occurring at long distances from a given grid point (Houtekamer and Mitchell 1998;

Hamill et al. 2001; Mitchell et al. 2002). Deficient ensemble spread resulting from a finite ensemble

size may also lead to filter divergence where the observations are no longer able to pull the model

trajectory back toward the observations. This problem can be mitigated through use of covariance

inflation methods that act to increase the variance explained by the ensemble and therefore allow

the observations to have a larger impact on the analysis (Anderson and Anderson 1999; Zhang

et al. 2004; Anderson 2009). The EnKF methodology has become widely used during the past

15 years due to its ease of implementation. It has become particularly popular in high-resolution

regional-scale data assimilation systems for which flow-dependent background error covariances

are especially important (Bonavita et al. 2010; Caron et al. 2015; Schwartz et al. 2015).

Though the mathematics underlying 4DVAR and EnKF data assimilation systems differ in

important ways, it is important to note that in the theoretical context of a linear NWP model,

linear observation operator, and Gaussian statistics, that the EnKF and 4DVAR solutions will be

identical at the end of the assimilation window provided that the EnKF employs a sufficiently

large ensemble (Lorenc 1986). For both methods, the observation error covariance matrix R in-

cludes contributions due to measurement error and representativeness error. It is often assumed

to be diagonal, which means that it is unable to account for correlated observation errors that may

occur both in space and between different channels on a given satellite sensor. This assumption is

problematic for all-sky satellite observations because correlated observation errors can arise due
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to limitations in the forward observation operator that maps from the model to observation space

and in the inability of the NWP model to properly resolve the atmospheric and surface features

seen in the observations. The impact of correlated observation errors has traditionally been miti-

gated to some extent through use of variance inflation and observation thinning procedures (e.g.,

Courtier et al. 1998; Hilton et al. 2009; Bormann et al. 2016; Janjic et al. 2018).

Desroziers et al. (2005) developed a diagnostic tool that can be used to estimate R by consid-

ering relationships between the observation-minus-background (OMB) and observation-minus-

analysis statistics. Though their diagnostic relies on linearity and assumes that the covariance

matrices used in the data assimilation system are close to correct, it has been used successfully in

various settings (Bormann et al. 2010a,b, 2011; Miyoshi et al. 2013; Stewart et al. 2014; Waller et al.

2016a). A recent study by Waller et al. (2016b) used this method to investigate spatial and inter-

channel correlations in satellite all-sky infrared brightness temperatures. They found that strong

inter-channel correlations occur between the water vapor channels, as well as between the various

surface-sensitive channels, and that the correlations vary spatially across the model domain. An-

other recent study by Michel (2018) investigated horizontal spatial correlations in all-sky satellite

observations. Building upon the work of Fisher (2005), they showed that it is possible to model the

structure of the spatial correlations by applying a sequence of linear operators. Their method uses

the Lanczos algorithm to provide a low-rank eigenvalue decomposition of the correlation matrix

that is then regularized and explicitly inverted.

The matrices B and R are important because the a posteriori model analysis will be pulled more

strongly toward (away from) the observations when there is greater (less) uncertainty in the model

background or when the observation error uncertainty is smaller (larger). It is therefore necessary

to correctly estimate these covariance matrices in order to make full use of the information content

provided by the model background and the observations. Despite its importance, it is impossible

to specify the exact form of the B matrix in real-world applications because the true state of the

system xtrue is unknown. For ensemble data assimilation systems, the ensemble mean from a short-

term forecast x f serves as the best estimate of the true state when computing the background error

covariance matrix; however, in variational data assimilation systems, it is common to estimate

the B matrix using the so-called NMC method (Parrish and Derber 1992). With this method, the

background error covariances are estimated by taking differences between pairs of forecasts valid

at the same time but initialized at different times. The two forecasts, in this case represented by 24

and 48 h forecasts valid at the same time, can be written as a linear combination of the true state
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and their associated errors:

x48 = xtrue +ε48 +β48 (1.11)

x24 = xtrue +ε24 +β24, (1.12)

where ε48 and ε24 are the random errors and β48 and β24 are the biases for each of the forecasts.

The true state will then cancel out when taking the difference between the forecasts, and assuming

that there is no bias or that the bias is constant with time, the difference becomes:

xdi f f = x48−x24 = ε48−ε24. (1.13)

The background error covariance matrix can then be written as:

B = (x48−x24)(x48−x24)T = (ε48−ε24)(ε48−ε24)T , (1.14)

where the overbar denotes an average over space or time.

The assumption that the model forecasts are unbiased or that the biases are the same for both

forecasts is questionable because the model accuracy can strongly depend upon the prevailing

atmospheric and surface conditions. As such, it is reasonable to assume that the model forecasts

may exhibit large and potentially nonlinear biases in some situations that are conditioned on one

or more predictors. This problem also arises in ensemble data assimilation systems because the

use of an imperfect NWP model may lead to a forecast ensemble that has too much or too little

spread for some model variables in certain situations. This means that the impact of a model

bias on the background error covariance matrix P f could vary with space and time such that the

use of covariance inflation methods that are applied uniformly to all grid points will not be able

to account for the model bias in a realistic manner. Thus, a second objective of this thesis is to

develop a mathematical method that can be used to identify model biases using the model state

variables and then use these estimates to improve the background error covariance matrix. The

model bias estimation method discussed in Chapter 5 is based on an asymptotic expansion of the

model variables and in its most general form does not require direct knowledge of the relationship

between the model bias and the underlying model dynamics. We choose to use these model bias

estimators to improve the quality of the B matrix in a variational data assimilation system rather

than to explicitly develop a new model error covariance matrix Q ∈ Rn×n. This choice is justified

because the B matrix is computed using imperfect forecasts that include a model error component.
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Our model bias estimation method is able to account for at least some portion of the model error in

the B matrix without having to go through the computational expense of estimating and inverting

an independent model error covariance matrix Q.

1.3 Thesis Goals

A key assumption in data assimilation is that the model first guess and observations are character-

ized only by random zero-mean errors when they are combined to create the a posteriori analysis.

In reality, however, biases are often present both in the observations and in the model first guess.

Systematic errors in the assimilation system can manifest themselves through regularly recurring

spatial patterns in the analysis increments or through the presence of persistently large increments

in certain regions or during specific atmospheric flow regimes (Dee 1995). They can also be diag-

nosed in the OMB departures during the data assimilation step (Eyre 1992, 2016). OMB biases can

be especially large, and also display complex nonlinear patterns, when cloud-affected satellite ob-

servations are assimilated. For example, deficiencies in the forward radiative transfer model used

to compute the model-equivalent brightness temperatures and the inability of the parameteriza-

tion schemes in the NWP model to properly represent some cloud properties could lead to large

OMB departures. Though substantial progress has been made in our ability to accurately simu-

late clouds and other aspects of the earth system, large errors remain when model forecasts are

compared to observations (Fabry and Sun 2010; Geer and Bauer 2011). This result points toward

the continued need to develop mathematical methods to remove biases from the observations and

model background in order to promote the more effective use of observations in modern data

assimilation systems.

In this thesis, the primary goal is to enhance our ability to assimilate cloud-sensitive satellite

observations through development of new methods to identify and remove systematic errors from

the OMB departures and model background. This will be accomplished by 1) developing a new

bias correction (BC) method to remove complex nonlinear biases from all-sky infrared brightness

temperatures via a Taylor series polynomial expansion of the OMB departures, 2) demonstrating

that its use leads to more accurate short-range forecasts in a high-resolution regional-scale ensem-

ble data assimilation system, and 3) improving the background error covariance matrix B through

development of dynamic model bias estimators based on an asymptotic expansion of the model

dynamics in an idealized model of atmospheric convection.
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1.4 Thesis Outline

The remaining sections of the thesis are organized as follows. Note that comprehensive literature

reviews are included at the beginning of Chapters 3-5 consistent with the topics discussed in each

of the three journal articles that comprise this thesis.

• Chapter 2 provides background material describing the primary mathematical methods em-

ployed during this thesis.

• Chapter 3 introduces a new BC method that uses a Taylor series polynomial expansion of

the OMB departures to remove linear and nonlinear conditional biases from all-sky satel-

lite infrared brightness temperatures. The OMB departures were accumulated over a 5-day

period in which the satellite observations were passively monitored and conventional obser-

vations were actively assimilated. The results showed that quantities sensitive to the cloud

top height were the most effective BC predictors and that higher-order Taylor series terms

were necessary to account for complex nonlinear conditional biases in the OMB departures.

The work presented in this chapter also appears in the January 2018 issue of Monthly Weather

Review (Otkin et al. 2018).

• Chapter 4 examines the impact of using the nonlinear BC method developed in Chapter 3

during cycled data assimilation experiments in which all-sky satellite infrared brightness

temperatures were actively assimilated during a 3-day period. Comparisons to radiosonde

observations showed that the model background was less accurate when the satellite ob-

servations were assimilated without first removing their biases; however, the results were

substantially improved when the nonlinear BC method was used to remove the linear and

nonlinear conditional biases from the observations prior to their assimilation. Experiments

employing BC predictors sensitive to the cloud top height had the smallest forecast errors

because they were most effective at removing large conditional biases associated with a de-

ficiency in upper-level clouds in the model background. The work presented in this chap-

ter also appears in the December 2019 issue of Monthly Weather Review (Otkin and Potthast

2019).

• Chapter 5 presents a new method to generate dynamic model bias estimators and then uses

them to improve the performance of a 3DVAR data assimilation system. The Lorenz (1963)
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model was chosen for this part of the thesis so that all aspects of the system and bias esti-

mators could be studied in a way that would not be possible if a full physics NWP model

were used. In particular, the asymptotics of the Lorenz (1963) model are derived for small

changes in one of its parameters and then statistics from cycled data assimilation experi-

ments are used to demonstrate that the asymptotics accurately represent the behavior of the

model and that the coefficients of the nonlinear asymptotical expansion can be reasonably

estimated by solving a least squares minimization problem. It is then shown that the com-

bination of a constant B matrix with a dynamic B matrix that varies with time based on

the model bias estimators leads to more accurate model analyses. The work presented in

this chapter has been conditionally accepted for publication in the SIAM Journal on Applied

Dynamical Systems (Otkin et al. 2020).

• Chapter 6 summarizes the results of the thesis and discusses opportunities for future work.
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Chapter 2

Mathematical Background

An overarching theme of this thesis is its use of polynomial equations and regularized least square

regression problems to identify a set of bias correction coefficients that can then be used to remove

linear and nonlinear conditional biases from the observation departures or the model background.

A polynomial equation is a linear combination of one or more algebraic terms built using addition,

subtraction, multiplication, and exponentiation. Each term in the equation consists of the product

of a constant and a finite number of variables (or indeterminates) raised to a non-negative integer

power. For a single variable case, a polynomial function f (x) has the form:

f (x) = anxn +an−1xn−1 + ...+a2x2 +a1x+a0, (2.1)

where a0, ...,an are the constants, and the degree of the function refers to the largest exponent of

any one term with a non-zero constant. For a polynomial function containing more than one vari-

able, the degree of a given term is the sum of the exponents for each of the variables in that term.

Polynomials with smaller degrees are given specific names such as constant, linear, quadratic,

and cubic for polynomials of degree 0, 1, 2, and 3, respectively. Polynomial functions are smooth

and continuous and can be used to evaluate all values of x in the domain of f . Unless otherwise

specified, polynomial functions can have complex constants, variables, and values (Barbeau 2003).

As will be shown in subsequent chapters, it is important to account for nonlinear error char-

acteristics when attempting to remove biases from the all-sky observation departures and model

background. One way that this can be accomplished is by using a Taylor series polynomial expan-

sion that includes higher order terms that are able to capture nonlinear error dependencies if they
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exist in the data. Taylor’s theorem is one of the basic tools used in mathematics and serves as the

starting point for more advanced asymptotic analysis (Apostol 1974). It provides an approxima-

tion of a function f (x), whose form can be known or unknown, in a neighborhood surrounding

a given point c, and can be thought of as the extension of simple linear approximations to higher

order polynomials. The most important type of series is the power series:

f (x) =
∞

∑
n=0

an(x− c)n, (2.2)

where an are the coefficients and the domain of f (x) is the set of x surrounding c where the series

converges. Though convergence is not guaranteed for all functions, in practice, most functions

of interest have a convergent Taylor series. To determine which power series provides the best

fit to a given function f (x), the power series and function must agree at c, and f (x) should have

derivatives of all orders in an open interval I containing c. For each positive integer n and for each

x ∈ I, this leads to the Taylor series for f (x):

f (x) =
∞

∑
n=0

f (n)(c)
n!

(x− c)n, (2.3)

where f (n)(c) is the nth derivative of f evaluated at the point c and n! is the factorial of n. Partial

sums are subsequently used to approximate the function f (x) to the nth order and to estimate the

size of the remainder term that represents the error of the Taylor series:

f (x) = Tn(x)+Rn(x) (2.4)

where

Tn(x) =
n

∑
n=0

f (n)(c)
n!

(x− c)n (2.5)

is the nth-order Taylor series polynomial expansion of f (x) evaluated at the point c, and the re-

mainder term Rn(x) is defined as:

Rn(x) =
f (n+1)(zn)

(n+1)!
(x− c)n+1 (2.6)

for some zn between c and x (Abramowitz and Stegun 1972). If Rn(x)→ 0 as n→∞ for all x∈ I, then

the Taylor series generated by f (x) at x = c converges to f (x) on I. Note that the remainder term is

not part of the Taylor series.
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For illustrative purposes, if we assume that the bias in a given observation departure dataset

dy can be described by a real or complex function f (z) of a single variable (e.g., predictor) that is

infinitely differentiable around a real or complex number c, then this function can be represented

as an N order Taylor series polynomial expansion:

dy =

(
f (c)+

f ′(c)(z(i)− c)
1!

+
f ′′(c)(z(i)− c)2

2!
+

f ′′′(c)(z(i)− c)3

3!
+ ...+

f (n)(c)(z(i)− c)n

n!

)
i=1,...,m

(2.7)

where m is the number of observations, dy is the m x 1 observation departure vector, f (n)(c) is the

nth derivative of f evaluated at the point c, and z(i) is the value of the variable used to predict

the bias for the ith observation. The i = 1, ...,m notation outside the parentheses indicates that the

Taylor series terms are computed separately for each element of the dy vector using the equation

shown in the parentheses. The variable used as the bias predictor is chosen based on its ability to

capture linear or nonlinear characteristics of the error distribution. The single variable case shown

above can subsequently be generalized to be a function of more than one predictor.

If we continue with the above example using a single variable, but truncate the Taylor series

expansion to only include terms up to the third order and define the bias correction coefficients as

bn =
f (n)(a)

n! , (2.7) can then be rewritten as:

dy =
(

b0 +b1(z(i)− c)+b2(z(i)− c)2 +b3(z(i)− c)3
)

i=1,...,m
(2.8)

or, more compactly, in matrix notation as:

dy = Ab, (2.9)

where A is an m x n matrix containing the n Taylor series terms for each observation and b is an n

x 1 vector containing the bias correction coefficients that we want to solve for. The first column of

A contains ones, with the remaining columns containing the linear and higher order Taylor series

terms. It is readily apparent in (2.8) that the higher order terms represent nonlinear bias predictors

because the exponents are ≥ 2, with the (z(i) − c)2 and (z(i) − c)3 polynomials representing the

quadratic and cubic terms, respectively.

In real-world situations, (2.9) will typically represent an overdetermined system of m linear

equations in n unknown coefficients because m > n. This kind of system generally will not have
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an analytic solution; therefore, least squares regression methods are commonly used to obtain

an approximate solution that best fits the set of equations. The goal of regression analysis is to

model the expected value of a dependent variable y based on an independent variable x. With

least squares regression methods, the solution is obtained by minimizing the sum of the square

of the residuals, where residual refers to the difference between the observed value of the depen-

dent variable and the fitted value provided by the regression model. Unlike linear least squares

regression that finds the best linear fit to the data, polynomial regression is more flexible because

it uses an nth degree polynomial of x to model the potentially nonlinear relationship between the

independent variable x and biases in the dependent variable y. As such, it provides a useful means

with which to diagnose and remove both linear and nonlinear conditional biases from a dataset.

Though it fits a nonlinear model to the data, polynomial regression is considered to be a special

case of multiple linear regression because the estimation problem remains linear being that the

regression function is linear in the unknown parameters estimated from the data. A polynomial

regression model takes the same form as that shown in (2.9). The coefficients that best fit the lin-

ear system of equations can be found by solving the quadratic minimization problem b̂ = min
b

S(b),

where the objective function S is given by:

S(b) =
m

∑
i=1
|dyi−

n

∑
j=1

Ai jb j|2 = ‖dy−Ab‖2 (2.10)

and ‖·‖ is the Euclidean norm. The least squares solution can then be found by differentiating S

with respect to b, and equating to zero, which leads to:

b = (ATA)−1ATdy, (2.11)

where (ATA) is a symmetric, n x n square matrix, thereby making it easy to compute its inverse.

It is well known in inverse modeling that some form of regularization may be necessary to

make the problem well-posed (Nakamura and Potthast 2015). Regularization refers to the situa-

tion where the original inverse problem is replaced by a different solution that roughly matches

the desired solution (low bias), is less sensitive to changes in the data (low variance), and has a pa-

rameter that permits a reasonable balance between the low bias and low variance considerations.

The aim is to reduce the complexity of the model in order to prevent overfitting of the solution

due to the use of a large number of parameters. Various regularization methods have been devel-

oped; however, the most common approach is to use Tikhonov regularization given its simplicity.
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With this method, the conditioning of the inverse problem is improved by adding a term to the

least squares estimator shown in (2.11) that takes the form of the identity matrix multiplied by a

regularization parameter αreg (Tikhonov 1963). With this change, the least squares solution can be

found using:

b = (αregI +AT A)−1AT dy. (2.12)

By adding a multiple of the identity matrix to AT A, this acts as a positive constant shift to the main

diagonal, thereby decreasing the condition number of the matrix. The effects of the regularization

disappear as αreg→ 0. It is important to use a reasonable value for αreg because a regularization that

is too small will leave the problem ill-posed whereas a regularization that is too large will change

the nature of the problem and thus lead to larger bias. A heuristic approach can sometimes be used

to identify a suitable value for αreg; however, automated approaches such as ridge trace method

(Hoerl and Kennard 2000), quasi-optimal criterion (Kindermann and Neubauer 2008), generalized

cross validation (Jia et al. 2015), and Morozov discrepancy principle (Bonesky 2009) can also be

used to obtain the optimal value for this parameter.
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Chapter 3

Nonlinear Bias Correction – Passive

Monitoring Experiments

3.1 Abstract

Output from a high-resolution ensemble data assimilation system is used to assess the ability of

an innovative nonlinear bias correction (BC) method that uses a Taylor series polynomial expan-

sion of the observation-minus-background departures to remove linear and nonlinear conditional

biases from all-sky satellite infrared brightness temperatures. Univariate and multivariate exper-

iments were performed in which the satellite zenith angle and variables sensitive to clouds and

water vapor were used as the BC predictors. The results showed that even though the bias of the

entire observation departure distribution is equal to zero regardless of the order of the Taylor se-

ries expansion, there are often large conditional biases that vary as a nonlinear function of the BC

predictor. The linear 1st order term had the largest impact on the entire distribution as measured

by reductions in variance; however, large conditional biases often remained in the distribution

when plotted as a function of the predictor. These conditional biases were typically reduced to

near zero when the nonlinear 2nd and 3rd order terms were used. The univariate results showed

that variables sensitive to the cloud top height are effective BC predictors especially when higher

order Taylor series terms are used. Comparison of the statistics for clear-sky and cloudy-sky ob-

servations revealed that nonlinear departures are more important for cloudy-sky observations as

signified by the much larger impact of the 2nd and 3rd order terms on the conditional biases. To-

gether, these results indicate that the nonlinear BC method is able to effectively remove the bias
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from all-sky infrared observation departures.

3.2 Introduction

The ability to generate accurate cloud and water vapor (WV) analyses suitable for numerical

weather prediction (NWP) models is perhaps the most challenging aspect of modern data as-

similation (DA) systems because they typically assume Gaussian error statistics and that linear

relationships exist between the observations and model state variables. Cloud processes, how-

ever, are inherently nonlinear with complex interactions occurring between different cloud hy-

drometeor species and the local thermodynamic environment at spatial and temporal scales that

are typically much smaller than those represented by NWP models. Likewise, WV content can

change rapidly in space and time and can influence the evolution of the cloud field in nonlinear

ways. These and other factors can make it very challenging to effectively assimilate information

from cloud and WV sensitive observations.

Remotely sensed observations obtained using geostationary and polar-orbiting satellites pro-

vide the only reliable source of high-resolution cloud and WV information covering large geo-

graphic domains. Sophisticated visible, infrared, and microwave sensors onboard various satellite

platforms provide information about the spatial distribution and characteristics of the cloud and

WV fields. For regional-scale NWP, observations from geostationary satellites are especially use-

ful because their continuous viewing of the same area with high temporal and spatial resolution

allow them to more easily constrain the evolution of rapidly changing weather features (Vukicevic

et al. 2006; Errico et al. 2007). Satellite observations, however, often exhibit biases when compared

to their model equivalents computed using the NWP model background; therefore, bias correction

(BC) methods are typically required to assimilate these observations (Eyre 2016).

Observation-minus-background (OMB) biases can occur for a variety of reasons and can differ

for clear and cloudy observations. For example, biases can arise from calibration errors in a satel-

lite sensor or to instrument ”drift” as a sensor ages. Biases can also be introduced by deficiencies

in the forward radiative transfer models used to compute the model equivalent brightness tem-

peratures. For clear-sky observations, biases may result from errors in the specification of surface

emissivity, simplifications in the radiative transfer model equations, inadequate vertical resolu-

tion or a low model top in the NWP model, or the misspecification or absence of atmospheric
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constituents (such as aerosols) observed by some satellite bands. In the context of clear-sky DA,

biases can also be introduced by incomplete cloud screening procedures that allow some cloud-

affected observations to pass quality control and thereby incorrectly enter the DA system. Indeed,

most existing quality control methods were originally designed to remove all cloud-affected ob-

servations; however, these constraints are being relaxed as operational modeling centers move

toward all-sky DA (e.g., Okamoto et al. 2014; Zhu et al. 2016). Exclusion of cloud-affected bright-

ness temperatures has the undesirable consequence of removing observations that could have

been used to improve the model initialization in cloudy areas of the model domain.

Additional uncertainties regarding the specification of cloud properties arise when assimilat-

ing cloud-affected infrared brightness temperatures. Though forward radiative transfer modeling

for cloudy scenes has become more accurate in recent years, deficiencies remain, especially for ice

clouds. Simulation of absorption and scattering properties for liquid clouds is relatively straight-

forward because the droplets are assumed to be spherical. However, there are larger uncertainties

with ice cloud bulk optical properties because there is some dependence in the infrared on the

shape of the ice particles (Yang et al. 2013). For example, an ice particle may take the form of a

hexagonal plate, solid or hollow column, bullet rosette, or an aggregate of some form, and impact

the bulk microphysical and optical properties that result from integration of the individual parti-

cle properties over the assumed size and habit distributions (Baum et al. 2014). In addition, the ice

water path is related to both the cloud optical thickness and the cloud particle effective diameter.

When computing simulated brightness temperatures, these diameters should be computed using

the particle size distribution and cloud property assumptions made for each cloud species by a

given microphysics scheme (e.g. Otkin et al. 2009; Cintineo et al. 2014; Thompson et al. 2016).

Biases in the OMB departures can also be caused by systematic errors in the NWP model fore-

casts that result from deficiencies in the parameterization schemes or other characteristics of the

NWP model. It is well known that model forecasts containing large biases influence the behav-

ior of BC methods and can degrade the performance of DA systems (Dee 2005; Dee and Uppala

2009; Eyre 2016). Biases can be especially large for model variables for which few observations are

available to constrain their evolution, such as root zone soil temperature and moisture (Mahfouf

2010), or variables such as clouds and water vapor that are strongly influenced by parameteriza-

tion schemes accounting for sub-grid scale processes. For example, uncertainties in microphysical

parameters controlling cloud generation and decay processes can lead to systematic errors in the

spatial extent, optical thickness, and height of the clouds, which in turn impacts the simulated
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satellite brightness temperatures (Otkin and Greenwald 2008; Cintineo et al. 2014; Eikenberg et

al. 2015). Ideally, a BC method would not remove the bias in the OMB departures associated with

deficiencies in the NWP model because the observations should be used to correct such systematic

errors. In the absence of a perfect reference analysis, however, it can be very difficult to determine

whether a bias originates in the observations or forward radiative transfer model, both of which

should be corrected, or in the model background (Dee 2005). Because of this uncertainty in bias

attribution, all BC methods functionally act to correct the bias in the ”observations” regardless of

the true sources of the bias (Dee and Uppala 2009). Though this outcome is not desirable because

it will limit the ability of the observations to reduce systematic errors in the analysis, it does sat-

isfy the requirement by most DA methods that the observations are unbiased. In addition, the

bias corrected observations can still be used to reduce random errors in the analysis. Eyre (2016)

noted that the impact of model bias on the analysis accuracy depends on the rate at which the

NWP model state relaxes back toward its own climatology after the assimilation update. If an

NWP model quickly returns to its preferred state, then the analysis errors will continue to be large

even if the model bias can be removed prior to computing the BC coefficients. This points to-

ward the need to fix the bias at its source within the NWP model. The impact of model bias on

a BC method can be reduced when high quality ”anchor” observations with little or no bias are

available; however, it is not apparent that such observations exist for water vapor and clouds.

BC methods can be broadly categorized into two types (Eyre 2016). The first type uses depar-

tures between the observations and their model equivalents accumulated over long time periods

outside of the DA system to estimate and remove the bias from the observations prior to their

assimilation. These so-called ”static” BC methods typically use the satellite scan angle along with

several atmospheric variables, such as the geopotential thickness over some layer, as the BC pre-

dictors. The BC coefficients for each satellite sensor and band are then computed using linear

least squares regressions between the predictors and the observations. In practice, however, these

”static” BC coefficients are regularly updated to account for changes in the model background due

to changes in the NWP model or DA system, the addition of new observations, and upgrades to

the forward radiative transfer model. Frequent retuning of a static BC method can be beneficial

because it makes it more adaptable to changes in the models and observations. More detailed

descriptions of static BC methods can be found in Eyre (1992), Harris and Kelly (2001), and Hilton

et al. (2009).

With the second type of BC method, known as variational BC (VarBC), the BC coefficients are
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updated simultaneously with the control vector during each DA cycle using the same set of ob-

servations and an augmented control vector (Derber et al. 1991; Parrish and Derber 1992; Derber

and Wu 1998; Dee 2005; Auligne et al. 2007; Dee and Uppala 2009; Zhu et al. 2014). Like static BC

methods, VarBC typically uses the satellite scan angle and several variables describing the atmo-

spheric state as the predictors, with the total BC treated as a linear combination of all predictors.

The BC coefficient for each predictor is computed during the minimization of the variational cost

function. With an incremental DA approach with multiple outer loops, the BC coefficient incre-

ments evolve during each iteration of the inner loop and are updated at the end of each outer loop,

which allows the coefficients to adjust with time and capture changes in observation quality. The

state space augmentation approach used by VarBC also requires an estimate of the background

covariances of the augmented state vector. For simplicity, most schemes assume that the error for

a given BC parameter is uncorrelated with errors in other parameters for other satellite sensors

and bands and with errors in the model background (Derber and Wu 1998; Dee 2005).

Most BC methods have been developed for use in variational or hybrid DA systems; however,

several studies have also explored BC in ensemble DA systems. Fertig et al. (2009) developed a BC

method for ensemble DA that is similar to VarBC in that it uses state augmentation to estimate the

biases during the assimilation step. They showed that their method was able to reduce both the

observation bias and the analysis error in perfect model experiments. Similar methods have also

been used successfully in real data experiments assimilating microwave brightness temperatures

(Szunyogh et al. 2008; Aravequia et al. 2011; Miyoshi et al. 2011). In high-resolution observ-

ing system simulation experiments assimilating infrared brightness temperatures, Cintineo et al.

(2016) found that the analysis and forecast accuracy was improved when a simple fixed-value BC

was applied to the clear-sky observations similar to that used by Stengel et al. (2009, 2013) in a

variational DA system. Cintineo et al. (2016), however, did not bias-correct the cloudy observa-

tions prior to their assimilation because their bias was too complex to properly handle using a

simple fixed-value BC applied uniformly to all cloudy observations. Zhu et al. (2016) handled bi-

ases in all-sky microwave observations by computing the BC coefficients using only cases where

both the model background and the observations were either clear or cloudy. By doing this, they

were able to reduce errors associated with mismatched cloud fields, while still preserving cloud-

dependent information in the matched observations. Together, these results provide evidence that

more sophisticated BC methods that can account for changes in cloud properties are necessary to

effectively remove biases in the OMB departures.
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In this study, we present a new BC method that can be used to diagnose and remove biases in

all-sky infrared brightness temperatures using a Taylor series polynomial expansion of the OMB

departures. This approach can diagnose both linear and nonlinear bias components through use

of higher order Taylor series terms and a set of BC predictors. For example, with a 3rd order

approximation, the 0th and 1st order terms represent the constant and linear bias components,

whereas the 2nd (quadratic) and 3rd (cubic) order terms represent nonlinear bias components.

We use this nonlinear BC (NBC) method to remove the bias from Scanning Enhanced Visible and

Infrared Imager (SEVIRI) infrared brightness temperatures that were passively monitored during

high-resolution ensemble DA experiments. The paper is organized as follows. The DA frame-

work is described in Section 3.3, with a mathematical description of the NBC method presented in

Section 3.4. Statistics obtained using the NBC method are shown in Section 3.5, with conclusions

and a discussion presented in Section 3.6.

3.3 Experimental Design

3.3.1 SEVIRI Satellite Datasets

The SEVIRI sensor onboard the Meteosat Second Generation satellite provides accurate top-of-

atmosphere radiance measurements across 12 visible and infrared spectral bands with a nadir

resolution of 3 km for all infrared bands (Schmetz et al. 2002). The utility of the NBC method was

evaluated using brightness temperatures from the 6.2 µm and 7.3 µm bands sensitive to WV over

broad layers of the upper and middle troposphere, respectively, when skies are clear, while also

being sensitive to clouds when they are present. Under clear conditions, the weighting functions

that depict how much radiation from a given atmospheric height reaches the top of the atmo-

sphere peak near 350 hPa (500 hPa) for the 6.2 µm (7.3 µm) bands, and then decrease to zero in

the lower troposphere. When clouds are present, however, the weighting functions are truncated

near the cloud top, which means that a larger portion of the top-of-atmosphere radiation origi-

nates at higher (e.g. colder) altitudes than would occur under clear-sky conditions. Their dual

sensitivity to clouds and WV means that observations from these bands provide valuable infor-

mation about the atmospheric state that is typically not available with conventional observations.

Another motivation for using these bands is the expectation that their OMB departure statistics

will be more Gaussian than would occur with infrared ”window” bands because there will be a
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smoother transition between the brightness temperatures in adjacent clear and cloudy areas.

Cloud top height retrievals made using SEVIRI observations were also obtained using soft-

ware provided by the EUMETSAT Nowcasting Satellite Applications Facility and will be used

as one of the BC predictors. The cloud top height for each satellite pixel was estimated by com-

puting simulated clear-sky 10.8 µm brightness temperatures using the RTTOV radiative transfer

model (Saunders et al. 1999) and temperature and humidity profiles from the global GME model

(Majewski et al. 2002), and then inserting a cloud at successively higher levels until a best fit is ob-

tained between the observed and simulated brightness temperatures (Derrien and Le Gleau 2005;

Le Gleau 2016). To reduce the data volume and minimize the impact of spatially correlated errors

in the observation departures, the cloud top height retrievals and SEVIRI brightness temperatures

were horizontally thinned by a factor of 5 in the zonal and meridional directions. This reduces

their horizontal resolution to ∼20-25 km across the model domain, and is ∼8 times coarser than

the NWP model resolution. The cloud top height retrievals have a vertical resolution of 200 m;

however, their uncertainty is larger, especially for semi-transparent clouds (Le Gleau 2016).

3.3.2 KENDA Data Assimilation System

Ensemble DA experiments in which conventional observations were actively assimilated and SE-

VIRI brightness temperatures were passively monitored were performed using the Kilometer-

scale Ensemble Data Assimilation (KENDA) system (Schraff et al. 2016) developed by the

Deutscher Wetterdienst (DWD). The KENDA system is based on the local ensemble transform

Kalman filter method described by Hunt et al. (2007) and uses the Consortium for Small-scale

Modeling (COSMO) model (Baldauf et al. 2011) as the NWP model. During this study, radiosonde,

surface, wind profiler, and aircraft observations, were actively assimilated using a 1-h assimilation

window, whereas SEVIRI 6.2 µm and 7.3 µm brightness temperatures were passively monitored.

With KENDA, 4-D assimilation capabilities are obtained through inclusion of the observation op-

erators within the COSMO model so that the model equivalents can be computed at the exact

observation times during the forward integration of the ensemble. Temporally and spatially vary-

ing covariance inflation values are obtained at each grid point through a combination of multi-

plicative covariance inflation based on Anderson and Anderson (1999) and the relaxation to prior

perturbations approach described by Zhang et al. (2004). Covariance localization is performed

by updating the analysis at each grid point using only those observations located within a spec-

24



ified distance of the grid point. The vertical localization scale is fixed, but increases with height,

whereas the horizontal scale is determined adaptively. For more detailed information about the

KENDA system, the reader is referred to Schraff et al. (2016).

This study uses output from ensemble DA experiments that were performed on the COSMO-

DE domain covering all of Germany and parts of surrounding countries with 2.8 km horizontal

grid spacing. Lateral boundary conditions were obtained at hourly intervals from the 7-km res-

olution COSMO-EU domain run at the DWD, which in turn is driven by boundary conditions

provided by the Icosahedral non-hydrostatic (ICON) model (Zangl et al. 2015). The COSMO-

DE domain covers approximately 1200 x 1200 km and contains 50 vertical levels that are terrain-

following in the lower troposphere and become horizontally flat in the upper troposphere and

stratosphere. The model top is located at 22 km (i.e. about 40 hPa). The DA experiments em-

ployed 40 ensemble members along with a deterministic run that is initialized by applying the

Kalman gain matrix from the assimilation update to the deterministic model background. The

ensemble and deterministic runs were initialized at 00 UTC on 16 May 2014 and then updated at

hourly intervals during a 5-day period ending at 00 UTC on 21 May 2014.

Atmospheric prognostic variables in the COSMO model include the horizontal and merid-

ional wind components, temperature, pressure, and the mixing ratios for water vapor, cloud

water, rainwater, pristine ice, snow, and graupel. Cloud microphysical processes, such as auto-

conversion, accretion, and self-collection, are represented using a simplified version of the Seifert

and Beheng (2001) double-moment microphysics scheme that was reduced to a single-moment

scheme for computational efficiency. Cloud formation and decay processes are parameterized

based on the work of Lin et al. (1983). Heating rates due to radiative effects are updated at 15-min

intervals using the δ -2-stream method developed by Ritter and Geleyn (1992). Deep convection

is explicitly resolved whereas shallow convection is parameterized using a simplified version of

the Tiedtke (1989) mass-flux scheme. A 2.5 order turbulent kinetic energy scheme developed by

Raschendorfer (2001) is used to predict turbulence.

After an initial 12-h spin-up period, simulated SEVIRI brightness temperatures were gener-

ated for each ensemble member and the deterministic run at hourly intervals during a 4.5-day

period from 13 UTC 16 May 2014 to 00 UTC 21 May 2014 using first-guess model output from 1-h

COSMO-DE forecasts. The model profiles were interpolated to the thinned SEVIRI observation

locations, and then simulated 6.2 µm and 7.3 µm brightness temperatures were computed using
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version 10.2 of the RTTOV radiative transfer model (Saunders et al. 1999). RTTOV includes an en-

hanced cloud-scattering module that enables the use of cloud profiles located on the NWP model

vertical grid (Matricardi 2005; Hocking et al. 2011). When computing cloudy brightness temper-

atures, RTTOV requires vertical profiles of liquid water content, ice water content, and fractional

cloud cover. These quantities were computed using the COSMO model output and empirical rela-

tionships developed by Kostka et al. (2014). The default maximum-random cloud overlap scheme

in RTTOV based on Raisanen (1998) was used during this study. RTTOV also includes several op-

tions to diagnose the ice particle effective diameters from the forecast ice water content based on

relationships developed by Wyser (1998), Ou and Liou (1995), and McFarquhar et al. (2003) along

with two ice crystal shape options (aggregates and randomly-oriented hexagonal crystals) that

together are used to compute the ice radiative properties. For this study, we assume hexagonal

ice crystals and compute the particle diameters using the McFarquhar et al. (2003) method. These

settings were chosen because they provided the smallest overall bias during the 108-h study pe-

riod based on six sensitivity experiments using the various ice crystal diameter and shape options.

The mean brightness temperature for ice clouds between the best and worst options differed by

approximately 1 K for the 6.2 µm band and 2.5 K for the 7.3 µm band during the entire study

period (not shown), which illustrates the large uncertainty associated with the ice cloud property

lookup tables in RTTOV.

3.4 Nonlinear Bias Correction (NBC) Method

Traditional BC methods remove biases between a given set of observed and model-equivalent

satellite brightness temperatures through use of a set of BC predictors that describe the atmo-

spheric state or characteristics of the satellite data. Both static and VarBC methods typically as-

sume that a linear relationship exists between the departure bias and a given set of predictors or

that a global constant can be added to the observations. This linear BC approach has been shown

to work well for clear-sky observations possessing Gaussian error characteristics for which a set

of constant and linear BC coefficients are sufficient to remove the bias; however, their use will be

sub-optimal if the observation bias varies as a nonlinear function of some predictor. For satellite

observations, nonlinear error dependencies are more likely to occur when cloudy observations

are assimilated given the prevalence of nonlinear processes in clouds that could lead to complex

errors in the forecast cloud field and the possibility that nonlinear error sources could be intro-
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duced by the forward radiative transfer model used to compute the model-equivalent brightness

temperatures. For example, with infrared brightness temperatures, it is possible that increased

uncertainty simulating ice radiative properties in forward radiative transfer models could lead to

biases that are a nonlinear function of some cloud property, such as cloud top height. Thus, given

the increased interest in all-sky DA, it is desirable to develop BC methods that can remove both

linear and nonlinear bias components from the innovations.

One method that can be used to account for nonlinear error dependencies in a set of obser-

vations is a Taylor series polynomial expansion that includes higher order terms that can capture

nonlinear features of the error distribution if they exist. For a given set of observed and model-

equivalent brightness temperatures corresponding to a specific satellite sensor and band, the ob-

servation departure vector is defined as:

dy = y−H(x), (3.1)

where y is the observation vector, x is the NWP model state vector, and H(x) is the observation

operator that is used to compute the model equivalent brightness temperatures. If we assume

that the bias in the observation departures can be described by a real function f (z) of a single

variable (e.g., predictor) that is infinitely differentiable around a real number c, Eqn. 3.1 can be

decomposed into an N order Taylor series expansion:

dy =

(
f (c)+

f ′(c)(z(i)− c)
1!

+
f ′′(c)(z(i)− c)2

2!
+

f ′′′(c)(z(i)− c)3

3!
+ ...+

f (n)(c)(z(i)− c)n

n!

)
i=1,...,m

(3.2)

where dy is the m x 1 observation departure vector and m is the number of observations, f (n)(c) is

the nth derivative of f evaluated at the point c, and z(i) is the predictor value for the ith observation.

The i = 1, ...,m notation outside the parentheses indicates that the Taylor series approximation is

computed separately for each element of the dy vector using the equation within the parenthe-

ses. The variable used as the predictor is chosen based on its ability to capture some aspect of the

observation departure bias, whereas the value z(i) of that variable for a given observation can be

obtained from a variety of sources, such as the model background or a satellite retrieval. The con-

stant c can be set to any value because c+δc simply moves c to another constant value; therefore,
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for convenience, we define c to be the mean of the predictor values:

c =
∑

m
i=1 z(i)

m
(3.3)

It is readily apparent from Eqn. 3.2 that the higher order terms represent nonlinear components

because the exponents are≥ 2, with the (z−c)2 and (z−c)3 polynomials representing the quadratic

and cubic terms, respectively.

The single variable case shown in Eqn. 3.2 can subsequently be generalized to be a function

of more than one predictor:

dy =

(
f (a1, ...,ad)+

d

∑
j=1

∂ f (a1, ...,ad)

∂x j
(x(i)j −a j)

+
1
2!

d

∑
j=1

d

∑
k=1

∂ 2 f (a1, ...,ad)

∂x j∂xk
(x(i)j −a j)(x

(i)
k −ak)

+
1
3!

d

∑
j=1

d

∑
k=1

d

∑
l=1

∂ 3 f (a1, · · · ,ad)

∂x j∂xk∂xl
(x(i)j −a j)(x

(i)
k −ak)(x

(i)
l −al)+ ...

)
i=1,...,m

(3.4)

which can be written more compactly as:

dy =

(
d

∑
n1=0
· · ·

d

∑
nd=0

(
∂ (n1+···+nd) f
∂xn1

1 · · ·∂xnd
d

)
(a1, · · · ,ad)

(x(i)1 −a1)
n1 · · ·(x(i)d −ad)

nd

n1! · · ·nd!

)
i=1,...,m

, (3.5)

where d is the number of predictors, f (nd)(ad) denotes the nth partial derivative of f evaluated at

the point ad , and x(i)d is the ith value for a given predictor xd .

For illustrative purposes, if we assume a single variable, third order Taylor series expansion

for a single satellite sensor and band, and define the BC coefficients such that bn =
f (n)(a)

n! , Eqn. 3.2

can be written as:

dy =
(

b0 +b1(z(i)− c)+b2(z(i)− c)2 +b3(z(i)− c)3
)

i=1,...,m
(3.6)

or alternatively in matrix notation as:

dy = Ab (3.7)

where dy is the m x 1 observation departure vector, A is an m x n matrix containing the n Taylor se-

ries terms (z(i)−c)l for each ith observation, where l = 0, ...,n−1, and b is an n x 1 vector containing

the BC coefficients. This is an overdetermined system of m linear equations in n unknown coeffi-
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cients because m > n. The first column of A contains ones, with the remaining columns containing

the linear and higher order Taylor series terms. Because this kind of system typically does not

have an analytic solution, we instead want to find the coefficients b that best fit the equations by

solving the quadratic minimization problem b̂ = min
b

S(b), where the objective function S is given

by:

S(b) =
m

∑
i=1
|dyi−

n

∑
j=1

Ai jb j|2 = ‖dy−Ab‖2 (3.8)

and ‖·‖ is the Euclidean norm. Because most real-world phenomena act as a low pass filter in the

forward direction where A maps b to dy, the inverse mapping will operate as a high-pass filter that

amplifies noise and can therefore lead to a poorly conditioned problem. Preference, however, can

be given to smaller norms by adding a Tikhonov regularization term, ‖Γb‖2, to Eqn. 3.8, which is a

standard approach when solving inverse problems (Nakamura and Potthast, 2015). For simplicity,

we choose a matrix that is a multiple of the identity matrix (Γ = αI), such that:

Ŝ(b) = ‖dy−Ab‖2 +α ‖Ib‖2 (3.9)

Sensitivity tests showed that α could be set to a very small value (10−9) when one variable was

used in the regression; however, a slightly larger value (10−6) was found to work better for the

multivariate regressions. These values were used for the univariate and multivariate experiments

presented in Section 3.5. The least squares solution can then be found by differentiating Ŝ with

respect to b, and equating to 0, such that:

∂ Ŝ
∂b

= ATdy− (αI +ATA)b = 0, (3.10)

or alternatively, after rearranging and multiplying both sides of Eqn. 3.10 by (αI+ATA)−1, we can

solve for the b vector containing the BC coefficients using:

b = (αI +ATA)−1ATdy (3.11)

where (αI +ATA) is a symmetric, square matrix with dimensions n x n. The small dimensions of

this matrix make it easy to compute its inverse, thereby making it feasible to include higher order

Taylor series terms, additional predictors, and a large OMB departure dataset when computing the

BC coefficients. After solving for b, which is done separately for each satellite band and sensor,

the BC coefficients can then be applied to dy to remove the linear and nonlinear conditional bias
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components from the observations.

3.5 Results

In this section, the ability of the NBC method to remove biases from all-sky satellite infrared

brightness temperatures is assessed using OMB departure statistics accumulated at hourly in-

tervals during a 4.5 day period in which conventional observations were actively assimilated and

SEVIRI observations were passively monitored. Figure 3.1 shows the evolution of the observed

SEVIRI 6.2 µm brightness temperatures during this time period. At the start of the period on 16

May (Fig. 3.1a), an area of cold upper level clouds associated with a band of precipitation was

located across the eastern half of the domain. This weather feature slowly weakened over Ger-

many during the next two days (Fig. 3.1b, c), with the brightness temperatures becoming warmer

as the convective clouds were replaced by cirrus and mid-level clouds. Generally clear skies char-

acterized by warm brightness temperatures were also present across parts of the domain during

this time period, with clear skies prevailing across most of the region on 19 May (Fig. 3.1d). A

large area of convection with very cold upper-level clouds then moved into the western half of the

domain on 20 May (Fig. 3.1e). Overall, it is evident that the study period contains a wide range of

atmospheric conditions and cloud types that supports a realistic assessment of the NBC method

during the warm season.

3.5.1 Univariate Bias Correction Results

To explore the ability of individual predictors to remove the bias from all-sky infrared observa-

tions, univariate NBC experiments were performed using the satellite zenith angle and various

predictors sensitive to clouds and WV, such as the brightness temperature, cloud top height, and

integrated water content over some vertical layer. This section presents results from a subset of

these experiments that remove the bias from all-sky SEVIRI 6.2 µm observations. The impact

of each predictor is assessed using OMB departure distributions normalized by the standard de-

viation in a given sample and with 2-D probability distributions of the departures plotted as a

function of a given predictor. The results are evaluated separately for the original departure dis-

tribution and for distributions for which the bias has been removed using either a 0th (constant),

1st (linear), 2nd (quadratic), or 3rd (cubic) order Taylor series polynomial expansion.
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Figure 3.1: Observed SEVIRI 6.2 µm brightness temperatures (K) valid at 18 UTC on (a) 16 May,
(b) 17 May, (c) 18 May, (d) 19 May, and (e) 20 May 2014.

3.5.1.1 Observed Brightness Temperature Predictor

As shown by the probability distributions in Fig. 3.2, the observed 6.2 µm brightness tempera-

tures are an excellent predictor of their own bias, especially when higher order Taylor series terms

are used. The horizontal magenta line in each panel depicts the mean bias of the entire distribu-

tion, whereas the shorter horizontal black lines depict the conditional bias in each column and

will be used to assess how the bias varies as a function of the predictor value. This terminology

is being used to differentiate biases conditioned on the predictor value from the bias of the over-

all distribution. For example, though each distribution except for the original distribution will

have zero overall bias, this obscures the fact that the conditional bias could potentially vary as a

function of the predictor value. Inspection of Fig. 3.2a reveals a nonlinear pattern in the condi-

tional biases, with a tendency for the simulated brightness temperatures to be too warm (cold)

when the observed brightness temperatures are colder (warmer) than 235 K. Though the mean

bias of the distribution is relatively small (-0.83 K), the nonlinear pattern in the conditional bi-

ases means that constant and linear BC terms alone will be unable to remove all of the bias. For

example, even though the constant BC term removes the mean bias from the distribution (Fig.

3.2b), its shape remains the same and therefore large conditional biases remain throughout the

distribution. Likewise, the 1st order BC term removes the linear departure component by raising
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(lowering) the cold (warm) end of the distribution, which reduces the conditional biases for the

coldest brightness temperatures, but turns a positive bias into a negative bias for the warmest

brightness temperatures (Fig. 3.2c). Removal of the constant and linear bias components exposes

an asymmetric arch shape in the conditional biases that is largely removed when the 2nd order

quadratic term is used (Fig. 3.2d), except for nonzero biases that remain at the cold and warm

ends of the distribution. Finally, when the 3rd order cubic term is used, the general shape of the

distribution is unchanged; however, it is evident that subtle improvements were made to it given

that most of the conditional biases are now close to zero. Together, these results show that even

though each BC distribution has zero mean bias, that the conditional biases in the distribution are

much smaller when the higher order, nonlinear BC terms are applied to the observations.

Figure 3.2: Probability distributions of 6.2 µm observation-minus-background departures plotted
as a function of the observed 6.2 µm brightness temperatures (K) for the (a) original data, and the
(b) constant, (c) 1st order, (d) 2nd order, and (e) 3rd order bias corrected observations when the
observed 6.2 µm brightness temperature is used as the predictor. The horizontal black line seg-
ments represent the conditional bias in each column, whereas the horizontal magenta line depicts
the mean bias of the entire distribution. Data were accumulated at hourly intervals during a 108-h
period from 13 UTC on 16 May 2014 to 00 UTC on 20 May 2014.
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Normalized OMB departure histograms computed using the original observations and the

constant, 1st, 2nd, and 3rd order BC observations are shown in Fig. 3.3a-e. Each histogram is

normalized based on its variance, with the curved red line on each panel representing a Gaussian

distribution with zero mean and a variance equal to that of the sample. Overall, the variance and

root mean square error (RMSE) are greatly reduced when the 1st order BC coefficients are applied

to the observations (Fig. 3.3c), which is primarily due to the smaller departures for the colder

brightness temperatures (e.g. Fig. 3.2c). The variance was further reduced when the 2nd order BC

was used, with only minimal changes occurring when this was expanded to a 3rd order BC (Figs.

3.3d, e). The fact that the higher order terms only had a small impact on these statistics while

simultaneously having a large positive impact on the conditional biases in Fig. 3.2 illustrates that

more detailed analysis methods such as 2-D probability distributions can provide additional in-

sight into the characteristics of the OMB departure distributions. Comparison of the histograms

also shows that the negative skewness in the original distribution (Fig. 3.3a) changes to positive

skewness after the BC terms are applied. This behavior primarily results from a conditional posi-

tive skewness for brightness temperatures < 230 K that is evident in Fig. 3.2a by the tendency for

the conditional bias in each column to be located above the bin with the maximum probability. Be-

cause the same BC is applied to a given brightness temperature regardless of its OMB departure,

the positive skewness in the conditional distributions is preserved as they are shifted upward,

thereby leading to a positive skewness in the full BC distributions.

3.5.1.2 Cloud Top Height Predictor

Because infrared observations are very sensitive to the vertical distribution of clouds, an experi-

ment was performed using the NWC SAF cloud top height retrievals as the BC predictor to better

isolate the impact of clouds. To provide complete domain coverage, the clear-sky observations

were assigned a height equal to the model terrain elevation. Overall, the conditional biases in the

original distribution (Fig. 3.4a) are close to zero for cloud top heights < 7 km; however, the biases

increase for clouds above this level and peak near -6 K for cloud top heights > 10 km. This is a

complex error pattern that a constant BC scheme is unable to fix (Fig. 3.4b). Indeed, the upward

shift of the distribution to remove the mean bias actually worsens the conditional biases for cloud

top heights < 7 km, while leading to only minor improvements for the upper-level clouds. The

linear correction (Fig. 3.4c) slightly improves the conditional biases for lower and upper-level
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Figure 3.3: Probability density function of normalized 6.2 µm observation-minus-background de-
partures for the (a) original and (b) constant bias correction distributions. The corresponding 1st,
2nd, and 3rd order bias correction error distributions when the (c-e) observed 6.2 µm brightness
temperatures, (f-h), NWC SAF cloud top heights, (i-k) model-simulated total integrated water
content (IWC) in the 100-700 hPa layer, (l-n) satellite zenith angle, or (o-q) observed 6.2 µm bright-
ness temperatures, satellite zenith angle, and IWC are used as the predictors are also shown. Data
were accumulated at hourly intervals during a 108-h period from 13 UTC on 16 May 2014 to 00
UTC on 20 May 2014.
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clouds, but worsens the bias for mid-level clouds, which together slightly reduces the variance in

the overall distribution (Fig. 3.3f). Use of the 2nd order quadratic term substantially improves the

distribution by removing the arch in the conditional bias pattern by decreasing the magnitude of

the positive (negative) OMB departures for cloud tops located in the middle (upper) troposphere

(Fig. 3.4d). These changes resulted in a much smaller variance in the histogram (Fig. 3.3g). As

was the case in the previous section, the 3rd order BC led to slightly smaller conditional biases

across most of the distribution (Fig. 3.4e), but had minimal impact on the statistics of the overall

distribution (Fig. 3.3h). Though the cloud top height predictor was unable to reduce the variance

of the full distribution as much as the brightness temperature predictor did, the NBC method was

still able to greatly improve the distribution by decreasing the conditional biases. Its use also led

to a more symmetric OMB departure distribution (Fig. 3.3h). These results show that cloud top

height information can be used to remove the bias from all-sky infrared observations if higher

order Taylor series terms are used.

Figure 3.4: Same as Fig. 3.2 except for showing probability distributions plotted as a function of
the NWC SAF cloud top height retrieval (km) when this quantity is also used as the BC predictor.
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3.5.1.3 Vertically-Integrated Water Content Predictor

In this section, the impact of using a BC predictor that depicts the total water content over a ver-

tical layer is assessed. Numerous experiments were performed using different vertical layers;

however, for brevity, results are only shown for the predictor that encapsulates the total water

content between 100 and 700 hPa because that is the portion of the atmosphere where 6.2 µm

brightness temperatures are most sensitive. Unlike the previous predictors, this predictor is com-

puted using model output. The total water content is calculated for each ensemble member by

converting the WV and all cloud hydrometeor mixing ratios in each model layer into mm and

then integrating over the 100-700 hPa layer. Inspection of Fig. 3.5a shows that this predictor has

a less complex OMB departure pattern than occurred when the cloud top height and brightness

temperatures were used as the predictors. There are however slightly larger biases on both ends

of the distribution, with a small upward slope in the maximum probabilities as the total water

content increases. This linear error trend is removed by the linear bias correction term (Fig. 3.5c),

which reduces the conditional biases when the total water content is < 7 mm, but increases it

elsewhere. The subtle arch in the conditional biases is subsequently removed after applying the

2nd order quadratic term (Fig. 3.5d), with only minor changes occurring after the 3rd order term

is used (Fig. 3.5e). Comparison of the histograms (Figs. 3.3i-k) shows that the total water pre-

dictor had only a small impact on the variance of the full distribution; however, the scatterplots

showed that it still improved the conditional bias across most of the distribution. Even so, this

predictor still had a much smaller impact than the previous predictors that were directly sensitive

to the cloud top height, which indicates that the location of the cloud top rather than the vertically

integrated cloud and WV content is a more effective BC predictor for all-sky infrared brightness

temperatures.

3.5.1.4 Satellite Zenith Angle Predictor

Given that the satellite zenith angle is widely used in operational BC methods, an additional ex-

periment was performed using it as the BC predictor. After adjusting for the mean bias in the

original distribution, the conditional biases are close to zero across the entire distribution, with

only a slight downward trend in the bias for zenith angles > 48◦ (3.6b). Application of the 1st to

3rd order BC terms (Figs. 3.6c-e) eliminated most of these conditional biases; however, the impact

of this predictor on the statistics of the entire distribution was negligible according to the his-
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Figure 3.5: Same as Fig. 3.2 except for showing probability distributions plotted as a function of
the vertically-integrated total water content (mm) over the 100-700 hPa layer when this quantity
is also used as the BC predictor.
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tograms (Figs. 3.3l-n). These results indicate that the bias in the observations is only very weakly

related to the satellite zenith angle; however, the small improvements made to the conditional

biases by the 2nd to 3rd order terms also show that there is a small nonlinear bias component that

can be removed when using this predictor.

Figure 3.6: Same as Fig. 3.2 except for showing probability distributions plotted as a function of
the satellite zenith angle (o) when this quantity is also used as the BC predictor.

3.5.2 Clear and Cloudy Sky Error Evaluation

Next, the relative impact of the linear and nonlinear BC terms on the clear and cloudy-sky obser-

vations is examined more closely using a subset of the 6.2 µm brightness temperatures for which

both the model background and a given observation were identified as being clear or cloudy. Each

observation was classified as clear or cloudy based on the NWC SAF cloud mask dataset whereas

each model grid point was deemed to be clear (cloudy) if the sum of all cloud hydrometeor mix-

ing ratios over the entire vertical profile was less (greater) than 10−6 kg kg−1. The 2-D probability
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distributions for the clear-sky matched observations are shown in Fig. 3.7, with the corresponding

histograms shown in Fig. 3.8. The observed 6.2 µm brightness temperatures were used as the BC

predictor. Inspection of Fig. 3.7a reveals that the original distribution contains both a systematic

bias and a large linear trend where mostly negative OMB departures for the colder brightness

temperatures transition into mostly positive departures for the warmer brightness temperatures.

The linear trend indicates that the WV field in the model background is more uniform than ob-

served such that the model tends to be too wet (dry) in regions where the observations indicate

less (more) WV. Overall, most of the bias is removed from the clear-sky observation departures

using only the constant and 1st order terms, with little or no impact due to the higher order terms

(Figs. 3.7b-e). This behavior is consistent with existing BC schemes that use constant and linear

corrections to remove the bias from clear-sky observation departures.

Figure 3.7: Same as Fig. 3.2 except for showing probability distributions for clear-sky matched
observations plotted as a function of the observed brightness temperature (K) when this quantity
is also used as the BC predictor.

39



Figure 3.8: Probability density function of normalized clear-sky matched 6.2 µm observation-
minus-background departures for the (a) original data, and the (b) constant, (c) 1st order, (d)
2nd order, and (e) 3rd order bias corrected observations when the observed 6.2 µm brightness
temperature is used as the predictor. Data were accumulated at hourly intervals during a 108-h
period from 13 UTC on 16 May 2014 to 00 UTC on 20 May 2014.

For the cloud-matched observations shown in Figs. 3.9 and 3.10, the NWC SAF cloud top

height retrievals were used as the predictor. The OMB departure pattern and conditional biases

for these observations are very similar to that shown in Fig. 3.4 when both clear and cloudy-sky

observations were included in the regression. This includes the generally positive departures for

mid-level clouds and the transition to large negative departures for the upper-level clouds (Fig.

3.9a). Large departures remained in the distribution for all cloud top heights after the constant

and linear BC terms were applied to the observations (Fig. 3.9c). It is only when the 2nd and

3rd order terms are used that the conditional biases become close to zero throughout the entire

distribution (Figs. 3.9d, e). The histograms in Fig. 3.10 also reveal that the quadratic and cubic

terms had a much larger impact on the overall statistics than occurred for the clear-sky matched

observations. These results provide further evidence that the nonlinear conditional biases evident

in the all-sky scatterplots in Section 3.5.1 primarily result from biases associated with the cloudy

observations. It also shows that the NBC method is an effective method to remove both linear

40



and nonlinear biases from all-sky infrared brightness temperature departures if a suitable cloud-

sensitive variable is used as the predictor.

Figure 3.9: Same as Fig. 3.2 except for showing probability distributions for cloudy-sky matched
observations plotted as a function of the NWC SAF cloud top height retrieval (km) when this
quantity is also used as the BC predictor.

3.5.3 Multivariate Bias Correction Results

In addition to the univariate NBC experiments discussed in previous sections, multivariate exper-

iments were performed to assess the impact of using more than one predictor to remove the ob-

servation bias. For a 3rd order polynomial expansion using two variables, it is necessary to solve

for seven coefficients in Eqn. 3.11, whereas 22 coefficients are computed when three predictors are

used. Because a direct approach is used to simultaneously estimate all of the BC coefficients, it is

not possible to determine the individual contribution of each predictor on the OMB departures;

however, the total contribution of all of the predictors within a given Taylor series order (e.g., 1st,
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Figure 3.10: Probability density function of normalized cloudy-sky matched 6.2 µm observation-
minus-background departures for the (a) original data, and the (b) constant, (c) 1st order, (d) 2nd
order, and (e) 3rd order bias corrected observations when the NWC SAF cloud top height retrieval
is used as the predictor. Data were accumulated at hourly intervals during a 108-h period from 13
UTC on 16 May 2014 to 00 UTC on 20 May 2014.

2nd, and 3rd) can still be inferred through comparison of the results obtained using different order

expansions. Though using more than one variable greatly increases the size of the A matrix, it is

still computationally efficient to solve for the inverse of ATA given its small dimensions.

Numerous experiments using different predictor combinations and a 2nd or 3rd order poly-

nomial expansion were performed; however, for brevity, this section only includes results from the

combination that had the largest impact on the OMB departure distributions. This particular con-

figuration employed a 3rd order expansion with the satellite zenith angle, 100-700 hPa total water

content, and observed brightness temperatures for a given satellite band used as the BC predic-

tors for that band. A separate multi-variate experiment (not shown) that employed the cloud top

height rather than the brightness temperature as the third predictor revealed that it had a smaller

impact, similar to what occurred with the univariate experiments shown earlier. There may be

some overlap between the brightness temperature and satellite zenith angle predictors; however,

this should be minimal because the zenith angle predictor primarily accounts for potential biases
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in the radiative transfer model associated with the path length through the atmosphere, whereas

the brightness temperature predictor is being used as a proxy for the cloud top height given its

strong sensitivity to the cloud top. Unlike the previous sections that focused exclusively on the 6.2

µm band, this section presents results from experiments that removed the bias from both of the

SEVIRI WV-sensitive bands (e.g., 6.2 µm and 7.3 µm). All observations, both clear and cloudy-sky,

were used during these experiments.

3.5.3.1 SEVIRI 6.2 µm Example

Figure 11 shows the OMB departure distributions for the 6.2 µm multivariate NBC experiment,

with the corresponding normalized histograms shown in Figs. 3.3o-q. Comparison to Fig. 3.2

shows that the departure distributions for the multivariate case are similar to those from the uni-

variate case employing only the observed brightness temperature as the BC predictor. This is not

surprising given that the experiments employing the satellite zenith angle and total water content

predictors both had a much smaller impact on the distributions (Figs. 3.5, 3.6). Overall, the shape

of the distribution is improved after the linear term is used; however, there are still large condi-

tional biases at both ends of the distribution (Fig. 3.11c). The arch pattern in the conditional bias

was subsequently removed after the quadratic term was applied (Fig. 3.11d), with slightly smaller

(larger) biases occurring at the warm (cold) end of the distribution after using the 3rd order cubic

term (Fig. 3.11e). Though the distributions are similar to those shown in Fig. 3.2, it is evident

that the width of the conditional distribution is less for all predictor values. This is encouraging

because it shows that even though the impact of the satellite zenith angle and total water con-

tent predictors was relatively small when used individually, they still provided new information

that further reduced the OMB departures when used in combination with the observed bright-

ness temperature predictor. Inspection of the histograms (Figs. 3.3o-q) shows that the variance

was greatly reduced compared to the univariate experiments; however, each of the distributions

had a large positive skewness similar to that seen in Figs. 3.3c-e when the brightness temperature

was used as the BC predictor. It is important to note however that quality control measures could

potentially be used to reduce the skewness in the distribution after the BC terms are applied. This

topic will be explored in a future study.

43



Figure 3.11: Same as Fig. 3.2 except for showing probability distributions plotted as a function of
the observed 6.2 µm brightness temperatures when the observed 6.2 µm brightness temperature,
satellite zenith angle, and vertically-integrated total water content from 100-700 hPa are used as
the BC predictors.

3.5.3.2 SEVIRI 7.3 µm Example

In this section, we assess the ability of the multivariate NBC method to improve the observation

error characteristics of the 7.3 µm band. As discussed in Section 3.3.1, observations from this band

are sensitive to WV and clouds in the middle and upper troposphere, with a weighting function

that peaks near 500 hPa in clear sky scenes. Overall, each of the OMB departure distributions (Fig.

3.12) have shapes that are similar to the corresponding 6.2 µm distributions (Fig. 3.11); however,

their error range is larger because the weighting function for this band peaks at a lower level in

the troposphere, thereby leading to potentially larger departures due to mismatched clouds in

the observations and model background. Though the linear BC term substantially improves the

distribution by making the departures less negative for colder brightness temperatures, non-zero
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conditional biases remain across most of the distribution, with negative (positive) biases occurring

for brightness temperatures colder (warmer) than 230 K (Fig. 3.12c). As occurred in the previous

experiments, the conditional biases are almost eliminated after the 2nd order BC term is used,

with minimal changes occurring due to the 3rd order term (Figs. 3.12d, e). The negative skewness

present in the original histogram (Fig. 3.13a) switches to a large positive skewness after the linear

BC term is used (Fig. 3.13c). Inspection of the OMB departure distributions shows that the positive

skewness developed in response to the large upward shift in the conditional distributions for the

colder brightness temperatures (Fig. 3.12a) that exposed the conditional positive skewness in the

original distribution for warmer brightness temperatures that was being masked in the overall

histogram by the large negative OMB departures. Another notable feature of the histograms is

that their peaks are higher and narrower than the 6.2 µm histograms (Figs. 3.3o-q). This strongly

non-Gaussian behavior was already present in the original histogram and is likely due to the large

percentage of clear-sky observations containing small departures combined with fatter tails due

to cloud displacement errors. Even so, these results show that the NBC method improved the

distribution such that the variance was much lower and the conditional biases were reduced to

near zero across most of the distribution. Also, as was the case with the 6.2 µm band, the linear

BC term had the largest impact on the overall statistics; however, the variance was also reduced

when using the higher order nonlinear BC terms.

3.6 Discussion and Conclusions

In this study, output from a high-resolution, regional-scale ensemble DA system was used to

explore the ability of an innovative method to remove the bias associated with all-sky satellite

infrared brightness temperatures using a Taylor series polynomial expansion of the OMB depar-

tures. This so-called NBC method uses OMB statistics accumulated over some period of time to

remove linear and nonlinear conditional biases in a distribution through use of higher order Tay-

lor series terms and a set of BC predictors. Nonlinear conditional biases can be identified using

2nd (quadratic) and 3rd (cubic) order terms (and even higher order terms if desired), whereas the

constant and linear bias components can be diagnosed using the 0th and 1st order terms, respec-

tively.

The ability of the NBC method to effectively remove the bias associated with all-sky SEVIRI

infrared brightness temperatures was assessed using output from high-resolution ensemble DA
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Figure 3.12: Probability distributions of 7.3 µm observation-minus-background departures plotted
as a function of the observed 7.3 µm brightness temperatures (K) for the (a) original data, and the
(b) constant, (c) 1st order, (d) 2nd order, and (e) 3rd order bias corrected observations when the
observed 7.3 µm brightness temperature, satellite zenith angle, and model-integrated total water
content from 100-700 hPa are used as the predictors. Data were accumulated at hourly intervals
during a 108-h period from 13 UTC on 16 May 2014 to 00 UTC on 20 May 2014.

experiments performed using the KENDA system. OMB departure statistics for the 6.2 and 7.3

µm bands sensitive to clouds and WV in the upper and middle troposphere, respectively, were

accumulated at hourly intervals during a 108-h period from 16-21 May 2014 using output from

the COSMO-DE domain that covers Germany and surrounding areas with 2.8-km horizontal grid

spacing. Conventional observations were actively assimilated, whereas the SEVIRI observations

were passively monitored and therefore did not affect the analyses during the hourly assimila-

tion cycles. Model-equivalent brightness temperatures were computed for each observation and

ensemble member using the RTTOV radiative transfer model. The study period contained both

clear-sky areas and a wide range of cloud types that together promoted a realistic assessment of

the NBC method during the warm season.
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Figure 3.13: Probability density function of normalized 7.3 µm observation-minus-background
departures for the (a) original data, and the (b) constant, (c) 1st order, (d) 2nd order, and (e) 3rd
order bias corrected observations when the observed 7.3 µm brightness temperatures are used as
the predictor. Data were accumulated at hourly intervals during a 108-h period from 13 UTC on
16 May 2014 to 00 UTC on 20 May 2014.

Univariate and multi-variate NBC experiments were performed using the satellite zenith an-

gle and other predictors sensitive to clouds and WV, with their impact on the conditional bias

and other aspects of the OMB departure distributions assessed using normalized histograms and

probability distributions plotted as a function of the predictor. Overall, the results revealed that

there are often strongly nonlinear conditional bias patterns in the OMB probability distributions

that cannot be removed using only constant and linear BC terms. Though the overall bias of

each distribution is equal to zero regardless of the order of the Taylor series expansion, there are

often large conditional biases that vary as a function of the BC predictor. Because each SEVIRI

band had a relatively small systematic bias, the constant BC term only had a small impact on the

distributions. The linear 1st order term generally had the largest impact on the statistics of the

entire distribution as measured by reductions in the variance; however, conditional biases often

remained across much of the distribution. These conditional biases were typically reduced to near

zero across the entire distribution only after the nonlinear 2nd and 3rd order terms were applied
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to the OMB departures. Indeed, the conditional bias patterns often exhibited an arch shape for

which the 2nd order quadratic term is ideally suited to remove. The tendency for the nonlinear

terms to have a small impact on the variance of the entire distribution while simultaneously hav-

ing a large positive impact on the conditional biases also illustrates that detailed analysis methods

such as 2-D probability distributions provide valuable insight into the behavior of the BC method

that is not possible using traditional 1-D error histograms.

Inspection of the univariate NBC results showed that the variance of the BC distributions

was smallest when the brightness temperature observations were used as the BC predictor. The

variance was also substantially reduced when the NWC SAF cloud top height retrievals were

used as the predictor. Both of these predictors were able to diagnose and remove nonlinear biases

associated with the cloudy observations. For example, large positive conditional biases for mid-

level clouds transitioned into large negative conditional biases for upper-level clouds. Though not

examined during this study, the different signs of the conditional biases for these clouds could be

related to the ability of the COSMO model and RTTOV to properly simulate ice and mixed-phase

cloud properties. The experiments using the satellite zenith angle or vertically-integrated water

content showed that these BC predictors had a much smaller impact on the variance of the overall

distribution. This behavior indicates that variables sensitive to the cloud top height are more

effective BC predictors for all-sky infrared brightness temperatures, especially when higher order

Taylor series terms are included. Even so, the multivariate experiments showed that though the

zenith angle and total water content predictors only had a relatively small impact on the departure

histograms when used individually, they still provided new information that greatly reduced the

variance of the distribution when used in combination with the observed brightness temperature

predictor.

Additional univariate NBC experiments were performed to examine the influence of linear

and nonlinear components on the OMB departure distributions for clear- and cloudy-sky obser-

vations using a subset of the 6.2 µm brightness temperatures for which both a given observa-

tion and the corresponding model grid point were identified as being clear or cloudy. Overall,

comparisons of the statistics for the clear-sky and cloudy-sky matched observations revealed that

nonlinear error sources are much more important for cloudy sky observations as signified by the

much larger impact of the 2nd and 3rd order Taylor series terms on the variance and the condi-

tional biases in the distributions. For the clear-sky observations, the conditional biases could be

effectively removed using only the 0th and 1st order terms, which is consistent with existing oper-
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ational BC methods that typically remove the bias from clear-sky satellite observations using a set

of constant and linear BC coefficients. These results show that the nonlinear conditional bias pat-

terns evident in the all-sky OMB departure distributions primarily resulted from nonlinear biases

in the cloudy-sky infrared brightness temperatures. They also show that the NBC method can

effectively remove both linear and nonlinear conditional biases from all-sky infrared brightness

temperatures provided that a suitable cloud-sensitive variable is used as one of the predictors.

Future work includes running cycled DA experiments using the KENDA system to assess the

impact of the NBC method on the forecast accuracy when assimilating clear- and cloudy-sky in-

frared brightness temperatures. Additional experiments will be necessary to explore the ability of

the method to remove biases from the OMB departures when the simulated brightness tempera-

tures and cloud top heights are used as the BC predictors rather than their observed counterparts.

Preliminary results indicate that predictors derived from the NWP model cloud field rather than

the observations have a smaller impact on the overall statistics as measured by reductions in vari-

ance; however, they were still able to effectively remove the conditional biases across most of the

distribution when higher order Taylor series terms were used. These results also indicate that

it may be necessary to use up to a 4th order polynomial to remove the bias if the NWP-derived

quantities are used rather than their observed counterparts. A more detailed assessment of this

sensitivity is currently underway. Additional experiments will also be necessary to explore the

ability of the NBC method to remove biases from infrared bands that are sensitive to the land sur-

face or other atmospheric constituents such as ozone, as well as for all-sky microwave and visible

radiances.

Though the NBC method used in this paper was implemented as a static, off-line method,

it could also be incorporated into online methods such as VarBC through inclusion of additional

nonlinear predictors. For example, the VarBC system at the Met Office uses Legendre polynomial

predictors to remove residual scan biases and Fourier predictors to correct complex orbital biases

in some satellite sensors (Cameron and Bell, 2016). Higher order predictors, such as the quadratic

form of the temperature lapse rate and 4th order polynomial of the satellite angle bias, are also

widely used in operational VarBC systems. Zhu et al. (2015) recently showed that inclusion of

a quadratic aircraft ascent/descent term reduced the bias when assimilating aircraft temperature

observations. Results from the current study could be used to help inform the development of

operational DA systems as they continue to expand into all-sky satellite DA. Finally, many of the

all-sky OMB departure distributions exhibited narrow peaks and fat tails that could potentially be
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better represented using a Huber norm (Huber 1972) representation, which has been shown to lead

to improved quality control and more observations being assimilated (Tavolato and Isaken 2015).

Further research is necessary to determine if using a Huber norm in combination with the NBC

method can improve existing quality control methods by identifying erroneous observations after

the nonlinear conditional biases have been removed from the distribution. This approach could

potentially preserve more cloud-affected observations where nonlinear biases are more prevalent,

thereby leading to additional observations being assimilated in sensitive areas of the domain.
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Chapter 4

Nonlinear Bias Correction – Active

Assimilation Experiments

4.1 Abstract

Ensemble data assimilation experiments were performed to assess the ability of satellite all-sky in-

frared brightness temperatures and different bias correction (BC) predictors to improve the accu-

racy of short-range forecasts used as the model background during each assimilation cycle. Satel-

lite observations sensitive to clouds and water vapor in the upper troposphere were assimilated

at hourly intervals during a 3-day period. Linear and nonlinear conditional biases were removed

from the infrared observations using a Taylor series polynomial expansion of the observation-

minus-background departures and BC predictors sensitive to clouds and water vapor or to varia-

tions in the satellite zenith angle. Assimilating the all-sky infrared brightness temperatures with-

out BC degraded the forecast accuracy based on comparisons to radiosonde observations. Re-

moval of the linear and nonlinear conditional biases from the satellite observations substantially

improved the results, with predictors sensitive to the location of the cloud top having the largest

impact, especially when higher order nonlinear BC terms were used. Overall, experiments em-

ploying the observed cloud top height or observed brightness temperature as the bias predictor

had the smallest water vapor, cloud, and wind speed errors, while also having less degradation to

temperatures than occurred when using other predictors. The forecast errors were smaller during

these experiments because the cloud-height-sensitive BC predictors were able to more effectively

remove the large conditional biases for lower brightness temperatures associated with a deficiency
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in upper-level clouds in the model background.

4.2 Introduction

Indirect observations of the atmosphere, ocean, and land surface conditions obtained using so-

phisticated satellite remote sensing instruments are an indispensable component of the global

observing system. For numerical weather prediction (NWP) applications, satellite radiances from

visible, infrared, and microwave bands provide important information about atmospheric vari-

ables, such as temperature, winds, water vapor, and clouds, as well as lower boundary variables

such as soil moisture, vegetation biomass, and sea surface temperatures. Satellite observations can

also be used to detect the presence of aerosols and trace gases that are important for health and

air quality models. Recent enhancements to the global satellite observing system through deploy-

ment of more accurate sensors onboard geostationary and polar-orbiting satellite platforms has

made it possible to routinely monitor environmental conditions with high spatial and temporal

resolution across the entire globe (Klaes et al. 2007; Strow 2013; Bessho et al. 2016; Schmit et al.

2017).

As satellite remote sensing capabilities have expanded and improved during the past several

decades, substantial progress has also been made in our ability to extract more information from

these important observations through development of advanced data assimilation (DA) methods

and more accurate NWP models. Despite using only a small percentage of all available observa-

tions, satellite brightness temperatures and derived products such as atmospheric motion vectors

still constitute more than 90% of the observations that are actively assimilated in most operational

global NWP models (Bauer et al. 2010). Satellite observations are especially important in data

sparse regions or for model state variables such as clouds and water vapor for which conven-

tional in situ observations with high spatial and temporal resolution are not available.

Until the past decade, however, almost all efforts within the operational and research DA

communities were directed toward optimizing the use of clear-sky brightness temperatures. This

point of emphasis was not made because cloud-impacted observations were deemed unimpor-

tant, but rather, was due to the difficulty of using them in existing DA systems (Errico et al. 2007).

Indeed, until the recent development of all-sky DA methods, the need to exclude observations

impacted by clouds and precipitation meant that only a small percentage of available satellite ob-
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servations were actively assimilated at global NWP centers (Yang et al. 2016). This limitation is

even more severe for regional-scale NWP models where the entire domain may be covered by

clouds (Lin et al. 2017). Though more effective assimilation of clear-sky satellite brightness tem-

peratures has contributed to a steady increase in forecast skill, neglecting observations impacted

by clouds is problematic because they tend to be located in dynamically active regions where the

generation of more accurate initialization datasets through better use of these observations could

help constrain potentially rapid error growth in NWP models (McNally 2002).

Observations sensitive to clouds and precipitation are challenging to use for a variety of rea-

sons, as discussed by Errico et al. (2007). For example, though observation-minus-background

(OMB) departure statistics are generally close to Gaussian for clear-sky observations, they can

have substantial non-Gaussian error characteristics in the presence of clouds and precipitation

(Bocquet et al. 2010; Okamoto et al. 2014; Harnisch et al. 2016; Otkin et al. 2018). Short-range

model forecasts used as the first guess often exhibit large errors in the placement and character-

istics of clouds and precipitation. Limited predictability of small-scale features and the difficulty

of accurately modeling moist processes means that it is common for the model first guess to have

much larger errors for clouds and precipitation than it does for dynamical variables such as tem-

perature and geopotential height (Fabry and Sun 2010). Though representativeness errors can

usually be ignored when assimilating clear-sky observations primarily sensitive to temperature,

they become important for cloud-affected observations because they can lead to very large OMB

departures that hinder their assimilation (Geer and Bauer 2011; Geer et al. 2012; Okamoto 2013).

It is also more difficult to quantify the observation and model background errors because it can be

challenging to separate signals associated with the individual atmospheric and land surface vari-

ables that contribute to the sensitivity of a given satellite observation (Bauer et al. 2011). Another

prominent problem is the difficulty of modeling complex cloud properties in the radiative transfer

models used to compute the model-equivalent brightness temperatures. Nonlinear error statistics

due to deficiencies in the radiative transfer and NWP models could lead to erroneous analysis

increments in the model state variables that in turn could impact balance and stability during the

first few hours of the forecast (Errico et al. 2007). Last, it is also important to account for correlated

observation errors because they can become very large in the presence of clouds and precipitation

(Bormann et al. 2011, 2016; Campbell et al. 2017).

Despite these and other issues that make it more challenging to assimilate cloud-sensitive

observations, substantial progress has still been made during the past decade (Geer et al. 2017,

53



2018). Successful efforts to assimilate all-sky satellite observations have occurred in tandem with

improvements in the representation of water vapor and cloud features in NWP models and ad-

vances in the ability of radiative transfer models to accurately model radiative fluxes in clouds.

These efforts have also been aided through the widespread adoption of four-dimensional varia-

tional (4DVAR) and ensemble DA methods that can more easily extract information about dynam-

ical variables from cloud- and moisture-sensitive observations (Geer et al. 2014; Lien et al. 2016;

Zhu et al. 2016). For example, Peubey and McNally (2009) demonstrated that four-dimensional

variational methods could extract useful information about the wind field from moisture-sensitive

satellite observations through the ”tracer-advection” mechanism. Likewise, ensemble DA systems

can infer the temperature, water vapor, and wind fields through ensemble covariances that link

the model state variables to the simulated observations (Zhang et al. 2011; Houtekamer and Zhang

2016). Compared to DA methods that only assimilate clear-sky satellite observations, an impor-

tant benefit of an all-sky DA approach is that it provides a unified treatment of cloud-free and

cloud-impacted observations that negates the need to perform potentially unreliable and expen-

sive cloud detection procedures (Bauer et al. 2010). An all-sky DA approach also promotes a more

balanced use of satellite observations in clear and cloudy areas that helps overcome the tendency

for operational DA systems to assimilate substantially more observations in regions that are not

affected by clouds or precipitation (Geer et al. 2017).

Early efforts to assimilate all-sky satellite observations focused on microwave sounding chan-

nels that are sensitive to water vapor and non-precipitating cloud particles (Bauer et al. 2010).

These channels were initially chosen because they have more Gaussian error characteristics than

cloud-sensitive infrared and visible channels, thereby making them a logical starting point to ex-

plore the assimilation of all-sky observations. Whereas it was once thought that it may prove too

difficult to assimilate water vapor and cloud-sensitive satellite observations (e.g., Bengtsson and

Hodges, 2005), their impact has increased greatly in recent years (Geer et al. 2018). The direct

assimilation of all-sky microwave observations was first accomplished in an operational DA sys-

tem in 2009 at the European Centre for Medium-range Weather Forecasting (ECMWF) (Bauer et

al. 2010). Since then, the impact of these observations has risen to nearly 20% (Geer et al. 2017),

as measured using the forecast sensitivity observation impact metric (Langland and Baker 2004).

This rapid increase in their impact means that all-sky microwave observations have become one

of the most important sources of data in the ECMWF model, with an impact comparable to clear-

sky satellite radiances and conventional observations. More recently, the National Centers for
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Environmental Prediction has also started to assimilate all-sky microwave observations in their

operational global forecasting system (Zhu et al. 2016). Numerous studies have documented the

benefits of assimilating all-sky microwave observations in global and regional modeling systems

(e.g., Aonashi and Eito 2011; Geer et al. 2014; Yang et al. 2016; Kazumori et al. 2016; Baordo and

Geer 2016; Zhang and Guan 2017; Lawrence et al. 2018; Wu et al. 2019).

In contrast to the extensive resources that have been directed by the operational DA com-

munity toward the assimilation of all-sky microwave observations, much less attention has been

given to increasing the use of cloud-sensitive infrared brightness temperatures. Indeed, until the

past few years, most studies that explored the assimilation of all-sky infrared observations have

done so using research models or within the context of observing system simulation experiments

(OSSEs). Early studies by Vukicevic et al. (2004, 2006) assimilated cloudy-sky infrared brightness

temperatures from the 10.7- and 12.0-µm bands on the Geostationary Operational Environmen-

tal Satellite (GOES) Imager using a 4DVAR assimilation system. Observations from these atmo-

spheric window bands were shown to improve the depiction of upper-level ice clouds; however,

they had less impact on liquid clouds occurring lower in the troposphere. Subsequent studies by

Stengel et al. (2009, 2013) found that assimilation of cloud-impacted infrared observations from

the 6.2- and 7.3-µm water vapor channels on the Spinning Enhanced Visible and Infrared Imager

(SEVIRI) sensor led to more accurate analyses and forecasts in a high-resolution regional-scale

model. Other investigators proposed several methods that could be used to assimilate informa-

tion from cloud-impacted observations from hyperspectral sounders onboard polar-orbiting satel-

lite platforms (Heillette and Garand 2007; Pavelin et al. 2008; McNally 2009; Pangaud et al. 2009;

Guidard et al. 2011; Lupu and McNally 2012). All of these methods were designed to estimate the

cloud top pressure or effective cloud amount, with these parameters then fed to the DA system.

This process enabled the assimilation of some cloud information from these observations.

The direct assimilation of cloud and water vapor sensitive infrared brightness temperatures

has also been investigated using regional-scale OSSEs. Most of these studies employed ensemble

DA systems and were used to examine the potential impact of assimilating observations from the

Advanced Baseline Imager (ABI) onboard the GOES-R satellite (currently GOES-16 and GOES-17).

In studies assimilating both clear- and cloudy-sky brightness temperatures from the ABI 8.5 µm

band, Otkin (2010, 2012a) showed that their assimilation improved the cloud field and that it was

necessary to use a short horizontal localization radius to account for small-scale cloud features

in the infrared observations. A subsequent study by Otkin (2012b) revealed that assimilation of
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all-sky observations from the three water vapor sensitive bands on the ABI sensor had a large pos-

itive impact on 6-h precipitation forecasts during a high-impact winter storm. Jones et al. (2013a,

2014) examined the impact of simultaneously assimilating all-sky ABI brightness temperatures

and Doppler radar reflectivity observations for an extratropical cyclone, where it was found that

the most accurate analyses and forecasts were obtained when both observation types were assimi-

lated because they are sensitive to different portions of the cloud field. The radar observations had

a large positive impact on the cloud and wind fields in the lower troposphere, whereas the satellite

observations provided additional improvements in the cloud and moisture fields in the upper tro-

posphere. Other OSSE studies have shown similar positive results for various weather features,

such as mesoscale convective systems and tropical cyclones (Zupanski et al. 2011; Cintineo et al.

2016; Zhang et al. 2016; Minamide and Zhang 2017, 2018; Pan et al. 2018).

Results from the various OSSE studies have been used to inform ongoing efforts by various

groups to assimilate real all-sky infrared brightness temperatures and satellite-derived products.

Most of these studies have focused on optimizing methods to assimilate data from geostationary

satellite sensors in regional-scale ensemble DA systems. Geostationary satellite observations are

very useful for these models because they are the only source of cloud and water vapor informa-

tion with high spatial resolution. Moreover, unlike polar-orbiting satellites, geostationary sensors

are also able to provide frequent observation updates that cover most, if not all, of the model do-

main. Some recent studies have shown positive results when assimilating satellite-derived prod-

ucts such as cloud water path or layer precipitable water (Jones et al. 2013b, 2015, 2016, 2018;

Schomburg et al. 2015; Jones and Stensrud 2015; Kerr et al. 2015; Wang et al. 2018), whereas other

studies have explored the direct assimilation of all-sky infrared brightness temperatures. Regard-

less, there is great potential in assimilating all-sky geostationary satellite observations in regional-

scale models because clouds are the first observable aspect of convective systems (Gustafsson et

al. 2018; Kurzrock et al. 2019).

Okamoto (2013) showed a slightly positive impact on temperature and wind analyses and

6-h forecasts when a subset of infrared brightness temperatures depicting spatially homogeneous

clouds in the middle and upper troposphere were assimilated. Subsequent studies by Okamoto et

al. (2014) and Harnisch et al. (2016) developed cloud-dependent all-sky observation error models

where the error is allowed to vary as a function of a diagnosed cloud impact parameter. Similar

in construct to the ”symmetric” observation error model developed by Geer and Bauer (2011) for

all-sky microwave observations, both models assign the largest errors to the most strongly cloud-
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impacted observations given greater uncertainties in both the NWP and radiative transfer models

in cloudy scenes. Minamide and Zhang (2017) have proposed an alternative method, known as

adaptive observation error inflation, that scales the observation errors as a function of the first

guess departure, with the largest errors given to observations with the largest departures. Ap-

plication of these dynamical observation error models to all-sky infrared brightness temperatures

generally leads to more Gaussian departure statistics.

Other studies have shown that assimilation of all-sky infrared observations from geostation-

ary satellite sensors can improve forecasts for tropical cyclones, floods, and severe thunderstorms

(Zhang et al. 2016, 2018; Honda et al. 2018a,b; Minamide and Zhang 2018). In particular, these case

studies revealed that assimilation of all-sky observations improved the prediction of the mid-level

mesocyclone during a tornadic thunderstorm and the structure of the inner core and outer rain-

band regions for several tropical cyclones. More accurate precipitation forecasts were also shown

to lead to more skillful flood forecasts from a river discharge model (Honda et al. 2018b). Though

the direct assimilation of all-sky infrared brightness temperatures is currently not included in any

operational DA system, Geer et al. (2019) present promising early results from a semi-operational

implementation of the ECMWF model. Their study assimilated all-sky observations from seven

water vapor sensitive bands on the Infrared Atmospheric Sounding Interferometer sensor on-

board the polar-orbiting Metop-A and Metop-B satellites. It was shown that the newly-developed

all-sky DA approach gave results that were as good or better than the existing clear-sky-only ap-

proach, with the largest benefits found in the tropics where short-range forecasts were improved

throughout the troposphere and stratosphere.

In this study, we advance efforts to assimilate all-sky infrared brightness temperatures from

the cloud and water vapor sensitive 6.2-µm band on the SEVIRI sensor using a pre-operational

version of the Kilometer-scale Ensemble Data Assimilation (KENDA) system run at the German

Deutscher Wetterdienst (DWD). Experiments are run in which the nonlinear bias correction (NBC)

method developed by Otkin et al. (2018) is used to remove systematic biases from the all-sky ob-

servations prior to their assimilation. Given the proven utility of clear-sky satellite BC methods

(Eyre 2016), it is necessary to develop cloud-dependent BC methods for all-sky infrared bright-

ness temperatures to make full use of these observations within modern DA systems. Cloud-

dependent biases can occur for a variety of reasons. For example, deficiencies in the forward

radiative transfer model used to compute the model-equivalent brightness temperatures, or the

inability of the parameterization schemes in the NWP model to accurately represent the spatial
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extent, thickness, and optical properties of clouds, can introduce systematic errors that vary as

a nonlinear function of some cloud property, such as cloud top height (Dee 2005; Dee and Up-

pala 2009; Mahfouf 2010; Otkin and Greenwald 2008; Cintineo et al. 2014; Eikenberg et al. 2015).

Though the accuracy of radiative transfer models has improved greatly in recent years, there are

still large uncertainties regarding the specification of cloud properties, especially for ice clouds

(Yang et al. 2013; Baum et al. 2014; Yi et al. 2016).

Most BC methods use a set of predictors describing aspects of the atmospheric state or char-

acteristics of the satellite data to remove biases from the OMB departures (Eyre 2016). So-called

”static” BC methods use a set of departures accumulated over long periods of time outside of the

DA system to estimate and remove biases from the observations (Eyre 1992; Harris and Kelly 2001;

Hilton et al. 2009). In contrast to the non-time-varying BC coefficients derived using static meth-

ods, variational BC (VarBC) methods update the BC coefficients during each DA cycle using an

augmented control vector (Derber et al. 1991; Parrish and Derber 1992; Derber and Wu 1998; Dee

2005; Auligne et al. 2007; Dee and Uppala 2009; Zhu et al. 2014, 2016). Recently, Zhu et al. (2016)

expanded an existing operational VarBC method so that it could be used to remove biases from

all-sky microwave observations. To reduce errors associated with mismatched cloud fields, the

BC coefficients with this method were computed using only situations where both the observed

and model-equivalent brightness temperatures were diagnosed as clear or cloudy. Though most

studies have focused on variational or hybrid DA systems, several studies have also explored their

use in ensemble DA systems (Szunyogh et al. 2008; Fertig et al. 2009; Stengel et al. 2009, 2013;

Miyoshi et al. 2010; Aravequia et al. 2011; Cintineo et al. 2016).

BC methods typically assume that a linear relationship exists between the OMB departure

bias and a given set of predictors. Though previous studies have shown that linear BC meth-

ods are able to effectively remove biases from clear-sky satellite observations, these methods are

suboptimal if the observation bias varies as a nonlinear function of some predictor. Otkin et al.

(2018) showed that nonlinear conditional biases are more likely to occur for cloudy observations,

which necessitates development of BC methods that can more easily capture complex error pat-

terns when assimilating all-sky observations. Their study also showed that cloud-sensitive predic-

tors, such as cloud top height (CTH) or the brightness temperatures themselves, are most effective

at removing biases from all-sky infrared observations. In this study, we build upon the work of

Otkin et al. (2018) by assessing the ability of linear and nonlinear BC predictors in the context

of all-sky infrared brightness temperature assimilation to improve short-range (1-h) forecasts in
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an ensemble DA system. The paper is organized as follows. The DA framework is described in

section 4.3, with assimilation results using different linear and nonlinear BC predictors presented

in section 4.4. Conclusions and a discussion are presented in section 4.5.

4.3 Experimental Design

4.3.1 SEVIRI Satellite Datasets

The DA experiments performed during this study employed all-sky infrared brightness tempera-

tures from the SEVIRI sensor onboard the Meteosat Second Generation satellite, along with CTH

retrievals provided by the EUMETSAT Nowcasting Satellite Applications Facility. The SEVIRI

sensor observes the top-of-atmosphere radiances across 12 visible and infrared spectral bands,

with a nadir resolution of 3 km for all infrared bands (Schmetz et al. 2002). This study focuses on

the assimilation of clear and cloudy-sky brightness temperatures from the 6.2 µm band sensitive

to clouds and water vapor in the upper troposphere. Under clear-sky conditions, the weighting

function for this band peaks near 350 hPa for a standard mid-latitude atmosphere; however, it

will shift upward and become truncated near the cloud top when clouds are present due to in-

creased scattering. It will also peak at a higher (lower) atmospheric level if more (less) water

vapor is present in the middle and upper troposphere. The dual sensitivity of this band to clouds

and water vapor is advantageous for DA applications because increasing moisture and increasing

cloud optical thickness influence the infrared brightness temperatures in a similar way. The resul-

tant smoother dependence between water in its vapor and condensed (cloud) states will generally

lead to more Gaussian statistics than would occur with an infrared atmospheric window band

that has little or no sensitivity to water vapor.

As will be discussed in Section 4.4, CTH retrievals derived from SEVIRI observations were

used as one of the BC predictors during the DA experiments. With this dataset, the CTH is es-

timated for each satellite pixel by first computing a simulated clear-sky 10.8 µm brightness tem-

perature using the Radiative Transfer for TOVS (RTTOV) radiative transfer model (Saunders et

al. 1993) and temperature and water vapor profiles from the global NWP model run at the DWD

(Majewski et al. 2002). An opaque cloud is then inserted in the atmospheric profile at successively

higher levels until the difference between the observed and simulated brightness temperatures is

minimized (Derrien and Le Gleau 2005). The CTH retrievals have a nominal vertical resolution
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of 200 m; however, their uncertainty is larger for semi-transparent clouds (Le Gleau 2016). To

minimize the impact associated with spatially correlated errors, the CTH retrievals and SEVIRI

brightness temperatures were horizontally thinned by a factor of five in the meridional and zonal

directions. This reduces their horizontal resolution to ∼20-25 km across the model domain, which

is ∼8 times coarser than the resolution of the NWP model employed during this study.

4.3.2 KENDA Data Assimilation System

Ensemble DA experiments were performed using a research version of the regional-scale KENDA

system (Schraff et al. 2016) used at the DWD. A major development focus of KENDA in recent

years has been the inclusion of cloud- and precipitation-sensitive observations that can be used to

constrain the cloud and thermodynamic fields in convection-resolving models. KENDA employs

a local ensemble transform Kalman filter (Hunt et al. 2007) during the analysis step and the Con-

sortium for Small-scale Modeling (COSMO) NWP model (Baldauf et al. 2011) during the forecast

step. All of the DA experiments were run on the COSMO-DE domain covering Germany and

parts of surrounding countries with 2.8 km horizontal resolution. With this version of KENDA,

the lateral boundary conditions were obtained at hourly intervals from the COSMO-EU domain

run at the DWD, which in turn was driven by lateral boundary conditions from the global Icosa-

hedral non-hydrostatic (ICON) model (Zangl et al. 2015). The COSMO-DE domain contains 50

terrain-following vertical layers, with the model top located near 22 km (about 40 hPa).

The COSMO model includes prognostic variables for atmospheric temperature, pressure, hor-

izontal and meridional wind components, and the mixing ratios for water vapor, cloud water,

rainwater, ice, snow, and graupel. Cloud microphysical processes are handled using a simplified

version of the double-moment Seifert and Beheng (2001) microphysics scheme that was reduced

to a single-moment scheme for computational purposes, whereas the parameterization of cloud

formation and decay processes is based on Lin et al. (1983). Though deep convection is explicitly

resolved on the COSMO-DE domain, a simplified version of the Tiedtke (1989) mass-flux scheme

is used to parameterize shallow convection. Atmospheric turbulence is predicted using the 2.5

order turbulent kinetic energy scheme developed by Raschendorfer (2001). A δ -2 stream radiative

transfer method is used to update atmospheric heating rates due to radiative effects at 15-min

intervals (Ritter and Geleyn 1992).

The DA experiments employed a 40-member ensemble, along with a deterministic run that is
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initialized by applying the Kalman gain matrix from the assimilation update to the deterministic

model background. The ensemble and deterministic runs were initialized at 00 UTC on 28 May

2014 and then updated at hourly intervals during a 3-day period. Model-equivalent brightness

temperatures for the SEVIRI 6.2 µm band were computed using version 10.2 of the RTTOV ra-

diative transfer model that includes an enhanced cloud-scattering module that enables the use of

cloud hydrometeor profiles located on the NWP model vertical grid (Matricardi 2005; Hocking

et al. 2011). Vertical profiles of fractional cloud cover and ice and liquid water contents used to

compute the cloudy-sky brightness temperatures were obtained using COSMO model output and

empirical relationships developed by Kostka et al. (2014). The maximum-random cloud overlap

scheme (Raisanen 1998) was used, with the ice crystals assumed to have a hexagonal shape and

the effective particle diameters computed using the McFarquhar et al. (2003) method.

SEVIRI 6.2 µm brightness temperatures, along with radiosonde, surface, wind profiler, and

aircraft observations, were actively assimilated at hourly intervals during each DA experiment.

The corresponding model equivalents were computed at the exact observation times through in-

clusion of the various observation operators within the COSMO model. Covariance inflation val-

ues were computed at each grid point using a combination of the relaxation to prior perturbations

approach described by Zhang et al. (2004) and multiplicative inflation based on Anderson and An-

derson (1999). Covariance localization was performed by using only those observations located

within a specified horizontal radius of a given analysis point. An adaptive horizontal localization

radius was used for the conventional observations (Perianez et al. 2014); however, it was set to 35

km for the all-sky SEVIRI brightness temperatures given their uniform data coverage. The vertical

localization scale was set to 0.7 in logarithm of pressure for the brightness temperatures, with the

localization height determined using the peak of the satellite weighting function for the simulated

brightness temperature from the deterministic run. The observation error was set to 4 K for the

all-sky brightness temperatures, similar to that used in Otkin (2012b) and Cintineo et al. (2016).

Though it may have been advantageous to use a cloud-dependent observation error model, that

is beyond the scope of the current study.

4.3.3 Nonlinear Bias Correction Method

Systematic biases were removed from the satellite observations using the NBC method devel-

oped by Otkin et al. (2018). This method uses a Taylor series polynomial expansion of the OMB
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departures for a given satellite band to remove linear and nonlinear conditional biases from the

observations prior to their assimilation. A brief overview of the NBC method is provided here,

with the reader referred to Otkin et al. (2018) for a more detailed description. To begin, the OMB

departure vector is defined as:

dy = y−H(x), (4.1)

where y and H(x) are vectors containing the observed and model-equivalent brightness tempera-

tures, respectively, and H is the observation operator that is used to convert the NWP model first

guess fields into simulated brightness temperatures. If we assume that any biases present in the

OMB departures can be described by a real function f (z) that is infinitely differentiable around a

real number c, Eqn. 4.1 can be decomposed into an N order Taylor series polynomial expansion.

A representative example in which a single predictor is used to identify biases in a given set of

observations using a 3rd order expansion is shown in Eqn. 4.2:

dy =
(

b0 +b1(z(i)− c)+b2(z(i)− c)2 +b3(z(i)− c)3
)

i=1,...,m
(4.2)

where m is the number of observations, z(i) is the predictor value for the ith observation, bn are the

0...nth BC coefficients, and c is a constant that can be set to any value. The (i = 1, . . . ,m) notation

outside the parentheses indicates that the Taylor series terms are computed separately for each

element of the observation departure vector. In this example, the first two terms on the right hand

side represent the constant and linear bias components, whereas the last two terms represent the

nonlinear 2nd order (quadratic) and 3rd order (cubic) components.

Eqn. 4.2 can be rewritten in matrix notation as dy = Ab, where A is an m x n matrix containing

the n Taylor series terms for each observation and b is an n x 1 vector containing the BC coefficients.

This is an overdetermined system of m linear equations in n unknown coefficients because m > n.

The BC coefficients that best fit the set of equations can be identified by solving the quadratic

minimization problem, which, after adding a Tikhonov regularization term (αI) to improve its

conditioning, leads to:

b = (αI +ATA)−1ATdy, (4.3)

where (αI +ATA) is a symmetric, n x n square matrix, thereby making it easy to compute its in-

verse. The Tikhonov regularization term is defined to be a multiple of the identity matrix, which is

a standard approach when solving inverse problems (Nakamura and Potthast 2015). The constant
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α was set to a very small value (10−9) following the results of Otkin et al. (2018).

For this study, the BC coefficients for the SEVIRI 6.2 µm band were updated during each as-

similation cycle using only the observation departure statistics accumulated during the previous

hour. This approach was used rather than accumulating statistics over a longer time period be-

cause it allows the BC coefficients to quickly adapt to changes in the cloud field, such as those

associated with the diurnal cycle of convection and its impact on cloud properties in the upper

troposphere. All of the observation departures for a given assimilation cycle were used to com-

pute the BC coefficients, thereby providing a larger sample size and negating the need to identify

cloud-matched observations when determining the coefficients. After calculating the BC coeffi-

cients, they were then applied separately to each observation and ensemble member.

4.4 Results

In this section, we assess the ability of all-sky infrared brightness temperatures from the SEVIRI 6.2

µm band to improve short-range forecasts when assimilated in an ensemble DA system after using

various BC predictors to remove biases from the observations. Figure 4.1 shows the evolution of

the upper-level cloud and water vapor fields during the 3-day assimilation period, as depicted by

the observed SEVIRI 6.2 µm brightness temperatures. At the start of the period, an extensive area

of cold, upper-level clouds associated with widespread precipitation extended from northwest-

to-southeast across the domain (Fig. 4.1a). As this weather feature slowly moved southward

and weakened during the next two and a half days, the lower brightness temperatures indicative

of optically thick clouds were steadily replaced by higher brightness temperatures as the clouds

became optically thinner and their spatial extent lessened. A small area of clear skies across the

southwestern part of the domain was shunted southward during this time period, with a much

larger area of clear skies developing behind the departing weather feature (Fig. 4.1e). Within these

clear-sky areas, the highest brightness temperatures are associated with the driest conditions in

the upper troposphere. Overall, this synopsis shows that there were a wide range of cloud and

water vapor conditions in the upper troposphere that together support a realistic assessment of

the impacts of the infrared brightness temperatures and bias predictors in the assimilation system.
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Figure 4.1: Observed SEVIRI 6.2 µm brightness temperatures (K) valid at (a) 06 UTC on 28 May,
(b) 18 UTC on 28 May, (c) 06 UTC on 29 May, (d) 18 UTC on 29 May, (e) 06 UTC on 30 May, and (f)
18 UTC on 30 May 2014.

4.4.1 Assessing the Impact of Nonlinear Bias Corrections

Prior work by Otkin et al. (2018) found that it was necessary to use nonlinear BC predictors to

remove cloud-dependent biases from passively monitored all-sky infrared brightness tempera-

tures. Here, we extend their results by examining the impact of nonlinear BC predictors in cycled

DA experiments where all-sky 6.2 µm brightness temperatures are actively assimilated. In par-

ticular, experiments are performed where the observation bias is removed using a 0th (constant),

1st (linear), 2nd (quadratic), or 3rd (cubic) order Taylor series polynomial expansion of the OMB

departures when the observed cloud top height is used as the bias predictor. To provide complete

domain coverage, satellite pixels identified as clear in the EUMETSAT CTH product were assigned

a height equal to the model terrain elevation. These four experiments are hereafter referred to as

OBSCTH-0TH, OBSCTH-1ST, OBSCTH-2ND, and OBSCTH-3RD, respectively. Results from these

experiments are then compared to two baseline experiments in which the all-sky infrared obser-

vations are either not assimilated (No-Assim), or are actively assimilated, but without using BC

(No-BC). The impact of the BC predictors is assessed using OMB departure statistics from the prior

ensemble mean analyses accumulated at hourly intervals during the 72-h assimilation period. The

prior analyses are used here to provide a measure of the observation impact on short-range (1-h)

forecasts.
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4.4.1.1 Brightness Temperature Bias Correction Statistics

To assess how the BC changes in relation to use of linear and nonlinear predictors, Fig. 4.2 shows

the 2-D probability distribution of OMB departures for the 6.2 µm brightness temperatures from

the No-Assim experiment (Fig. 4.2a), along with the corresponding BC distributions for each DA

experiment. All of the distributions are plotted as a function of the observed 6.2 µm brightness

temperatures. The magenta line in each panel denotes the mean of the entire distribution, whereas

the shorter black lines depict the conditional mean in each column. Inspection of Fig. 4.2a reveals

that, though the mean bias during the No-Assim experiment is relatively small (-0.76 K), the con-

ditional biases exhibit an asymmetrical arch-shaped pattern that is a nonlinear function of the

observed brightness temperatures. The conditional biases are close to zero for brightness temper-

atures near 235 K, and remain small for brightness temperatures > 230 K; however, they become

progressively more negative for lower brightness temperatures. The large negative biases for the

lowest brightness temperatures indicate that the COSMO model forecasts are deficient in upper-

level clouds or that there are biases in the RTTOV model used to compute the model-equivalent

brightness temperatures. Regardless, assimilation of observations with such large biases could

degrade the performance of the DA system. The simplest option is to exclude these observations,

however, that is not ideal because they still contain valuable information about random errors in

the cloud field if the biases can be removed.

Inspection of the corrections applied to the infrared observations during the active DA ex-

periments (Figs. 4.2b-e) reveals that the mean BC is similar for all experiments despite the 2-D

distributions having very different shapes. This occurs because the mean BC is most strongly in-

fluenced by the mean bias in the full set of OMB departures (Fig. 4.2a) and by the tendency for

larger corrections for the lower brightness temperatures to be offset by smaller corrections for the

higher brightness temperatures. Because the single bias predictor in the OBSCTH-0TH experiment

(Fig. 4.2b) is only able to remove the mean bias during a given assimilation cycle, it has a narrower

BC distribution than the other experiments. There is still some spread in the corrections during

this experiment because the BC varies for each assimilation cycle due to changes in the prevailing

atmospheric conditions. The constant corrections, however, are not optimal because they are un-

able to account for the large variations in the conditional biases across the OMB distribution (Fig.

4.2a). In contrast, more accurate corrections are obtained through use of the linear bias predictor

during the OBSCTH-1ST experiment (Fig. 4.2c), as evidenced by the smaller (larger) BC for bright-
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Figure 4.2: (a) Probability distribution of SEVIRI 6.2 µm observation-minus-background (O-B)
brightness temperature departures (K) for the No-Assim experiment plotted as a function of
the observed 6.2 µm brightness temperatures (K). (b-e) Probability distributions of SEVIRI 6.2
µm ensemble mean brightness temperature bias corrections (K) for the OBSCTH-0TH, OBSCTH-
1ST, OBSCTH-2ND, and OBSCTH-3RD experiments plotted as a function of the observed 6.2 µm
brightness temperatures (K). Data were accumulated at hourly intervals during a 72-h period from
00 UTC on 28 May 2014 to 00 UTC on 31 May 2014. The horizontal purple lines shows the mean
O-B departure (panel a) or the mean bias correction (panels b-e), whereas the black line segments
depict the conditional O-B bias (panel a) or the mean bias correction (panels b-e) in each column.
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ness temperatures greater (less) than 230 K. The corrections for the lower brightness temperatures

are even larger during the OBSCTH-2ND and OBSCTH-3RD experiments (Fig. 4.2d, e) because

the additional nonlinear predictors are able to remove more of the conditional biases at those tem-

peratures (Fig. 4.2a). Overall, these results indicate that the OBSCTH-2ND and OBSCTH-3RD

experiments provide more accurate BC in the presence of complex nonlinear bias patterns.

4.4.1.2 Brightness Temperature Error Time Series

The evolution of the 6.2 µm brightness temperature root mean square error (RMSE) and bias dur-

ing the 3-day assimilation period is shown in Fig. 4.3. The error statistics were computed using

the ensemble mean brightness temperatures from the prior analyses for each assimilation cycle.

Note that the bias is nonzero for all of the experiments because the statistics were computed using

output from 1-h forecasts and prior to bias-correcting the satellite observations. Overall, there is

a large diurnal cycle in the error statistics, with the largest RMSE and negative biases occurring

during the daytime (09-18 UTC), followed by smaller errors at night. This error pattern is con-

sistent with a lack of lower brightness temperatures during the afternoon when the deficiency in

upper-level clouds associated with deep convection is most prominent (not shown). The large di-

urnal differences in the bias also illustrate why it is advantageous to compute the BC coefficients

using observations from a single assimilation cycle because accumulation of OMB departures over

longer time periods would obscure these important differences and therefore make the BC method

less effective.

Inspection of the error time series reveals that the bias and RMSE are smallest during the

No-BC experiment, which indicates that larger improvements are realized in the forecast cloud

field when BC is not applied to the all-sky brightness temperatures. As will be shown in the next

section, however, the improved fits to the satellite observations during the No-BC experiment do

not translate into smaller errors for conventional observations that are not sensitive to clouds.

Compared to the No-Assim experiment, the four experiments in which bias-corrected satellite ob-

servations were assimilated had similar biases, but much smaller RMSE, with values approaching

those obtained during the No-BC experiment. The simultaneous large reductions in RMSE and

small changes in bias demonstrate that even though the bias-corrected observations are unable

to substantially reduce the bias, it is still possible to use them to fix random errors in the cloud

and water vapor fields. Moreover, though there is a trend toward lower RMSE in all of the ex-
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periments during the 3-day assimilation period due to a decrease in upper-level clouds (Fig. 4.1),

this decrease in RMSE is larger for the experiments where infrared observations are assimilated.

This result provides further evidence that the all-sky infrared brightness temperatures are able to

improve the cloud field in the 1-h forecasts regardless of whether or not BC is applied to them

prior to their assimilation.
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Figure 4.3: Time series showing the evolution of the SEVIRI 6.2 µm brightness temperature (a) bias
(K) and (b) root mean square error (RMSE; K) computed using the ensemble mean prior analysis
at hourly intervals from 00 UTC on 28 May 2014 to 00 UTC on 31 May 2014. Results are shown for
the No-BC (dashed black line), OBSCTH-3RD (red line), OBSCTH-2ND (blue line), OBSCTH-1ST
(green line), OBSCTH-0TH (magenta line), and No-Assim (solid black line) experiments.

4.4.1.3 Conventional Observation Error Analysis

To assess the impact of the nonlinear bias predictors on the thermodynamic and kinematic fields,

Fig. 4.4 shows vertical profiles of RMSE for air temperature, relative humidity, and the zonal

and meridional wind components computed using radiosonde observations accumulated over

the 3-day assimilation period and binned into 100 hPa layers. For each variable, RMSE profiles

are shown for the two baseline experiments (No-Assim and No-BC), followed by vertical profiles

showing the percentage changes in RMSE for the remaining experiments computed with respect

to each of the baseline experiments. This approach was used to make it easier to assess the impact

of the bias predictors, while still being able to show the baseline error profiles. Negative (positive)

changes mean that assimilation of the all-sky infrared observations decreased (increased) the er-

rors relative to a given baseline experiment and therefore improved (degraded) the prior analysis

fits to the radiosonde observations. Figure 4.5 shows the corresponding profiles of observation

bias for each experiment. Only raw error profiles are shown for this metric because small biases
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in the baseline experiments make the percentage changes difficult to evaluate.

Comparison of the temperature RMSE profiles for the baseline experiments reveals that the

errors are up to 2% smaller (larger) in the upper (lower) troposphere when the all-sky observations

are assimilated during the No-BC experiment (Fig. 4.4b). The RMSE and bias for the radiosonde

temperatures were smaller below 400 hPa when the brightness temperature biases were removed

during the OBSCTH experiments; however, the errors increased by several percent above this

level (Fig. 4.4c, 4.5a). Because the largest BC is generally applied to lower brightness temperatures

associated with clouds in the upper troposphere (e.g., Fig. 4.2), the larger errors near and above

the tropopause indicate that removal of the brightness temperature bias may actually lead to some

degradation in the fits to the radiosonde temperatures. The larger temperature errors occur during

all of the OBSCTH experiments, however, which suggests that they may be related to removal of

the mean brightness temperature bias rather than to removal of the conditional biases. It is also

possible that some of the cloud and water vapor information from the all-sky satellite observations

is being incorrectly aliased onto the temperature field. Further work is necessary to identify the

cause of the larger temperature errors between 300 and 100 hPa.

For the relative humidity observations, the RMSE from the baseline experiments is relatively

small near the surface, but increases rapidly to over 20% by 800 hPa. It then remains large in the

middle troposphere before slowly decreasing with height in the upper troposphere (Fig. 4.4d).

The bias profiles from the baseline experiments likewise indicate that the model background is

too dry below 800 hPa, but too moist above this level (Fig. 4.5b). When all-sky brightness temper-

atures are assimilated during the No-BC experiment, the RMSE increases throughout most of the

vertical profile (Fig. 4.4e), and the negative biases become even larger in the upper troposphere

(Fig. 4.5b). Indeed, the relative humidity errors are larger in the No-BC experiment than they are

in the No-Assim experiment despite the fact that the infrared observations are strongly sensitive

to water vapor in the upper troposphere. As discussed previously, the negative conditional biases

for brightness temperatures < 230 K indicate that the model background is deficient in upper level

clouds (Fig. 4.2a). Thus, it appears that trying to add clouds more forcefully through assimilation

of the non-bias-corrected observations leads to an incorrect aliasing of cloud information onto the

water vapor field. Instead of increasing the cloud condensate in response to the negative OMB de-

partures, the assimilation instead adds more water vapor to the model analyses. In contrast, both

the RMSE and bias are greatly reduced when BC is applied to the infrared observations during the

OBSCTH experiments (Figs. 4.4f, 4.5b). When combined with the brightness temperature statistics
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shown in Fig. 4.3, this demonstrate that bias-correcting the all-sky infrared observations retains

some cloud information during the assimilation while also improving the water vapor field.
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Figure 4.4: (a) Vertical profiles of temperature root mean square error (RMSE; K) from the No-
Assim (black) and No-BC experiments (dashed black), with percentage changes in RMSE for the
OBSCTH-3RD (red), OBSCTH-2ND (blue), OBSCTH-1ST (green), and OBSCTH-0TH (magenta)
experiments relative to the No-Assim and No-BC experiments shown in panels (b) and (c). (d-f)
Same as (a-c) except for showing vertical profiles of relative humidity RMSE (%). (g-i) Same as
(a-c) except for showing vertical profiles of zonal wind speed RMSE (m s−1). (j-l) Same as (a-c)
except for showing vertical profiles of meridional wind speed RMSE (m s−1). The error profiles
were computed using data from the prior analyses over a 3-day period from 00 UTC on 28 May
2014 to 00 UTC on 31 May 2014.

For the zonal and meridional wind observations, the RMSE profiles from the baseline exper-

iments have a sinusoidal appearance characterized by the largest errors in the lower and upper

troposphere and smaller errors in the mid-troposphere (Fig. 4.4g, k). The biases in the baseline

experiments are generally < 0.2 m s-1, with the largest biases occurring near 600 and 700 hPa

for the zonal and meridional wind components, respectively (Fig. 4.5c, d). The RMSE gener-

ally increases, especially for the meridional wind component, when the satellite observations are

assimilated during the No-BC experiment (Fig. 4.4h, k). The wind errors are slightly reduced,

however, when BC is applied to the infrared brightness temperatures during the OBSCTH exper-
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Figure 4.5: Vertical profiles of (a) temperature bias (K), (b) relative humidity bias (%), (c) zonal
wind speed bias (m s−1), and (d) meridional wind speed bias (m s−1) for the No-Assim (solid
black), No-BC (dashed black), OBSCTH-3RD (red), OBSCTH-2ND (blue), OBSCTH-1ST (green),
and OBSCTH-0TH (magenta) experiments. The error profiles were computed using data from the
prior analyses over a 3-day period from 01 UTC on 28 May 2014 to 00 UTC on 31 May 2014.

iments (Fig. 4.4i, l). Even so, it is evident that assimilation of the all-sky observations leads to

a slightly negative impact on the mid-tropospheric winds and only a neutral to slightly positive

impact in the lower troposphere and near the tropopause.

To more clearly assess the impact of the nonlinear BC predictors on each variable, summary

statistics were computed using all of the radiosonde observations during the 72-h assimilation

period. Table 4.1 shows the percentage changes in RMSE and bias for each OBSCTH experiment

relative to the No-BC experiment. Overall, it is evident that bias-correcting the infrared brightness

temperatures improves the quality of the model background fields. The largest improvements
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(negative values) occur for the relative humidity field, with the bias reduced by at least 25% dur-

ing each experiment. Smaller improvements occurred for the other variables. Comparison of the

OBSCTH experiments reveals that there is a distinct advantage to using higher order BC terms

to remove the bias from the all-sky brightness temperatures. For example, the RMSE for the rel-

ative humidity and wind observations steadily decrease as the BC predictor increases from the

0th (OBSCTH-0TH) to 3rd (OBSCTH-3RD) order. The impact of the higher order BC terms is less

consistent for temperature and for the relative humidity bias; however, the errors are still smaller

than occurred during the No-BC experiment. Together, the results presented in this section have

shown that it is necessary to bias correct the infrared observations prior to their assimilation and

that it is generally beneficial to include nonlinear BC predictors. This was demonstrated by the

tendency for the higher order predictors to have a neutral-to-positive impact on the temperature

and wind fields, while also improving the cloud and water vapor fields.

Table 4.1: Percentage changes in root mean square error (RMSE) and bias for the zonal and
meridional wind speed, temperature, and relative humidity for the OBSCTH-0TH, OBSCTH-1ST,
OBSCTH-2ND, and OBSCTH-3RD experiments relative to the No-BC experiment. The statistics
were computed using all of the radiosonde observations and output from the prior ensemble mean
analyses during the 72-h assimilation period.

U V T RH
Experiment RMSE RMSE RMSE BIAS RMSE BIAS

OBSCTH-0TH - No-BC -0.2% -0.2% -0.1% -4.7% -0.6% -36.2%
OBSCTH-1ST - No-BC -0.7% -0.1% -0.3% -3.1% -0.9% -29.1%
OBSCTH-2ND - No-BC -0.9% -0.5% -0.3% -5.0% -1.5% -25.6%
OBSCTH-3RD - No-BC -1.0% -0.8% -0.2% -1.3% -1.8% -30.2%

4.4.2 Assessing the Impact of Different Bias Predictor Variables

In this section, we assess the ability of individual bias predictor variables sensitive to clouds and

water vapor, or that depict variations in the satellite zenith angle, to improve the assimilation of

all-sky infrared brightness temperatures during cycled DA experiments. Based on results from

the previous section, all of the experiments employed a 3rd order polynomial expansion of the

OMB departures to remove biases from the satellite brightness temperatures prior to their assim-

ilation. In addition to the OBSCTH-3RD experiment presented in Section 4.4a (hereafter referred

to as BC-OBSCTH), experiments were performed in which the observed SEVIRI 6.2 µm bright-

ness temperatures (BC-OBSBT), satellite zenith angle (BC-SATZEN), or 100-700 hPa integrated

water content (BC-IWC) were used as the bias predictors. The integrated water content predictor
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was calculated by converting the water vapor and all cloud hydrometeor mixing ratios in each

model layer into millimeters and then integrating over the 100-700 hPa layer. Together, these four

predictors were chosen because they were also used during the passive monitoring experiments

presented in Otkin et al. (2018). Here, we extend the results of that study by assessing the perfor-

mance of these bias predictor variables when they are used during active DA experiments.

4.4.2.1 Observation Space Diagnostics

Figure 4.6 shows the evolution of the SEVIRI 6.2 µm brightness temperature bias, RMSE, ensemble

spread, and consistency ratio (CR) for each experiment during the 3-day assimilation period. The

statistics were computed for each assimilation cycle using brightness temperatures from the prior

ensemble analyses. The ensemble spread is defined as:

Spread =

√〈
1

N−1

N

∑
n=1

[
H(xn)−H(xn)

]2
〉
, (4.4)

where N is the ensemble size, n is the index of a given ensemble member, and H is the observation

operator (e.g., RTTOV) used to compute the model-equivalent brightness temperatures. The total

ensemble spread is the combination of the observation error (σobs, set to 4 K) and ensemble spread,

such that:

Total Spread =

√
σ2

obs +

〈
1

N−1

N

∑
n=1

[
H(xn)−H(xn)

]2
〉
, (4.5)

Finally, the RMSE and total spread are used to calculate the CR, which provides another diagnostic

measure of the performance of the assimilation system:

CR = (Total Spread)2/(RMSE)2 (4.6)

With the CR, a value of 1 is desired because, in an ideal situation, the total spread should equal

the RMSE for each observation type being assimilated. Values greater (less) than 1 indicate that

there is too little (too much) ensemble spread and/or that the observation error is larger (smaller)

than necessary (Dowell et al. 2004; Aksoy et al. 2009).

Inspection of the time series shows that the smallest RMSE and bias (Fig. 4.6a,b) occurred

during the No-BC experiment, which is not surprising because assimilating non-bias-corrected

observations should lead to the largest impact when assessed against themselves. Comparison
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of the BC experiments reveals that the BC-SATZEN and BC-IWC experiments have larger biases

and RMSEs than the BC-OBSBT and BC-OBSCTH experiments. The larger positive impact of the

OBSBT and OBSCTH predictors on these two metrics is consistent with Otkin et al. (2018), who

showed that variables sensitive to the cloud top height are more effective at identifying biases in

all-sky infrared brightness temperatures. The results shown here indicate that using these predic-

tors in active DA experiments also leads to smaller errors in the cloud and water vapor fields in

the prior ensemble analyses when assessed using satellite observations.

The ensemble spread (Fig. 4.6c) generally decreases during the assimilation period due to a

transition toward clearer skies and the cumulative impact of the all-sky brightness temperatures

on the cloud and water vapor fields. The decrease in ensemble spread is accompanied by a cor-

responding increase in the CR (Fig. 4.6d), which peaks each morning when the RMSE reaches its

diurnal minimum. Because the RMSE is smallest during the No-BC, BC-OBSCTH, and BC-OBSBT

experiments (Fig. 4.6b), they also have the largest CRs. The large CR values during all of the active

DA experiments reveal that it was sub-optimal to employ the same observation error variance for

both clear and cloudy-sky observations during the entire assimilation period. Thus, combining an

adaptive all-sky observation error model with the BC method would be beneficial; however, that

is left for future work. In addition, inspection of rank histograms for each experiment (not shown)

revealed that the ensemble spread is too small. This result points toward the need to also develop

methods that increase the ensemble spread in cloud hydrometeors because they have the largest

impact on the spread in the all-sky infrared brightness temperatures. One potential option would

be to use the stochastic parameter perturbations method (Berner et al. 2017) to add perturbations

to cloud source/sink terms to account for some of the uncertainty in cloud microphysics schemes.

This has been shown to increase the spread in cloudy regions (Griffin et al. 2020).

4.4.2.2 Brightness Temperature Bias Correction Statistics

To further assess the behavior of each bias predictor, 2-D probability distributions of the ensemble

mean BCs accumulated at hourly intervals during the 72-h assimilation period are shown for

each experiment in Fig. 4.7. Overall, the BC-OBSBT and BC-OBSCTH experiments have similar

distributions characterized by relatively small mean BCs for brightness temperatures > 230 K and

then a strong upward trend in the mean BC for lower brightness temperatures (Fig. 4.7a,b). Even

so, there are notable differences between these experiments, such as the larger BC for the lowest
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Figure 4.6: Time series showing the evolution of the SEVIRI 6.2 µm brightness temperature (a)
bias (K), (b) root mean square error (RMSE; K), (c) spread (K), and (d) consistency ratio computed
using the ensemble mean prior analysis at hourly intervals from 00 UTC on 28 May 2014 to 00 UTC
on 31 May 2014. Results are shown for the No-BC (dashed black line), BC-OBSCTH (red line), BC-
OBSBT (blue line), BC-IWC (green line), BC-SATZEN (magenta line), and No-Assim (solid black
line) experiments.

brightness temperatures in the BC-OBSBT experiment and the wider vertical distribution for most

brightness temperatures in the BC-OBSCTH experiment. The BC patterns for both experiments are

flipped compared to the OMB departure distribution from the No-Assim experiment (Fig. 4.2a),

which is good because that means that the OBSBT and OBSCTH predictors are able to account for

the nonlinear, cloud-dependent conditional biases in that distribution. In contrast, the BC-IWC

and BC-SATZEN experiments have much smaller BCs for the lowest brightness temperatures that

then become larger for higher brightness temperatures. The mean BC is also larger during these

experiments, which indicates that the IWC and SATZEN predictors did not have the same positive

impact on the cloud field as the OBSBT and OBSCTH predictors. This behavior is consistent with

the brightness temperature bias time series shown in Fig. 4.6a, and provides further evidence that

it is necessary to use BC predictors sensitive to the cloud top height when assimilating all-sky

infrared brightness temperatures.
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Figure 4.7: Probability distribution of SEVIRI 6.2 µm ensemble mean brightness temperature cor-
rections (K) from the (a) BC-OBSBT, (b) BC-OBSCTH, (c) BC-IWC, and (d) BC-SATZEN experi-
ments plotted as a function of the observed 6.2 µm brightness temperatures. Data were accumu-
lated at hourly intervals during a 72-h period from 01 UTC on 28 May 2014 to 00 UTC on 31 May
2014. The horizontal black line segments represent the conditional bias in each column.

4.4.2.3 Brightness Temperature Innovations

Next, we examine the 6.2 µm brightness temperature innovations during each experiment using

the 2-D probability distributions shown in Fig. 4.8. These distributions were constructed using

the ensemble mean innovations accumulated at hourly intervals during the 72-h assimilation pe-

riod. Inspection of Fig. 4.8a shows that the conditional mean innovations are close to zero across

the entire distribution during the No-Assim experiment. This indicates that the conventional in-

situ observations by themselves do not have a systematic impact on the cloud and water vapor

fields in the upper troposphere. During the No-BC experiment (Fig. 4.8b), the innovation pattern
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is very similar to the OMB departure distribution in the No-Assim experiment (Fig. 4.2a), with

large (small) innovations occurring for lower (higher) brightness temperatures. This shows that

the large conditional biases for the lower brightness temperatures are strongly corrected during

this experiment, which is not surprising because BC was not applied to the brightness tempera-

tures prior to their assimilation. A similar pattern emerges during the BC-IWC and BC-SATZEN

experiments (Fig. 4.8e, f) because their smaller BCs for lower brightness temperatures (Fig. 4.7c,

d) meant that large innovations were still possible during each assimilation cycle. In contrast, the

mean innovations are very small across most of the distribution during the BC-OBSBT experiment

(Fig. 4.8c) because the larger BCs for lower brightness temperatures (Fig. 4.7a) reduces the size of

the resultant innovations. The distribution for the BC-OBSCTH experiment (Fig. 4.8d) has some

larger negative innovations for the lower brightness temperatures, but is otherwise similar to the

BC-OBSBT experiment. The smaller innovations during the BC-OBSBT and BC-OBSCTH experi-

ments were likely beneficial because they limited potential imbalances in the model due to large

analysis increments, while still leading to large reductions in the RMSE and bias (Fig. 4.6a, b).

4.4.2.4 Conventional Observation Error Analysis

Finally, we examine the impact of the infrared brightness temperatures and BC predictors on the

accuracy of the prior ensemble mean analyses using OMB departure statistics accumulated dur-

ing the 72-h assimilation period for the radiosonde temperature, relative humidity, and zonal and

meridional wind observations. Figure 4.9 shows vertical profiles of RMSE for the No-Assim and

No-BC experiments, along with percentage changes in RMSE for each BC experiment, whereas

Fig. 4.10 shows the corresponding bias profiles. Summary statistics showing the percentage

changes in RMSE and bias during each BC experiment relative to the No-Assim and No-BC ex-

periments are shown in Tables 4.2 and 4.3, respectively.

Compared to the No-Assim experiment, the zonal and meridional wind speed errors in ag-

gregate were slightly smaller during the BC-OBSBT and BC-OBSCTH experiments, but increased

by 0.5−0.8% during the BC-SATZEN and BC-IWC experiments (Table 4.2). Inspection of the zonal

wind profiles (Fig. 4.9h, i) shows that the smaller RMSE during the BC-OBSBT and BC-OBSCTH

experiments were primarily due to larger improvements in the upper and lower troposphere, with

some degradation evident in the mid-troposphere. Both of these experiments also had the small-

est meridional wind speed errors for most of the vertical layers (Fig. 4.9k, l). Indeed, the RMSE
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Figure 4.8: Probability distributions of SEVIRI 6.2 µm brightness temperature innovations (K) for
the (a) No-Assim, (b) No-BC, (c) BC-OBSBT, (d) BC-OBSCTH, (e) BC-IWC, and (f) BC-SATZEN
experiments plotted as a function of the observed 6.2 µm brightness temperatures (K). Data were
accumulated at hourly intervals from 00 UTC on 28 May 2014 to 00 UTC on 31 May 2014. The
black line segments depict the mean innovation in each column.
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Figure 4.9: (a) Vertical profiles of temperature root mean square error (RMSE; K) from the No-
Assim (solid black) and No-BC experiments (dashed black), with percentage changes in RMSE for
the BC-OBSBT (blue), BC-OBSCTH (red), BC-IWC (green), and BC-SATZEN (magenta ) experi-
ments relative to the No-Assim and No-BC experiments shown in panels (b) and (c). (d-f ) Same
as (a-c) except for showing vertical profiles of relative humidity RMSE (%). (g-i) Same as (a-c) ex-
cept for showing vertical profiles of zonal wind speed RMSE (m s−1). (j-l) Same as (a-c) except for
showing vertical profiles of meridional wind speed RMSE (m s−1). The error profiles were com-
puted using data from the ensemble mean prior analyses at hourly intervals over a 3-day period
from 00 UTC on 28 May 2014 to 00 UTC on 31 May 2014.

for the meridional wind speed observations was 1.4% and 0.8% smaller during the BC-OBSBT and

BC-OBSCTH experiments, respectively, compared to a neutral impact when the IWC and SATZEN

predictors were used (Table 4.3).

Assimilation of the infrared brightness temperatures led to very different impacts on the

RMSE and bias for the radiosonde temperature observations. For example, though the RMSE

in each experiment increased by 0.8− 1.0% relative to the No-Assim experiment, the bias was

substantially reduced, with decreases ranging from -1.7% during the No-BC experiment to -6.1%

for the BC-SATZEN experiment (Table 4.2). Overall, the smallest biases were obtained during

the various BC experiments, with all but BC-SATZEN also having slightly smaller RMSEs than
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Figure 4.10: Vertical profiles of (a) temperature bias (K), (b) relative humidity bias (%), (c) zonal
wind speed bias (m s−1), and (d) meridional wind speed bias (m s−1) for the No-Assim (solid
black), No-BC (dashed black), BC-OBSBT (blue), BC-OBSCTH (red), BC-IWC (green), and BC-
SATZEN (magenta) experiments. The error profiles were computed using data from the prior
analyses over a 3-day period from 01 UTC on 28 May 2014 to 00 UTC on 31 May 2014.

the No-BC experiment (Table 4.3). Comparison of the vertical profiles shows that the tempera-

ture RMSEs were smaller within most of the troposphere during the BC experiments (Fig. 4.9c);

however, the presence of much larger errors near the tropopause led to only a neutral to slightly

positive impact when all of the temperature observations are considered (Table 4.3).

For relative humidity, assimilating the infrared brightness temperatures without BC led to

sharply higher bias (30.1%) and RMSE (0.8%) during the No-BC experiment (Table 4.2). In con-

trast, the overall RMSE and bias were much smaller during the other experiments regardless of

80



which BC predictor was used (Table 4.3). Compared to the No-BC experiment, the largest RMSE

reductions occurred during the BC-OBSCTH (-1.8%) and BC-SATZEN (-1.4%) experiments, with

the largest bias reductions occurring during the BC-IWC (-45.2%), BC-SATZEN (-38.2%), and BC-

OBSCTH (-30.2%) experiments. The error profiles in Fig. 4.9f show that, though there are some

differences between the BC experiments, that the RMSEs are smaller in most of the troposphere

relative to the No-BC experiment. The biases are also greatly reduced in the middle and upper

troposphere (Fig. 4.10b).

In summary, the results presented in this section show that assimilation of infrared bright-

ness temperatures that are not bias-corrected leads to larger errors for all metrics, except for the

temperature bias, relative to the No-Assim experiment. Removal of the brightness temperature bi-

ases prior to their assimilation, however, greatly improves the impact of the satellite observations,

with the largest percentage decreases in the errors realized for the relative humidity observations.

Overall, the OBSCTH and OBSBT predictors were the most useful because not only did their use

lead to more accurate cloud and water vapor fields, but they also produced the smallest RMSEs

for the wind and temperature fields.

Table 4.2: Percentage changes in root mean square error (RMSE) and bias for the zonal and merid-
ional wind speed, temperature, and relative humidity for the BC-OBSBT, BC-OBSCTH, BC-IWC,
and BC-SATZEN experiments relative to the No-Assim experiment. The statistics were computed
using all of the radiosonde observations and output from the prior ensemble mean analyses dur-
ing the 72-hr assimilation period.

U V T RH
Experiment RMSE RMSE RMSE BIAS RMSE BIAS

No-BC - No-Assim 0.9% 0.6% 1.0% -1.7% 0.8% 30.1%
BC-OBSBT - No-Assim 0.0% -0.8% 0.8% -4.7% -0.4% 9.8%

BC-OBSCTH - No-Assim -0.1% -0.2% 0.8% -3.0% -1.0% -9.2%
BC-IWC - No-Assim 0.7% 0.6% 0.9% -4.8% -0.1% -28.8%

BC-SATZEN - No-Assim 0.8% 0.5% 1.0% -6.1% -0.6% -19.6%

Table 4.3: Percentage changes in root mean square error (RMSE) and bias for the zonal and merid-
ional wind speed, temperature, and relative humidity for the BC-OBSBT, BC-OBSCTH, BC-IWC,
and BC-SATZEN experiments relative to the No-BC experiment. The statistics were computed us-
ing all of the radiosonde observations and output from the prior ensemble mean analyses during
the 72-hr assimilation period.

U V T RH
Experiment RMSE RMSE RMSE BIAS RMSE BIAS

BC-OBSBT - No-BC -0.9% -1.4% -0.2% -3.1% -1.2% -15.6%
BC-OBSCTH - No-BC -1.0% -0.8% -0.2% -1.3% -1.8% -30.2%

BC-IWC - No-BC -0.2% 0.0% -0.1% -3.2% -0.9% -45.2%
BC-SATZEN - No-BC -0.1% -0.1% 0.1% -4.5% -1.4% -38.2%
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4.4.3 Symmetric Bias Correction Predictors

In this section, we assess the impact of using ”symmetric” predictors to remove the bias from all-

sky infrared brightness temperatures. As discussed in the introduction, symmetric predictors that

represent the average of an observed quantity and its corresponding model equivalent have been

extensively used when developing all-sky observation error models. First introduced by Geer and

Bauer (2011), symmetric predictors have been shown in various studies to lead to more Gaussian

OMB departure statistics when a suitable cloud impact parameter is used to dynamically assign

the error variance to each observation. This symmetric observation error approach is now widely

used in operational DA systems that assimilate all-sky microwave radiances because it leads to

more accurate forecasts through better utilization of the satellite observations.

Despite their widespread use in all-sky observation error models, it is not clear if symmetric

variables can also serve as effective bias predictors, especially in the presence of complex nonlinear

bias patterns. To explore their potential utility, two additional sets of experiments were run where

the cloud top height or the 6.2 µm brightness temperatures were used as the bias predictor. These

variables were chosen because they are either a direct measure of, or are sensitive to, the cloud

height, which is an excellent measure of cloud impact in all-sky infrared brightness temperatures.

Experiments were performed where observed (BC-OBSBT, BC-OBSCTH), simulated (BC-SIMBT,

BC-SIMCTH), or symmetric (BC-SYMBT, BC-SYMCTH) quantities for each BC predictor variable

were used to remove the bias from the infrared brightness temperatures prior to their assimila-

tion. For the simulated cloud top height predictor, the cloud top was identified as the first model

level looking downward from the model top in which the vertically-integrated cloud hydrom-

eteor mixing ratio was > 10−4 kg kg−1. All of the cloud hydrometeor species predicted by the

microphysics parameterization scheme were used when computing this quantity. The modeled

land/ocean surface elevation was used as the predictor value when the accumulated cloud mix-

ing ratio threshold was not surpassed. The same approach was used for the observed cloud top

height retrievals where grid points identified as clear were also set to the model surface elevation.

Summary statistics showing the percentage changes relative to the No-BC experiment for the

radiosonde temperature, relative humidity, and zonal and meridional wind speed observations

are shown in Tables 4.4 and 4.5, respectively, for experiments using the various 6.2 µm brightness

temperature or cloud top height quantities as the bias predictor. These statistics were computed

using output from the prior ensemble mean analyses. Overall, the results show that using sym-
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metric bias predictors does not lead to a more accurate model background. For experiments using

the 6.2 µm brightness temperature predictors (Table 4.4), the error reduction for each radiosonde

observation type is smaller during the BC-SYMBT experiment than it is during the BC-OBSBT ex-

periment. Likewise, when the cloud top height quantities are used as the bias predictors (Table

4.5), the most accurate analyses are obtained when the observed quantity is used during the BC-

OBSCTH experiment. The error reductions during the BC-SYMCTH experiment are either in be-

tween those obtained during the BC-OBSCTH and BC-SIMCTH experiments, or are smaller than

both of them. A possible reason for the relatively poor performance during both of the symmetric

bias predictor experiments is that, with the exception of relative humidity, the error reductions are

consistently smaller when the simulated predictors are used to remove the bias from the all-sky in-

frared observations. Thus, inclusion of the model-simulated predictor value when computing the

symmetric bias predictor is not beneficial. Instead, it is more effective to simply use the observed

quantity as the bias predictor.

Table 4.4: Percentage changes in root mean square error (RMSE) and bias for the zonal and merid-
ional wind speed, temperature, and relative humidity for the BC-OBSBT, BC-SYMBT, and BC-
SIMBT experiments relative to the No-BC experiment. The statistics were computed using all of
the radiosonde observations and output from the prior ensemble mean analyses during the 72-h
assimilation period.

U V T RH
Experiment RMSE RMSE RMSE BIAS RMSE BIAS

BC-OBSBT - No-BC -0.9% -1.4% -0.2% -3.1% -1.2% -15.6%
BC-SYMBT - No-BC -0.1% 0.0% -0.1% -2.0% -1.0% -29.6%
BC-SIMBT - No-BC 1.0% 1.3% 0.6% -1.1% -0.8% -55.8%

Table 4.5: Percentage changes in root mean square error (RMSE) and bias for the zonal and merid-
ional wind speed, temperature, and relative humidity for the BC-OBSCTH, BC-SYMCTH, and
BC-SIMCTH experiments relative to the No-BC experiment. The statistics were computed using
all of the radiosonde observations and output from the prior ensemble mean analyses during the
72-h assimilation period.

U V T RH
Experiment RMSE RMSE RMSE BIAS RMSE BIAS

BC-OBSCTH - No-BC -1.0% -0.8% -0.2% -1.3% -1.8% -30.2%
BC-SYMCTH - No-BC -0.4% -0.5% 0.0% -3.1% -1.2% -27.1%
BC-SIMCTH - No-BC -0.2% 0.5% 0.0% -1.2% -1.5% -43.2%

To examine this behavior more closely, Fig. 4.11 shows 2-D probability distributions for the

ensemble mean 6.2 µm brightness temperature BCs and innovations when the simulated, ob-

served, and symmetric cloud top height bias predictors are used. Similar results are obtained for

experiments employing the 6.2 µm brightness temperature predictors (not shown). Comparison
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of the BC distributions reveals a relatively flat pattern during the BC-SIMCTH experiment (Fig.

4.11a), which shows that the model-derived cloud top height predictor is unable to account for

the large negative conditional biases for brightness temperatures < 230 K (Fig. 4.2a). The smaller

BCs for the lower brightness temperatures during this experiment stand in sharp contrast to the

much larger BCs during the BC-OBSCTH experiment (Fig. 4.11e). Because the symmetric pre-

dictor is simply the mean of the observed and simulated quantities, the BC distribution during

the BC-SYMCTH experiment (Fig. 4.11c) is a hybrid of the BC-OBSCTH and BC-SIMCTH dis-

tributions. As such, the smaller BCs for the lower brightness temperatures due to the impact of

the model-simulated quantity leads to larger innovations than occurred during the BC-OBSCTH

experiment (Fig. 4.11d, f). As was shown in the previous section, experiments containing larger in-

novations for the lower brightness temperatures associated with optically thick upper-level clouds

were generally less accurate when assessed using radiosonde observations. This result suggests

that, though symmetric predictors have been shown to improve the performance of all-sky obser-

vation error models, they may not work as well for all-sky BC. Further studies using other satellite

bands and models are necessary to explore this in more detail.

4.5 Discussion and Conclusions

In this study, ensemble DA experiments were performed using the regional-scale KENDA system

to evaluate the ability of all-sky infrared brightness temperatures to improve the accuracy of the

ensemble prior analyses used during each assimilation cycle. Observations from the 6.2 µm band

on the SEVIRI sensor were assimilated at hourly intervals over a 3-day period in May 2014. This

infrared band is primarily sensitive to clouds and water vapor in the upper troposphere. Various

experiments were performed in which different BC predictors were used to remove biases from

the all-sky brightness temperatures prior to their assimilation. Results from these BC experiments

were compared to baseline experiments in which the brightness temperatures were either not as-

similated (No-Assim) or were assimilated without first removing their biases (No-BC). This study

builds upon the passive monitoring experiments described in Otkin et al. (2018) by exploring

the impact of linear and nonlinear BC predictors during experiments in which all-sky infrared

brightness temperatures are actively assimilated.

Overall, inspection of the 6.2 µm brightness temperature OMB departure distribution from

the No-Assim experiment revealed that the conditional biases exhibited a nonlinear pattern char-
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Figure 4.11: Probability distributions for the SEVIRI 6.2 µm brightness temperature (a) bias correc-
tions and (b) innovations from the BC-SIMCTH experiment plotted as a function of the observed
6.2 µm brightness temperatures (K). (c-d) Same as (a-b), except for the BC-SYMCTH experiment.
(e-f) Same as (a-b), except for the BC-OBSCTH experiment. Data were accumulated at hourly in-
tervals from 00 UTC on 28 May 2014 to 00 UTC on 31 May 2014. The black line segments depict
the mean bias correction or innovation in each column.
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acterized by small biases for higher brightness temperatures and increasingly large negative biases

for lower brightness temperatures. Though the negative conditional biases are likely at least par-

tially due to inaccuracies in the forward observation operator, they also indicate that the model

analyses do not contain enough cloud condensate in the upper troposphere. This deficiency,

whether due to insufficient spatial coverage or cloud optical depth, represents a systematic bias in

the NWP model depiction of the cloud field. Thus, trying to add these upper-level clouds during

an assimilation cycle could be problematic because of aliasing of the cloud information onto other

model state variables and the tendency for the model to revert back to its preferred state during

the subsequent forecast period.

Evaluation of the No-BC experiment showed that assimilation of the infrared brightness tem-

peratures without first removing their biases almost always degraded the accuracy of the ensem-

ble prior analyses based on larger OMB departures for the radiosonde observations. In particu-

lar, the summary statistics showed that the relative humidity bias and RMSE were much larger

during this experiment than they were during the No-Assim experiment. Despite having strong

sensitivity to water vapor in the upper troposphere, assimilating infrared brightness temperatures

without BC actually increased the relative humidity RMSE, primarily because of a large increase

in the moist bias already present in the No-Assim experiment. The No-BC experiment was also

characterized by smaller 6.2 µm brightness temperature OMB departures, which suggests that

instead of adding clouds to the analysis, the DA system instead added more water vapor. An

alternative explanation is that a portion of the cloud condensate added to the ensemble posterior

analyses during a given assimilation cycle evaporated during the subsequent model integration

period, thereby increasing the moist bias. Regardless, this result suggests that the analyses were

being too strongly constrained by the all-sky infrared brightness temperatures during the No-BC

experiment in situations where the model was unable to properly handle the additional cloud

information.

The subsequent removal of linear and nonlinear conditional biases from the all-sky bright-

ness temperatures through use of a 3rd order polynomial expansion of the OMB departures and

various BC predictors led to smaller errors for all of the radiosonde observation types when com-

pared to the No-BC experiment. The largest improvements occurred for the relative humidity

observations where the moist bias in the upper troposphere was greatly reduced. Notable im-

provements also occurred in the temperature bias and in the RMSE for the zonal and meridional

wind speed components during the BC-OBSBT and BC-OBSCTH experiments. The temperature
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RMSE was also smaller in most of the troposphere; however, a spike of larger errors near and

above the tropopause led to a neutral impact when all temperature observations were considered.

Comparison of the various predictors showed that those sensitive to the location of the cloud

top had the largest positive impact on the model background based on improved fits to the ra-

diosonde observations. The observed cloud top height and observed 6.2 µm brightness temper-

ature predictors were the best overall because their use not only led to the smallest relative hu-

midity errors, but also led to the largest error reductions for the zonal and meridional wind speed

observations and the smallest degradation for the temperature RMSE. Both of these predictors

were also characterized by smaller brightness temperature RMSE and bias. The larger improve-

ments during the BC-OBSBT and BC-OBSCTH experiments were primarily due to the ability of

the cloud-sensitive predictors to more effectively remove the large negative biases from brightness

temperatures < 230 K. The larger BCs for these clouds then led to smaller brightness temperature

innovations and presumably fewer model spin-up problems during the subsequent 1-h forecasts.

Additional experiments using the OBSCTH predictor revealed that it was beneficial to use higher

order nonlinear BC terms to remove the bias from the all-sky infrared brightness temperatures.

For example, the radiosonde OMB departure errors generally decreased as the order of the poly-

nomial expansion increased from the 0th order to the 3rd order. Finally, an additional set of exper-

iments showed that symmetric bias predictors do not improve the model analyses as effectively as

the observed predictors do by themselves. This suggests that, though symmetric predictors have

proven utility for all-sky observation error models, they may not be as useful when developing

all-sky BC methods.

This study has shown that assimilation of all-sky infrared brightness temperatures substan-

tially improves the accuracy of the cloud and water vapor fields in the prior ensemble analyses

when cloud-sensitive predictors and higher order BC terms are used to remove linear and non-

linear conditional biases from the observations prior to their assimilation. Though encouraging,

additional studies are necessary to evaluate the ability of the NBC method and the all-sky infrared

brightness temperatures to improve the model analyses during other seasons containing different

cloud regimes potentially characterized by different conditional bias patterns. It will also be nec-

essary to perform ensemble forecasts to evaluate how long the improved cloud and water vapor

fields persist during the forecast period. It is important to note that the experiments performed

during this study are only an initial step toward inclusion of the all-sky infrared observations in

the KENDA system and that additional developments have the potential to substantially increase

87



their impact. For example, there is great promise in pairing the BC method to a dynamic all-sky

observation error model because that could lead to more effective use of the clear- and cloudy-sky

brightness temperatures. It would also be helpful to explore the benefits of more frequent assim-

ilation updates and in assimilating brightness temperatures from more than one infrared band,

though that would require development of a correlated observation error model. The results also

suggest that some attention should be given to developing methods that can increase the ensemble

spread in the cloud hydrometeor variables. These topics are all left to future work.
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Chapter 5

Model Bias Estimation – Lorenz-63

Model Experiments

5.1 Abstract

In this study, we develop dynamic model bias estimators based on an asymptotic expansion of

the model dynamics for small time scales and small perturbations in a model parameter, and then

use the estimators to improve the performance of a data assimilation system. We employ the well-

known Lorenz (1963) model so that we can study all aspects of the dynamical system and model

bias estimators in a detailed way that would not be possible with a full physics numerical weather

prediction model. In particular, we first work out the asymptotics of the Lorenz model for small

changes in one of its parameters and then use statistics from cycled data assimilation experiments

to demonstrate that the asymptotics accurately represent the behavior of the model and that the

coefficients of the nonlinear asymptotical expansion can be reasonably estimated by solving a least

squares minimization problem.

In data assimilation, the background error covariance matrix usually estimates the uncer-

tainty of the model background, which is then used along with the observation error covariance

matrix to produce an updated analysis. If the uncertainty of the model background is strongly

influenced by time-dependent model errors, then the development of nonlinear bias estimators

that also vary with time could improve the performance of the assimilation system and the ac-

curacy of the updated analysis. We demonstrate this improvement through the combination of a
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constant background error covariance matrix with a dynamically-varying matrix computed using

the model bias estimators. Numerical tests using the Lorenz (1963) model illustrate the feasibility

of the approach and show that it leads to clear improvements in the analysis and forecast accuracy.

5.2 Introduction

Partial differential equations are widely used in scientific and technological fields to simulate the

evolution of natural phenomena. For initial boundary condition problems such as those that are

commonly encountered in atmospheric science, an accurate prediction of the spatial and temporal

characteristics of various weather and climate features depends not only on the ability of a nu-

merical model to realistically simulate the physical processes controlling their evolution, but also

on the ability of a data assimilation system to provide the forecast model an accurate estimate of

the initial conditions. Atmospheric data assimilation systems typically combine information from

a short-range model forecast, or ensemble of forecasts, with a set of observations gathered over

a specified time period to produce an analysis of the current state of the dynamical system that

then serves as the initial conditions for the next model forecast. Commonly used data assimilation

methods include variational assimilation that determines the analysis through minimization of

a cost function, ensemble methods that use an ensemble of forecasts to dynamically estimate the

sample covariances between different state components when determining how new observations

impact the ensemble analysis, and so-called hybrid methods that combine aspects of variational

and ensemble data assimilation methods. A wide range of literature is known today introducing

and studying different data assimilation methods, see for example Lorenc et al. (2000), Kalnay

(2003), Evensen (2009), Anderson and Moore (2012), van Leeuwen et al. (2015), Reich and Cotter

(2015), Kleist et al. (2009), Nakamura and Potthast (2015), Houtekamer and Zhang (2016), and

Bannister (2017).

Regardless of which assimilation methodology is employed, generation of the best possible

analysis state x(a) through combination of the model first guess or background state x(b) with the

available observations requires knowledge of the observation error and the underlying uncer-

tainty in the model background x(b). The observation error uncertainty is usually determined by

the covariance matrix R ∈ Rm×m of the observation vector y ∈ Rm in observation space Rm, where

m ∈ N denotes the number of scalar observations. The uncertainty of the model background state

x(b) is measured by the covariance matrix B ∈ Rn×n, where n ∈ N is the dimension of the model
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space Rn and x(b) ∈ Rn. Variational data assimilation methods calculate the analysis state x(a) ∈ Rn

by minimizing the functional 1

J(x) :=
∥∥∥x− x(b)

∥∥∥2

B−1
+‖y−H(x)‖2

R−1 , x ∈ Rn,y ∈ Rm (5.1)

where H : Rn→ Rm is the forward observation operator that maps the model state x into the sim-

ulated observation H(x) ∈ Rm. For linear observation operators, it is well-known (c.f. Nakamura

and Potthast (2015), Chapter 5) that the minimization of (5.1) is given by

x(a) = x(b)+BHT (R+HBHT )−1(y−H(x(b))). (5.2)

Because the model background and observations are not perfect, accurate knowledge of the co-

variance matrices B and R is very important for data assimilation as they determine the weights

that are applied to the model background and observations, respectively, when generating the

updated analysis x(a). In addition, the matrix B spreads information spatially within a region

surrounding the observation location and can also be used to add balance constraints between

analysis variables based on physical principles (Bannister 2008a, b).

Despite its importance, an exact form for B cannot be determined for real-world applications

because the true state of the dynamical system cannot be completely known due to a limited num-

ber of observations and the presence of errors in the observations that are available. For variational

assimilation systems, the model background error covariances are often computed using the so-

called National Meteorological Center (NMC) method that was first described by Parrish and Der-

ber (1992). This method estimates B using differences between forecasts of different lengths valid

at the same time. For example, forecast errors could be assessed by examining differences between

24 and 48 hour forecasts from model integrations initialized one day apart. These difference fields

are usually obtained from a large collection of model forecasts covering time periods of a month or

longer. As such, the NMC method generates a climatological estimate of B that may not properly

represent the true model errors on any given day due to changes in the atmospheric conditions.

Because of this, some operational weather forecasting centers have developed new methods to

generate B. One approach is to use an ensemble of data assimilations (EDA) where an ensemble of

reduced-resolution data assimilation cycles is performed in which the observations and model are

1Please note that the matrices and vectors in this chapter are denoted using italics font because that is what was
used in the submitted journal article that is the basis of this chapter.
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perturbed in some manner. A theoretical analysis by Isaksen et al. (2010) has shown that if the per-

turbations are drawn from the true distributions of observation and model errors, that the spread

in the resultant EDA analyses about the unperturbed control analysis will be representative of the

background error. This approach has the advantage of introducing some flow-dependency to the

B matrix, thereby allowing it to better capture the errors of the day (Buehner et al. 2005, Isaksen et

al. 2010, Raynaud et al. 2011).

Ensemble data assimilation systems such as the ensemble Kalman filter (EnKF) (e.g. Evensen

1994, 2009; Houtekamaer and Mitchell 1998, 2001, 2005; Evensen and van Leeuwen 2000; Ander-

son 2001; Whitaker and Hamill 2002; Snyder and Zhang 2003; Houtekamer et al. 2005) on the

other hand re-compute B for each assimilation step using an estimator based on output from an

ensemble x(b,`) of forecasts valid at the current analysis time, where `= 1, ...,L, and L is the size of

the ensemble. For most applications, the standard stochastic estimator

B :=
1

L−1

L

∑
`=1

(x(b,`)− x̄(b))(x(b,`)− x̄(b))T , x̄(b) :=
1
L

L

∑
`=1

x(b,`), (5.3)

is used to compute the first guess ensemble mean x̄(b) and the background error covariance matrix

B. The stochastic estimator includes the uncertainty of the previous model analysis propagated to

the current analysis time. Because the forecast model is an approximation of the real dynamical

system, the distribution of the first guess ensemble could be sub-optimal due to the impact of

systematic errors on the ensemble mean and ensemble spread. Similar problems can arise when

using the NMC method because in situations where the model error varies with time, the forecast

differences used to compute the covariances in B will include the dynamically-varying model bias.

This could result in incorrect statistical relationships between the model variables. Both of these

outcomes are not desirable because the inclusion of systematic model errors when generating B

can degrade the accuracy of the posterior analysis x(a) obtained during the data assimilation step.

Various studies have focused on improving methods to estimate the background error co-

variances used by modern data assimilation systems; however, accounting for model error is

challenging because of the large size of geophysical models (Dee 1995). One approach is to add

perturbations to a subset of the model variables, such as temperature, at the initialization time,

whereas another technique adds random perturbations to specific parameters in the parameteri-

zation schemes used to simulate sub-grid scale processes during each model time step. The goal

with both approaches is to increase the range of possible forecast solutions to realistically address
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the impact of systematic model errors and the underlying uncertainties in the parameterization

schemes. Substantial research has been directed toward development of these methods, which

have the potential to greatly improve the performance of assimilation systems (Buizza et al. 1999;

Weisheimer et al. 2014; Romine et al. 2014; Ha et al. 2015; Shutts 2015; Berner et al. 2017). As a

corollary to the above approaches, other studies have shown that the detrimental impact of sys-

tematic model errors in ensemble data assimilation systems can be reduced by using different

parameterization schemes in each ensemble member (Meng and Zhang 2007; Fujita et al. 2007).

Another approach widely used in ensemble data assimilation systems to increase the ensem-

ble spread is to apply additive or multiplicative covariance inflation during the assimilation step.

Some amount of covariance inflation is often necessary because the rank deficiency of the system

can lead to an underestimation of the ensemble variance and because systematic model errors

can cause the model background x(b) to deviate greatly from reality. This in turn can lead to

so-called filter divergence where the model analyses can no longer be pulled toward the obser-

vations during the data assimilation step (Houtekamer and Zhang 2016). In the case of additive

covariance inflation, the impact of the unknown model error is treated by drawing random per-

turbations from some distribution and then adding them to either the model background x(b) or to

the model analysis x(a). With multiplicative covariance inflation, the ensemble spread for selected

model variables is multiplied by a real number to achieve the desired ensemble spread. Both

methods have some adaptivity because observation-minus-background (OMB) statistics are used

to estimate how much inflation is necessary. There is a very active community working on these

approaches, see for example Hamill and Whitaker (2005), Anderson (2007, 2009), Houtekamer et

al. (2009); Li et al. (2009a, b), Miyoshi (2011), and Whitaker and Hamill (2012).

Model error has often been ignored in variational data assimilation systems because it is diffi-

cult to quantify and has been viewed as having a minor impact compared to random errors in the

initial conditions and systematic errors in the observations (Carrassi and Vannitsem 2010). Unlike

ensemble assimilation systems where the background error covariance matrix B is dynamically es-

timated for each assimilation cycle using the ensemble output, additional statistical or dynamical

assumptions are generally necessary when creating these estimates for variational systems. Stud-

ies by Derber (1989), Zupanski (1997), Vidard et al. (2004), and Tremolet (2006, 2007) have shown

that treating the model error as part of the state estimation problem substantially improves the ac-

curacy of the state estimates. Theoretical model error frameworks were developed by Griffith and

Nichols (2000), Nicolis (2003, 2004) and Nicolis et al. (2009) based on the behavior of model errors
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in deterministic models. These frameworks were then used by Carrissi and Vannitsem (2010) to

derive evolution equations for the model error covariances and correlations that address errors

due to parameterization schemes.

The desire to properly account for model error also underpins recent efforts to move from

”strong-constraint” 4-dimensional variational systems that assume the forecast model is perfect

to ”weak-constraint” systems that include some estimate of the model error. This concept was in-

troduced 50 years ago by Sasaki (1970), however, it was not implemented in a full-physics forecast

model for several decades because of the lack of information with which to define and solve the

problem and the computational burden associated with inverting the model error covariance ma-

trix along with the other matrices already included in the strong-constraint formulation (Ngodock

et al. 2017). The basic premise behind the weak-constraint approach is that it is sufficient to

only approximately satisfy the model equations because they are not exact anyway due to incom-

plete knowledge of the physical processes being modeled or the need to simplify the governing

equations due to computational limitations. Despite the challenges associated with implement-

ing weak-constraint systems, their use has generally led to more accurate model analyses and

forecasts when compared to strong-constraint systems due to the higher number of degrees of

freedom. As such, they are becoming more widely used in variational data assimilation systems

(Tremolet 2007; Lindskog et al. 2009; Ngodock et al. 2017). A recent study by Howes et al. (2017)

has also shown that model errors can be accounted for in strong-constraint systems by allowing

errors in both the model and the observations when considering the statistics of the innovation

vector. They demonstrate that a more accurate estimate of the model state can be obtained when

the combined model and observation error statistics are used instead of the standard observation-

only error statistics.

In this paper, we seek to extend our understanding of how to identify and treat model bias

in modern data assimilation systems. Key tasks of this research include: 1) studying the behavior

of model errors in a nonlinear dynamical system, 2) developing nonlinear conditional model bias

estimators using the observations and the model first guess and analysis states, and 3) employing

these estimators during variational data assimilation experiments to assess their ability to improve

the performance of the system. Numerical experiments are performed using the Lorenz-63 (L63)

model (Lorenz 1963), which is a well-known and popular study object within the data assimilation

and dynamical systems communities.
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We begin by carrying out an asymptotic analysis of the L63 model when one of its parame-

ters, in this case, the normalized Rayleigh number ρ , varies with time. In the L63 model, the ρ

parameter is usually set to a constant value; however, we allow it to vary with time in order to

introduce a model bias. This is accomplished through use of a coupled version of the L63 model

where a background or ”hidden” system S2 is used to control how the ρ = ρ(t) parameter changes

with time in the ”primary” system S1 that is used to represent the truth. Though we chose to focus

on variations in the ρ parameter during this study, the approach works in the same way for the

other L63 model parameters. We then develop a nonlinear model bias estimator method based on

the initial ideas discussed in Otkin et al. (2018) where the bias estimator is formulated as a poly-

nomial expansion of the model variables and the coefficients of this expansion are determined

by solving a least-squares minimization problem. The ability of this method to dynamically es-

timate the model error contribution to the matrix B and to improve the resultant OMB statistics

is demonstrated by carrying out an experiment where B is represented as the sum of static and

dynamically-varying components. Finally, we demonstrate the feasibility and potential utility of

the asymptotic expansion and nonlinear bias estimation method by running numerical experi-

ments using a 3-dimensional variational (3DVAR) data assimilation system and a coupled version

of the L63 model.

A description of the coupled L63 modeling system and derivation of the model asymptotics

are provided in Section 5.3. The utility of dynamically estimating the model background error

covariance matrix B is discussed in Section 5.4, along with development of nonlinear conditional

model error estimators. We then perform various numerical experiments using the L63 model in

Section 5.5, first demonstrating the validity of the asymptotic expansion of the nonlinear model

error estimators in Section 5.5.1. This is followed by a study of the optimality of the fixed and

dynamic components of the B matrix used during data assimilation and then a study of the esti-

mation of the nonlinear model error dynamics based on the first guess minus analysis statistics.

Results from these sections will demonstrate the feasibility of using methods developed during

this study to estimate nonlinear model errors without any prior knowledge or assumptions re-

garding the form of the model dynamics. Conclusions are presented in Section 5.6.
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5.3 Estimating System Bias

5.3.1 Coupled Lorenz 1963 Model

We want to use a relatively simple atmospheric model to assess the behavior of nonlinear model

biases and to develop ways to take into account those biases in a way that is complex enough to

represent nonlinear atmospheric processes while being simple enough to provide insight into the

nonlinear behavior of the system. To accomplish this goal, we have chosen to employ the L63

model (Lorenz 1963), which is widely used within the atmospheric data assimilation community

(see for example Evensen 1997; Verlaan and Heemink 2001; Vukicevic and Posselt 2008; Pu and

Hacker 2009; Ambadan and Tang 2009; Carrassi and Vannitsem 2010; Le and Bickel 2011; Hodyss

2011; Lei et al. 2012; Sakov et al. 2012; Yang et al. 2012; Zhang et al. 2012; Marzban 2013; and

Goodliff et al. 2015) because it is less complex than a full physics numerical weather prediction

model while maintaining strong nonlinearity representative of many atmospheric processes. The

L63 model consists of a set of three coupled ordinary differential equations that provide a simpli-

fied description of dry convection. The model equations can be written as:

τ
dx1

dt
= σ(x2− x1) (5.4)

τ
dx2

dt
= ρx1− x2− x1x3 (5.5)

τ
dx3

dt
= x1x2−βx3 (5.6)

where x1(t), x2(t), and x3(t) are the dependent variables, τ is a temporal scaling factor and σ , ρ , and

β are the parameters of the model. For some parameter values, the system shows chaotic behavior

because very small perturbations in the initial conditions can grow very rapidly into completely

different solutions. The model was designed to simulate atmospheric dry cellular convection fol-

lowing the work of Saltzman (1962). The model simulates the evolution of a forced dissipative hy-

drodynamic system that possesses non-periodic and unstable solutions. The x1 variable measures

the intensity of convective motion, the x2 variable measures the temperature difference between

the ascending and descending currents, and the x3 variable measures the distortion of the vertical

temperature profile from linearity. The model parameters represent the Prandtl number (σ ), a

normalized Rayleigh number (ρ), and a non-dimensional wave number (β ). The critical Rayleigh

number for the system is 24.74; however, ρ is typically set to the slightly supercritical value of 28
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following the work of Lorenz (1963). The σ and β parameters are set to 10 and 8/3, respectively.

Together, the values for these three parameters sustain the chaotic nature of the model. The be-

havior of the L63 model and the relationship between homoclinic bifurcations and the appearance

of chaotic behaviors when changing the parameter values have been discussed by various authors

such as Sparrow (1982), Afraimovich et al. (1977), Kaplan et al. (1979), and Barrio et al. (2012).

In this study, we investigate the sensitivity of the L63 model to perturbations in the ρ param-

eter and identify suitable predictors that can be used to estimate conditional biases in the state

variables (x1,x2,x3) due to these perturbations. We first generate a nature or ”truth” simulation

that tracks the evolution of the state variables over a certain period of time. The truth simulation

is generated using a particular model for the behavior of ρ over time. Here, we choose to use

a coupled version of the L63 model where each system (S1,S2) is run at a different speed and

one-way coupling occurs through the influence of S2 on the ρ parameter in S1, as is illustrated in

Fig. 5.1. After some experimentation, we decided to set τS1 = 1 and τS2 = 5, which means that the

hidden system S2 is integrated forward at one-fifth the speed of S1.

System S1: fast Lorenz 63 model

(x1S1,x2S1,x3S1) with (τS1,ρS1,σS1,βS1)

ρtrue = ρS1 = ρ0 + x1S2(t)∗ cρ

System S2: slow Lorenz 63 model

(x1S2,x2S2,x3S2) with (τS2,ρS2,σS2,βS2)

Figure 5.1: Coupled version of the Lorenz-63
model, with the fast system S1 dependent on
the slow system S2. S1 is used to generate the
nature simulation.

The state location xS2 obtained from the hid-

den system is then scaled by a factor of cρ = 0.2,

with the scaled value subsequently used to perturb

ρ0, such that

ρS1 = ρ0 + x1S2(t) · cρ , t ∈ R, (5.7)

where ρ0 = ρS2 = 28, x1S2(t) · cρ is the δρ pertur-

bation obtained from S2, and ρS1 is the resultant

value used when integrating S1 during the next

time step. The scaling of x1S2 by cp = 0.2 means that δρ varies between approximately -4 and

+4, which is reasonable because this represents departures up to 15% from ρ0. The slowly varying

autocorrelated δρ perturbations could be thought of as representing changes in the original L63

model equations due to the influence of the seasonal cycle on daily forecasts or the diurnal cycle

on hourly forecasts. For example, parameters in cloud microphysics parameterization schemes

are often assigned constant values even though some of them are known to vary, sometimes by

up to several orders of magnitude, depending upon the stage of the cloud’s life cycle. A similar

approach was used by Zhang et al. (2012), where they attached an ocean slab model to the L63
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model equations in order to represent the interaction between the slowly-varying ocean and the

rapidly-changing atmosphere. Note that the parameters σS1 and σS2 were set to 10, and βS1 and

βS2 were set to 8/3, as is typically done in the L63 model.

II. After generating the ”truth” simulation using S1 in which the ρS1 parameter varied with

time, observations were generated for each state variable (x1S1,x2S1,x3S1) at each model time step

and then used in cycled data assimilation experiments employing a 3DVAR data assimilation

system. The truth simulation and data assimilation experiments were started with the same initial

conditions (x1S1,x2S1,x3S1) = (2,3,11); however, in the absence of data assimilation, they will follow

different trajectories thereafter due to differences in the ρ parameter. The L63 model is integrated

to the next time step using a 4th order Runge-Kutta time integration scheme. Various tests were

performed using different observation error magnitudes and time step lengths, as will be shown

in Section 5.5. Figure 5.2 shows the trajectory of the model state variables and evolution of the

ρS1 parameter during the truth simulation. It can be seen in Fig. 5.2b that the parameter ρS1 may

occasionally fall below the critical Rayleigh number for the system (24.74), which is also referred

to as a sub-critical Hopf bifurcation point. Though this could temporarily lead to strange behavior

in the model, we do not anticipate it having an impact on the experiments performed in Section 5.5

because ρS1 will not remain at this value for long because it is ultimately controlled by variations

in the state of the hidden system S2 as is shown in (5.7).

Figure 5.2: (a) Butterfly diagram showing the model trajectory during 600 time steps of the truth
simulation using the coupled L63 system described in Section 5.3.1. (b) Time series showing the
evolution of the ρS1 parameter during the truth simulation, where ρS1 for each model time step is
set using (5.7).

The data assimilation experiments employed the typical L63 model equations, including ρ =

28; however, for these experiments, the equations represent an imperfect model because we know
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that ρ is not constant during the truth simulation. Let us assume that we know that ρ varies

with time, but that we only know its mean value (ρ̄ = 28) and not how it changes with time.

The instantaneous difference between ρ in the data assimilation experiment and ρ in the truth

simulation represents a model error; however, these differences correspond to conditional model

biases when assessed over long time periods because δρ is a function of S2. Because errors in ρ

directly impact the evolution of all three of the state variables in nonlinear ways, the instantaneous

errors will potentially result in biases in the model state variables that are a nonlinear function of

one or more predictors when assessed over long time periods. For example, a numerical weather

prediction model may have the tendency to produce convection that is too strong during the day

or too weak during the night, both of which will impact the sign and magnitude of the model

biases in nonlinear ways during different parts of the diurnal cycle.

5.3.2 Asymptotics for Model Bias of the L63 System

Here, we first evaluate how the model variables (x1,x2,x3) change in dependence on the model

parameter ρ . In particular, we aim to develop an asymptotic estimator for the error in (x1,x2,x3)

depending on ρ and time t. The asymptotic analysis is performed using a Taylor series expansion

with an explicit integral form of the error term. This approach is necessary because some of the

constants will be zero in the higher order terms; therefore, we need to take sufficiently many terms

into account to get the correct higher order terms.

Theorem 1. The leading terms of the asymptotic analysis of the L63 system with respect to variations of

ρ = ρ0 +δρ , where we use t = t0 +δ t and O(s) denotes a function bounded by c|s| with some constant c in

a neighborhood of s = 0, are given by

x1(ρ, t)− x1(ρ0, t) =
1
2

σx1(ρ0, t0) ·δρ · (δ t)2 +O(δρ ·δ t3) (5.8)

x2(ρ, t)− x2(ρ0, t) = x1(ρ0, t0) ·δρ ·δ t +O(δρ ·δ t2) (5.9)

x3(ρ, t)− x3(ρ0, t) = x2
1(ρ0, t0) ·δρ · (δ t)2 +O(δρ ·δ t3) (5.10)

Proof. We work out the proof in four steps, starting with some general setup and then con-

sidering the variables x1,x2, and x3 in three steps.

Step 1. We begin by differentiating equations (5.4) - (5.6) with respect to ρ using the product rule,
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where

x′1 =
dx1

dρ
, x′2 =

dx2

dρ
, x′3 =

dx3

dρ

are the derivatives of the state variables with respect to ρ . Because the differentiation with respect

to t and to ρ can be exchanged in the case of continuously differentiable functions, we obtain:

dx′1
dt

= σx′2−σx′1 (5.11)

dx′2
dt

= x′1ρ + x1− x′2− x′1x3− x1x′3 (5.12)

dx′3
dt

= x′1x2 + x1x′2−βx′3. (5.13)

Note that all of the variables depend on time t and the parameter ρ = ρ(t), and that the τ terms in

equations (5.4) - (5.6) have been set to 1 to represent the original L63 model equations as described

in Lorenz (1963).

To assess the sensitivity of the L63 model equations to variations in ρ at times t close to some

initial time, t0, we begin by looking at the scenario where the initial values for (x1,x2,x3) are pre-

scribed and identical for all ρ under consideration, such that at t = t0:

x1(ρ, t0) = x1,0 (5.14)

x2(ρ, t0) = x2,0 (5.15)

x3(ρ, t0) = x3,0. (5.16)

This is an initial value problem where the derivatives of each equation with respect to ρ , (x′1,x
′
2,x
′
3),

are equal to zero at t = t0, i.e.

x′1(ρ, t0) = 0, x′2(ρ, t0) = 0, x′3(ρ, t0) = 0. (5.17)

This assumption is justified because in the case of perfect observations and full observability of

the model state, you will obtain the true model state during each data assimilation step. With a

perfect analysis, the first guess error at the next assimilation time will then be due to the model

error that is predicted by the error estimators in Theorem 1 and will be independent of the value of
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ρ at any particular point in time. After inserting these initial values into (5.11) - (5.13), we obtain:

dx′1
dt

(ρ, t0) = 0 (5.18)

dx′2
dt

(ρ, t0) = x1(ρ, t0) (5.19)

dx′3
dt

(ρ, t0) = 0 (5.20)

Step 2. Equation (5.19) reveals that the time rate of change of the sensitivity of x2 with respect to

ρ (i.e., x′2) is a function of its location along the x1-axis. We now carry out an asymptotic analysis

by an expansion of the functions with respect to variations in time t = t0 + δ t and the parameter

ρ = ρ0 +δρ . To assess the sensitivity of x2 with respect to small variations in ρ , we employ (5.17)

and (5.19) as follows. We estimate

x2(ρ, t)− x2(ρ0, t) =
∫

ρ

ρ0

x′2(ρ̃, t) dρ̃

=
∫

ρ

ρ0

(
x′2(ρ̃, t0)︸ ︷︷ ︸

=0

+
∫ t

t0

dx′2(ρ̃, t̃)
dt̃

dt̃
)

dρ̃

=
∫

ρ

ρ0

∫ t

t0

dx′2(ρ̃, t̃)
dt̃

dt̃ dρ̃

=
∫

ρ

ρ0

∫ t

t0

( dx′2(ρ̃, t̃)
dt̃

|t0︸ ︷︷ ︸
=x1(ρ̃,t0)

+
∫ t̃

t0

d2x′2(ρ̃,s)
ds2 ds

)
dt̃ dρ̃. (5.21)

We estimate both terms in (5.21) separately. For the first term T1, by (5.14) we obtain

T1 =
∫

ρ

ρ0

∫ t

t0
x1(ρ̃, t0) dt̃ dρ̃

=
∫

ρ

ρ0

∫ t

t0
x1(ρ0, t0) dt̃ dρ̃

= x1(ρ0, t0) ·δρ ·δ t, (5.22)

where x1(ρ̃, t0) is replaced by x1(ρ0, t0) because the derivative of x1 with respect to ρ is zero at

t0 following (5.17). The δρ and δ t terms are obtained by solving the definite integrals, with δρ

denoting the interval [ρ0,ρ] and δ t denoting the interval [t0, t]. The second term is estimated in a

similar way by

T2 =
∫

ρ

ρ0

∫ t

t0

∫ t̃

t0

d2x′2(ρ̃,s)
ds2 ds dt̃ dρ̃

= O(δρ ·δ t2). (5.23)
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Combining the estimates (5.22) and (5.23) then leads to

x2(ρ, t)− x2(ρ0, t) = x1(ρ0, t0) ·δρ ·δ t +O(δρ ·δ t2). (5.24)

This proves equation (5.9) in Theorem 1.

Step 3. To obtain an estimate for x1(ρ, t), we proceed as in equation (5.21) and, for a twice

continuously differentiable function x1(ρ, t), estimate

x1(ρ, t) = x1(ρ0, t)+
∫

ρ

ρ0

x′1(ρ̃, t) dρ̃ (5.25)

= x1(ρ0, t)+
∫

ρ

ρ0

(
x′1(ρ0, t)+

∫
ρ̃

ρ0

x′′1( ˜̃ρ, t) d ˜̃ρ
)

dρ̃ (5.26)

We note that by taking the derivative of (5.11) with respect to time and inserting (5.19) into the

resultant equation, we obtain

d2x′1(ρ, t0)
dt2 = σ

dx′2(ρ, t0)
dt

−σ
dx′1(ρ, t0)

dt

= σx1(ρ, t0) (5.27)

and thus the derivative of (5.27) with respect to time gives

d2x′′1(ρ, t0)
dt2 = σx′1(ρ, t0) = 0. (5.28)

Performing a third order expansion around t0 then leads to an estimate for x′′1(ρ, t):

x′′1(ρ, t) = O(δ t3). (5.29)

After inserting (5.29) into (5.26) and then solving the definite integrals, we obtain:

x1(ρ, t) = x1(ρ0, t)+ x′1(ρ0, t) ·δρ +O(δρ
2 ·δ t3) (5.30)
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To estimate x′1(ρ, t), with the help of (5.17) and (5.18), we derive:

x′1(ρ, t) = x′1(ρ, t0)︸ ︷︷ ︸
=0

+
∫ t

t0

dx′1(ρ, t̃)
dt̃

dt̃

=
∫ t

t0

( dx′1(ρ, t̃)
dt̃

∣∣∣
t0︸ ︷︷ ︸

=0

+
∫ t̃

t0

d2x′1(ρ,s)
ds2 ds

)
dt̃. (5.31)

The second derivative of x′1(ρ, t) with respect to time t can be estimated by differentiating (5.11)

with respect to t, and using (5.12) and (5.19), which yields:

d2x′1(ρ, t)
dt2 =

d
dt

(dx′1(ρ, t)
dt

)
=

d
dt

(
σx′2(ρ, t)−σx′1(ρ, t)

)
= σ

dx′2
dt

(ρ, t)−σ
dx′1
dt

(ρ, t)

= σ
dx′2
dt

(ρ, t0)−σ
dx′1
dt

(ρ, t0)︸ ︷︷ ︸
=0

+ O(δ t)

= σx1(ρ, t0) + O(δ t). (5.32)

We insert this into (5.31) to conclude with

x′1(ρ, t) = σx1(ρ, t0) ·
∫ t

t0

∫ t̃

t0
1 ds dt̃ + O(δ t3)

= σx1(ρ, t0) ·
∫ t

t0
(t̃− t0) dt̃ + O(δ t3)

= σx1(ρ, t0) ·
1
2
(δ t)2 + O(δ t3).

= σx1(ρ0, t0) ·
1
2
(δ t)2 + O(δ t3). (5.33)

Finally, we insert (5.33) into (5.30) with the help of (5.17) to obtain (5.8) in Theorem 1.

Step 4. In our final step, we estimate the behavior of x3(ρ, t). We note that similarly to x′1(ρ, t)

given by (5.33) as in (5.21) we obtain:

x′2(ρ, t) = x′2(ρ, t0)︸ ︷︷ ︸
=0

+
∫ t

t0

dx′2(ρ, t̃)
dt̃

dt̃

= x1(ρ, t0) ·δ t +O(δ t2). (5.34)
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Also, based on (5.20) we calculate

x′3(ρ, t) = x′3(ρ, t0)︸ ︷︷ ︸
=0

+
∫ t

t0

dx′3(ρ, t̃)
dt̃

dt̃

=
∫ t

t0

( dx′3(ρ, t̃)
dt̃

|t0︸ ︷︷ ︸
=0

+
∫ t̃

t0

d2x′3(ρ,s)
ds2 ds

)
dt̃

= O(δ t2). (5.35)

Now, we follow the above lines to estimate

x3(ρ, t)− x3(ρ0, t) =
∫

ρ

ρ0

x′3(ρ̃, t) dρ̃

=
∫

ρ

ρ0

(
x′3(ρ̃, t0)︸ ︷︷ ︸

=0

+
∫ t

t0

dx′3(ρ̃, t̃)
dt̃

dt̃
)

dρ̃. (5.36)

Here, to obtain a sharper estimate than (5.35) and to evaluate the constant explicitly, we insert

(5.13) into (5.36), which yields:

x3(ρ, t)− x3(ρ0, t) =
∫

ρ

ρ0

∫ t

t0

(
x′1(ρ̃, t̃)x2(ρ̃, t̃)+ x1(ρ̃, t̃)x′2(ρ̃, t̃)−βx′3(ρ̃, t̃)

)
dt̃ dρ̃. (5.37)

Because (x′1,x
′
2,x
′
3) = 0 at t0, we need to estimate the leading order term by its temporal change at t0

as given in (5.18) - (5.20). We insert the asymptotics for x′1(ρ, t), x′2(ρ, t), and x′3(ρ, t) given by (5.33),

(5.34), and (5.35) into (5.37) to estimate:

x3(ρ, t)− x3(ρ0, t) =
∫

ρ

ρ0

∫ t

t0

(
x2

1(ρ, t0)δ t +O(δ t2)
)

dt̃ dρ̃

= x2
1(ρ, t0) ·δ t2 ·δρ +O(δρ ·δ t3), (5.38)

where x2
1(ρ, t0)δ t is the leading order term, and all other terms have been absorbed into the order

O(δ t2) term. Thus, we have derived (5.10) in Theorem 1 and the proof is complete. 2

Remark. In Step 3 of the proof, we could have performed the estimate slightly differently.
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Using an approach similar to Steps 2 and 4, we obtain:

x1(ρ, t)− x1(ρ0, t) =
∫

ρ

ρ0

x′1(ρ̃, t) dρ̃

=
∫

ρ

ρ0

(
x′1(ρ̃, t0)︸ ︷︷ ︸

=0

+
∫ t

t0

dx′1(ρ̃, t̃)
dt̃

dt̃
)

dρ̃

=
∫

ρ

ρ0

∫ t

t0

( dx′1(ρ̃, t̃)
dt̃

|t0︸ ︷︷ ︸
=0

+
∫ t̃

t0

d2x′1(ρ̃,s)
ds

ds
)

dt̃ dρ̃ (5.39)

and then proceed as in (5.32) and (5.33) to obtain (5.8) as above. 2

5.4 Improving Data Assimilation using Bias Estimators

Being able to accurately estimate errors in the model background x(b) is important for any practical

implementation of a data assimilation algorithm. In this section, we first discuss the model error

and model bias terminology and then study a simple Bayesian example to illustrate the impor-

tance of correctly estimating the model background error covariance matrix B. We then develop

a generalized model error estimation method that is subsequently applied to the L63 model dis-

cussed in Section 5.3.2 to demonstrate the feasibility of dynamically estimating the model errors

using nonlinear estimators based on the model variables. In Section 5.4.4, we show how the bias

correction coefficient vector obtained through solving a least squares minimization problem can be

used to estimate the unknown parameter using the analysis increments from the data assimilation

system.

5.4.1 Nonlinear Model Bias and Error Terminology

In this section, we sharpen the terminology for model error, model bias, and conditional model

bias, and compare the concepts. For a particular location, the model error is the instantaneous

difference between the background state x(b) and the true state x(true) of the system. Model bias is

then defined as the x(b)− x(true) differences averaged over some period of time or region:

bb := E{x(b)− x(true)}, (5.40)
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where the bias is computed separately for different model quantities such as temperature, hu-

midity, or cloud water path. If we then assume that the analysis state x(a) obtained during each

assimilation cycle is the best estimate of the true system state, we can use the resultant x(b)− x(a)

differences as an approximation to the true model bias, with appropriate summation over partic-

ular regions or periods of time:

bb−a := E{x(b)− x(a)}. (5.41)

The conditional model bias can then be defined as the mean deviation of the dependent variable

from the true system state when the bias is a function of some other parameter or variable p

referred to as the predictor. The conditional model bias can be estimated using:

bb−a(p) = E{x(b)(p)− x(a)(p)}. (5.42)

For this study, we are interested in the situation where the bias predictor is a component of the

model state.

If bb−a(p) varies in a nonlinear manner, then this behavior represents a nonlinear conditional

bias and we will need to use nonlinear bias correction methods to remove the bias from the model

variables. In this case, let us assume that the function bb−a(p) can be written as a superposition

bb−a(p) =
N

∑
ξ=1

ψξ (p)αξ (5.43)

of nonlinear basis functions ψξ with N unknown coefficients αξ . The solution of (5.43) can be

understood as a generalized bias estimation equation because it structures the set of differences

according to the predictor p and searches for a functional estimation of its behavior. We can then

employ nonlinear bias correction methods such as that described in Otkin et al. (2018) to deter-

mine the bias correction coefficients based on a set of bb−a(p) differences. To do this effectively, we

will need to obtain a large sample of differences covering a diverse range of system states.

It should also be noted that the estimation of the coefficients αξ in (5.43) using x(b) − x(a)

differences accumulated over multiple assimilation cycles subsequently leads to the capability

to predict the instantaneous model error when those coefficients are applied to the current state

during an individual assimilation cycle. This demonstrates that conditional model bias estimation

and model error estimation are strongly related and show significant overlap. As discussed in

Section 5.4.3, the forecast error in general can be represented as a combination of state estimation
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error associated with the propagation of errors in the prior analysis to the current time and a

second component that represents the true model error arising from the use of an imperfect model.

The instantaneous model errors can therefore be viewed as conditional model biases because their

characteristics likely depend on the state of the system.

The conditional model error estimators can be used for various purposes, including a) model

bias correction where the model background is corrected prior to its use in the data assimilation

system, b) model uncertainty estimation where the model error estimates are used to improve the

background error covariance matrix B, and c) model development efforts where the error statistics

are used to improve the accuracy of the numerical model. In this paper, we focus on application

b) because we seek to employ knowledge regarding the behavior of the model errors to improve

estimates of the model background uncertainty.

5.4.2 Study of a Simple Bayesian Example

A Bayesian data assimilation step employs Bayes formula

p(a)(x) = cp(b)(x)p(y|x), x ∈ Rn (5.44)

for estimating the posterior probability distribution p(a)(x) based on the prior probability distribu-

tion p(b)(x) and the observation error distribution p(y|x). The prior distribution is usually assumed

to be Gaussian in data assimilation systems, such that:

p(b)(x) := c̃e−
1
2 (x−x(b))T B−1(x−x(b)), x ∈ Rn, (5.45)

where c̃ is a constant and the background error covariance matrix B is estimated climatologically

in classical variational assimilation systems or based on an ensemble of model states in an EnKF.

Here, we discuss and demonstrate the role of the correct estimate of B on the quality of the

analysis mean and analysis distribution. For an EnKF system, the ensemble spread is used to es-

timate B, however, this estimate only contains part of the error when a numerical model is used

because it does not include the difference between the model and the true state of the system. Vari-

ational data assimilation systems, such as 3DVAR, are also unable to consider these differences

because B is chosen as fixed for a particular time period due to the way in which it is constructed.

This means that the model bias and how it changes with time is not taken into account by either
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assimilation methodology, which can substantially degrade their performance. For the remainder

of this work, we restrict our attention to 3DVAR because that is what we used during the nu-

merical experiments discussed in Section 5.5. We note however that similar arguments apply for

ensemble data assimilation systems.

As a starting point, we derive the error representation explicitly for a one-dimensional Gaus-

sian case with observation operator H = I. In one dimension, the best estimate of the current state

(or analysis) during an assimilation step is given by:

x(a) = x(b)+
qod

r+qod (y− x(b)), (5.46)

where y is the observation, r is the observation error uncertainty, x(b) is the first guess or back-

ground, and qod represents the estimated variance of the error in the variable x. Now, let us as-

sume that qod
0 is the true background error variance that includes model error, such that the correct

analysis x(a)0 is represented as:

x(a)0 = x(b)+
qod

0

r+qod
0
(y− x(b)) (5.47)

The error between the analysis based on some uncertainty or variance qod and the correct uncer-

tainty or variance qod
0 is then given by:

|x(a)− x(a)0 | =
∣∣∣ qod

r+qod −
qod

0

r+qod
0

∣∣∣ · |y− x(b)|

=
∣∣∣ r(qod−qod

0 )

(r+qod) · (r+qod
0 )

∣∣∣ · |y− x(b)|. (5.48)

This result shows that the analysis error for each assimilation step is proportional to the observa-

tion departure |y− x(b)| and to the accuracy of the background error variance estimate |qod − qod
0 |.

Thus, development of new methods that can be used to generate a more accurate estimate of qod

will directly improve the quality of the analysis and performance of the assimilation system.

5.4.3 Dynamical Error and Bias Estimators

In this section, we develop a generalized method to diagnose model biases using the model vari-

ables. First, let us assume that the the forecast error x(b)k −x(true)
k at a given time k can be represented

as the difference between the dynamical states that are obtained when the prior analysis x(a)k−1 is

propagated by an imperfect model M and the true prior state x(true)
k−1 is propagated by the perfect
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model Mtrue:

x(b)k − x(true)
k = M(x(a)k−1)−Mtrue(xtrue

k−1) (5.49)

The forecast error can then be decomposed into one part that is due to the propagation of the

uncertainty error associated with the prior analysis state M(x(a)k−1)−M(xtrue
k−1), and a second part that

represents the true model error M(xtrue
k−1)−Mtrue(xtrue

k−1) during the propagation from the prior time:

x(b)k − x(true)
k =

(
M(x(a)k−1)−M(xtrue

k−1)
)
+
(

M(xtrue
k−1)−Mtrue(xtrue

k−1)
)
. (5.50)

Taking the variance on both sides of (5.50), and using

qstate := Var(M(x(a)k−1)−M(xtrue
k−1)) (5.51)

and

qmodel = Var(M(xtrue
k−1)−Mtrue(xtrue

k−1)), (5.52)

we obtain the total variance of the forecast error:

qtotal := Var
(

x(b)k − x(true)
k

)
(5.53)

= qstate +qmodel +2 ·Cov
(

M(x(a)k−1)−M(xtrue
k−1), M(xtrue

k−1)−Mtrue(xtrue
k−1)

)
. (5.54)

It is a standard approach in data assimilation to assume that the initial condition uncertainty and

model error are uncorrelated (Mitchell and Carrassi 2015), which means that the covariance term

on the righthand side of (5.54) will equal zero and therefore the total variance of the forecast error

can be given by

qtotal = qstate +qmodel, (5.55)

where qstate reflects the influence of the variance of the estimate of the prior analysis propagated to

the current analysis time using the model equations, and qmodel is the variance in the model error

E due to the use of an imperfect numerical model.

If some error estimators such as those shown in Theorem 1 are available, we can employ

(5.55) to estimate qtotal and then use it to improve the estimate of the analysis during a given data

assimilation step. Though we typically will not know qstate in a complex real-world system, the

development of a method that can be used to estimate the time-varying model error E, and thus
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the variance qmodel , allows us to employ a lower fixed qstate in our approach. This outcome is better

than having to use a larger fixed qstate, which would otherwise be the case, because that would

lead to an overestimate of the total error variance. In general, it will not be possible to carry out

a full assessment of the model error due to incomplete knowledge of the governing equations;

however, Theorem 1 shows that the model error asymptotically depends on the model variables,

here in particular, x1(ρ0, t0). We can therefore employ nonlinear model error estimators to diagnose

such dependencies as follows.

II. We begin with a general example where we study the estimation of an error that depends

on the model state x and time t. We model the dependence on the states using basis functions ϕ`(x),

x ∈Rn, with `= 1, ...,N`. The dependence on time is modeled using basis functions ψk, k = 1, ...,Nk.

Let us assume an ansatz of the form

E j(x, t) =
N`

∑
`=1

Nk

∑
k=1

β
( j)
`,k ϕ`(x)ψk(t), x ∈ Rn, t ∈ R, (5.56)

for the model error E j. For illustrative purposes, the functions ψk(t) could be represented by

sin(t) and cos(t) or by higher order trigonometric functions, whereas the functions ϕ`(x) could be

represented by the polynomial terms in Theorem 1. In this situation, the terms would correspond

to ϕ`(x) = xξ1
1 xξ2

2 xξ3
3 , with ξ1,ξ2,ξ3 counted by ` = 1, ...,N`, ψ1(t) ≡ 1, and ψk(t) = 0 for k > 1. The

coefficients β
( j)
`,k are the unknown coefficients linking the true dynamics with the numerical model.

If we then observe the model error E j(x, t) for a selection of states (x[η ], t[η ]), η = 1, ...,Nη such

that the linear independence of ϕ` on x[η ] is satisfied and a set t[η ] ∈ [0,T ] such that the linear

independence of ψk is satisfied on this set, we know that the linear system

E j(x[η ]) =
N`

∑
`=1

Nk

∑
k=1

β
( j)
`,k ϕ`(x[η ]) ψk(t[η ]), (5.57)

η = 1, ...,Nη , has at most one solution for each j = 1, ...,n. It may be overdetermined if Nη > N` ·Nk,

and if the data is inconsistent would have no exact solution. In that case, we can use least squares

methods to calculate approximate solutions.

Let us also discuss the case of non-uniqueness for the calculation of the bias correction co-

efficients. This situation can easily arise if two or more variables in the dynamical system under

consideration are correlated. For example, the x1 and x2 variables in the L63 system display strong

correlations in parts of the trajectory. Though the non-unique solution will not affect the quality

110



of the bias estimate for the time interval used to calculate the coefficients, it could potentially lead

to large errors if these coefficients are used outside of the training period. Thus, we note that: 1)

for time-local estimation of model biases, the consequences of non-uniqueness should be small,

and 2) when the bias estimation tool is employed for longer time periods or for forecasting, it is

important to have training periods that include conditions representative of the full climatology

of the dynamical model.

III. Here, we illustrate the utility of the generalized framework developed in the previous sec-

tion by applying it to the L63 model. First, let us assume that the true evolution of a hypothetical

dynamical system, represented by Mtrue, depends on a particular parameter that varies with time,

but that limitations in our understanding of the physical system means that it is assigned a con-

stant value in the numerical model M used to represent the true dynamical system. An example is

the dependence of the parameter ρ in the coupled L63 model described in Section 5.3.1, for which

we have worked out the behavior of the model error for small time intervals δ t and small changes

δρ of ρ in Section 5.3.2. For this particular system, we observe the dependence of the error

E(δρ) := ‖x[ρ]− x[ρ0]‖2 (5.58)

on the model state x = (x1,x2,x3) in Theorem 1, where ρ0 is the true value at a given time t0 in Mtrue

and ρ is the constant value used by the imperfect model M. This dependence leads to the error

estimate for the coupled L63 system:

E(δρ) = x2
1(ρ0, t0) ·δρ

2 ·δ t2 +O(δρ
2 ·δ t4), (5.59)

where we added the squares of (5.8), (5.9), and (5.10), and then absorbed the higher order terms

into the O(δρ2 ·δ t4) term. It can be seen in (5.59) that the leading error term is proportional to x2
1,

which means that the expected model error is largest when the system state is located near the

tips of the butterfly wings.

For this work, we use the analysis x(a) from each assimilation step as an approximation of

the true state x(true) because the true state is unknown in a real-world system. Note that this

approximation means that we will be unable to recover the full model error; however, because

x(a) will be pulled toward the observations, we will still be able to estimate the model error under

the assumption that the observations have small errors. We restrict our attention here to the L63
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system with three variables in order to simplify the notation. The current model error E j of the

component x j of the state x ∈ Rn is approximated by:

E j := |x(a)j − x(b)j |, (5.60)

where j = 1,2,3 corresponds to the three variables in the L63 system. Let us assume that knowl-

edge of those parts of the system leading to model error at a specific time is such that after some

manipulation the model error can be rewritten in the form of a triple sum:

E j =
Ncoe f

∑
ξ1,ξ2,ξ3=0

α
( j)
ξ1,ξ2,ξ3

xξ1
1 xξ2

2 xξ3
3 , (5.61)

with coefficients α
( j)
ξ1,ξ2,ξ3

, ξ1,ξ2,ξ3 = 0, ...,Ncoe f , where Ncoe f is the total number of coefficients de-

termined by the maximum order of the polynomial and the number of model variables under

consideration. For the L63 system containing three variables, Ncoe f = 10 for a 2nd order polyno-

mial. The model error can be expressed as in (5.61) if we know that a hidden model exists but that

we do not know the dependence of the true system because we cannot derive the asymptotics of

the model equations. The ansatz (5.61) assumes some polynomial dependence of this relationship

on the model variables x ∈ Rn, as we have shown to be the case for the coupled L63 system. We

also assume that the model errors do not have a temporal dependence such that the basis functions

ψk(t) in (5.56) can be set to 1.

Next, given a sequence of states x[η ] and their corresponding model errors E j[η ] for η =

1, ...,Nstates over some period of time, the above estimate leads to a linear system of equations:

Aα
( j) = q (5.62)

for the Ncoe f ×1 coefficient vector α( j) = (α
( j)
0,0,0,α

( j)
1,0,0,α

( j)
0,1,0,α

( j)
0,0,1,α

( j)
1,1,0, ...)

T , where the sub-indices

correspond to the polynomial order for the predictors (x1,x2,x3) and the superscript denotes the

model variable x j. For example, the zeroth order coefficient for the x1 variable is denoted as α
(1)
0,0,0,

whereas the second order coefficient for the x1 · x2 mixed term is denoted as α
(1)
1,1,0. Then, A is an

Nstates×Ncoe f matrix containing the Ncoe f polynomial terms for each observation:

A = A( j) :=
(

xξ1
1 [η ]xξ2

2 [η ]xξ3
3 [η ]

)
η=1,...,Nstates; ξ1,ξ2,ξ3=0,...,Ncoe f

(5.63)
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where η counts the rows and ξ1,ξ2,ξ3 are subsequently ordered as column indices consistent with

the ordering of the components of α , and

q = q( j) :=
(

E j[η ]
)

η=1,...,Nstates
(5.64)

is the Nstates× 1 vector containing the model errors, with row index η . Finally, we can find the

coefficients α that best fit the system of equations by solving the quadratic minimization problem,

which leads to:

α = (AT A)−1AT q. (5.65)

5.4.4 Parameter Estimation

We begin this section by noting that the asymptotics for the coupled L63 model shown in The-

orem 1 reveal that the error, E j, for each model variable j = 1,2,3 is proportional to the size of

the hidden parameter δρ , which means that the diagnosed conditional model bias should also be

proportional to this parameter. In practice, however, this is not an easy relationship to capture

because their proportionality depends in a very dynamic way on the current state of a modeling

system characterized by chaotic behavior. Thus, without explicit knowledge of the model vari-

ables and the relationship between them and δρ , it is impossible to draw conclusions about the

size of δρ .

However, based on the nonlinear model error estimators given by (5.8) - (5.10), we expect

that the coefficient vector α in (5.61) will also be proportional to the size of the model bias. This

vector depends on the average size of the analysis increment x(a)−x(b) during the data assimilation

steps rather than on the model state. The explicit dependence, unknown in general, is part of the

estimation of the coefficients. Thus, we obtain a tool that can be used to dynamically diagnose the

average size of the unknown parameter δρ by computing the mean of the coefficient vector α for

each model variable x j = 1,2,3. This leads to the following estimates for δρ :

δρ
(1)
diag(t)≈ c1α

(1)
1,0,0(t) or δρ

(2)
diag(t)≈ c2α

(2)
1,0,0(t) or δρ

(3)
diag(t)≈ c3α

(3)
2,0,0(t) (5.66)

where c1 = 2/σ(δ t)2, c2 = 1/δ t, and c3 = 1/(δ t)2, and we now need to carry out the bias estimation

over time intervals [t−∆t, t +∆t] with some ∆t > 0 for which δρ can be considered a constant. We

will demonstrate in Section 5.5.4 that this simple tool provides a reasonable approach to parameter
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estimation for the dynamical system under consideration.

5.5 Numerical Results using the L63 Model

The purpose of this section is to use the L63 model to perform numerical experiments that demon-

strate the validity of the model error identification and correction methods developed in the previ-

ous sections and their use within a data assimilation system. We begin by showing in Section 5.5.1

that the error asymptotics developed in Theorem 1 accurately represent the behavior of the L63

model and that they are able to capture the rapid evolution of the model error in each of the state

variables. We then demonstrate in Section 5.5.2 that the model error asymptotics can be used to

improve the model background error covariance matrix B through inclusion of a dynamic compo-

nent that captures the current model errors. It is then shown in Section 5.5.3 that the coefficients of

the nonlinear asymptotical expansion can be reasonably estimated by solving a regularized least

squares minimization problem without explicit a priori knowledge of the error behavior. This is

accomplished through use of a polynomial expansion of the model variables. Finally, we show in

Section 5.5.4 that the ρ parameter can be reconstructed using the bias correction coefficient vector.

Moreover, it is shown that it is possible to reconstruct this parameter using the analysis increments

that are readily available in all data assimilation systems.

5.5.1 Analysis of the Asymptotic Error Estimators for the L63 Model

In this section, we assess the ability of the asymptotics derived in Theorem 1 to accurately capture

the rapid evolution of model errors in the coupled L63 system during a cycled data assimilation

experiment covering Nt = 600 assimilation cycles with an assimilation frequency δ tassim = 0.06.

Though the true ρ parameter in the coupled L63 system varies with time following (5.7), it was set

to a constant value (ρ = 28) during the data assimilation experiment to represent a dynamic and

unknown model bias. Output from the truth simulation employing the time-varying ρ parameter

was used to generate observations with zero measurement error (e.g., ε , the standard deviation

of the errors drawn from an unbiased Gaussian distribution, was set to zero) for (x1,x2,x3), which

were then assimilated using a 3DVAR system. The analysis x(a) during a given assimilation cycle

114



was determined by minimizing the cost function:

J(x) :=
∥∥∥x− x(b)

∥∥∥2

B−1
+‖y−H(x)‖2

R−1 , (5.67)

which, for a linear observation operator, is given by:

x(a) = x(b)+BHT (R+HBHT )−1(y−H(x(b))), (5.68)

where H = I, the observation error covariance matrix R was given the form of the identity matrix

scaled by the factor r,

R = r · I, (5.69)

and the background error covariance matrix B was given the form:

B =


(x(b)1 − x(true)

1 )2 0 0

0 (x(b)2 − x(true)
2 )2 0

0 0 (x(b)3 − x(true)
3 )2

 , (5.70)

with x(b) being the background state, x(true) being the true dynamical state obtained from the truth

simulation, and the diagonal elements of B containing the model error variances. We chose to use

a diagonal matrix here because it is a reasonable place to start, and as is shown in this section, still

has a positive impact on the assimilation performance. Given the strong correlations between the

errors in the x1 and x2 variables (see Fig. 5.3), it is likely that including the off-diagonal elements

would have led to even better results; however, their inclusion in the B matrix is left for future

work. Note that the scaling factor r was set to 0.016 during this experiment.

Figure 5.3 shows the evolution of the true ρ parameter and the model errors x(b)1 − x(true)
1 ,

x(b)2 − x(true)
2 , and x(b)3 − x(true)

3 during the assimilation experiment. The true error for each model

variable is shown in blue, whereas the model errors estimated using the asymptotic error estima-

tors in (5.8) - (5.10) are depicted by the red dashed lines. For the asymptotic model error estimates,

x1(ρ0, t0) is taken to be its instantaneous value at each assimilation time. Inspection of the error

time series (Figs. 5.3a-c) reveals that the asymptotic error estimators are able to accurately capture

the magnitude of the true errors in the model background, as well as their rapid changes with

time, when all other errors in the system are eliminated. The model errors display more rapid

variations than the ρ parameter (Fig. 5.3d) because the time step used by the coupled model is
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five times faster than that used in the hidden model S2 to perturb ρ . The true ρ parameter os-

cillates in a quasi-periodic manner for an extended period of time either below or above ρ = 28,

with occasional transitions between values less than or greater than this threshold as the hidden

model driving the changes in ρtrue propagates from one wing of the butterfly to the other (see Fig.

5.2a). These quasi-periodic oscillations could be thought of as representing biases associated with

the diurnal or seasonal cycles in atmospheric models.

Figure 5.3: Time series showing the evolution of the true model error (blue lines) and asymptotic
error estimations (red dashed lines) for the (a) x1, (b) x2, and (c) x3 model state variables and
for the (d) ρtrue parameter (red line) for an experiment lasting Nt = 600 assimilation cycles with
δ tassim = 0.06 and the measurement error ε set to zero.
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5.5.2 Using Bias Estimators to Improve Assimilation Performance

The development of methods to accurately estimate the model background error covariance ma-

trix B is important for all data assimilation algorithms. In this section, we demonstrate that the

assimilation quality, as measured using OMB statistics, can be improved through inclusion of

appropriate model error estimators during the data assimilation step. We also examine the op-

timality of using either a fixed or dynamically varying B matrix and assess the influence of the

observation error on these estimates.

For this exercise, we performed cycled 3DVAR data assimilation experiments using two ver-

sions of the L63 model where we chose to use a constant δρ = 1 in the truth simulation or where

we allowed δρ to vary with time based on the influence of the hidden system S2 described in

Section 5.3.1. The first version is used to represent a situation where a given parameter that does

not vary in the real world is assigned the wrong constant value in the numerical model. Here, we

assume that we know the asymptotics describing the sensitivity of the model to small perturba-

tions in ρ , but that we do not know the correct scaling factor c for δρ . In other words, we know

the true value of δρ only up to a constant c ∈ R, which includes the case of a constant but un-

known δρ . For brevity, this section only includes results for the scenario in which δρ is allowed to

vary with time. Note that even though the errors in the asymptotic estimates will be larger in this

situation because the maximum size of δρ is larger, the conclusions regarding the importance of

using the dynamically varying b matrix are the same for the experiments using the constant and

time-varying δρ perturbations.

To assess the sensitivity to the matrix B, we initially performed an experiment where a con-

stant covariance matrix of the form B = b · I ∈R3×3 was used during each assimilation cycle, where

b is used to scale the identity matrix. We then searched for the constant b that produced the small-

est OMB errors averaged over Nt = 600 assimilation cycles. Finally, we repeated the search using a

dynamical B matrix, which as in (5.55), is the sum of a constant matrix as in (5.51) and a dynamical

part as given by the term (5.52) that is computed using the model error estimators described in

Theorem 1. The form of B = Bk at time tk, with the index k = 1,2, ...,Nt of analysis steps, is chosen

as:

Bk = b ·


1 0 0

0 1 0

0 0 1

 +


error2

1,k 0 0

0 error2
2,k 0

0 0 error2
3,k

 , (5.71)
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where the diagonal elements in the second part of (5.71) are defined as:

error1,k = c ·0.5 ·σ · x1(ρ0, tk) · (δ t)2 ·δρk (5.72)

error2,k = c · x1(ρ0, tk) ·δ t ·δρk (5.73)

error3,k = c · x2
1(ρ0, tk) · (δ t)2 ·δρk (5.74)

Equations (5.72) - (5.74) correspond to the model first guess errors for x1,x2, and x3, respectively,

for each assimilation time tk. The numerical experiments evaluated in this section were carried

out using c = 1. We chose to use the model error estimators to improve the quality of the Bk

matrix rather than to develop a new model error covariance matrix Q ∈Rn×n because the B matrix

is estimated using imperfect forecasts that include a model error component as was discussed in

Section 5.4.3. Our model error estimation method is able to account for at least some portion of the

model error in the B matrix without having to go through the computational expense of estimating

and inverting an independent model error covariance matrix Q during the data assimilation step.

Two examples illustrating the relationship between the size of b and the average model first

guess errors when using either the constant or dynamic estimates for B during the assimilation

experiments are shown in Fig. 5.4. The first example (Fig. 5.4a) has relatively frequent assimila-

tion cycles (δ tassim = 0.02) and small random observation errors (ε = 0.2), whereas the observation

errors are larger (ε = 0.5) and the observations are assimilated less frequently (δ tassim = 0.04) dur-

ing the second example (Fig. 5.4b). Random errors added to each observation were drawn from a

Gaussian distribution scaled by the value of ε chosen for each case.

In both examples, the behavior of the relationship shown in Fig. 5.4 is well-known in the

field of inverse problems where a regularization that is too small increases the influence of the

observation errors and a regularization that is too large will not be able to fully exploit the new

information provided by the observations. The optimal B, which varies depending upon the ob-

servation and model errors present during a given assimilation cycle, will lead to the smallest

first guess errors. Of importance for this discussion is that the smallest first guess errors for both

examples occur when the dynamic B matrix is used. It is also evident that the optimal size of b

decreases when the dynamical error estimators are used to scale B because they are better able to

capture the actual errors in the model background during each assimilation cycle. Together, these

examples demonstrate that it is highly desirable to employ dynamical estimators of the model first

guess error in data assimilation algorithms.
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Figure 5.4: Scan of the average model first guess errors plotted as a function of the size of b when
the background error covariance matrix B is a multiple of the identity matrix (B = b · I) (black
dashed line) or when it is obtained using the dynamic B estimator presented in (5.71) (blue dot-
ted line). Panels (a) and (b) show results from experiments using assimilation update intervals
δ tassim and random observation errors ε set to (δ tassim = 0.02,ε = 0.2) and (δ tassim = 0.04,ε = 0.5),
respectively. The first guess error statistics were computed using output from 600 time steps.

5.5.3 Numerical Estimation of the Bias Estimator Polynomial Coefficients

In this section, we investigate the determination of the model bias estimator coefficients α using

output from cycled 3DVAR experiments employing different assimilation intervals and observa-

tion error magnitudes. For these experiments, we employ the dynamical background error co-

variance matrix B shown in (5.71) during each data assimilation cycle, with the dynamic model

errors for (x1,x2,x3) computed using the asymptotic error estimators in (5.72) - (5.74) with the scal-

ing factor c set to 1. Sensitivity tests revealed that the model error coefficients were stable over a

broad range of values for the scaling factor b; therefore, for convenience, it was set to 0.1 during

the experiments discussed in this section. This behavior and the chosen value for b are consistent

with the results shown in Fig. 5.4.

Experimentation also revealed that the matrix A used to determine the bias correction coeffi-

cients α in (5.65) is ill-posed with singular values smaller than 10−4 and a condition number larger

than 104. Therefore, to improve its conditioning, Tikhonov regularization was used by replacing

the least squares estimator A† = (AT A)−1AT in (5.65) with the Tikhonov inverse:

Q := (αregI +AT A)−1AT (5.75)

where αreg is the Tikhonov regularization parameter. Sensitivity tests showed that setting αreg
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to a small value (10−5) provided the most accurate results. This means that the bias correction

coefficients for a given model variable can be determined using:

α = (αregI +AT A)−1AT q (5.76)

Table 5.1 shows results computed using truth-minus-background statistics accumulated over

Nt = 600 assimilation cycles for two experiments, including one where perfect observations (ε = 0)

were assimilated at δ tassim = 0.01 time intervals (left columns) and a second experiment where ran-

dom errors were added to the observations (ε = 0.01) and the assimilation interval was increased

to δ tassim = 0.02. The scaling factor r for the observation error covariance matrix in (5.69) was set to

10−5 and 10−4, respectively, for each of these experiments, with δρ for a given time step obtained

from the hidden system S2 described in Section 5.3.1. The coefficients of the polynomial expansion

of the model bias are computed separately for each model variable (x1,x2,x3). Here, we have used

all polynomial terms up to the 2nd order when computing the dynamic B matrix in (5.71) because

of the presence of the x2
1 term in the asymptotics shown in (5.59). To ease interpretation of the

results, we have included δρ and the constant 0.5, σ , δ t, and (δ t2) terms as they appear in (5.72),

(5.73), and (5.74) such that the estimation outcomes shown in Table 5.1 should be either 0 or 1

depending upon whether or not a given term is in the polynomial expansion. This means that the

reconstructed bias correction coefficient αrecon(1,0,0) should equal one for x1 and x2, αrecon(2,0,0)

should equal one for x3, and all of the other αrecon values should be zero.

Inspection of Table 5.1 shows that the maximum error for each state variable (x1,x2,x3) is 8%

(e.g., αrecon = 0.92) for the experiment in which perfect observations were assimilated, and that

the errors for most of the remaining αrecon terms are very small. This demonstrates that the bias

correction coefficients can be accurately estimated in this situation such that the only remaining

sources of error are likely associated with numerical discretization errors or the exclusion of higher

order polynomial terms from the asymptotical expansion (e.g., higher than the 2nd order). The

error in each αrecon term increases during the second experiment where measurement errors were

added to the observations prior to their assimilation. Even so, the results show that the method

is still able to identify the dominant terms and that it is possible to obtain reasonable estimates

for the bias correction coefficients in the presence of observation error. Finally, other experiments

were performed where the size of the observation error and the length of the assimilation cycling

interval were varied, with all of the experiments showing similar effects to those demonstrated in
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Table 5.1 if reasonable observation errors and cycling intervals were used.

Exp 1 Exp 2
for x1 for x2 for x3 for x1 for x2 for x3

αrecon(0,0,0) 4.94E-02 -5.30E-03 -4.06E-03 1.16E-01 -7.26E-03 -1.28E-01
αrecon(1,0,0) 0.92 1.06 2.37E-03 0.76 1.16 -5.95E-01
αrecon(2,0,0) -2.57E-04 4.08E-05 1.03 9.79E-03 1.52E-03 0.94
αrecon(0,1,0) 2.38E-02 -4.92E-02 1.31E-02 2.65E-02 -1.13E-01 -2.45E-01
αrecon(0,2,0) 3.13E-04 -2.35E-05 -3.94E-03 2.32E-03 -1.84E-04 5.25E-02
αrecon(0,0,1) -1.11E-02 6.09E-04 -4.77E-02 1.88E-04 5.97E-03 -1.30E-01
αrecon(0,0,2) 2.13E-04 -1.85E-05 2.86E-03 -8.31E-04 -3.04E-04 3.10E-03
αrecon(1,1,0) -1.88E-04 -3.84E-06 -4.02E-02 -9.54E-03 -9.32E-04 -2.04E-01
αrecon(1,0,1) 3.54E-03 -4.07E-04 4.04E-04 5.71E-03 -2.03E-03 2.42E-03
αrecon(0,1,1) -2.21E-03 -4.42E-05 -1.08E-04 -4.80E-03 6.95E-05 3.10E-02

Table 5.1: Reconstructed bias correction coefficients (αrecon) for each model variable (x1,x2,x3) de-
termined using (5.62) and truth-minus-background statistics accumulated over 600 assimilation
cycles for two experiments employing different observation errors and assimilation update inter-
vals. The 0th to 2nd order terms are shown in each row. Columns 2-4 and 5-7 show the results
for experiments employing (δ tassim = 0.01;ε = 0) and (δ tassim = 0.02;ε = 0.01), respectively. The
Tikhonov regularization parameter areg was set to 10−5 for both experiments.

5.5.4 Reconstruction of the ρ Parameter

In this section, we explore the effectiveness of using the bias correction coefficient vector α to

reconstruct the ρ parameter within the data assimilation system. The truth simulation for this

particular exercise was performed using the coupled L63 model described in Section 5.3.1. A

cycled data assimilation experiment covering Nt = 600 assimilation cycles with δ tassim = 0.04 was

then performed using observations from the truth simulation. Given that the true state of a real-

world system is unknown, here we choose to use the analysis-minus-background difference as a

proxy for the model error q in (5.65) because the model background x(b) and model analysis x(a)

are both readily available from data assimilation systems.

Because ρ varies with time in the coupled L63 system used to perform the truth simulation, it

is not advantageous to use assimilation statistics accumulated over a long time period to estimate

the value of this parameter for a specific assimilation cycle. Instead, we compute the coefficient

vector α using output from 10 consecutive assimilation cycles rather than from the full assimila-

tion period. This length was chosen as a balance between the desire to acquire a large enough

sample to robustly estimate δρ and the need to use a short enough time period to ensure that the

instantaneous δρ values during a given time interval do not deviate strongly from the mean δρ

over that interval. To ease comparison to the reconstructed mean δρ , the average of the individual
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δρ estimates obtained using the simple diagnostic tools shown in (5.66) are used to represent the

true mean δρ over each time period. Together, these choices are consistent with the constraints

that would be encountered in a real-world data assimilation system.

Figure 5.5 shows the evolution of the instantaneous model errors x(b)1 − x(a)1 , x(b)2 − x(a)2 , and

x(b)3 − x(a)3 , along with the actual and reconstructed values for δρ for three experiments employing

different observation errors. The images on the left show the true error for each model variable

in blue, whereas the dashed red lines show the model errors estimated using the asymptotic er-

ror estimators in Theorem 1. For the images on the right, the black and blue lines denote the

true instantaneous and true mean δρ values, respectively, whereas the red lines depict the cor-

responding mean δρ estimates reconstructed using the α vector. Results are shown for three ex-

periments assimilating observations with measurement errors ε = {0,0.02,and 0.04} and scaling

factors r = {0.0004,0.0004,and 0.0016} for the observation error covariance matrices.

Inspection of the time series in Fig. 5.5 reveals that the mean δρ values reconstructed from

the coefficient vector α accurately capture the magnitude and evolution of the true δρ for the case

where the assimilated observations have zero measurement error (Fig. 5.5b). The asymptotic error

estimators also do an excellent job representing the true model errors during this experiment (Fig.

5.5a). As the observation error increases, however, the model error time series become more noisy

(Fig. 5.5c, e) and the accuracy of the δρ reconstruction decreases due to the increased noise (Fig.

5.5d, f). The errors in the δρ reconstruction are largest for time periods when the true δρ reaches a

local minimum or maximum because the rapid variation with time during those situations makes

it more difficult to properly reconstruct δρ . Regardless, these results show that it is possible to use

the coefficient vector α to obtain useful information about the trajectory of δρ during the truth

simulation. Because the true state was not used during this exercise, these results also demonstrate

that reasonable parameter and model bias estimates can be obtained using differences between the

model analysis and background states. This is important because whereas the true state of a real-

world system is generally unknown, the model analysis and background states are both readily

available from data assimilation systems.
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Figure 5.5: (a) Time series showing the evolution of the model error given by the first guess minus
analysis (blue line) for x1,x2,and x3, and their estimation computed using the error asymptotics
(dashed red line). Here, δ t = 0.04 and ε = 0. (b) Time series showing the evolution of the true δρ

(black line). The mean δρ parameter computed over intervals of 10 assimilation cycles is shown
by the dashed blue line, with the corresponding dynamic estimation computed using the mean
bias correction coefficients shown by the red lines. (c-d) Same as (a-b), except for the case where
the assimilation experiment was performed using δ t = 0.04 and ε = 0.02. (e-f) Same as (a-b), except
for the case where the assimilation experiment was carried out using δ t = 0.04 and ε = 0.04.
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5.6 Conclusions

In this study, we have examined the behavior of dynamic model errors and their influence on the

quality of the model analysis and first guess during cycled data assimilation experiments using

the L63 model and a 3DVAR data assimilation system. We showed that conditional model bi-

ases due to errors in the specification of a model parameter can be represented as a polynomial

function that can be estimated using the model background-minus-truth or background-minus-

analysis statistics for the realistic situation where the modeling system consists of polynomial

forcing terms. We have also suggested a regularized least squares regression method to estimate

the model biases and then described how these model error estimators could be used in the data

assimilation system to improve the accuracy of the model analysis and first guess.

We have carried out all derivations, estimations, and numerical experiments using the well-

known L63 model to demonstrate the validity and feasibility of the ideas developed during this

study. The L63 model allows us to study all parts of the system, bias estimators, and tools in

a detailed way that would not be possible if we had used a full physics numerical model while

still being able to represent the chaotic nonlinear characteristics of the real atmosphere. The results

showed that the asymptotics are indeed a valid method to estimate an important part of the model

first guess error, and that their use in data assimilation has the potential to improve the accuracy

of the model background and analysis. We showed that model error estimators computed using

the difference between the model background and analysis, which are readily available from all

assimilation systems, are an effective way to estimate model error. In this framework, the model

analysis serves as an approximation of the true state, which is unknown in a real-world system.

Reasonable results can be achieved even when relatively large errors are present in the observa-

tions if Tikhonov regularization is employed during the estimation of the polynomial model error

coefficients. Finally, we also show that the polynomial model bias coefficient vector can be used

to reconstruct δρ during the assimilation experiments.

In the current work, we have restricted our attention to a small-scale system containing three

state variables. Real-world NWP models and data assimilation systems have much deeper com-

plexity and their dimensions are much larger than the system used here. Thus, future work is nec-

essary to investigate the validity of the above ideas in high-dimensional models and to determine

if the methods developed during this study can improve the representation of the background er-

ror covariance matrix B used by such systems. For the experiments presented in this paper, all of
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the state variables were observed during each assimilation cycle, which of course is not possible in

a real data assimilation system. It will be important to evaluate the utility of the method when the

observation uncertainty is higher or the measurements do not observe the full state of the model.

It is reasonable to expect that it will be more difficult to estimate the model errors in such situa-

tions. It is also possible that the size of the initial condition uncertainty relative to the model error

could impact the performance of this method. For example, the model error contribution to the

forecast uncertainty will typically increase relative to the initial condition uncertainty over longer

time periods. This would suggest that the model error estimation method may be especially use-

ful for longer assimilation windows or when the observations are assimilated less frequently. A

final point to consider is that we already knew which model parameter was incorrectly specified

in the L63 model during the data assimilation experiments, which made it possible for us to target

its reconstruction using the bias correction coefficient vector. Though this knowledge made the

problem easier to solve, it is still consistent with many real-world situations where it is known a

priori that a certain parameter varies with time but has been assigned a constant value in the NWP

model due to computational constraints or incomplete knowledge on how to predict its evolution.

With this knowledge, it should be possible to use the general polynomial expansion of the model

variables method developed in Section 5.5.3 to determine if there are relationships between any

of the polynomial terms and a chosen parameter and then use that information to reconstruct the

value of the parameter.

The dynamic B method developed during this study could be interpreted as providing dy-

namic additive covariance inflation capturing systematic model errors that are not represented by

the static B used by variational systems nor by the dynamic B used by hybrid and EnKF assimila-

tion methods. Inclusion of the dynamic model bias estimates in the B matrix could therefore make

it possible to reduce the amount of covariance inflation that is used during the data assimilation

step in EnKF systems. This is potentially advantageous because the dynamic B is computed based

on the current conditions rather than using random perturbations drawn from a climatology as is

typically done with additive covariance inflation methods. It may also provide a complementary

approach to weak-constraint 4DVAR where instead of providing the model an additional degree

of freedom through introduction of a model error forcing term, we instead enhance the quality

of the B matrix through inclusion of the model bias estimates before it is used by the assimilation

algorithm. More detailed investigations of these and other topics are left for future work.
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Chapter 6

Conclusions

Data assimilation is a type of inverse problem that seeks to optimally combine information from

a set of observations with a spatially continuous first guess analysis in order to generate the best

estimate of the 3-dimensional state of a dynamical system at a given time. The first guess analysis

is typically provided by a previous model forecast, referred to as the model background, whereas

observations are obtained from a variety of sources. Data assimilation is an important part of

operational NWP systems because the skill of a model forecast is closely tied to the accuracy of

the initial boundary conditions that are provided to the NWP model at the start of a forecast.

Though tremendous advancements have been made in our ability to assimilate clear-sky satel-

lite brightness temperatures, progress has been much slower for observations sensitive to clouds.

Cloud-impacted observations are challenging to assimilate for a variety of reasons, one of which

is that they are often characterized by complex biases that vary with time. These biases can occur

due to the inability of the NWP model to properly simulate some cloud processes, inaccuracies in

the forward radiative transfer model used to compute the model-equivalent brightness tempera-

tures, and calibration errors in the satellite observations. Regardless of the precise reasons for the

biases, their presence will lead to suboptimal results if they are not properly accounted for in the

data assimilation system.

Therefore, to aid ongoing efforts within the research and operational NWP modeling com-

munities to more effectively assimilate information from these important observations, this thesis

has developed new methods that can be used to identify and remove biases from the observa-

tions and model background. This was accomplished through 1) development of an all-sky BC

method that uses a Taylor series polynomial expansion of the OMB departures to remove linear
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and nonlinear conditional biases from the satellite observations prior to their assimilation, and 2)

development of a theoretical model bias estimation method that uses an asymptotic expansion of

the model dynamics to improve the model background error covariance matrix used during the

data assimilation step. Results and new insights gained from each of these complementary areas

of research are described in greater detail in the following sections.

6.1 Nonlinear bias corrections for all-sky satellite data assimilation

For the first research topic, we used output from a high-resolution ensemble data assimilation

system to assess the ability of an innovative BC method to remove linear and nonlinear condi-

tional biases from all-sky satellite infrared brightness temperatures. This method removes biases

from the satellite observations using a Taylor series polynomial expansion of the OMB departures,

with one or more predictors used to capture the error characteristics in the departure distribution.

In Chapter 3, the ability of the NBC method to remove the observation biases was assessed us-

ing output from cycled data assimilation experiments in which the all-sky infrared brightness

temperatures were passively monitored during a 5-day period. After determining that the NBC

method was able to effectively remove complex error patterns in the OMB departures, cycled data

assimilation experiments were then performed for an independent 3-day period in which all-sky

infrared brightness temperatures were actively assimilated at hourly intervals. Results from these

active data assimilation experiments were presented in Chapter 4. The main conclusions from this

portion of the thesis include:

• The passive monitoring experiments showed that all-sky infrared brightness temperatures

are characterized by complex conditional bias patterns that cannot be properly accounted

for using traditional linear BC methods designed to assimilate clear-sky observations.

• The linear 1st order term had the largest impact on the entire OMB departure distribution,

as measured using reductions in variance; however, it was necessary to use the nonlinear

2nd and 3rd order terms to remove conditional biases that remained in the distribution after

the constant and linear bias components were removed.

• Experiments showed that variables sensitive to the cloud top height are the most effective

bias predictors for all-sky infrared brightness temperatures, especially when higher order

Taylor series terms are used.
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• Comparison of the statistics for clear-sky and cloudy-sky matched observations revealed

that constant and linear terms are sufficient to remove the bias from clear-sky observations;

however, these terms were unable to remove the more complex bias characteristics present

in the cloudy-sky observations. This points toward the need to use nonlinear BC predictors

when assimilating all-sky satellite brightness temperatures.

• Results from the active data assimilation experiments showed that assimilating the all-sky

brightness temperatures without first removing their biases degraded the forecast accuracy

based on comparisons to radiosonde observations.

• Removal of the linear and nonlinear conditional biases from the all-sky brightness tempera-

tures prior to their assimilation substantially improved the results compared to the baseline

experiment in which no BC was used. A set of experiments showed that errors in 1-h fore-

casts generally decreased as the order of the BC applied to the observations increased from

the 0th order to the 3rd order.

• Cycled data assimilation experiments employing BC predictors sensitive to the cloud top

height generally had the smallest errors because they were able to more effectively remove

large conditional biases associated with deficiencies in the simulation of upper-level clouds.

• Sensitivity experiments showed that symmetric bias predictors representing the average of

the observed and simulated quantities did not improve the model analyses as effectively as

the observed predictors did by themselves. This behavior occurred because the relative lack

of upper-level clouds in the model analyses prevented the simulated and symmetric quan-

tities from serving as adequate predictors of the observation departure bias. This indicates

that, though symmetric predictors have proven utility for all-sky observation error models,

they may not be as useful when developing all-sky BC methods.

6.2 Dynamic model bias estimators

For the second research topic, we used the L63 model to develop a method to generate dynamic

model error estimators that were then used to improve the model background error covariance

matrix B employed during the data assimilation step. Unlike the first topic, the goal here was to

directly identify model biases rather than overall biases in the OMB departure statistics. The L63

model consists of a set of three coupled ordinary differential equations that together provide a
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simplified description of dry convection. It was chosen for this part of the thesis because it is less

complex than a full physics model while still maintaining strong nonlinearity representative of

many atmospheric processes. It also provides a fully accessible framework with complete knowl-

edge of the model dynamics that promotes a deeper understanding of model biases and how to

diagnose them. A model error was introduced to the system by adding small perturbations to the

ρ parameter. An asymptotic analysis was performed to assess the sensitivity of the L63 model

state variables (x1,x2,x3) to changes in this parameter. A generalized method that uses the model

variables to diagnose the model error was then developed, with the dynamic model error esti-

mators subsequently used to modify the B matrix. Cycled data assimilation experiments were

performed to demonstrate the utility of the model bias estimation method. The main conclusions

from this part of the thesis include:

• The asymptotic analysis revealed that the model error asymptotically depends on the model

variables, in particular x1(p0, t0), when small perturbations are added to the ρ parameter.

The magnitude of the error for each model state variable is proportional to the size of the δρ

perturbation.

• Cycled data assimilation experiments demonstrated the feasibility of dynamically estimat-

ing the model errors using nonlinear error estimators derived from a polynomial expansion

of the model variables. It was shown that the asymptotics accurately represent the behavior

of the L63 model and that the coefficients of the asymptotic expansion can be reasonably es-

timated by solving a regularized least squares regression problem when polynomial terms

up to the second order are used. The asymptotic error estimators were also able to accurately

capture the magnitude of the true errors in the model background and their rapid changes

with time.

• Additional experiments examined the optimality of using either a fixed or dynamically vary-

ing B matrix during the data assimilation step. It was demonstrated that the combination

of a constant B matrix with a dynamic B matrix that varies with time based on the model

bias estimators leads to a more accurate model analysis. The smallest observation-minus-

background departures occurred when the observations were assimilated more frequently

and had smaller errors.

• A final set of experiments revealed that the bias correction coefficient vector computed using

the generalized model bias estimation framework could be used to reconstruct the trajectory

130



of the ρ parameter. It was shown that the coefficient vector does not depend on the location

of the model, but rather on the size of the analysis increment x(a)− x(b). This means that

it can be used to diagnose the size of the unknown δρ perturbation, without knowing its

explicit dependence on the state variables, using only the model background and analysis

information that is readily available in all data assimilation systems.

• Together, these results demonstrate that it is highly desirable to employ dynamic estimators

of the model first guess error in data assimilation systems.

6.3 Future work

Additional studies are necessary to thoroughly assess the ability of the NBC method to improve

the assimilation of all-sky satellite brightness temperatures when using different data assimilation

methods, and in other regional and global NWP modeling systems. Because the results presented

in Chapters 2 and 4 focused on the SEVIRI 6.2 µm band sensitive to clouds and water vapor

in the upper troposphere, it would be beneficial to perform similar experiments using brightness

temperatures from other infrared bands. Examples include bands that are sensitive to water vapor

in other layers of the troposphere, as well as atmospheric window bands that provide information

about surface properties when skies are clear and cloud top properties when clouds are present.

Forecasts should also be performed to evaluate how long the improved cloud and water vapor

fields in the initialization datasets last during the forecast period, as well as their impact on other

aspects of the forecast such as precipitation and surface radiation. Such experiments performed

over longer time periods and for different seasons would promote deeper insight into the behavior

of the NBC method and its ability to improve the accuracy of the model analyses and forecasts.

It would also be useful to explore the ability of other types of basis functions, such as trigono-

metric functions, to diagnose nonlinear bias characteristics and how they vary with time. A related

question would be to explore the relative merit of employing online bias corrections as were im-

plemented during these experiments, or offline calculations that use error statistics accumulated

over many weeks or longer. The latter approach would greatly increase the sample size and stabil-

ity of the bias correction coefficients; however, this would come at the cost of no longer being able

to respond quickly to changes in the error characteristics due to changes in the prevailing cloud

regimes. It would also require re-computing the bias correction coefficients any time changes were
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made to the NWP or radiative transfer models, or to other aspects of the data assimilation system.

The experiments performed during this thesis are an initial step toward the inclusion of the

NBC method in operational data assimilation systems. There are many additional developments

that have the potential to substantially increase its impact. For example, further research is nec-

essary to determine if using a Huber norm in combination with the NBC method could improve

existing quality control methods by identifying erroneous observations after the nonlinear con-

ditional biases have been removed from the observation departures. There is also great promise

in pairing the NBC method to a dynamic all-sky observation error model because that could po-

tentially lead to the more effective use of the information provided by clear-sky and cloudy-sky

brightness temperatures by assigning them different observation errors. Incorporation of both of

these approaches could potentially lead to more cloud-affected observations being assimilated in

sensitive areas of the domain where nonlinear error growth is more likely to occur. Development

of an all-sky correlated observation error model is another outstanding issue that requires sub-

stantial research efforts. The results also suggest that attention should be given to developing new

methods that can increase the ensemble spread in the cloud hydrometeor variables that are very

important when assimilating cloud-sensitive observations.

Finally, for the model bias estimation research presented in Chapter 5, we restricted our at-

tention to a small-scale idealized modeling system that consists of three coupled ordinary differ-

ential equations. Though this approach was advantageous because it allowed us to have complete

knowledge of the model state while developing the model bias estimators, real-world models and

data assimilation systems have much deeper complexity and their dimensions are not compara-

ble to the L63 system that was employed here. Thus, it is of high interest to examine the ability of

the generalized model bias estimator method to improve the assimilation performance within a

high-dimensional, real-world environment. For example, inclusion of the dynamic model bias es-

timates in the background error covariance matrix B could make it possible to reduce the amount

of covariance inflation used by ensemble data assimilation systems. This could be useful because

whereas additive covariance inflation methods typically draw random perturbations from a clima-

tology, the method developed in this thesis computes a dynamic B matrix using the current con-

ditions. Likewise, incorporation of the dynamic model bias estimation method in weak-constraint

4DVAR systems could directly enhance the quality of the background error covariance matrix B

or be used to estimate the model error covariance matrix Q that is often difficult to determine in

practice. More detailed investigations of these and other topics are left for future work.
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