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2Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil12

3Hydro-Climate Extremes Lab (H-CEL), Ghent University, Coupure Links 653, 9000 Ghent, Belgium13
4Schmid College of Science and Technology, Chapman University, Orange, CA, USA14

5Imperial College London, Department of Life Sciences, Silwood Park Campus, Buckhurst Road, Ascot,15

SL5 7PY, UK16
6Numerical Terradynamic Simulation Group, University of Montana, Missoula, MT, USA17

7Brazilian Agricultural Research Corporation, Embrapa Meio Ambiente, Jaguariúna, SP, Brazil18
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13University of Bristol, BS7 8PD, UK25

14Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX,26

USA27
15Department of Nuclear Energy, Federal University of Pernambuco, Recife, PE, Brazil28

16Center for Earth System Research and Sustainability (CEN), Universität Hamburg, Hamburg, Germany29
17Department of Environmental Science and Renewable Natural Resources, University of Chile, Santiago,30

Chile31
18Institute of Ecology and Biodiversity, Santiago, Chile32

19Department of Geography and Environmental Science, The University of Reading, Reading, UK33
20Federal University of the Agreste of Pernambuco, Garanhuns, PE, Brazil34

21Federal Rural University of Pernambuco, Serra Talhada, PE, Brazil35
22Department of Atmospheric and Ocean Sciences, FCEN - UBA. Buenos Aires, Argentina36

23National Council for Scientific and Technical Research, (CONICET), Argentina37
24Instituto de Clima y Agua. Instituto Nacional de Tecnoloǵıa Agropecuaria (INTA), Buenos Aires,38
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Key Points:41

• Four remote sensing ET models were evaluated using data from 25 flux towers in42

South America43

• GLEAM and PT-JPL provided a significantly greater number of daily outputs44

• Comparisons with flux tower-based ET showed that GLEAM and PT-JPL pro-45

duced higher correlations whereas RMSE was similar for all models46

• No model outperformed the other for all biomes, climates or land uses47
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Abstract48

Many remote sensing-based evapotranspiration (RSBET) algorithms have been proposed49

in the past decades and evaluated using flux tower data, mainly over North America and50

Europe. Model evaluation across South America has been done locally or using only a51

single algorithm at a time. Here, we provide the first evaluation of multiple RSBET mod-52

els, at a daily scale, across a wide variety of biomes, climate zones, and land uses in South53

America. We used meteorological data from 25 flux towers to force four RSBET mod-54

els: Priestley–Taylor Jet Propulsion Laboratory (PT-JPL), Global Land Evaporation Am-55

sterdam Model (GLEAM), Penman–Monteith Mu model (PM-MOD), and Penman–Monteith56

Nagler model (PM-VI). ET was predicted satisfactorily by all four models, with corre-57

lations consistently higher (R2 > 0.6) for GLEAM and PT-JPL, and PM-MOD and58

PM-VI presenting overall better responses in terms of percent bias (−10 < PBIAS <59

10%). As for PM-VI, this outcome is expected, given that the model requires calibra-60

tion with local data. Model skill seems to be unrelated to land-use but instead presented61

some dependency on biome and climate, with the models producing the best results for62

wet to moderately wet environments. Our findings show the suitability of individual mod-63

els for a number of combinations of land cover types, biomes, and climates. At the same64

time, no model outperformed the other for all conditions, which emphasizes the need65

for adapting individual algorithms to take into account intrinsic characteristics of climates66

and ecosystems in South America.67

1 Introduction68

Land evaporation, or evapotranspiration (ET ), is the phenomenon by which wa-69

ter is converted from a liquid into its vapor phase over land. It plays a significant role70

in the modulation of global climate feedbacks being a key driver of the Earth’s carbon,71

energy, and water cycles at local, regional, and global scales (Cao et al., 2010; Tong et72

al., 2017; Khosa et al., 2019; Valle Júnior et al., 2020; de Oliveira et al., 2021). In situ73

ET measurements can be obtained from micro-meteorological methods (e.g., eddy co-74

variance, scintillometry, or Bowen ratio method) and those derived from the soil water75

balance (e.g., directly using lysimeters, or from changes in profile soil moisture content76

obtained gravimetrically, from neutron probes, or capacitance-based soil water monitor-77

ing equipment). Besides, plant physiological techniques such as sap flow methods, pro-78

vide direct estimates of transpiration (Verhoef & Campbell, 2006; Allen et al., 2011; Fisher79

et al., 2011), but only the micro-meteorological methods provide ET data at the field80

to landscape (e.g., scintillometry) scale. Over the past three decades, eddy covariance81

(EC) systems have become the state-of-the-art and standard in situ method to quan-82

tify land surface energy and mass fluxes for different types of ecosystems (Restrepo-Coupe83

et al., 2013; Rodrigues et al., 2016; Campos et al., 2019; X. Wang et al., 2020). However,84

these techniques estimate fluxes for areas of relatively limited spatial dimensions (∼1 km2)85

depending on the heterogeneity of the landscape), and they are affected by specific lo-86

cal conditions, such as the occurrence of advection across sharp contrasts in vegetation87

and/or irrigation conditions, and those caused by topographic features, such as cold air88

drainage for sloping terrain (Allen et al., 2011; Rwasoka et al., 2011; Mutti et al., 2019;89

Rahimzadegan & Janani, 2019; Mauder et al., 2020).90

During the 1990s and 2000s, remote sensing based ET (RSBET) algorithms, us-91

ing information from visible, near-infrared, and thermal infrared bands, were developed,92

such as the Surface Energy Balance Algorithms for Land (SEBAL, (Bastiaanssen et al.,93

1998)), Simplified Surface Energy Balance Index (S-SEBI, Roerink et al. (2000)), Sur-94

face Balance Energy System (SEBS, Su (2002)), Simplified Surface Energy Balance (SSEB,95

Senay et al. (2007)), and Two-Source Energy Balance Model (TSEB, Norman et al. (1995);96

Kustas and Norman (1999)). These algorithms were developed for sub-regional appli-97

cations, with a focus on irrigation or water resources management. Over South Amer-98

ica, their predictive skills have been assessed quite extensively, mostly for irrigated crop-99
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land (Teixeira et al., 2009; Paiva et al., 2011; Poblete-Echeverŕıa & Ortega-Farias, 2012;100

Bezerra et al., 2013, 2015; Olivera-Guerra et al., 2017; Lopes et al., 2019; Mutti et al.,101

2019). Studies show that these models perform well when compared to field observations102

of ET (Teixeira et al., 2009; Poblete-Echeverŕıa & Ortega-Farias, 2012).103

Since the late 2000s, algorithms such as PT-JPL (Fisher et al., 2008), PM-MOD104

(Mu et al., 2007, 2011), and GLEAM (Miralles et al., 2011; Martens et al., 2017) focused105

on the use of satellite-derived observations to create spatially coherent global ET esti-106

mates (Fisher et al., 2017). PT-JPL is at the core of the ECOSTRESS mission (Fisher107

et al., 2020), while PM-MOD is central to the global terrestrial MODIS ET product (MOD16).108

GLEAM is used for the annual State of the Climate report since 2015 (Blunden & Arndt,109

2020).110

Using flux tower data, previous studies conducted in South America evaluated GLEAM111

and MOD16 (Ruhoff et al., 2013; Moreira et al., 2019; Paca et al., 2019). However, these112

studies validated off-the-shelf ET datasets generated by these models, not the models113

themselves. Since such ET products are not produced using a common dataset of me-114

teorological variables, a comparative evaluation cannot be made in terms of model struc-115

ture. Rather, different model skills would be partially linked with the quality of the in-116

puts. A multi-site tropical study, over several continents, validating the PT-JPL model117

at a regional scale on a monthly basis was presented by Fisher et al. (2009). However,118

to the best of our knowledge, studies assessing the daily predictive skills have only been119

conducted at the local scale (Teixeira et al., 2009, 2013; Miranda et al., 2017; B. S. Oliveira120

et al., 2018; V. d. A. Souza et al., 2019).121

A major challenge to verify the results of these methods is the scarcity of ground-122

based observations, due to the uneven spatio-temporal distribution of the ET monitor-123

ing efforts. As a result, remote sensing ET methods are typically evaluated or param-124

eterized using sites located only in North America, Europe (Ershadi et al., 2014; McCabe125

et al., 2016; Michel et al., 2016; Xu et al., 2019), Australia (Martens et al., 2016) and126

East Asia (Jang et al., 2013; Chang et al., 2018; Khan et al., 2018; Li et al., 2019). For127

example, Mu et al. (2011) proposed improvements to the PM-MOD ET global algorithm128

(Mu et al., 2007), based on comparisons with ET measurements from 46 AmeriFlux sites,129

45 of them located in USA and Canada. Martens et al. (2017) evaluated the GLEAM130

algorithm with 91 worldwide FLUXNET sites; however, ∼65 were located in the USA131

and in Europe. Therefore, these models might not satisfactorily represent ET in sparsely132

sampled regions with very different climate conditions such as South America, despite133

this continent representing ca. 12% of the total Earth’s terrestrial area.134

South America spans two hemispheres, and four major climate zones, from near135

the equator to sub-Antarctic regions, which makes it a geographically unique continent136

(Goymer, 2017; Trajano, 2019). Biomes in this continent range from tropical to decid-137

uous forests, and contain ecoregions with high sensitivity to variability in water (e.g.,138

the Caatinga and Humid Pampas) and energy availability (e.g. the Amazon, Valdivian139

temperate and Magellanic subpolar forests) (Seddon et al., 2016). Also, five out of six140

of the terrestrial biomes not included in satellite-based ET algorithm evaluations at a141

global scale are found in South America (see Section 2.1). Thus, the evaluation of RS-142

BET methods for South America offers an opportunity to reduce the current research143

gap, in particular at large spatial scales.144

FLUXNET provides a common framework for the verification of ET algorithms.145

Nevertheless, the available sites in the FLUXNET2015 database are not evenly distributed146

around the world (Pastorello et al., 2020). Validating global models in South America147

is challenging, mainly because the data from ∼90% of its FLUXNET registered sites are148

not readily available to the scientific community: less than 50% of South American Amer-149

iFlux sites are available for direct access. Additionally, flux towers in woody savannas150
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and evergreen broad-leaf forests account for nearly 65% of all Latin American FLUXNET151

sites while some of the biomes are not properly represented (Villarreal & Vargas, 2021).152

The identification of scientific gaps and the proposed improvements are considered153

a priority for the future development of ET assessment methods from remote sensing154

(Fisher et al., 2017). Some of them include merging different ET-estimation methods,155

and the identification of their sources of uncertainty (Fisher et al., 2017; Y. Zhang et al.,156

2017; Paca et al., 2019). Indeed, despite the recent developments of remote sensing ET157

methods, there are still challenges concerning the refinement of those algorithms to rem-158

edy the lack of information on specific surface characteristics and fluxes of undersam-159

pled climate zones and vegetation types. In this context, one of the main sources of un-160

certainty in global satellite-based ET estimates are the fractional vegetation cover and161

net radiation (Ferguson et al., 2010; Vinukollu et al., 2011; Badgley et al., 2015)162

We evaluated the predictive skills of four satellite-based ET models, designed for163

regional and continental scale applications, over South America. The main question we164

seek to answer is whether such models can be applied consistently to reliably capture165

ET in South America. Specific research questions include: (i) are the models capable166

of correctly estimating ET and its components? (ii) are the models predictive skills af-167

fected by climate, land cover type or biome?168

2 Study area, data, and methods169

2.1 South American biomes, flux tower-based ET and meteorological170

data171

The study area encompasses five biomes (Table S1 in the Supporting Material –172

SM): Tropical & Subtropical Moist Broadleaf Forests (TSMBF); Flooded Grasslands &173

Savannas (FGS); Tropical & Subtropical Grasslands, Savannas & Shrublands (TSGSS);174

Tropical & Subtropical Dry Broadleaf Forests (TSDBF) and Temperate Broadleaf & Mixed175

Forests (TBMF) (Olson et al., 2001).176

We used daily meteorological data from 25 flux tower sites located across various177

South American biomes and land cover types to verify the predictive skill of the selected178

RSBET models (Figure 1a, Table S2 in SM). The time period considered for analysis was179

determined by the available time-series for each site (Figure S1 in SM). Further infor-180

mation about each biome is provided in SM. Ten sites are from FLUXNET (Pastorello181

et al., 2020), AmeriFlux networks (Novick et al., 2018) and Large-Scale Biosphere-Atmosphere182

Experiment in the Amazon (LBA) project (Saleska et al., 2013), while the remaining data183

were obtained from the respective principal investigators. Concerning towers sites not184

available in global networks, data handling included standard procedures to ensure qual-185

ity data, including: detection of spikes caused by changes in the footprint or imprecise186

measurements; delay correction of H2O/CO2 in relation to the vertical wind component;187

correction of coordinates (2D rotation); correction of spectral loss; conversion of the buoy-188

ancy flux to sensible heat flux, known as SND-corrections (Schotanus et al., 1983); sonic189

virtual temperature correction; corrections for flux density fluctuations, known as WPL190

corrections (Webb. et al., 1980); incorporated frequency response correction. Addition-191

ally, we performed due corrections with respect to reduction of wind velocity or turbu-192

lence increase caused by the shadow of the tower and the sensor. Details about proce-193

dures carried out for data processing and filtering to implement these corrections can194

be found in Tonti et al. (2018); Holl et al. (2019); Campos et al. (2019); Cabral et al. (2020).195

We also emphasize that those data have been widely used in previously scientific pub-196

lications (Rocha et al., 2009; Cabral et al., 2010, 2011; Restrepo-Coupe et al., 2013; Ro-197

drigues et al., 2016; Arruda et al., 2016; Silva et al., 2017; Marques et al., 2020). The198

spatial patterns of mean annual precipitation (P ), air temperature (T ), and potential199
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evapotranspiration (PET ) show that selected sites encompass a wide variety of climates200

(Figure 1b).201

Figure 1. (a) Location of flux tower sites. Land cover types are indicated prior to tower

names in the map: Croplands (CROP), Deciduous Needleaf Forest (DNF), Evergreen Broadleaf

Forest (EBF), Grasslands (GRA), Mixed Forest (MF), Permanent Wetland (PW), and Woody

Savanna (WS); Biome types (Olson et al., 2001) are indicated by shades of green, yellow and blue

on the map (see legend): Tropical & Subtropical Moist Broadleaf Forests (TSMBF); Tropical &

Subtropical Dry Broadleaf Forests (TSDBF); Temperate Broadleaf & Mixed Forests (TBMF);

Tropical & Subtropical Grasslands, Savannas & Shrublands (TSGSS); Temperate Grasslands,

Savannas & Shrublands (TGSS); Flooded Grasslands & Savannas (FGS); Montane Grasslands

& Shrublands (MGS); Mediterranean Forests, Woodlands & Scrub (MFWS); Deserts & Xeric

Shrublands (DXS); Climates across South America from selected representative sites are indi-

cated by patterns on the map (see legend): Tropical savanna (Aw), Tropical monsoon (Am), Hot

semi-arid (BSh), Cold semi-arid (BSk), Humid subtropical (Cfa), Temperate oceanic (Cfb), Dry-

winter subtropical highland (Cwb), Polar Tundra (Td) (Peel et al., 2007). (b) Gridded annual

average (AVG) and standard deviation (SD) for air temperature (T ), rainfall (P ), and potential

evapotranspiration (PET ) across South America and the monitored sites (Harris et al., 2020).

The closure of the energy budget is rarely observed with flux tower measurements202

(Wilson et al., 2002; Foken, 2008). Usually, the available energy flux (Rn−G) is greater203

than (LE+H), where Rn is the net radiation, G is the soil heat flux, LE is the latent204

heat flux and H is the sensible heat flux. The imbalances in the surface energy balance,205

reported here as an energy balance ratio, EBR (i.e. (LE+H)/(Rn−G)), range from206

0.73 to 1.16 (mean ∼0.90) (Table S2, SM). It is paramount that only high-quality data207

were used to run and assess the models. We computed daily EBR for each site and ex-208

cluded days with EBR ≤ 0.75 or ≥ 1.25. Daily averages of meteorological variables were209

calculated from 30-min or hourly data only when at least 80% of the records per day were210

available. To obtain daytime and nighttime inputs for the MOD16 model (PM-MOD in211

this paper), we considered only days with a minimum of twenty 30-min daytime records212

and twenty during the night. As in Mu et al. (2011), the shortwave incoming radiation213

(Rgs ↓) was used to distinguish between daytime (Rgs↓>10 W m−2) and nighttime (Rgs↓<214

10 W m−2). Regarding the fluxes, we used quality-checked data that had not been gap-215

filled. Previous studies have shown that ET derived from the other energy balance fluxes,216

i.e. LE = Rn − G − H, can agree well with eddy covariance ET and lysimeter data217

(Amiro, 2009; Sánchez et al., 2019). Therefore, instead of using the EC-measured LE,218

to represent ET , we derived LE from the equation above. Such validation approach (i.e.219

comparing model ET with EB-derived LE, ETEB) has been adopted in previous stud-220

ies (Twine et al., 2000; Wilson et al., 2002; Stoy et al., 2013; Fisher et al., 2020). The221

results of using the eddy covariance ET (ETEC) instead can be found in the SM (see222

Fig. S11-S13).223

The quality control procedure described above was not adopted for the TF1, and224

TF2 towers (see Figure 1a). At those sites, horizontal advection plays an important role225

due to extreme weather variations throughout the year (Levy et al., 2020), such that the226

energy balance closure cannot be diagnosed by EBR, as described above. For instance,227

the SDF zone is known as an anticyclone pathway between the Pacific and Atlantic oceans,228

and TF1 and TF2 are located in the extreme southern parts of Patagonia, a region char-229

acterized by strong winds. Thus, for TF1 and TF2 sites, we used ET derived from mea-230

sured LE.231
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2.2 Remote sensing-based vegetation indices232

The required vegetation index (VI) to run PT-JPL, PM-MOD and PM-VI is the233

Enhanced Vegetation Index (EV I). Vegetation Optical Depth (V OD) is used in GLEAM.234

EV I was derived from the 16-day Level 3 Global product of the MODerate Resolution235

Imaging Spectroradiometer (MODIS), aboard the Terra and Aqua satellites (Huete et236

al., 2002). We used both MODIS VI products, i.e. MOD13Q1 (Terra) and MYD13Q1237

(Aqua), at 250-m resolution, to derive daily composites of EV I. V OD was extracted238

from the product described in Moesinger et al. (2020). Fisher et al. (2008) used the Soil239

Adjusted Vegetation Index (SAV I) instead of EV I because the former does not require240

the blue reflectance (0.45–0.51 µm), however, the authors recognize that both indices are241

very similar. As we are interested in assessing the ET models rather than the products242

resulting from different forcing data, we used EV I in Fisher’s model (PT-JPL). Leaf area243

index (LAI) and other vegetation-related variables (e.g., fraction of Absorbed Photo-244

synthetically Active Radiation, fPAR) are handled differently in each model. For exam-245

ple, in PT-JPL, LAI is obtained from total fractional vegetation cover, whereas in PM-246

MOD the 1-km MODIS LAI (MOD15) product is adopted. The original procedures to247

obtain those variables were not changed here. The following treatment was applied to248

the MODIS-derived data. “Good quality” pixels were selected, based on the quality as-249

surance (QA) flags. Next, an autoregressive model was applied to fill in the gaps (Akaike,250

1969). The gap-filling procedure was applied to gaps smaller than 16 days, while gaps251

of longer periods were excluded from the analysis. Finally, we implemented a temporal252

filter to improve the fPAR and LAI time series to reproduce precisely all pre-processing253

steps of the standard PM-MOD algorithm (Mu et al., 2011). Filtering of fPAR and LAI254

allowed for the correction of underestimated values (abrupt and unrealistic decreases in255

the time series) that mostly originate from cloud contamination effects which were not256

correctly identified in the quality control fields.257

2.3 Summary of remote sensing-based ET models258

2.3.1 GLEAM259

GLEAM is a semi-empirical/process-based model that estimates the total evapo-260

rative flux and its components. In this study, version 3 of the algorithm is used (Martens261

et al., 2017). The main aspects of the model are described briefly, while for details we262

refer to Miralles et al. (2011) and Martens et al. (2017). The model calculates potential263

evaporation for four sub-grid land cover fractions: (1) open water, (2) low vegetation,264

(3) tall vegetation, and (4) bare soil using the Priestley and Taylor (1972) equation. For265

tall and low vegetation cover fractions, potential transpiration is constrained using an266

empirical evaporative stress factor which is calculated as a function of soil moisture at267

root-zone depth and microwave V OD as described in Martens et al. (2017). V OD (Veg-268

etation Optical Depth) accounts for the attenuation of microwaves through vegetation269

and can be used as a proxy for vegetation phenology. Thus, V OD is a microwave pa-270

rameter closely linked to vegetation water content (Liu et al., 2013) and in GLEAM it271

is used to represent phenological changes in vegetation. The soil moisture in the root-272

zone is calculated with a multi-layer water-balance model forced by precipitation and273

satellite surface soil moisture retrievals. For bare soil, the evaporative stress factor is cal-274

culated as a function of surface soil moisture only, whereas for open water evaporation,275

no stress factor is applied. For the tall vegetation cover fraction, rainfall interception loss276

is estimated with Gash’s analytical model (Gash, 1979; Miralles et al., 2010). The ET277

is then calculated as the sum of low and tall vegetation transpiration, rainfall intercep-278

tion loss, bare soil evaporation, and open-water evaporation with each weighted by the279

respective fraction.280
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2.3.2 PT-JPL281

The global ET model proposed by Fisher et al. (2008) is based on the Priestley and282

Taylor equation for potential ET (PET ), which is partitioned into actual plant transpi-283

ration, soil evaporation, and interception evaporation, i.e. Etrans+Esoil+Eint. To re-284

duce potential ET to actual ET , the PT-JPL model applies ecophysiological constraints285

based on land surface information such as vegetation properties and humidity/water va-286

por pressure deficit (V PD). Fisher et al. (2008) used NDV I and SAV I as a proxy for287

plant physiological status. We used EV I because it provides a better indication of green288

vegetation cover than NDV I, as acknowledged by Fisher et al. (2008). The model par-289

titions available energy flux using four plant-related constraints: LAI, green canopy frac-290

tion, plant temperature, and plant moisture. Similar to PM-MOD (see next subsection),291

vegetation cover, canopy wetness, etc. determine how the available energy flux is par-292

titioned among the ET terms. A unique aspect related to the plant temperature con-293

straint is the determination of an optimal temperature, Topt (Potter et al., 1993), which294

corresponds to an optimal stomatal conductance. The latter co-determines Etrans.295

2.3.3 PM-MOD296

The MOD16 ET model (PM-MOD) is based on the Penman-Monteith equation to297

produce a daily global ET product summing up daytime and nighttime ET (Mu et al.,298

2011). In this model, total ET is partitioned into Esoil, Eint, and Etrans. To compute299

Esoil, PM-MOD uses potential soil evaporation and a soil moisture constraint function300

based on V PD and air relative humidity (RH) (Fisher et al., 2008). The evaporation301

of the water intercepted by the canopy, Eint, is calculated using the relevant equations302

from a revised version of the Biome-BGC model (Thornton, 1998). The PM-MOD as-303

sumes that Eint occurs when the vegetation is covered with water, i.e. when the water304

cover fraction (fwet) > 0, which is constrained by RH (Mu et al., 2011). In the PM-305

MOD model fwet is calculated as in the PT-JPL model: fwet is set to 0 if RH < 70%306

and fwet = (RH/100)4 if 70 < RH < 100% (Running et al., 2019). The PM-MOD307

model is designed to allow Etrans to occur during daytime and nighttime, by adding con-308

straints to stomatal conductance for V PD and minimum air temperature, and ignor-309

ing constraints relating to high air temperature (Running et al., 2019). The partition-310

ing of available energy flux into soil or interception evaporation is based on vegetation311

cover (Fc), which is assumed to be equal to fPAR from the MODIS product MOD15A2312

(Mu et al., 2011). Although this method is based on the PM equation, PM-MOD does313

neither require wind speed nor soil moisture data for the parameterization of aerodynamic314

and surface resistance. Further details about PM-MOD can be found in Mu et al. (2011)315

and Running et al. (2019). Note that some updates have been implemented in PM-MOD316

since Mu et al. (2011), which can be found in Running et al. (2019). These were also con-317

sidered here in the implementation of PM-MOD.318

2.3.4 PM-VI319

This model relies upon the hypothesis that ET is mostly controlled by specific dom-320

inant processes, such as transpiration and photosynthesis, hence a good correlation be-321

tween such processes and ET is necessary for good model performance (Nagler et al.,322

2007). There are several formulations to estimate ET from VIs (Nagler et al., 2005, 2009).323

In this study, we selected the algorithm proposed by Nagler et al. (2013), which estimates324

ET using the reference crop evapotranspiration, ETo, from the FAO-56 Penman-Monteith325

(PM) equation (Allen et al., 1998), and a crop coefficient, KcV I , derived from a vege-326

tation index. KcV I can be calculated in different ways (Nagler et al., 2005, 2013). Fol-327

lowing Nouri et al. (2016) and P. T. S. Oliveira et al. (2015), KcV I was calculated as:328

KcV I = a
(
1− e−b×EV I

)
− c (1)
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where a, b and c are fitted coefficients. We used a parameter optimization tool based on329

a genetic algorithm to optimise the coefficients to estimate ET values close to the mea-330

sured ones (P. T. S. Oliveira et al., 2015). The fitting procedure minimizes the objec-331

tive function (OF ) given by the sum of squared differences between tower-based ET (ETobs)332

and ET estimates from the models (ETsim) at time i:333

OF =

n∑
i=1

[ETobs(i)− ETsim]
2

(2)

This model, herein referred to as PM-VI, has frequently been employed to estimate334

ET at local and regional scales (P. T. S. Oliveira et al., 2015; Nouri et al., 2016; Jarchow335

et al., 2017). Although obtaining ETo requires a considerable amount of meteorologi-336

cal variables, the PM-VI implementation is easier and has a lower computational cost337

compared to other models. Unlike the three other models, PM-VI requires the calibra-338

tion of the fitting coefficients, which can be a major issue for regions where ET and VI339

are poorly correlated or when correlations change over time (Chong et al., 1993). To cal-340

ibrate the fitting coefficients, we randomly selected 20% of the available data at each site341

and used the remaining 80% to validate the model.342

2.4 Quantifying model reliability343

The model predictive skill was visually evaluated with scatter plots of measured344

versus modelled ET , as well as through the coefficient of determination (R2), root mean345

square error (RMSE), percent bias (PBIAS), concordance correlation coefficient (ρ),346

slope (m), and intercept (b) of the linear regression. The data used in the analysis were347

filtered for rainy days (P > 0.5 mm). Our analysis proceeded from a general (no dis-348

tinction among sites) to a site-by-site and group level analysis, i.e. per biome, climate,349

or land use. The number of flux towers assigned to each subgroup (i.e., the different biomes,350

climate, and land use classes) varied, and so did the record length per subgroup. To ac-351

count for the different sizes, the following sampling procedure was performed, in which352

we computed the variability of each performance metrics for each group analysis (i.e.,353

across its different subgroups): (i) A sample size N was defined as half of the record length354

of the shortest subgroup, among all models; (ii) for each model, samples of length N were355

taken from within each subgroup, and the performance metrics were computed; (iii) This356

procedure was repeated 1000 times, yielding a mean and standard deviation (SD) of the357

metrics at each subgroup, per model. The resulting SD are likely to be influenced by the358

choice of N, and other rationale for its choice could have been made. In this way the con-359

fidence bands reported here are to be seen as measures of relative variability, i.e., the vari-360

ability between the models, and not as absolute uncertainty bounds for each of them.361

To establish a relationship between model predictive skill and water availability at in-362

dividual tower sites, we obtained the aridity index (AI = P/ETo) from the global dataset363

provided by Trabucco and Zomer (2019). For many tower sites, the available meteoro-364

logical data (even from nearby meteorological stations) were not sufficient to provide a365

reliable AI; hence the choice for a global dataset.366

3 Results367

3.1 ET partitioning368

Partitioning of ET among the three components (Etrans, Eint and Esoil) exhib-369

ited more variation for the PT-JPL and PM-MOD models. On average, Etrans accounted370

for 60% (PT-JPL) and 56% (PM-MOD) of ET but, across sites, it presented a smaller371

range (30% to 85%) for PT-JPL than for PM-MOD (20 to 90%) (Figure 2, Table 1). GLEAM372

Etrans accounted for 82% of ET on average, varying between 60% and 95% across sites.373

Average interception across sites reached 9% (GLEAM), 13% (PT-JPL), and 24% (PM-374
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MOD) of total ET . Eint fractions range were similar for GLEAM and PT-JPL (SD ≈375

9%), whereas PM-MOD Eint varied more among sites (SD = 18%). Eint was often cor-376

related with LAI, especially for the GLEAM estimates (R2 = 0.57, Figure S2 in SM).377

PT-JPL Esoil estimates exceeded the other models, particularly for sites with low LAI378

values (e.g., ESEC, CST, and USR).379

Figure 2. Evaporation fractions estimated by the models at each site (stacked bars) and av-

erage partitioning of land evaporation per model (pie diagram). Black dots: LAI scaled between

0 and 1 based on the minimum and maximum values of LAI (from MODIS MDC15A2 product).

Red ×: the concordance correlation coefficient between observed and simulated daily ET.

3.2 Overall model skills380

Since each model requires a different input dataset (Table S3, SM), the data avail-381

able to run and validate each model varied. GLEAM and PT-JPL provided a significantly382

greater number of daily outputs: 7301 (GLEAM), 7277 (PT-JPL), 5905 (PM-MOD), and383

6638 (PM-VI). The complete data set was used to produce scatter plots of ET records384

and model simulations for each location (See Figures S4-S7 in SM). To allow a fair anal-385

ysis, the results shown in the main text were obtained using data from days that were386

common across models, resulting in 4718 data points.387

To illustrate the relative contribution of each site to the scatter plots in Figure 3,388

we display the regression lines (light grey lines) between model and tower-based ET for389

each tower site, and the mean metrics across individual sites. In general, ET was rea-390

sonably predicted by all models, as suggested by the relatively low spread of most points391

in the scatter plots, many regression lines close to the 1:1 line, mean determination co-392

efficient, R2, mean concordance correlation coefficient, ρ, mostly above 0.65, and mean393

root mean square error (RMSE) below 1 mm d−1 (Figure 3). Nevertheless there is some394

spread for a few sites, e.g., in the PT-JPL scatter plot that displays a few sites with large395

bias despite strong overall correlation and ρ.396

The models slightly overestimate ET as suggested by higher density of points be-397

low the 1:1 line, except for GLEAM, which slightly underestimates. Correlations were398

similar between GLEAM and PT-JPL, with an average value of ∼0.65 and the highest399

values at individual sites reaching close to 0.9, as indicated by the standard deviations400

(0.19 and 0.18, respectively). From Figures 3 and 4, it becomes evident that, despite the401

relatively lower spread of points for PM-VI, compared to the other models, this model402

(PM-VI) presented a less consistent performance across towers, as suggested by the con-403

trasting slopes presented by the regression lines in that plot (e.g. reversed trend line at404

K77); hence the lower average determination coefficient (R2) and ρ. . Such contrasting405

aspect of the PM-VI model is also noted by the fact that a wide range of R2 was found406

despite the similarity between mean simulated and observed ET (Figure 4).,407

Figure 3. Scatter plots of observed vs. simulated daily evapotranspiration at all flux tower

sites, for each model. The light grey lines show the regression slope of individual sites. The co-

efficient of determination (R2), root mean square error (RMSE) and concordance correlation

coefficient (ρ) were averaged across towers and are displayed on the plots (N = 4,718).
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Table 1. Comparison of evaporation fractions for several land uses between this study and

field-based estimates. FE = field estimates. Land covers that present field data from the same

modeling sites or same geographical region are indicated with ‘*’.
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Figure 4. Comparison of mean observed and simulated ET . Circle colors vary according to

individual model R2.

Figure 5. Model performance per biome, land use and climate. The error bars represent the

standard deviation of the metrics within each class. Biome types: Tropical & Subtropical Moist

Broadleaf Forests (TSMBF); Tropical & Subtropical Dry Broadleaf Forests (TSDBF); Temperate

Grasslands, Savannas & Shrublands (TGSS); Temperate Broadleaf & Mixed Forests (TBMF);

Tropical & Subtropical Grasslands, Savannas & Shrublands (TSGSS); Flooded Grasslands &

Savannas (FGS); Land use types: Cropland (CROP); Woodland Savanna (WS); Deciduous

Needleleaf Forest (DNF); Evergreen Broadleaf Forest (EBF); Grasslands (GRA); Mixed Forest

(MF); Permanent Wetland (PW); Deciduous Broadleaf Forest (DBF). Climate Zones: Tropical

monsoon (Am); Tropical savanna (Aw); Hot semi-arid (BSh); Cold semi-arid (BSk); Temperate

oceanic (Cfb); Dry-winter subtropical highland (Cwb); Polar Tundra (Td).

3.3 Model skills per biome, land use, and climate408

Figure 5 presents ρ, RMSE, PBIAS, and R2 for each model across six biomes,409

eight land use types, and seven climate classes in South America. Error bars are shown410

for all metrics, and they represent the standard deviation resulting from the resampling411

procedure outlined in 2.4. Note that the analysis about the FGS and TBMF biomes are412

based on one and three towers, respectively. For most biomes, RMSE and R2 did not413

significantly diverge. In general, TSGSS showed the best overall metrics for all models,414

while PM-VI in FGS (NPW site) presented the poorest (ρ < 0.5, RMSE > 1.5 mm d−1,415

and R2 < 0.25). Model performance across towers within each biome did not vary much,416

as suggested by the relatively low range of the error bars for all metrics.417

The central panels in Figure 5 provide evidence for the high variability of model418

predictive skills across different land uses (LU), which suggest that: (i) no model out-419

performs the others for all LU types, (ii) each model has intrinsic and in some cases ex-420

clusive characteristic that makes it more suitable for certain LU. Only for croplands (CROP)421

we found similar metrics among models (ρ ≈ 0.8, 0.8 < RMSE < 1.2 mm d−1, −20% <422

PBIAS < 10%, 0.6 < R2 < 0.8). Conversely, for most LU, the metrics variation is423

remarkable (e.g., DBF: 0.4 < ρ < 0.9, −50% < PBIAS < 10%, 0.25 < R2 < 0.80).424

On average, each model has the best skills for two LU; e.g., ET prediction for GRA and425

DBF was best with PT-JPL (ρ ≈ 0.9, RMSE ≈ 0.5 mm d−1, PBIAS ≈ 0%, R2 >426

0.75) whereas PM-VI presented similar skills for estimation of ET for CROP and PW.427

Likewise, model skill is related to the climate type. The analysis of ρ and R2 over semi-428

arid regions (BSk and BSh) indicates a relatively poor skill of all models (except PM-429

MOD for BSh climate). This is in contrast to the overall good performance over more430

humid environments (e.g., Aw and Cwb). The greatest divergence among model perfor-431

mances was found for the Polar Tundra (Td) climate zone, for which PM-VI presented432

the highest ρ and R2 (both > 0.75), lowest RMSE (∼ 0.5 mm d−1) and PBIAS (<433

10%).434

3.4 Individual sites435

In this section, we explore the model performance at individual towers. Model skills436

for all individual sites are depicted in Figure 6. Sites with N < 30 (CAX and MCR)437

are not discussed here but are considered in the scatter plots shown in the SM (Figures438

S4-S7). To facilitate the comparison of our results with previous analyses using the same439

models, only three statistics are shown in Figure 6: RMSE, PBIAS, and R2. Other met-440
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rics are displayed in the scatter plots in Figures S4-S7 in the SM. In Figure 6, the met-441

rics for the various towers are displayed in order of increasing aridity (varying from ∼3442

to 0, left to right), as suggested by the AI as described in Section 2.4). In general, there443

is a good agreement between the PM-based models in terms of RMSE and PBIAS. .444

In terms of individual metrics, RMSE values varied between ∼0.5 and ∼1.5 mm d−1
445

for all models, with RMSE <1 mm d−1 for most sites. The boxplots show that RMSE446

variation is similar among models, except for PT-JPL which presents the lowest RMSE447

(e.g., K67). Figure 6 shows that PBIAS for PM-VI varies around zero across sites, which448

is expected given the model requires calibration with local data. However, based on R2,449

it is apparent that this model’s skill is quite limited for AI >∼1.2 and AI <∼0.5. In450

general, the PT-based models showed larger biases, with PT-JPL and GLEAM consis-451

tently overestimating and underestimating ET , respectively. In terms of R2, the PT-models452

ranked better than the PM-models for more than ∼50% of the towers.453

Figure 6. Comparison of statistics of the models in estimating evapotranspiration (ET ) for

the various flux towers used. (a) Sample size (N) used to compute the statistics; (b) RMSE

= Root Mean Square Error; (c) Percent Bias (PBIAS); (d) R2 = coefficient of determination.

A summary of each model’s statistics is depicted in the boxplots: (e) RMSE; (f) PBIAS; (g)

R2. Flux towers are arranged according to the aridity index (with aridity increasing from left to

right). Sites with N < 30 (CAX and MCR) are not shown here

4 Discussion454

4.1 General implications455

We conducted the first multi-remote sensing ET model analysis in South Amer-456

ica (SA) using a common set of forcing and validation data located on flux tower sites457

across a diverse range of land covers, climates, and biomes. Forcing data include both458

in situ (e.g., temperature and net radiation) and remote sensing data, mainly related459

to vegetation (e.g., LAI and EV I).To evaluate the models, energy balance-derived ET460

(ETEB) was used as observation, instead of eddy covariance ET (ETEC). Given the ben-461

efits and drawbacks of using either ETEB or ETEC , we compared both measures to ver-462

ify whether such choices would lead to different results. As shown in the SM, for the great463

majority of tower sites, ETEC and ETEB are similar (Figure S10) and model statistics464

(R2, RMSE and ρ) remained the same regardless of the ET approach or indicate a bet-465

ter performance when ETEB was used (Figures S11-S13 in the SM). Many of the tower466

sites considered here are not yet available in flux network databases, including sites with467

land cover (deciduous needle-leaf forests, DNF), a biome (FGS), and two climate types468

(polar tundra, hot semi-arid) that have not been previously assessed in other regional469

studies on the performance of satellite-based ET models. Moreover, some classes included470

here were considered for validation of individual models only (e.g., semi-arid and trop-471

ical climate types, and TSDBF biome).472

The fulfillment of such gaps (i.e. model evaluation across uncharted regions) is an473

important step because it allows a multitude of applications and studies relying on large474

scale ET mapping, such as: drought monitoring (Anderson et al., 2011, 2016), agricul-475

tural water management (Anderson et al., 2012), diagnosis of climate change (Mao et476

al., 2015). The current ability to map ET remotely at various spatial and temporal scales,477

could only be evaluated thanks to the vast number of eddy covariance towers available478

in continental and global flux networks. As shown in this study, a thorough assessment479

of RBSET models based solely on data from such networks would be challenging or in-480

sufficient for some regions or continents; hence the relevance of this study. Our analy-481
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sis provides essential information to identify model strengths and limitations across SA,482

allowing the users to identify which model is more suitable for them. Knowing under what483

circumstances, e.g., land use or climate, each model is more reliable is necessary to ad-484

dress remaining research and applied science gaps relative to ET at local, regional and485

global scales (Fisher et al., 2017). Despite the value of tower-based ET across SA, many486

of those questions persist due to our limited observational capabilities. According to Fisher487

et al. (2017) , the way to begin answering those questions is producing high quality ET488

estimates, which includes acquiring accurate ET information at high temporal and spa-489

tial resolution with large spatial coverage for a sufficient long period.490

4.2 Model performance, sources of errors and ET partitioning491

Generally, model predictive skill over SA resembles what has been reported for other492

continents, including satisfactory values of coefficient of determination (R2 > 0.6) of the493

models (except PM-VI) for most validation sites, and consistently better results for the494

GLEAM and PT-JPL models, with RMSE ranging from ∼0.5 to 1.5 mm d−1 (McCabe495

et al., 2016). Also, in accordance with previous analysis, GLEAM and PT-JPL presented496

somewhat higher RMSE than PM-MOD but no clear evidence indicates decreasing per-497

formance with increasing aridity, as reported by McCabe et al. (2016); Michel et al. (2016).498

Nonetheless, the general analysis (Section 3.2) indicates that all models can be used re-499

liably over most of the environmental conditions in SA covered in our study. The anal-500

ysis across towers and groups (i.e., biome, land use type and climate, Section 3.3, Fig-501

ure 5) identified considerable differences in terms of model skill.502

Our results agree with previous studies from (Ershadi et al., 2014; McCabe et al.,503

2016; Michel et al., 2016; Miralles et al., 2016) who applied PM-MOD, GLEAM (except504

Ershadi et al. (2014)) and PT-JPL to sites located in Africa, Asia, Australia, Europe and505

Middle East and reported that PM-MOD showed, for most sites, lower correlations with506

measured ET compared to GLEAM and PT-JPL. Unlike previous analysis, our study507

agrees with Michel et al. (2016) in the sense that model skill seems to be unrelated to508

land cover. Michel et al. (2016) also reported a wide variation of R2 (0.2–0.8) and RMSE509

(0.8—2 mm d−1), for different sites under mixed forests. Conversely, contrasting results510

between our results and previous studies were found for woodland savanna. While we511

found 0.5 < R2 < 0.8 and 0.7 < RMSE < 1.5 mm d−1, Michel et al. (2016) reported512

R2 < 0.2 and 1 < RMSE < 3 mm d−1.513

Overall, our group-wise analysis based on climate agrees with previous studies. For514

example, the poor model skill found here for the cold semi-arid (Bsk) climate (0.1 < R2 <515

0.5) resembles that found by Michel et al. (2016) and McCabe et al. (2016) for several516

sites in the United States. While aridity could have played a role here, it could also be517

caused by the fact that semi-arid sites are covered with sparse canopies. Such canopies518

present challenges when it comes to the description of aerodynamic transfer for exam-519

ple and radiation partitioning (see e.g Verhoef and Allen (2000)). Our findings also show520

a poor to moderate model skill for ET predictions for sites located in the Cfb climate521

zone, with PM-MOD having the worst performance. Conversely, PM-MOD presented522

the best predictive skill for the BSh climate, according to most metrics.523

Besides the three RSBET models commonly assessed (GLEAM, PT-JPL, and PM-524

MOD), our analysis included the PM-VI model, which has been validated mostly for crop-525

land or riparian ecosystems (Nagler et al., 2005, 2009, 2013; Jarchow et al., 2017). Here,526

we tested PM-VI for a much wider variety of biomes, climates and land uses, and found527

a poor predictive skill for several sites with AI > 1.2 (e.g K67, K77, K83) or AI <528

0.5 (e.g., CAA and SLU), even though the model accounts for a site-specific calibration.529

Considering the good results obtained for ∼50% of the towers and the fact that, com-530

pared to the other models, PM-VI has a much simpler implementation, this model does531

have potential as long as sufficient data are available for calibration or, at least, valida-532
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tion. However, the need for local calibration is a hurdle for its implementation for most533

regions that are unsampled; therefore future studies are necessary to investigate which534

factors are most relevant in the determination of the model fitting coefficients, and to535

provide distributed reference values for its coefficients (e.g., based on land use dynam-536

ics).537

We were able to identify a number of probable causes for poor model performance538

at individual sites, including (i) patch-scale heterogeneities; (ii) “mixed pixels”, i.e. mixed539

response of different vegetation types within a pixel; (iii) time-lag between ETobs and540

EV I; (iv) model sensitivity to individual inputs; (v) low correlation between ET and541

vegetation indices (see Section 3.0 in the SM for more details). Although we did not ver-542

ify this in our study, we did not dismiss the possibility that known uncertainties in the543

estimation of site-specific vegetation characteristics (e.g., fPAR and leaf stomatal con-544

ductance in the PM-MOD; Ershadi et al. (2014)) are further causes of lower model per-545

formance.546

In our study, we used soil heat flux (G) which is generally measured below ground547

(usually at 5–20 cm deep) using soil heat flux plates. It could be argued that not cor-548

recting G for the heat storage between the plate and the soil surface could lead to sub-549

optimal estimates of ET when LE is calculated as the residual of the energy balance,550

especially for towers where the soil is bare or covered by sparse vegetation, where G can551

be relatively large. This, in turn, could lead to the conclusion that the models are per-552

forming worse than is actually the case. Although desirable, correcting G for heat stor-553

age is rarely possible due to data unavailability (few sites only measure soil moisture and554

temperature, which are required to estimate soil heat capacity, and heat storage using555

the calorimetric method). Moreover, at daily scales and for most sites, G is either neg-556

ligible in SA (summer or winter, when the amount of heat stored during the day roughly557

equals that lost during the night) or represents a minor portion only (spring and autumn)558

of the energy balance. As detailed and discussed in Section S3.0 and Figure S7 in SM,559

it is highly unlikely that neglecting such corrections will have affected the results.560

There are, however, some issues worth mentioning here. Cause (v), for instance,561

is a major issue for PM-VI, as expected because the model is highly dependent on VI562

dynamics (see Section 2.4) (Nagler et al., 2005). Regarding cause (iv), the superior per-563

formance of the PT models over PM-MOD at most sites is probably linked to uncertain-564

ties resulting from the estimation of aerodynamic resistance (Ershadi et al., 2014). In565

PM-MOD, the aerodynamic and surface resistances of each ET component (soil, inter-566

ception, and transpiration) are parametrized based on biome-specific values of leaf-scale567

boundary layer conductance, for example (Mu et al., 2011). Compared to the previous568

version of PM-MOD (Mu et al., 2007), this new approach resulted in a perceptible im-569

provement only for cropland and deciduous broadleaf forest flux tower sites, whereas for570

other land uses no meaningful change was reported (Ershadi et al., 2015). Conversely,571

PT models are highly dependent on Rn (causes iv and v); hence they often fail in dry572

environments (see metrics for AI <∼0.6 in Figure 6) where ET seasonality is dictated573

by P more than radiation, or in regions with low Rn (e.g., TF2). Poor model responses574

at K77 (cropland, Figure S9 in SM) were attributed to causes (i) and (ii), as remnants575

of forest and shrubs were identified within the tower footprint and within MODIS pixel.576

VI products with higher resolution than MODIS exist and have been used to estimate577

ET (Aragon et al., 2018; Fisher et al., 2020); thus offering a possible solution for causes578

(i) and (ii). Time lag between ET and EVI (cause iii) was identified at EUC, where EVI579

followed the decline of ET after ∼1–2 months .580

Regardless of all those potential causes for poor model response, it is also impor-581

tant to consider to role of the core formulation upon which those RBSET models are based,582

i.e. Penman-Monteith (PM) and Priestley and Taylor (PT) equations. A major prob-583

lem of the PM equation refers to the linearization of the Clausius-Claperyron relation,584

which has been addressed in a new version of that equation(McColl, 2020). The PT equa-585
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tion, in turn, implicitly assumes Rn and surface temperature (Ts) to be independent of586

evaporation. In reality, as shown by Yang and Roderick (2019), Rn not only decreases587

with increasing Ts (due to an increase of outgoing longwave radiation) but also a greater588

fraction of Rn becomes available for evaporation. Some of the deviations from the ob-589

servations found in our analysis may happen due to such inconsistencies or simplifica-590

tions. Here, we provide evidence to consider revisiting not just parameter values but the591

governing equations themselves and, ultimately, evaluate the benefits of such potential592

improvements in RBSET models.593

Remote sensing based ET partitioning is expected to present some divergences from594

ground based measurements. This is the case especially for Esoil, because of the diffi-595

culty in obtaining remote sensing information on soil characteristics that drive Esoil, such596

as soil moisture and temperature (Talsma, Good, Jimenez, et al., 2018; Talsma, Good,597

Miralles, et al., 2018), in particular at high vegetation cover fractions. Globally, tran-598

spiration has been reported to account for 57–90% of global ET , based on in situ data599

and model outputs (Jasechko et al., 2013; Wei et al., 2017; Paschalis et al., 2018). Al-600

though these are global estimates, we expected Etrans to be the largest ET component601

also in SA due to its prevailing tropical climate and corresponding vegetation types. Our602

results show that this was indeed the case for GLEAM with an Etrans/ET ratio of ∼80%,603

and for PT-JPL and PM-MOD with values of 57 and 60%, respectively. Nonetheless, based604

on our findings, model predictive skill in estimating total ET is not necessarily associ-605

ated with its ability to partition ET accurately.606

Concomitantly, inconsistencies in ET partitioning do not necessarily translate into607

inaccurate model estimates of total ET : this depends on the modelling approach. On608

the one hand, if total ET results from the sum of ET components independently, then609

an under- or overestimation of ET components can reduce the overall model skill, or rea-610

sonable ET estimates can be achieved as the consequence of an occasional compensa-611

tion of errors in Etrans, Esoil and Eint. On the other hand, if the ET partitioning is de-612

rived from the estimate of a proxy value for total ET , such as available energy flux (as613

in PM-MOD and PT-JPL), the ET partitioning is unlikely to influence the total ET es-614

timates. Moreover, ET partitioning may be sensitive to certain model inputs. For ex-615

ample, contrasting ET fractions were estimated by PM-MOD for similar rain forest sites,616

i.e. K67 and K83 (Figure 2). The reason PM-MOD is returning that difference is be-617

cause RH was estimated from actual (ea) and saturation vapor pressure (es) data, as618

RH data is not available in K83 dataset. As a result, the difference between ea-derived619

daytime and nighttime RH for K83 is greater than that for K67. In terms of daily av-620

erages, ea-derived RH and measured RH are quite similar, which explains why the frac-621

tions for GLEAM and PT-JPL, at those two towers, are similar. Still, good estimates622

of ET components are important to differentiate the roles of vegetation and soil, i.e., how623

they contribute to vertical soil water fluxes and changes in profile soil water content. Re-624

liable knowledge of the distribution between Esoil and Etrans is also important when this625

information is used in hydrological models to calculate other water balance components,626

such as runoff.627

Ground-based ET partitioning data are generally not widely available. This also628

goes for most land cover types included in this study. We compared the models’ outputs629

with field experiment studies that measured one or more ET components either at the630

same sites as those used here or within the same region (Table 1). ET partitioning val-631

ues derived from GLEAM seem to be more consistent with ground-based information632

available for tropical rain forests, croplands and grasslands than for wetlands, and mixed633

and deciduous needle-leaf forests (Table 1). This also applies to PT-JPL with its ET par-634

titioning agreeing reasonably well with observations made for both tropical rain- and dry635

forests. Note that PT-JPL (as well as PM-MOD) constrain Etrans based on fwet. Hence,636

compared to GLEAM, transpiration will be lower under high RH in the model but ET637

can be high due to water availability in the soil and intercepted rainfall. Nonetheless,638
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the overall predictive skill of PT-JPL was satisfactory at such sites (Figure 6 and Fig-639

ure S4 in SM). Regarding PM-MOD, the main inconsistency is the Einter for tropical640

forests (Table 1). Despite the wide variability in Etrans/ET among models, their over-641

all predictive skill was satisfactory, that is, not associated with their capability to cor-642

rectly estimate each ET component individually (see SM for further discussion). No model643

was able to consistently capture the ET partitioning across all sites correctly, which is644

expected given the uncertainty of each ET component and the climate and land-cover645

variability in SA. However, the joint estimates of all models covered totally or partially646

all field-derived evidence on ET partitioning. This suggests that continental ET esti-647

mates for understudied regions, such as the SA, would benefit from merging ET outputs648

from models that are based on different methods (Paca et al., 2019).649

Despite our efforts to gather as much tower data as possible, with the goal of hav-650

ing a common data set for all models, we faced several limitations including: differences651

in lengths of observational time series across towers (up to 3 years), as well as lack in652

overlap of these time series; uneven distribution of towers across groups (e.g., biomes);653

and, finally, South American geographical features that were not considered in this study654

(e.g., MGS biome or desert climate type, BWk). Thus, it was not possible to assess, for655

all towers, model responses during all seasons. Nonetheless, the fact that our dataset en-656

compasses a wide variety of climates enabled us to evaluate, to a reasonable extent, model657

responses for contrasting seasons and fill in the gaps flagged by the literature, such as658

the absence, in a similar analysis, of towers in the tropical climate zone pointed out by659

McCabe et al. (2016).660

5 Conclusion661

Our results show that, in general, ET can be reasonably well predicted by all four662

models, despite an overall tendency of overestimation by PT-JPL and PM-MOD, and663

underestimation by GLEAM. Contrasting with results from other continents, we found664

no clear evidence linking model predictive skill with aridity. Our analysis emphasizes the665

need of improving model ET partitioning, although the link between flawed ET parti-666

tioning and poor model skill is not evident based on our results. Having reliable ET par-667

titioning coefficients as part of the FLUXNET-type datasets would be valuable in this668

respect, but unfortunately such data are difficult to obtain, as they require labour-intensive669

and expensive methods (such as sapflow gauges and lysimeters), that also present prob-670

lems with regards to upscaling from plot to field-scale.671

Correlations are consistently higher for GLEAM and PT-JPL, with R2 > 0.5 for672

most sites, whereas PM-MOD and PM-VI presented better performances in terms of PBIAS673

(−10 < PBIAS < 10% for most sites). As for PM-VI, the low PBIAS is expected,674

given the model requires calibration with local data.675

The model skill for the various models seems to be unrelated to land cover type676

as we found a wide variability of metric values within the same class and across mod-677

els. Conversely, a relatively lower performance was observed for most models in semi-678

arid regions, compared to an overall good performance for more humid environments.679

Except for the FGS biome, we found that skill across models was mostly similar within680

the same biome.681

Despite the relatively high number of towers (compared to previous global anal-682

yses that used a similar amount of sites), gathering a balanced amount of data and uni-683

form distribution of towers across different biomes and climate zones across the whole684

continent was challenging. Thus, there is a need to expand the flux tower network in South685

America as well as the formation of bilateral collaboration for future contributions. Pre-686

vious studies (Michel et al., 2016; McCabe et al., 2016) have expressed the need to ex-687

tend the evaluation of RSBET models to uncharted biomes and climate conditions. Our688
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analysis fills this gap by assessing the reliability of four RSBET models over South Amer-689

ica. We provide benchmarking metrics that can serve the improvement of ET models690

for improved capturing of ET over this continent.691
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Burgueño, J. E. (2017, September). Evapotranspiration by remote sens-1059

ing: An analysis of the Colorado River Delta before and after the Minute1060

319 pulse flow to Mexico. Ecological Engineering , 106 , 725–732. Retrieved1061

2019-09-05, from http://www.sciencedirect.com/science/article/pii/1062

S0925857416305833 doi: 10.1016/j.ecoleng.2016.10.0561063

Jasechko, S., Sharp, Z. D., Gibson, J. J., Birks, S. J., Yi, Y., & Fawcett, P. J. (2013,1064

April). Terrestrial water fluxes dominated by transpiration. Nature, 496 (7445),1065

347–350. Retrieved 2021-04-13, from https://www.nature.com/articles/1066

nature11983 (Number: 7445 Publisher: Nature Publishing Group) doi:1067

10.1038/nature119831068

Junk, W. J., Brown, M., Campbell, I. C., Finlayson, M., Gopal, B., Ramberg, L.,1069

& Warner, B. G. (2006, October). The comparative biodiversity of seven1070

–23–



manuscript submitted to Water Resources Research

globally important wetlands: a synthesis. Aquatic Sciences, 68 (3), 400–414.1071

Retrieved 2021-04-22, from https://doi.org/10.1007/s00027-006-0856-z1072

doi: 10.1007/s00027-006-0856-z1073

Junk, W. J., da Cunha, C. N., Wantzen, K. M., Petermann, P., Strüssmann, C.,1074

Marques, M. I., & Adis, J. (2006, October). Biodiversity and its conservation1075

in the Pantanal of Mato Grosso, Brazil. Aquatic Sciences, 68 (3), 278–309.1076

Retrieved 2021-04-22, from https://doi.org/10.1007/s00027-006-0851-41077

doi: 10.1007/s00027-006-0851-41078

Khan, M. S., Liaqat, U. W., Baik, J., & Choi, M. (2018, April). Stand-alone uncer-1079

tainty characterization of GLEAM, GLDAS and MOD16 evapotranspiration1080

products using an extended triple collocation approach. Agricultural and1081

Forest Meteorology , 252 , 256–268. Retrieved 2021-04-15, from https://1082

www.sciencedirect.com/science/article/pii/S0168192318300224 doi:1083

10.1016/j.agrformet.2018.01.0221084

Khosa, F. V., Feig, G. T., van der Merwe, M. R., Mateyisi, M. J., Mudau, A. E.,1085

& Savage, M. J. (2019, December). Evaluation of modeled actual evap-1086

otranspiration estimates from a land surface, empirical and satellite-based1087

models using in situ observations from a South African semi-arid savanna1088

ecosystem. Agricultural and Forest Meteorology , 279 , 107706. Retrieved1089

2021-04-15, from https://www.sciencedirect.com/science/article/pii/1090

S0168192319303223 doi: 10.1016/j.agrformet.2019.1077061091

Kustas, W. P., & Norman, J. M. (1999, April). Evaluation of soil and veg-1092

etation heat flux predictions using a simple two-source model with ra-1093

diometric temperatures for partial canopy cover. Agricultural and For-1094

est Meteorology , 94 (1), 13–29. Retrieved 2021-04-15, from https://1095

www.sciencedirect.com/science/article/pii/S0168192399000052 doi:1096

10.1016/S0168-1923(99)00005-21097

Kutzbach, L. (2019a). Lars Kutzbach (2019), AmeriFlux AR-TF1 Rio Moat bog,1098

Ver. 1-5, AmeriFlux AMP, (Dataset).. Retrieved 2021-04-15, from https://1099

ameriflux.lbl.gov/doi/AmeriFlux/AR-TF1 doi: https://doi.org/10.17190/1100

AMF/15433891101

Kutzbach, L. (2019b). Lars Kutzbach (2019), AmeriFlux AR-TF2 Rio Pipo bog,1102

Ver. 1-5, AmeriFlux AMP, (Dataset).. Retrieved 2021-04-15, from https://1103

ameriflux.lbl.gov/sites/siteinfo/AR-TF2 doi: https://doi.org/10.17190/1104

AMF/15433881105

Leopoldo, P. R., Franken, W. K., & Villa Nova, N. A. (1995, May). Real evap-1106

otranspiration and transpiration through a tropical rain forest in central1107

Amazonia as estimated by the water balance method. Forest Ecology1108

and Management , 73 (1), 185–195. Retrieved 2021-04-08, from https://1109

www.sciencedirect.com/science/article/pii/037811279403487H doi:1110

10.1016/0378-1127(94)03487-H1111

Levy, P., Drewer, J., Jammet, M., Leeson, S., Friborg, T., Skiba, U., & Oijen, M. v.1112

(2020, January). Inference of spatial heterogeneity in surface fluxes from1113

eddy covariance data: A case study from a subarctic mire ecosystem. Agri-1114

cultural and Forest Meteorology , 280 , 107783. Retrieved 2020-07-10, from1115

http://www.sciencedirect.com/science/article/pii/S01681923193039951116

doi: 10.1016/j.agrformet.2019.1077831117

Li, X., Long, D., Han, Z., Scanlon, B. R., Sun, Z., Han, P., & Hou, A. (2019,1118

November). Evapotranspiration Estimation for Tibetan Plateau Headwa-1119

ters Using Conjoint Terrestrial and Atmospheric Water Balances and Mul-1120

tisource Remote Sensing. Water Resources Research, 55 (11), 8608–8630.1121

Retrieved 2021-04-15, from https://agupubs.onlinelibrary.wiley.com/1122

doi/10.1029/2019WR025196 (Publisher: John Wiley & Sons, Ltd) doi:1123

10.1029/2019WR0251961124

Liu, Y. Y., Dijk, A. I. J. M. v., McCabe, M. F., Evans, J. P., & Jeu, R. A. M. d.1125

–24–



manuscript submitted to Water Resources Research

(2013). Global vegetation biomass change (1988–2008) and attribu-1126

tion to environmental and human drivers. Global Ecology and Bio-1127

geography , 22 (6), 692–705. Retrieved 2021-04-15, from https://1128

onlinelibrary.wiley.com/doi/abs/10.1111/geb.12024 ( eprint:1129

https://onlinelibrary.wiley.com/doi/pdf/10.1111/geb.12024) doi: https://1130

doi.org/10.1111/geb.120241131

Lopes, J. D., Rodrigues, L. N., Imbuzeiro, H. M. A., & Pruski, F. F. (2019,1132

September). Performance of SSEBop model for estimating wheat actual1133

evapotranspiration in the Brazilian Savannah region. International Jour-1134

nal of Remote Sensing , 40 (18), 6930–6947. Retrieved 2021-04-15, from1135

https://doi.org/10.1080/01431161.2019.1597304 (Publisher: Tay-1136

lor & Francis eprint: https://doi.org/10.1080/01431161.2019.1597304) doi:1137

10.1080/01431161.2019.15973041138

Machado, C. B., Lima, J. R. d. S., Antonino, A. C. D., Souza, E. S. d., Souza,1139

R. M. S., Alves, E. M., . . . Alves, E. M. (2016, September). Daily and sea-1140

sonal patterns of CO2 fluxes and evapotranspiration in maize-grass intercrop-1141

ping. Revista Brasileira de Engenharia Agŕıcola e Ambiental , 20 (9), 777–782.1142
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50 (8), 627–636. Retrieved 2020-08-31, from http://www.scielo.br/1464

scielo.php?script=sci abstract&pid=S0100-204X2015000800627&lng=1465

en&nrm=iso&tlng=pt (Publisher: Embrapa Informação Tecnológica) doi:1466

10.1590/S0100-204X20150008000011467

Souza, V. d. A., Roberti, D. R., Ruhoff, A. L., Zimmer, T., Adamatti, D. S.,1468
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