Search from over 60,000 research works

Advanced Search

UVC LED and conducting yarn-based heater for a smart germicidal face mask to protect against airborne viruses

[thumbnail of Open Access]
Preview
materials-14-06999-v2.pdf - Published Version (3MB) | Preview
Available under license: Creative Commons Attribution
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Pattanaik, P. orcid id iconORCID: https://orcid.org/0000-0002-0042-6672, Holderbaum, W. orcid id iconORCID: https://orcid.org/0000-0002-1677-9624, Khandual, A. orcid id iconORCID: https://orcid.org/0000-0002-9357-9749 and Tripathy, H. P. orcid id iconORCID: https://orcid.org/0000-0003-0129-2642 (2021) UVC LED and conducting yarn-based heater for a smart germicidal face mask to protect against airborne viruses. Materials, 14 (22). ISSN 1996-1944 doi: 10.3390/ma14226999

Abstract/Summary

“Wear a mask. Save lives” is the slogan of WHO and all the government agencies over the world to the public. One of the most adopted prevention measures that can limit the spread of the airborne virus in the form of respiratory viral diseases, including the new strain of COVID-19, is wearing a proper mask. If the mask surface is heated to 65 to 70 °C, it could help potentially diminish any viruses or bacteria accumulated. The FAR-Ultraviolet -C (FAR-UV-C) dose for the influenza limit to 254 nm light is ~3 mJ/cm2/hour exposure is not harmful to the human skin and eyes. Here, we propose an intelligent mask served by FAR-UV-C and conducting a yarn-based heater that could potentially be activated in a controlled manner to kill the virus. The effective irradiation intensity for skin application would be under 0.1 µW/cm2. The exposure risk of UV-C is technically prevented by fabricating multi-layered fabrics with multiple functionalities. Along with experimental validation on bacterial filtration efficiency (BFE), tinker cad simulation for circuit design, and comsol multiphysics for temperature profile study, we probed Moisture Management Test (MMT) in addition with cytotoxicity risk by MTT Assay for survivability to ensure safer application potential. This novel proposed design with the germicidal combination of heating and FAR-UV-C models, described here, is promising in retaliating and combating any airborne viruses.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/101430
Item Type Article
Refereed Yes
Divisions Life Sciences > School of Biological Sciences > Department of Bio-Engineering
Uncontrolled Keywords healthcare, COVID-19, germicidal face mask, FAR-UV-C LED, conducting yarn-based heater, MMT, antibacterial, cytotoxicity
Publisher MDPI
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar