

Are remote sensing evapotranspiration models reliable across South American ecoregions?

Article

Accepted Version

Melo, D. C. D., Anache, J. A. A., Borges, V. P., Miralles, D. G., Martens, B., Fisher, J. B., Nobrega, R. L. B., Moreno, A., Cabral, O. M. R., Rodrigues, T. R., Bezerra, B., Silva, C. M. S., Meira Neto, A. A., Moura, M. S. B., Marques, T. V., Campos, S., Nogueira, J. S., Rosolem, R., Souza, R. M. S., Antonino, A. C. D., Holl, D., Galleguillos, M., Perez-Quesada, J. F., Verhoef, A. ORCID: https://orcid.org/0000-0002-9498-6696, Kutzbach, L., Lima, J. R. S., Souza, E. S., Gassman, M. I., Perez, C. F., Tonti, N., Posse, G., Rains, D., Oliveira, P. T. S. and Wendland, E. (2021) Are remote sensing evapotranspiration models reliable across South American ecoregions? Water Resources Research, 57 (11). e2020WR028752. ISSN 0043-1397 doi: https://doi.org/10.1029/2020WR028752 Available at https://centaur.reading.ac.uk/101236/

It is advisable to refer to the publisher's version if you intend to cite from the work. See <u>Guidance on citing</u>.

To link to this article DOI: http://dx.doi.org/10.1029/2020WR028752

Publisher: American Geophysical Union

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the <u>End User Agreement</u>.

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading's research outputs online

Are remote sensing evapotranspiration models reliable across South American ecoregions?

D. C. D. Melo¹, J. A. A. Anache², V. P. Borges¹, D. G. Miralles³, B.
Martens³, J. B. Fisher⁴, R. L. B. Nóbrega⁵, A. Moreno⁶, O. M. R. Cabral⁷, T.
R. Rodrigues², B. Bezerra^{8,9}, C. M. S. Silva^{9,10}, A. A. Meira Neto¹⁰, M. S. B.
Moura¹¹, T. V. Marques⁹, S. Campos⁹, J. S. Nogueira¹², R. Rosolem¹³, R.
Souza¹⁴, A. C. D. Antonino¹⁵, D. Holl¹⁶, M. Galleguillos¹⁷, J. F.
Perez-Quezada^{17,18}, A. Verhoef¹⁹, L. Kutzbach¹⁶, J. R. S. Lima²⁰, E. S.
Souza²¹, M. I. Gassman^{22,23}, C. F. Perez^{22,23}, N. Tonti²², G. Posse²⁴, D.
Rains³, and P. T. S. Oliveira², E. Wendland²⁵

² F ³ Hydro-Climate H ⁴ Schmid ⁵ Imperial College I	¹ Federal University of Paraíba, Areia, PB, Brazil leral University of Mato Grosso do Sul, Campo Grande, MS, Brazil ctremes Lab (H-CEL), Ghent University, Coupure Links 653, 9000 Ghent, Belgium 'ollege of Science and Technology, Chapman University, Orange, CA, USA ondon, Department of Life Sciences, Silwood Park Campus, Buckhurst Road, Ascot	t,
⁶ Numerical ⁷ Brazilian Agr ⁸ Department of A	SL5 7PY, UK Cerradynamic Simulation Group, University of Montana, Missoula, MT, USA ultural Research Corporation, Embrapa Meio Ambiente, Jaguariúna, SP, Brazil nospheric and Climate Sciences, Federal University of Rio Grande do Norte, Natal	,
⁹ Climate Science ¹⁰ Depar ¹¹ Brazilian Agric ¹⁴ Department of E	RN, Brazil Graduate Program, Federal University of Rio Grande do Norte, Natal, RN, Brazil ment of Hydrology and Atmospheric Sciences, The University of Arizona litural Research Corporation – Embrapa Tropical Semi-arid, Petrolina, PE, Brazil ¹² Federal University of Mato Grosso, Cuiabá, MT, Brazil ¹³ University of Bristol, BS7 8PD, UK ological and Agricultural Engineering, Texas A&M University, College Station, TX	.,
¹⁵ Departm ¹⁶ Center for Earth 5 ¹⁷ Department of Er	USA nt of Nuclear Energy, Federal University of Pernambuco, Recife, PE, Brazil stem Research and Sustainability (CEN), Universität Hamburg, Hamburg, Germa ironmental Science and Renewable Natural Resources, University of Chile, Santiag	ny 30,
19 Department o 20 Fe 21 21 22 Departmer 23 Natio 24 Instituto de Cl	Chile ¹⁸ Institute of Ecology and Biodiversity, Santiago, Chile Geography and Environmental Science, The University of Reading, Reading, UK eral University of the Agreste of Pernambuco, Garanhuns, PE, Brazil 'ederal Rural University of Pernambuco, Serra Talhada, PE, Brazil of Atmospheric and Ocean Sciences, FCEN - UBA. Buenos Aires, Argentina al Council for Scientific and Technical Research, (CONICET), Argentina na y Agua. Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires,	

Argentina

²⁵Department of Hydraulics and Sanitary Engineering, University of São Paulo, São Carlos, SP, Brazil

Key Points:

• Four remote sensin	g ET model	s were evaluated	using data fro	om 25 flux towers in
South America				

- GLEAM and PT-JPL provided a significantly greater number of daily outputs
- Comparisons with flux tower-based ET showed that GLEAM and PT-JPL produced higher correlations whereas RMSE was similar for all models
 - No model outperformed the other for all biomes, climates or land uses

Corresponding author: Davi Diniz Melo, melo.dcd@gmail.com

48 Abstract

Many remote sensing-based evapotranspiration (RSBET) algorithms have been proposed 49 in the past decades and evaluated using flux tower data, mainly over North America and 50 Europe. Model evaluation across South America has been done locally or using only a 51 single algorithm at a time. Here, we provide the first evaluation of multiple RSBET mod-52 els, at a daily scale, across a wide variety of biomes, climate zones, and land uses in South 53 America. We used meteorological data from 25 flux towers to force four RSBET mod-54 els: Priestley–Taylor Jet Propulsion Laboratory (PT-JPL), Global Land Evaporation Am-55 sterdam Model (GLEAM), Penman–Monteith Mu model (PM-MOD), and Penman–Monteith 56 Nagler model (PM-VI). ET was predicted satisfactorily by all four models, with corre-57 lations consistently higher $(R^2 > 0.6)$ for GLEAM and PT-JPL, and PM-MOD and 58 PM-VI presenting overall better responses in terms of percent bias (-10 < PBIAS <59 10%). As for PM-VI, this outcome is expected, given that the model requires calibra-60 tion with local data. Model skill seems to be unrelated to land-use but instead presented 61 some dependency on biome and climate, with the models producing the best results for 62 wet to moderately wet environments. Our findings show the suitability of individual mod-63 els for a number of combinations of land cover types, biomes, and climates. At the same 64 time, no model outperformed the other for all conditions, which emphasizes the need 65 for adapting individual algorithms to take into account intrinsic characteristics of climates 66 and ecosystems in South America. 67

68 1 Introduction

Land evaporation, or evapotranspiration (ET), is the phenomenon by which wa-69 ter is converted from a liquid into its vapor phase over land. It plays a significant role 70 in the modulation of global climate feedbacks being a key driver of the Earth's carbon, 71 energy, and water cycles at local, regional, and global scales (Cao et al., 2010; Tong et 72 al., 2017; Khosa et al., 2019; Valle Júnior et al., 2020; de Oliveira et al., 2021). In situ 73 ET measurements can be obtained from micro-meteorological methods (e.g., eddy co-74 variance, scintillometry, or Bowen ratio method) and those derived from the soil water 75 balance (e.g., directly using lysimeters, or from changes in profile soil moisture content 76 obtained gravimetrically, from neutron probes, or capacitance-based soil water monitor-77 ing equipment). Besides, plant physiological techniques such as sap flow methods, pro-78 vide direct estimates of transpiration (Verhoef & Campbell, 2006; Allen et al., 2011; Fisher 79 et al., 2011), but only the micro-meteorological methods provide ET data at the field 80 to landscape (e.g., scintillometry) scale. Over the past three decades, eddy covariance 81 (EC) systems have become the state-of-the-art and standard *in situ* method to quan-82 tify land surface energy and mass fluxes for different types of ecosystems (Restrepo-Coupe 83 et al., 2013; Rodrigues et al., 2016; Campos et al., 2019; X. Wang et al., 2020). However, 84 these techniques estimate fluxes for areas of relatively limited spatial dimensions ($\sim 1 \text{ km}^2$) 85 depending on the heterogeneity of the landscape), and they are affected by specific lo-86 cal conditions, such as the occurrence of advection across sharp contrasts in vegetation 87 and/or irrigation conditions, and those caused by topographic features, such as cold air 88 drainage for sloping terrain (Allen et al., 2011; Rwasoka et al., 2011; Mutti et al., 2019; 89 Rahimzadegan & Janani, 2019; Mauder et al., 2020). 90

During the 1990s and 2000s, remote sensing based ET (RSBET) algorithms, us-91 ing information from visible, near-infrared, and thermal infrared bands, were developed, 92 such as the Surface Energy Balance Algorithms for Land (SEBAL, (Bastiaanssen et al., 93 1998)), Simplified Surface Energy Balance Index (S-SEBI, Roerink et al. (2000)), Sur-94 face Balance Energy System (SEBS, Su (2002)), Simplified Surface Energy Balance (SSEB, 95 Senay et al. (2007)), and Two-Source Energy Balance Model (TSEB, Norman et al. (1995); 96 Kustas and Norman (1999)). These algorithms were developed for sub-regional appli-97 cations, with a focus on irrigation or water resources management. Over South Amer-98 ica, their predictive skills have been assessed quite extensively, mostly for irrigated crop-99

land (Teixeira et al., 2009; Paiva et al., 2011; Poblete-Echeverría & Ortega-Farias, 2012;
Bezerra et al., 2013, 2015; Olivera-Guerra et al., 2017; Lopes et al., 2019; Mutti et al.,
2019). Studies show that these models perform well when compared to field observations
of *ET* (Teixeira et al., 2009; Poblete-Echeverría & Ortega-Farias, 2012).

Since the late 2000s, algorithms such as PT-JPL (Fisher et al., 2008), PM-MOD
(Mu et al., 2007, 2011), and GLEAM (Miralles et al., 2011; Martens et al., 2017) focused
on the use of satellite-derived observations to create spatially coherent global *ET* estimates (Fisher et al., 2017). PT-JPL is at the core of the ECOSTRESS mission (Fisher
et al., 2020), while PM-MOD is central to the global terrestrial MODIS *ET* product (MOD16).
GLEAM is used for the annual State of the Climate report since 2015 (Blunden & Arndt, 2020).

Using flux tower data, previous studies conducted in South America evaluated GLEAM 111 and MOD16 (Ruhoff et al., 2013; Moreira et al., 2019; Paca et al., 2019). However, these 112 studies validated off-the-shelf ET datasets generated by these models, not the models 113 themselves. Since such ET products are not produced using a common dataset of me-114 teorological variables, a comparative evaluation cannot be made in terms of model struc-115 ture. Rather, different model skills would be partially linked with the quality of the in-116 puts. A multi-site tropical study, over several continents, validating the PT-JPL model 117 at a regional scale on a monthly basis was presented by Fisher et al. (2009). However, 118 to the best of our knowledge, studies assessing the daily predictive skills have only been 119 conducted at the local scale (Teixeira et al., 2009, 2013; Miranda et al., 2017; B. S. Oliveira 120 et al., 2018; V. d. A. Souza et al., 2019). 121

A major challenge to verify the results of these methods is the scarcity of ground-122 based observations, due to the uneven spatio-temporal distribution of the ET monitor-123 ing efforts. As a result, remote sensing ET methods are typically evaluated or param-124 eterized using sites located only in North America, Europe (Ershadi et al., 2014; McCabe 125 et al., 2016; Michel et al., 2016; Xu et al., 2019), Australia (Martens et al., 2016) and 126 East Asia (Jang et al., 2013; Chang et al., 2018; Khan et al., 2018; Li et al., 2019). For 127 example, Mu et al. (2011) proposed improvements to the PM-MOD ET global algorithm 128 (Mu et al., 2007), based on comparisons with ET measurements from 46 AmeriFlux sites, 129 45 of them located in USA and Canada. Martens et al. (2017) evaluated the GLEAM 130 algorithm with 91 worldwide FLUXNET sites; however, ~ 65 were located in the USA 131 and in Europe. Therefore, these models might not satisfactorily represent ET in sparsely 132 sampled regions with very different climate conditions such as South America, despite 133 this continent representing ca. 12% of the total Earth's terrestrial area. 134

South America spans two hemispheres, and four major climate zones, from near 135 the equator to sub-Antarctic regions, which makes it a geographically unique continent 136 (Goymer, 2017; Trajano, 2019). Biomes in this continent range from tropical to decid-137 uous forests, and contain ecoregions with high sensitivity to variability in water (e.g., 138 the Caatinga and Humid Pampas) and energy availability (e.g. the Amazon, Valdivian 139 temperate and Magellanic subpolar forests) (Seddon et al., 2016). Also, five out of six 140 of the terrestrial biomes not included in satellite-based ET algorithm evaluations at a 141 global scale are found in South America (see Section 2.1). Thus, the evaluation of RS-142 BET methods for South America offers an opportunity to reduce the current research 143 gap, in particular at large spatial scales. 144

FLUXNET provides a common framework for the verification of ET algorithms. Nevertheless, the available sites in the FLUXNET2015 database are not evenly distributed around the world (Pastorello et al., 2020). Validating global models in South America is challenging, mainly because the data from ~90% of its FLUXNET registered sites are not readily available to the scientific community: less than 50% of South American AmeriFlux sites are available for direct access. Additionally, flux towers in woody savannas and evergreen broad-leaf forests account for nearly 65% of all Latin American FLUXNET sites while some of the biomes are not properly represented (Villarreal & Vargas, 2021).

The identification of scientific gaps and the proposed improvements are considered 153 a priority for the future development of ET assessment methods from remote sensing 154 (Fisher et al., 2017). Some of them include merging different ET-estimation methods, 155 and the identification of their sources of uncertainty (Fisher et al., 2017; Y. Zhang et al., 156 2017; Paca et al., 2019). Indeed, despite the recent developments of remote sensing ET157 methods, there are still challenges concerning the refinement of those algorithms to rem-158 edy the lack of information on specific surface characteristics and fluxes of undersam-159 pled climate zones and vegetation types. In this context, one of the main sources of un-160 certainty in global satellite-based ET estimates are the fractional vegetation cover and 161 net radiation (Ferguson et al., 2010; Vinukollu et al., 2011; Badgley et al., 2015) 162

We evaluated the predictive skills of four satellite-based ET models, designed for regional and continental scale applications, over South America. The main question we seek to answer is whether such models can be applied consistently to reliably capture ET in South America. Specific research questions include: (i) are the models capable of correctly estimating ET and its components? (ii) are the models predictive skills affected by climate, land cover type or biome?

¹⁶⁹ 2 Study area, data, and methods

170

171

2.1 South American biomes, flux tower-based ET and meteorological data

The study area encompasses five biomes (Table S1 in the Supporting Material –
SM): Tropical & Subtropical Moist Broadleaf Forests (TSMBF); Flooded Grasslands &
Savannas (FGS); Tropical & Subtropical Grasslands, Savannas & Shrublands (TSGSS);
Tropical & Subtropical Dry Broadleaf Forests (TSDBF) and Temperate Broadleaf & Mixed
Forests (TBMF) (Olson et al., 2001).

We used daily meteorological data from 25 flux tower sites located across various 177 South American biomes and land cover types to verify the predictive skill of the selected 178 RSBET models (Figure 1a, Table S2 in SM). The time period considered for analysis was 179 determined by the available time-series for each site (Figure S1 in SM). Further infor-180 mation about each biome is provided in SM. Ten sites are from FLUXNET (Pastorello 181 et al., 2020), AmeriFlux networks (Novick et al., 2018) and Large-Scale Biosphere-Atmosphere 182 Experiment in the Amazon (LBA) project (Saleska et al., 2013), while the remaining data 183 were obtained from the respective principal investigators. Concerning towers sites not 184 available in global networks, data handling included standard procedures to ensure qual-185 ity data, including: detection of spikes caused by changes in the footprint or imprecise 186 measurements; delay correction of H_2O/CO_2 in relation to the vertical wind component; 187 correction of coordinates (2D rotation); correction of spectral loss; conversion of the buoy-188 ancy flux to sensible heat flux, known as SND-corrections (Schotanus et al., 1983); sonic 189 virtual temperature correction; corrections for flux density fluctuations, known as WPL 190 corrections (Webb. et al., 1980); incorporated frequency response correction. Addition-191 ally, we performed due corrections with respect to reduction of wind velocity or turbu-192 lence increase caused by the shadow of the tower and the sensor. Details about proce-193 dures carried out for data processing and filtering to implement these corrections can 194 be found in Tonti et al. (2018); Holl et al. (2019); Campos et al. (2019); Cabral et al. (2020). 195 We also emphasize that those data have been widely used in previously scientific pub-196 lications (Rocha et al., 2009; Cabral et al., 2010, 2011; Restrepo-Coupe et al., 2013; Ro-197 drigues et al., 2016; Arruda et al., 2016; Silva et al., 2017; Marques et al., 2020). The 198 spatial patterns of mean annual precipitation (P), air temperature (T), and potential 199

evapotranspiration (*PET*) show that selected sites encompass a wide variety of climates

²⁰¹ (Figure 1b).

Figure 1. (a) Location of flux tower sites. Land cover types are indicated prior to tower names in the map: Croplands (CROP), Deciduous Needleaf Forest (DNF), Evergreen Broadleaf Forest (EBF), Grasslands (GRA), Mixed Forest (MF), Permanent Wetland (PW), and Woody Savanna (WS); Biome types (Olson et al., 2001) are indicated by shades of green, yellow and blue on the map (see legend): Tropical & Subtropical Moist Broadleaf Forests (TSMBF); Tropical & Subtropical Dry Broadleaf Forests (TSDBF); Temperate Broadleaf & Mixed Forests (TBMF); Tropical & Subtropical Grasslands, Savannas & Shrublands (TSGSS); Temperate Grasslands, Savannas & Shrublands (TGSS); Flooded Grasslands & Savannas (FGS); Montane Grasslands & Shrublands (MGS); Mediterranean Forests, Woodlands & Scrub (MFWS); Deserts & Xeric Shrublands (DXS); Climates across South America from selected representative sites are indicated by patterns on the map (see legend): Tropical savanna (Aw), Tropical monsoon (Am), Hot semi-arid (BSh), Cold semi-arid (BSk), Humid subtropical (Cfa), Temperate oceanic (Cfb), Drywinter subtropical highland (Cwb), Polar Tundra (Td) (Peel et al., 2007). (b) Gridded annual average (AVG) and standard deviation (SD) for air temperature (T), rainfall (P), and potential evapotranspiration (PET) across South America and the monitored sites (Harris et al., 2020).

The closure of the energy budget is rarely observed with flux tower measurements 202 (Wilson et al., 2002; Foken, 2008). Usually, the available energy flux (Rn-G) is greater 203 than (LE+H), where Rn is the net radiation, G is the soil heat flux, LE is the latent 204 heat flux and H is the sensible heat flux. The imbalances in the surface energy balance. 205 reported here as an energy balance ratio, EBR (i.e. (LE+H)/(Rn-G)), range from 206 0.73 to 1.16 (mean ~ 0.90) (Table S2, SM). It is paramount that only high-quality data 207 were used to run and assess the models. We computed daily EBR for each site and ex-208 cluded days with EBR ≤ 0.75 or ≥ 1.25 . Daily averages of meteorological variables were 209 calculated from 30-min or hourly data only when at least 80% of the records per day were 210 available. To obtain daytime and nighttime inputs for the MOD16 model (PM-MOD in 211 this paper), we considered only days with a minimum of twenty 30-min daytime records 212 and twenty during the night. As in Mu et al. (2011), the shortwave incoming radiation 213 $(Rgs \downarrow)$ was used to distinguish between daytime $(Rgs \downarrow > 10 \,\mathrm{W \, m^{-2}})$ and nighttime $(Rgs \downarrow < 10 \,\mathrm{W \, m^{-2}})$ 214 $10 \,\mathrm{W \, m^{-2}}$). Regarding the fluxes, we used quality-checked data that had not been gap-215 filled. Previous studies have shown that ET derived from the other energy balance fluxes, 216 i.e. LE = Rn - G - H, can agree well with eddy covariance ET and lysimeter data 217 (Amiro, 2009; Sánchez et al., 2019). Therefore, instead of using the EC-measured LE, 218 to represent ET, we derived LE from the equation above. Such validation approach (i.e. 219 comparing model ET with EB-derived LE, ET_{EB} has been adopted in previous stud-220 ies (Twine et al., 2000; Wilson et al., 2002; Stoy et al., 2013; Fisher et al., 2020). The 221 results of using the eddy covariance $ET(ET_{EC})$ instead can be found in the SM (see 222 Fig. S11-S13). 223

The quality control procedure described above was not adopted for the TF1, and 224 TF2 towers (see Figure 1a). At those sites, horizontal advection plays an important role 225 due to extreme weather variations throughout the year (Levy et al., 2020), such that the 226 energy balance closure cannot be diagnosed by EBR, as described above. For instance, 227 the SDF zone is known as an anticyclone pathway between the Pacific and Atlantic oceans, 228 and TF1 and TF2 are located in the extreme southern parts of Patagonia, a region char-229 acterized by strong winds. Thus, for TF1 and TF2 sites, we used ET derived from mea-230 sured LE. 231

2.2 Remote sensing-based vegetation indices

The required vegetation index (VI) to run PT-JPL, PM-MOD and PM-VI is the 233 Enhanced Vegetation Index (EVI). Vegetation Optical Depth (VOD) is used in GLEAM. 234 EVI was derived from the 16-day Level 3 Global product of the MODerate Resolution 235 Imaging Spectroradiometer (MODIS), aboard the Terra and Aqua satellites (Huete et 236 al., 2002). We used both MODIS VI products, i.e. MOD13Q1 (Terra) and MYD13Q1 237 (Aqua), at 250-m resolution, to derive daily composites of EVI. VOD was extracted 238 from the product described in Moesinger et al. (2020). Fisher et al. (2008) used the Soil 239 Adjusted Vegetation Index (SAVI) instead of EVI because the former does not require 240 the blue reflectance (0.45–0.51 μ m), however, the authors recognize that both indices are 241 very similar. As we are interested in assessing the ET models rather than the products 242 resulting from different forcing data, we used EVI in Fisher's model (PT-JPL). Leaf area 243 index (LAI) and other vegetation-related variables (e.g., fraction of Absorbed Photo-244 synthetically Active Radiation, f_{PAR}) are handled differently in each model. For exam-245 ple, in PT-JPL, LAI is obtained from total fractional vegetation cover, whereas in PM-246 MOD the 1-km MODIS LAI (MOD15) product is adopted. The original procedures to 247 obtain those variables were not changed here. The following treatment was applied to 248 the MODIS-derived data. "Good quality" pixels were selected, based on the quality as-249 surance (QA) flags. Next, an autoregressive model was applied to fill in the gaps (Akaike, 250 1969). The gap-filling procedure was applied to gaps smaller than 16 days, while gaps 251 of longer periods were excluded from the analysis. Finally, we implemented a temporal 252 filter to improve the f_{PAR} and LAI time series to reproduce precisely all pre-processing 253 steps of the standard PM-MOD algorithm (Mu et al., 2011). Filtering of f_{PAR} and LAI 254 allowed for the correction of underestimated values (abrupt and unrealistic decreases in 255 the time series) that mostly originate from cloud contamination effects which were not 256 correctly identified in the quality control fields. 257

258 259

232

2.3 Summary of remote sensing-based ET models

2.3.1 GLEAM

GLEAM is a semi-empirical/process-based model that estimates the total evapo-260 rative flux and its components. In this study, version 3 of the algorithm is used (Martens 261 et al., 2017). The main aspects of the model are described briefly, while for details we 262 refer to Miralles et al. (2011) and Martens et al. (2017). The model calculates potential 263 evaporation for four sub-grid land cover fractions: (1) open water, (2) low vegetation, 264 (3) tall vegetation, and (4) bare soil using the Priestley and Taylor (1972) equation. For 265 tall and low vegetation cover fractions, potential transpiration is constrained using an 266 empirical evaporative stress factor which is calculated as a function of soil moisture at 267 root-zone depth and microwave VOD as described in Martens et al. (2017). VOD (Veg-268 etation Optical Depth) accounts for the attenuation of microwaves through vegetation 269 and can be used as a proxy for vegetation phenology. Thus, VOD is a microwave pa-270 rameter closely linked to vegetation water content (Liu et al., 2013) and in GLEAM it 271 is used to represent phenological changes in vegetation. The soil moisture in the root-272 zone is calculated with a multi-layer water-balance model forced by precipitation and 273 satellite surface soil moisture retrievals. For bare soil, the evaporative stress factor is cal-274 culated as a function of surface soil moisture only, whereas for open water evaporation, 275 no stress factor is applied. For the tall vegetation cover fraction, rainfall interception loss 276 is estimated with Gash's analytical model (Gash, 1979; Miralles et al., 2010). The ET 277 is then calculated as the sum of low and tall vegetation transpiration, rainfall intercep-278 tion loss, bare soil evaporation, and open-water evaporation with each weighted by the 279 respective fraction. 280

2.3.2 PT-JPL

281

296

The global ET model proposed by Fisher et al. (2008) is based on the Priestley and 282 Taylor equation for potential ET (PET), which is partitioned into actual plant transpi-283 ration, soil evaporation, and interception evaporation, i.e. $E_{trans} + E_{soil} + E_{int}$. To re-284 duce potential ET to actual ET, the PT-JPL model applies ecophysiological constraints 285 based on land surface information such as vegetation properties and humidity/water va-286 por pressure deficit (VPD). Fisher et al. (2008) used NDVI and SAVI as a proxy for 287 plant physiological status. We used EVI because it provides a better indication of green 288 vegetation cover than NDVI, as acknowledged by Fisher et al. (2008). The model par-289 titions available energy flux using four plant-related constraints: LAI, green canopy frac-290 tion, plant temperature, and plant moisture. Similar to PM-MOD (see next subsection), 291 vegetation cover, canopy wetness, etc. determine how the available energy flux is par-292 titioned among the ET terms. A unique aspect related to the plant temperature con-293 straint is the determination of an optimal temperature, T_{opt} (Potter et al., 1993), which 294 corresponds to an optimal stomatal conductance. The latter co-determines E_{trans} . 295

2.3.3 PM-MOD

The MOD16 ET model (PM-MOD) is based on the Penman-Monteith equation to 297 produce a daily global ET product summing up daytime and nighttime ET (Mu et al., 298 2011). In this model, total ET is partitioned into E_{soil} , E_{int} , and E_{trans} . To compute 299 E_{soil} , PM-MOD uses potential soil evaporation and a soil moisture constraint function 300 based on VPD and air relative humidity (RH) (Fisher et al., 2008). The evaporation 301 of the water intercepted by the canopy, E_{int} , is calculated using the relevant equations 302 from a revised version of the Biome-BGC model (Thornton, 1998). The PM-MOD as-303 sumes that E_{int} occurs when the vegetation is covered with water, i.e. when the water 304 cover fraction $(f_{wet}) > 0$, which is constrained by RH (Mu et al., 2011). In the PM-305 MOD model f_{wet} is calculated as in the PT-JPL model: f_{wet} is set to 0 if RH < 70%306 and $f_{wet} = (RH/100)^4$ if 70 < RH < 100% (Running et al., 2019). The PM-MOD 307 model is designed to allow E_{trans} to occur during daytime and nighttime, by adding con-308 straints to stomatal conductance for VPD and minimum air temperature, and ignor-309 ing constraints relating to high air temperature (Running et al., 2019). The partition-310 ing of available energy flux into soil or interception evaporation is based on vegetation 311 cover (Fc), which is assumed to be equal to f_{PAR} from the MODIS product MOD15A2 312 (Mu et al., 2011). Although this method is based on the PM equation, PM-MOD does 313 neither require wind speed nor soil moisture data for the parameterization of aerodynamic 314 and surface resistance. Further details about PM-MOD can be found in Mu et al. (2011) 315 and Running et al. (2019). Note that some updates have been implemented in PM-MOD 316 since Mu et al. (2011), which can be found in Running et al. (2019). These were also con-317 sidered here in the implementation of PM-MOD. 318

319 2.3.4 PM-VI

This model relies upon the hypothesis that ET is mostly controlled by specific dom-320 inant processes, such as transpiration and photosynthesis, hence a good correlation be-321 tween such processes and ET is necessary for good model performance (Nagler et al., 322 2007). There are several formulations to estimate ET from VIs (Nagler et al., 2005, 2009). 323 In this study, we selected the algorithm proposed by Nagler et al. (2013), which estimates 324 ET using the reference crop evapotranspiration, ETo, from the FAO-56 Penman-Monteith 325 (PM) equation (Allen et al., 1998), and a crop coefficient, Kc_{VI} , derived from a vege-326 327 tation index. Kc_{VI} can be calculated in different ways (Nagler et al., 2005, 2013). Following Nouri et al. (2016) and P. T. S. Oliveira et al. (2015), Kc_{VI} was calculated as: 328

$$Kc_{VI} = a\left(1 - e^{-b \times EVI}\right) - c \tag{1}$$

where a, b and c are fitted coefficients. We used a parameter optimization tool based on a genetic algorithm to optimise the coefficients to estimate ET values close to the measured ones (P. T. S. Oliveira et al., 2015). The fitting procedure minimizes the objective function (OF) given by the sum of squared differences between tower-based ET (ET_{obs}) and ET estimates from the models (ET_{sim}) at time *i*:

$$OF = \sum_{i=1}^{n} \left[ET_{obs}(i) - ET_{sim} \right]^2$$
(2)

This model, herein referred to as PM-VI, has frequently been employed to estimate 334 ET at local and regional scales (P. T. S. Oliveira et al., 2015; Nouri et al., 2016; Jarchow 335 et al., 2017). Although obtaining ETo requires a considerable amount of meteorologi-336 cal variables, the PM-VI implementation is easier and has a lower computational cost 337 compared to other models. Unlike the three other models, PM-VI requires the calibra-338 tion of the fitting coefficients, which can be a major issue for regions where ET and VI 339 are poorly correlated or when correlations change over time (Chong et al., 1993). To cal-340 ibrate the fitting coefficients, we randomly selected 20% of the available data at each site 341 and used the remaining 80% to validate the model. 342

343

2.4 Quantifying model reliability

The model predictive skill was visually evaluated with scatter plots of measured 344 versus modelled ET, as well as through the coefficient of determination (R^2), root mean 345 square error (RMSE), percent bias (PBIAS), concordance correlation coefficient (ρ), 346 slope (m), and intercept (b) of the linear regression. The data used in the analysis were 347 filtered for rainy days (P > 0.5 mm). Our analysis proceeded from a general (no dis-348 tinction among sites) to a site-by-site and group level analysis, i.e. per biome, climate, 349 or land use. The number of flux towers assigned to each subgroup (i.e., the different biomes, 350 climate, and land use classes) varied, and so did the record length per subgroup. To ac-351 count for the different sizes, the following sampling procedure was performed, in which 352 we computed the variability of each performance metrics for each group analysis (i.e., 353 across its different subgroups): (i) A sample size N was defined as half of the record length 354 of the shortest subgroup, among all models; (ii) for each model, samples of length N were 355 taken from within each subgroup, and the performance metrics were computed; (iii) This 356 procedure was repeated 1000 times, yielding a mean and standard deviation (SD) of the 357 metrics at each subgroup, per model. The resulting SD are likely to be influenced by the 358 choice of N, and other rationale for its choice could have been made. In this way the con-359 fidence bands reported here are to be seen as measures of relative variability, i.e., the vari-360 ability between the models, and not as absolute uncertainty bounds for each of them. 361 To establish a relationship between model predictive skill and water availability at in-362 dividual tower sites, we obtained the aridity index (AI = P/ETo) from the global dataset 363 provided by Trabucco and Zomer (2019). For many tower sites, the available meteoro-364 logical data (even from nearby meteorological stations) were not sufficient to provide a 365 reliable AI; hence the choice for a global dataset. 366

367 3 Results

368

3.1 ET partitioning

Partitioning of ET among the three components (E_{trans} , E_{int} and E_{soil}) exhibited more variation for the PT-JPL and PM-MOD models. On average, E_{trans} accounted for 60% (PT-JPL) and 56% (PM-MOD) of ET but, across sites, it presented a smaller range (30% to 85%) for PT-JPL than for PM-MOD (20 to 90%) (Figure 2, Table 1). GLEAM E_{trans} accounted for 82% of ET on average, varying between 60% and 95% across sites. Average interception across sites reached 9% (GLEAM), 13% (PT-JPL), and 24% (PM- MOD) of total *ET*. E_{int} fractions range were similar for GLEAM and PT-JPL ($SD \approx$ 9%), whereas PM-MOD E_{int} varied more among sites (SD = 18%). E_{int} was often correlated with *LAI*, especially for the GLEAM estimates ($R^2 = 0.57$, Figure S2 in SM). PT-JPL E_{soil} estimates exceeded the other models, particularly for sites with low *LAI* walkers (a = ESEC, *CCT*, and *USD*).

values (e.g., ESEC, CST, and USR).

Figure 2. Evaporation fractions estimated by the models at each site (stacked bars) and average partitioning of land evaporation per model (pie diagram). Black dots: LAI scaled between 0 and 1 based on the minimum and maximum values of LAI (from MODIS MDC15A2 product). Red \times : the concordance correlation coefficient between observed and simulated daily ET.

380 3.2 Overall model skills

Since each model requires a different input dataset (Table S3, SM), the data available to run and validate each model varied. GLEAM and PT-JPL provided a significantly greater number of daily outputs: 7301 (GLEAM), 7277 (PT-JPL), 5905 (PM-MOD), and 6638 (PM-VI). The complete data set was used to produce scatter plots of *ET* records and model simulations for each location (See Figures S4-S7 in SM). To allow a fair analysis, the results shown in the main text were obtained using data from days that were common across models, resulting in 4718 data points.

To illustrate the relative contribution of each site to the scatter plots in Figure 3, 388 we display the regression lines (light grey lines) between model and tower-based ET for 389 each tower site, and the mean metrics across individual sites. In general, ET was rea-390 sonably predicted by all models, as suggested by the relatively low spread of most points 391 in the scatter plots, many regression lines close to the 1:1 line, mean determination co-392 efficient, R^2 , mean concordance correlation coefficient, $\overline{\rho}$, mostly above 0.65, and mean 393 root mean square error (\overline{RMSE}) below $1 \,\mathrm{mm}\,\mathrm{d}^{-1}$ (Figure 3). Nevertheless there is some 394 spread for a few sites, e.g., in the PT-JPL scatter plot that displays a few sites with large 395 bias despite strong overall correlation and ρ . 396

The models slightly overestimate ET as suggested by higher density of points be-397 low the 1:1 line, except for GLEAM, which slightly underestimates. Correlations were 398 similar between GLEAM and PT-JPL, with an average value of ~ 0.65 and the highest 399 values at individual sites reaching close to 0.9, as indicated by the standard deviations 400 (0.19 and 0.18, respectively). From Figures 3 and 4, it becomes evident that, despite the 401 relatively lower spread of points for PM-VI, compared to the other models, this model 402 (PM-VI) presented a less consistent performance across towers, as suggested by the con-403 trasting slopes presented by the regression lines in that plot (e.g. reversed trend line at 404 K77); hence the lower average determination coefficient (R^2) and $\overline{\rho}$. Such contrasting 405 aspect of the PM-VI model is also noted by the fact that a wide range of R^2 was found 406 despite the similarity between mean simulated and observed ET (Figure 4)., 407

Figure 3. Scatter plots of observed vs. simulated daily evapotranspiration at all flux tower sites, for each model. The light grey lines show the regression slope of individual sites. The coefficient of determination (R^2) , root mean square error (RMSE) and concordance correlation coefficient (ρ) were averaged across towers and are displayed on the plots (N = 4,718).

References	Leopoldo et al. (1995); Shuttle- worth and Pereira	Gaj et al. (2016); Gaj et al. (2016); Sun et al. (2019); de Queiroz et al. (2020)	Dennead et al. (1997); Cabral et al (2012)	Cabral et al. (2010)	(2015) Cabral et al. (2015)	Ferretti et al. (2003); Sutanto et al. (2012); Z. Wang et al. (2014)	Aron et al., 2020; Paul- Limoges et al., 2020)	J. Zhang et al. (2018)
PM- MOD	7-58	2-4	6	27	17	15-16	1^{-14}	21–43
(%) M PT- JPL	18-29	2-5	9	25	2	7–18	2^{-7}	6-16
E_{int} GLEAI	17-20	1-2	1	6	13	1–2	1	3^{-14}
FE	15-25	10	10	13	∞	NA	NA	NA
PM- MOD	5-20	8-18	21	4	ß	30–52	28-29	16 - 54
(%) A PT- JPL	18-24	14-24	31	20	17	32-46	23-30	32-57
E_{soil} GLEAN	4–6	8-14	9	S	2	25-30	11 - 16	0-20
FE	NA	NA	20 - 4	NA	NA	NA	19	NA
PM- MOD	31 - 88	78-90	20	69	78	33-54	58-71	34-41
(%) A PT- JPL	47-63	64-84	63	55	76	47-49	63-75	28-57
E_{trans} GLEAN	74-79	84-94	93	88	86	69–73	82-88	73-86
FЕ	80-84	50-81	NA	85	NA	50-78	36-74	33-38
LULC	EBF*	DNF*	CROP*	CROP*	*SM	GRA	MF	PW

Table 1. Comparison of evaporation fractions for several land uses between this study andfield-based estimates. FE = field estimates. Land covers that present field data from the samemodeling sites or same geographical region are indicated with '*'.

Figure 4. Comparison of mean observed and simulated ET. Circle colors vary according to individual model R^2 .

Figure 5. Model performance per biome, land use and climate. The error bars represent the standard deviation of the metrics within each class. Biome types: Tropical & Subtropical Moist Broadleaf Forests (TSMBF); Tropical & Subtropical Dry Broadleaf Forests (TSDBF); Temperate Grasslands, Savannas & Shrublands (TGSS); Temperate Broadleaf & Mixed Forests (TBMF); Tropical & Subtropical Grasslands, Savannas & Shrublands (TSGSS); Flooded Grasslands & Savannas (FGS); Land use types: Cropland (CROP); Woodland Savanna (WS); Deciduous Needleleaf Forest (DNF); Evergreen Broadleaf Forest (EBF); Grasslands (GRA); Mixed Forest (MF); Permanent Wetland (PW); Deciduous Broadleaf Forest (DBF). Climate Zones: Tropical monsoon (Am); Tropical savanna (Aw); Hot semi-arid (BSh); Cold semi-arid (BSk); Temperate oceanic (Cfb); Dry-winter subtropical highland (Cwb); Polar Tundra (Td).

3.3 Model skills per biome, land use, and climate

Figure 5 presents ρ , RMSE, PBIAS, and R^2 for each model across six biomes, 409 eight land use types, and seven climate classes in South America. Error bars are shown 410 for all metrics, and they represent the standard deviation resulting from the resampling 411 procedure outlined in 2.4. Note that the analysis about the FGS and TBMF biomes are 412 based on one and three towers, respectively. For most biomes, RMSE and R^2 did not 413 significantly diverge. In general, TSGSS showed the best overall metrics for all models, 414 while PM-VI in FGS (NPW site) presented the poorest ($\rho < 0.5, RMSE > 1.5 \,\mathrm{mm}\,\mathrm{d}^{-1}$ 415 and $R^2 < 0.25$). Model performance across towers within each biome did not vary much, 416 as suggested by the relatively low range of the error bars for all metrics. 417

The central panels in Figure 5 provide evidence for the high variability of model 418 predictive skills across different land uses (LU), which suggest that: (i) no model out-419 performs the others for all LU types, (ii) each model has intrinsic and in some cases ex-420 clusive characteristic that makes it more suitable for certain LU. Only for croplands (CROP) 421 we found similar metrics among models ($\rho \approx 0.8, 0.8 < RMSE < 1.2 \,\mathrm{mm}\,\mathrm{d}^{-1}, -20\% < 0.8$ 422 $PBIAS < 10\%, 0.6 < R^2 < 0.8$). Conversely, for most LU, the metrics variation is 423 remarkable (e.g., DBF: $0.4 < \rho < 0.9, -50\% < PBIAS < 10\%, 0.25 < R^2 < 0.80$). 424 On average, each model has the best skills for two LU; e.g., ET prediction for GRA and 425 DBF was best with PT-JPL ($\rho \approx 0.9, RMSE \approx 0.5 \,\mathrm{mm}\,\mathrm{d}^{-1}, PBIAS \approx 0\%, R^2 >$ 426 0.75) whereas PM-VI presented similar skills for estimation of ET for CROP and PW. 427 Likewise, model skill is related to the climate type. The analysis of ρ and R^2 over semi-428 arid regions (BSk and BSh) indicates a relatively poor skill of all models (except PM-429 MOD for BSh climate). This is in contrast to the overall good performance over more 430 humid environments (e.g., Aw and Cwb). The greatest divergence among model perfor-431 mances was found for the Polar Tundra (Td) climate zone, for which PM-VI presented 432 the highest ρ and R^2 (both > 0.75), lowest RMSE (~ 0.5 mm d⁻¹) and PBIAS (< 433 10%). 434

3.4 Individual sites

408

435

In this section, we explore the model performance at individual towers. Model skills for all individual sites are depicted in Figure 6. Sites with N < 30 (CAX and MCR) are not discussed here but are considered in the scatter plots shown in the SM (Figures S4-S7). To facilitate the comparison of our results with previous analyses using the same models, only three statistics are shown in Figure 6: RMSE, PBIAS, and R^2 . Other metrics are displayed in the scatter plots in Figures S4-S7 in the SM. In Figure 6, the metrics for the various towers are displayed in order of increasing aridity (varying from ~ 3 to 0, left to right), as suggested by the AI as described in Section 2.4). In general, there is a good agreement between the PM-based models in terms of *RMSE* and *PBIAS*.

In terms of individual metrics, RMSE values varied between ~ 0.5 and ~ 1.5 mm d⁻¹ 445 for all models, with $RMSE < 1 \text{ mm d}^{-1}$ for most sites. The boxplots show that RMSE446 variation is similar among models, except for PT-JPL which presents the lowest RMSE447 (e.g., K67). Figure 6 shows that *PBIAS* for PM-VI varies around zero across sites, which 448 449 is expected given the model requires calibration with local data. However, based on R^2 , it is apparent that this model's skill is quite limited for $AI > \sim 1.2$ and $AI < \sim 0.5$. In 450 general, the PT-based models showed larger biases, with PT-JPL and GLEAM consis-451 tently overestimating and underestimating ET, respectively. In terms of R^2 , the PT-models 452 ranked better than the PM-models for more than $\sim 50\%$ of the towers. 453

Figure 6. Comparison of statistics of the models in estimating evapotranspiration (ET) for the various flux towers used. (a) Sample size (N) used to compute the statistics; (b) RMSE= Root Mean Square Error; (c) Percent Bias (PBIAS); (d) R^2 = coefficient of determination. A summary of each model's statistics is depicted in the boxplots: (e) RMSE; (f) PBIAS; (g) R^2 . Flux towers are arranged according to the aridity index (with aridity increasing from left to right). Sites with N < 30 (CAX and MCR) are not shown here

$_{454}$ 4 Discussion

455

4.1 General implications

We conducted the first multi-remote sensing ET model analysis in South Amer-456 ica (SA) using a common set of forcing and validation data located on flux tower sites 457 across a diverse range of land covers, climates, and biomes. Forcing data include both 458 in situ (e.g., temperature and net radiation) and remote sensing data, mainly related 459 to vegetation (e.g., LAI and EVI). To evaluate the models, energy balance-derived ET460 (ET_{EB}) was used as observation, instead of eddy covariance $ET (ET_{EC})$. Given the ben-461 efits and drawbacks of using either ET_{EB} or ET_{EC} , we compared both measures to ver-462 ify whether such choices would lead to different results. As shown in the SM, for the great 463 majority of tower sites, ET_{EC} and ET_{EB} are similar (Figure S10) and model statistics 464 $(R^2, RMSE \text{ and } \rho)$ remained the same regardless of the ET approach or indicate a bet-465 ter performance when ET_{EB} was used (Figures S11-S13 in the SM). Many of the tower 466 sites considered here are not yet available in flux network databases, including sites with 467 land cover (deciduous needle-leaf forests, DNF), a biome (FGS), and two climate types 468 (polar tundra, hot semi-arid) that have not been previously assessed in other regional 469 studies on the performance of satellite-based ET models. Moreover, some classes included 470 here were considered for validation of individual models only (e.g., semi-arid and trop-471 ical climate types, and TSDBF biome). 472

The fulfillment of such gaps (i.e. model evaluation across uncharted regions) is an 473 important step because it allows a multitude of applications and studies relying on large 474 scale ET mapping, such as: drought monitoring (Anderson et al., 2011, 2016), agricul-475 tural water management (Anderson et al., 2012), diagnosis of climate change (Mao et 476 al., 2015). The current ability to map ET remotely at various spatial and temporal scales, 477 could only be evaluated thanks to the vast number of eddy covariance towers available 478 in continental and global flux networks. As shown in this study, a thorough assessment 479 of RBSET models based solely on data from such networks would be challenging or in-480 sufficient for some regions or continents; hence the relevance of this study. Our analy-481

sis provides essential information to identify model strengths and limitations across SA, 482 allowing the users to identify which model is more suitable for them. Knowing under what 483 circumstances, e.g., land use or climate, each model is more reliable is necessary to ad-484 dress remaining research and applied science gaps relative to ET at local, regional and global scales (Fisher et al., 2017). Despite the value of tower-based ET across SA, many 486 of those questions persist due to our limited observational capabilities. According to Fisher 487 et al. (2017), the way to begin answering those questions is producing high quality ET 488 estimates, which includes acquiring accurate ET information at high temporal and spa-489 tial resolution with large spatial coverage for a sufficient long period. 490

491

4.2 Model performance, sources of errors and ET partitioning

Generally, model predictive skill over SA resembles what has been reported for other 492 continents, including satisfactory values of coefficient of determination $(R^2 > 0.6)$ of the 493 models (except PM-VI) for most validation sites, and consistently better results for the 494 GLEAM and PT-JPL models, with RMSE ranging from ~ 0.5 to 1.5 mm d⁻¹ (McCabe 495 et al., 2016). Also, in accordance with previous analysis, GLEAM and PT-JPL presented 496 somewhat higher RMSE than PM-MOD but no clear evidence indicates decreasing per-497 formance with increasing aridity, as reported by McCabe et al. (2016); Michel et al. (2016). 498 Nonetheless, the general analysis (Section 3.2) indicates that all models can be used re-499 liably over most of the environmental conditions in SA covered in our study. The anal-500 ysis across towers and groups (i.e., biome, land use type and climate, Section 3.3, Fig-501 ure 5) identified considerable differences in terms of model skill. 502

Our results agree with previous studies from (Ershadi et al., 2014; McCabe et al., 503 2016; Michel et al., 2016; Miralles et al., 2016) who applied PM-MOD, GLEAM (except 504 Ershadi et al. (2014)) and PT-JPL to sites located in Africa, Asia, Australia, Europe and 505 Middle East and reported that PM-MOD showed, for most sites, lower correlations with 506 measured ET compared to GLEAM and PT-JPL. Unlike previous analysis, our study 507 agrees with Michel et al. (2016) in the sense that model skill seems to be unrelated to 508 land cover. Michel et al. (2016) also reported a wide variation of R^2 (0.2–0.8) and RMSE509 $(0.8-2 \text{ mm d}^{-1})$, for different sites under mixed forests. Conversely, contrasting results 510 between our results and previous studies were found for woodland savanna. While we 511 found $0.5 < R^2 < 0.8$ and $0.7 < RMSE < 1.5 \text{ mm d}^{-1}$, Michel et al. (2016) reported 512 $R^2 < 0.2$ and $1 < RMSE < 3 \,\mathrm{mm} \,\mathrm{d}^{-1}$. 513

Overall, our group-wise analysis based on climate agrees with previous studies. For 514 example, the poor model skill found here for the cold semi-arid (Bsk) climate $(0.1 < R^2 <$ 515 (0.5) resembles that found by Michel et al. (2016) and McCabe et al. (2016) for several 516 sites in the United States. While aridity could have played a role here, it could also be 517 caused by the fact that semi-arid sites are covered with sparse canopies. Such canopies 518 present challenges when it comes to the description of aerodynamic transfer for exam-519 ple and radiation partitioning (see e.g Verhoef and Allen (2000)). Our findings also show 520 a poor to moderate model skill for ET predictions for sites located in the Cfb climate 521 zone, with PM-MOD having the worst performance. Conversely, PM-MOD presented 522 the best predictive skill for the BSh climate, according to most metrics. 523

Besides the three RSBET models commonly assessed (GLEAM, PT-JPL, and PM-524 MOD), our analysis included the PM-VI model, which has been validated mostly for crop-525 land or riparian ecosystems (Nagler et al., 2005, 2009, 2013; Jarchow et al., 2017). Here, 526 we tested PM-VI for a much wider variety of biomes, climates and land uses, and found 527 a poor predictive skill for several sites with AI > 1.2 (e.g K67, K77, K83) or AI <528 0.5 (e.g., CAA and SLU), even though the model accounts for a site-specific calibration. 529 Considering the good results obtained for $\sim 50\%$ of the towers and the fact that, com-530 pared to the other models, PM-VI has a much simpler implementation, this model does 531 have potential as long as sufficient data are available for calibration or, at least, valida-532

tion. However, the need for local calibration is a hurdle for its implementation for most
regions that are unsampled; therefore future studies are necessary to investigate which
factors are most relevant in the determination of the model fitting coefficients, and to
provide distributed reference values for its coefficients (e.g., based on land use dynamics).

We were able to identify a number of probable causes for poor model performance 538 at individual sites, including (i) patch-scale heterogeneities; (ii) "mixed pixels", i.e. mixed 539 response of different vegetation types within a pixel; (iii) time-lag between ET_{obs} and 540 EVI; (iv) model sensitivity to individual inputs; (v) low correlation between ET and 541 vegetation indices (see Section 3.0 in the SM for more details). Although we did not ver-542 ify this in our study, we did not dismiss the possibility that known uncertainties in the 543 estimation of site-specific vegetation characteristics (e.g., f_{PAR} and leaf stomatal con-544 ductance in the PM-MOD; Ershadi et al. (2014)) are further causes of lower model per-545 formance. 546

In our study, we used soil heat flux (G) which is generally measured below ground 547 (usually at 5–20 cm deep) using soil heat flux plates. It could be argued that not cor-548 recting G for the heat storage between the plate and the soil surface could lead to sub-549 optimal estimates of ET when LE is calculated as the residual of the energy balance, 550 especially for towers where the soil is bare or covered by sparse vegetation, where G can 551 be relatively large. This, in turn, could lead to the conclusion that the models are per-552 forming worse than is actually the case. Although desirable, correcting G for heat stor-553 age is rarely possible due to data unavailability (few sites only measure soil moisture and 554 temperature, which are required to estimate soil heat capacity, and heat storage using 555 the calorimetric method). Moreover, at daily scales and for most sites, G is either neg-556 ligible in SA (summer or winter, when the amount of heat stored during the day roughly 557 equals that lost during the night) or represents a minor portion only (spring and autumn) 558 of the energy balance. As detailed and discussed in Section S3.0 and Figure S7 in SM, 559 it is highly unlikely that neglecting such corrections will have affected the results. 560

There are, however, some issues worth mentioning here. Cause (v), for instance, 561 is a major issue for PM-VI, as expected because the model is highly dependent on VI 562 dynamics (see Section 2.4) (Nagler et al., 2005). Regarding cause (iv), the superior per-563 formance of the PT models over PM-MOD at most sites is probably linked to uncertain-564 ties resulting from the estimation of aerodynamic resistance (Ershadi et al., 2014). In PM-MOD, the aerodynamic and surface resistances of each ET component (soil, inter-566 ception, and transpiration) are parametrized based on biome-specific values of leaf-scale 567 boundary layer conductance, for example (Mu et al., 2011). Compared to the previous 568 version of PM-MOD (Mu et al., 2007), this new approach resulted in a perceptible im-569 provement only for cropland and deciduous broadleaf forest flux tower sites, whereas for 570 other land uses no meaningful change was reported (Ershadi et al., 2015). Conversely, 571 PT models are highly dependent on Rn (causes iv and v); hence they often fail in dry 572 environments (see metrics for $AI < \sim 0.6$ in Figure 6) where ET seasonality is dictated 573 by P more than radiation, or in regions with low Rn (e.g., TF2). Poor model responses 574 at K77 (cropland, Figure S9 in SM) were attributed to causes (i) and (ii), as remnants 575 of forest and shrubs were identified within the tower footprint and within MODIS pixel. 576 VI products with higher resolution than MODIS exist and have been used to estimate 577 ET (Aragon et al., 2018; Fisher et al., 2020); thus offering a possible solution for causes 578 (i) and (ii). Time lag between ET and EVI (cause iii) was identified at EUC, where EVI 579 followed the decline of ET after $\sim 1-2$ months . 580

Regardless of all those potential causes for poor model response, it is also important to consider to role of the core formulation upon which those RBSET models are based, i.e. Penman-Monteith (PM) and Priestley and Taylor (PT) equations. A major problem of the PM equation refers to the linearization of the Clausius-Claperyron relation, which has been addressed in a new version of that equation(McColl, 2020). The PT equation, in turn, implicitly assumes Rn and surface temperature (T_s) to be independent of evaporation. In reality, as shown by Yang and Roderick (2019), Rn not only decreases with increasing T_s (due to an increase of outgoing longwave radiation) but also a greater fraction of Rn becomes available for evaporation. Some of the deviations from the observations found in our analysis may happen due to such inconsistencies or simplifications. Here, we provide evidence to consider revisiting not just parameter values but the governing equations themselves and, ultimately, evaluate the benefits of such potential improvements in RBSET models.

Remote sensing based ET partitioning is expected to present some divergences from 594 ground based measurements. This is the case especially for E_{soil} , because of the diffi-595 culty in obtaining remote sensing information on soil characteristics that drive E_{soil} , such 596 as soil moisture and temperature (Talsma, Good, Jimenez, et al., 2018; Talsma, Good, 597 Miralles, et al., 2018), in particular at high vegetation cover fractions. Globally, tran-598 spiration has been reported to account for 57-90% of global ET, based on in situ data 599 and model outputs (Jasechko et al., 2013; Wei et al., 2017; Paschalis et al., 2018). Al-600 though these are global estimates, we expected E_{trans} to be the largest ET component 601 also in SA due to its prevailing tropical climate and corresponding vegetation types. Our 602 results show that this was indeed the case for GLEAM with an E_{trans}/ET ratio of ~80%, 603 and for PT-JPL and PM-MOD with values of 57 and 60%, respectively. Nonetheless, based 604 on our findings, model predictive skill in estimating total ET is not necessarily associ-605 ated with its ability to partition ET accurately. 606

Concomitantly, inconsistencies in ET partitioning do not necessarily translate into 607 inaccurate model estimates of total ET: this depends on the modelling approach. On 608 the one hand, if total ET results from the sum of ET components independently, then 609 an under- or overestimation of ET components can reduce the overall model skill, or rea-610 sonable ET estimates can be achieved as the consequence of an occasional compensa-611 tion of errors in E_{trans} , E_{soil} and E_{int} . On the other hand, if the ET partitioning is de-612 rived from the estimate of a proxy value for total ET, such as available energy flux (as 613 in PM-MOD and PT-JPL), the ET partitioning is unlikely to influence the total ET es-614 timates. Moreover, ET partitioning may be sensitive to certain model inputs. For ex-615 ample, contrasting ET fractions were estimated by PM-MOD for similar rain forest sites, 616 i.e. K67 and K83 (Figure 2). The reason PM-MOD is returning that difference is be-617 cause RH was estimated from actual (e_a) and saturation vapor pressure (e_s) data, as 618 RH data is not available in K83 dataset. As a result, the difference between e_a -derived 619 daytime and nighttime RH for K83 is greater than that for K67. In terms of daily av-620 erages, e_a -derived RH and measured RH are quite similar, which explains why the frac-621 tions for GLEAM and PT-JPL, at those two towers, are similar. Still, good estimates 622 of ET components are important to differentiate the roles of vegetation and soil, i.e., how 623 they contribute to vertical soil water fluxes and changes in profile soil water content. Re-624 liable knowledge of the distribution between E_{soil} and E_{trans} is also important when this 625 information is used in hydrological models to calculate other water balance components, 626 such as runoff. 627

Ground-based ET partitioning data are generally not widely available. This also 628 goes for most land cover types included in this study. We compared the models' outputs 629 with field experiment studies that measured one or more ET components either at the 630 same sites as those used here or within the same region (Table 1). ET partitioning val-631 ues derived from GLEAM seem to be more consistent with ground-based information 632 available for tropical rain forests, croplands and grasslands than for wetlands, and mixed 633 and deciduous needle-leaf forests (Table 1). This also applies to PT-JPL with its ET par-634 titioning agreeing reasonably well with observations made for both tropical rain- and dry 635 forests. Note that PT-JPL (as well as PM-MOD) constrain E_{trans} based on f_{wet} . Hence, 636 compared to GLEAM, transpiration will be lower under high RH in the model but ET637 can be high due to water availability in the soil and intercepted rainfall. Nonetheless, 638

the overall predictive skill of PT-JPL was satisfactory at such sites (Figure 6 and Fig-639 ure S4 in SM). Regarding PM-MOD, the main inconsistency is the E_{inter} for tropical 640 forests (Table 1). Despite the wide variability in E_{trans}/ET among models, their over-641 all predictive skill was satisfactory, that is, not associated with their capability to cor-642 rectly estimate each ET component individually (see SM for further discussion). No model 643 was able to consistently capture the ET partitioning across all sites correctly, which is 644 expected given the uncertainty of each ET component and the climate and land-cover 645 variability in SA. However, the joint estimates of all models covered totally or partially 646 all field-derived evidence on ET partitioning. This suggests that continental ET esti-647 mates for understudied regions, such as the SA, would benefit from merging ET outputs 648 from models that are based on different methods (Paca et al., 2019). 649

Despite our efforts to gather as much tower data as possible, with the goal of hav-650 ing a common data set for all models, we faced several limitations including: differences 651 in lengths of observational time series across towers (up to 3 years), as well as lack in 652 overlap of these time series; uneven distribution of towers across groups (e.g., biomes); 653 and, finally, South American geographical features that were not considered in this study 654 (e.g., MGS biome or desert climate type, BWk). Thus, it was not possible to assess, for 655 all towers, model responses during all seasons. Nonetheless, the fact that our dataset en-656 compasses a wide variety of climates enabled us to evaluate, to a reasonable extent, model 657 responses for contrasting seasons and fill in the gaps flagged by the literature, such as 658 the absence, in a similar analysis, of towers in the tropical climate zone pointed out by 659 McCabe et al. (2016). 660

⁶⁶¹ 5 Conclusion

Our results show that, in general, ET can be reasonably well predicted by all four 662 models, despite an overall tendency of overestimation by PT-JPL and PM-MOD, and 663 underestimation by GLEAM. Contrasting with results from other continents, we found 664 no clear evidence linking model predictive skill with aridity. Our analysis emphasizes the 665 need of improving model ET partitioning, although the link between flawed ET parti-666 tioning and poor model skill is not evident based on our results. Having reliable ET par-667 titioning coefficients as part of the FLUXNET-type datasets would be valuable in this 668 respect, but unfortunately such data are difficult to obtain, as they require labour-intensive 669 and expensive methods (such as sapflow gauges and lysimeters), that also present prob-670 lems with regards to upscaling from plot to field-scale. 671

⁶⁷² Correlations are consistently higher for GLEAM and PT-JPL, with $R^2 > 0.5$ for ⁶⁷³ most sites, whereas PM-MOD and PM-VI presented better performances in terms of PBIAS ⁶⁷⁴ (-10 < PBIAS < 10% for most sites). As for PM-VI, the low PBIAS is expected, ⁶⁷⁵ given the model requires calibration with local data.

The model skill for the various models seems to be unrelated to land cover type as we found a wide variability of metric values within the same class and across models. Conversely, a relatively lower performance was observed for most models in semiarid regions, compared to an overall good performance for more humid environments. Except for the FGS biome, we found that skill across models was mostly similar within the same biome.

Despite the relatively high number of towers (compared to previous global analyses that used a similar amount of sites), gathering a balanced amount of data and uniform distribution of towers across different biomes and climate zones across the whole continent was challenging. Thus, there is a need to expand the flux tower network in South America as well as the formation of bilateral collaboration for future contributions. Previous studies (Michel et al., 2016; McCabe et al., 2016) have expressed the need to extend the evaluation of RSBET models to uncharted biomes and climate conditions. Our analysis fills this gap by assessing the reliability of four RSBET models over South Amer-

 $_{690}$ ica. We provide benchmarking metrics that can serve the improvement of ET models

for improved capturing of ET over this continent.

692 Acknowledgments

The data used in this study will be available through a data-sharing repository. Fund-693 ing for AmeriFlux data resources was provided by the U.S. Department of Energy's Office of Science. Davi de C. D. Melo was supported by the São Paulo State Research Foun-695 dation (FAPESP) (grant 2016/23546-7), and by the Brazilian National Council for Sci-696 entific and Technological Development (CNPq) (project 409093/2018-1). Jamil A. A. Anache 697 was supported by the Brazilian National Council for Scientific and Technological Devel-698 opment (CNPq) (project 150057/2018-0). Edson Wendland was supported by the São 699 Paulo State Research Foundation (FAPESP) (grant 2015/03806-1). Paulo Tarso S. Oliveira 700 was supported by the Brazilian National Council for Scientific and Technological Devel-701 opment (CNPq) (grants 441289/2017-7 and 306830/2017-5) and the CAPES Print program. Rafael Rosolem would like to acknowledge the Brazilian Experimental datasets 703 for MUlti-Scale interactions in the critical zone under Extreme Drought (BEMUSED) 704 project [grant number NE/R004897/1] funded by the Natural Environment Research Coun-705 cil (NERC). Alvaro Moreno was financially supported by the NASA Earth Observing 706 System MODIS project (grant NNX08AG87A) and the European Research Council (ERC) 707 funding under the ERC Consolidator Grant 2014 SEDAL (Statistical Learning for Earth 708 Observation Data Analysis, European Union) project under Grant Agreement 647423. 709 Diego G. Miralles, Brecht Martens and Dominik Rains are supported by the European 710 Research Council (ERC) DRY-2-DRY project (grant no. 715254) and the Belgian Sci-711 ence Policy Office (BELSPO) STEREO III ALBERI (grant no. SR/00/373) and ET-712 SENSE (grant. no SR/02/377) projects. Thiago R. Rodrigues was supported by the Brazil-713 ian National Council for Scientific and Technological Development (CNPq) with Bolsa 714 de Produtividade em Pesquisa - PQ (Grant Number 308844/2018-1). Jorge Perez-Quezada 715 and Mauricio Galleguillos were supported by the Chilean National Agency for Research 716 and Development, grant FONDECYT 1211652. Rodolfo Nobrega and Anne Verhoef ac-717 knowledge support by the Newton/NERC/FAPESP Nordeste project (NE/N012526/1 718 ICL and NE/N012488/1 UoR). Gabriela Posse acknowledges support by AERN 3632 and 719 PNNAT 1128023 INTA Projects. JBF was supported in part by NASA: ECOSTRESS 720 and SUSMAP. Funding for site support: 721

- NPW tower: Brazilian National Institute for Science and Technology in Wetlands (INCT-INAU), Federal University of Mato Grosso (UFMT PGFA and PGAT), University of Cuiabá (UNIC) and SESC-Pantanal;
- SDF tower: funded by the National Commission for Scientific and Technological Research (CONICYT, Chile) through grants FONDEQUIP AIC-37 and AFB170008 from the Associative Research Program;
- TF1 and TF2 towers: funded by the Deutsche Forschungsgemeinschaft (DFG) under Germany's Excellence Strategy EXC 177 'CliSAP Integrated Climate System Analysis and Prediction' contributing to the Center for Earth System Research and Sustainability (CEN) of Universität Hamburg and by DFG project KU 1418/6-1;
- MCR and BAL towers: funded by the National Council for Scientific and Technological Research (CONICET, Argentina) grants PIP-11220100100044 and PIP-11220130100347CO, and by the National Agency for the Scientific and Technological Promotion (ANPCyT, Argentina) grant PICT 2010-0554;
- CAA, CST, and ESEC Towers: funded by National Observatory of Water and Carbon Dynamics in the Caatinga Biome (INCT-NOWCDCB), Federal University
 of Pernambuco (UFPE), FACEPE (Pernambuco State Research and Technology
 Foundation) through the Project Caatinga-FLUX APQ 0062-1.07/15.

741 **References**

742	Akaike, H. (1969, December). Fitting autoregressive models for prediction. Annals of
743	the Institute of Statistical Mathematics, 21(1), 243–247. Retrieved 2020-06-22,
744	from https://doi.org/10.1007/BF02532251 doi: 10.1007/BF02532251
745	Allen, R. G., Pereira, L. S., Howell, T. A., & Jensen, M. E. (2011, April). Evap-
746	otranspiration information reporting: I. Factors governing measurement
747	accuracy. Agricultural Water Management, 98(6), 899–920. Retrieved
748	2021-04-15, from https://www.sciencedirect.com/science/article/pii/
749	S0378377411000023 doi: 10.1016/j.agwat.2010.12.015
750	Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspira-
751	tion - Guidelines for computing crop water requirements - FAO Irrigation and
752	drainage paper 56. Rome: FAO - Food and Agriculture Organization of the
753	United Nations. Retrieved 2021-04-15, from http://www.fao.org/3/x0490e/
754	x0490e00.htm
755	Amiro, B. (2009). Measuring boreal forest evapotranspiration using the energy bal-
756	ance residual. Journal of Hydrology, 366(1), 112-118. Retrieved from https://
757	www.sciencedirect.com/science/article/pii/S0022169408006367 doi:
758	https://doi.org/10.1016/j.jhydrol.2008.12.021
759	Anderson, M. C., Allen, R. G., Morse, A., & Kustas, W. P. (2012). Use of
760	landsat thermal imagery in monitoring evapotranspiration and manag-
761	ing water resources. <i>Remote Sensing of Environment</i> , 122, 50-65. Re-
762	trieved from https://www.sciencedirect.com/science/article/pii/
763	S0034425712000326 (Landsat Legacy Special Issue) doi: https://doi.org/
764	10.1016/j.rse.2011.08.025
765	Anderson, M. C., Hain, C., Wardlow, B., Pimstein, A., Mecikalski, J. R., & Kustas,
766	W. P. (2011). Evaluation of drought indices based on thermal remote sensing
767	of evapotranspiration over the continental united states. <i>Journal of Climate</i> .
768	24(8), 2025 - 2044. Retrieved from https://journals.ametsoc.org/view/
769	journals/clim/24/8/2010jcli3812.1.xml doi: 10.1175/2010JCLI3812.1
770	Anderson, M. C., Zolin, C. A., Sentelhas, P. C., Hain, C. R., Semmens, K., Tu-
771	grul Yilmaz, M., Tetrault, R. (2016, March). The Evaporative Stress
772	Index as an indicator of agricultural drought in Brazil: An assessment based
773	on crop vield impacts. Remote Sensing of Environment, 174, 82–99. Retrieved
774	2019-10-17, from http://www.sciencedirect.com/science/article/pii/
775	S0034425715302212 doi: 10.1016/j.rse.2015.11.034
776	Aragon, B., Houborg, R., Tu, K., Fisher, J. B., & McCabe, M. (2018, December).
777	CubeSats Enable High Spatiotemporal Retrievals of Crop-Water Use for Pre-
778	cision Agriculture. Remote Sensing, 10(12), 1867. Retrieved 2020-09-01, from
779	https://www.mdpi.com/2072-4292/10/12/1867 (Number: 12 Publisher:
780	Multidisciplinary Digital Publishing Institute) doi: 10.3390/rs10121867
781	Aron, P. G., Poulsen, C. J., Fiorella, R. P., Matheny, A. M., & Veverica, T. J.
782	(2020). An isotopic approach to partition evapotranspiration in a mixed
783	deciduous forest. Ecohydrology, 13(6), e2229. Retrieved 2021-04-11,
784	from https://onlinelibrary.wiley.com/doi/abs/10.1002/eco.2229
785	(_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/eco.2229) doi:
786	https://doi.org/10.1002/eco.2229
787	Arroyo, M. T. K., Pliscoff, P., Mihoc, M., & Arroyo-Kalin, M. (2005). The Magel-
788	lanic moorland. In L. H. Fraser & P. A. Keddy (Eds.). The World's Largest
789	Wetlands: Ecology and Conservation (pp. 424–445). Cambridge: Cambridge
790	University Press. Retrieved 2020-08-15. from https://www.cambridge
791	.org/core/books/worlds-largest-wetlands/magellanic-moorland/
792	B02EB2AE6B5BC3EB290B88FE794D3A77 doi: 10.1017/CBO9780511542091.013
793	Arruda, P. H. Z., Vourlitis, G. L., Santanna, F. B., Jr., O. B. P., Lobo, F. A., &
794	Nogueira, J. S. (2016). Large net co2 loss from a grass-dominated tropical sa-
795	vanna in south-central brazil in response to seasonal and interannual drought.

796	Biogeosciences, 121, 2110-2124. doi: 10.1002/2016JG003404
797	Badgley, G., Fisher, J. B., Jiménez, C., Tu, K. P., & Vinukollu, R. (2015, Au-
798	gust). On Uncertainty in Global Terrestrial Evapotranspiration Estimates
799	from Choice of Input Forcing Datasets. Journal of Hydrometeorology, 16(4),
800	1449-1455. Retrieved 2020-09-01, from https://journals.ametsoc.org/
801	jhm/article/16/4/1449/6244/On-Uncertainty-in-Global-Terrestrial
802	(Publisher: American Meteorological Society) doi: 10.1175/JHM-D-14-0040.1
803	Bai, J., Jia, L., Liu, S., Xu, Z., Hu, G., Zhu, M., & Song, L. (2015, May). Charac-
804	terizing the Footprint of Eddy Covariance System and Large Aperture Scintil-
805	lometer Measurements to Validate Satellite-Based Surface Fluxes. IEEE Geo-
806	science and Remote Sensing Letters, 12(5), 943–947. (Conference Name: IEEE
807	Geoscience and Remote Sensing Letters) doi: 10.1109/LGRS.2014.2368580
808	Bastiaanssen, W. G. M., Menenti, M., Feddes, R. A., & Holtslag, A. A. M. (1998,
809	December). A remote sensing surface energy balance algorithm for land (SE-
810	BAL). I. Formulation. Journal of Hydrology, 212-213, 198–212. Retrieved
811	2020-00-15, from http://www.sciencedirect.com/science/article/pii/
812	S0022109498002534 doi: 10.1010/S0022-1094(98)00253-4
813	Dezerra, D. G., Santos, C. A. C. d., Silva, D. D. d., Perez-Marin, A. M., Dez-
814	tion of soil moisture in the root-zone from remote sensing data <i>Revista</i>
816	Brasileira de Ciência do Solo 37(3) 596–603 Retrieved 2021-04-15 from
817	http://www.scielo.br/scielo.php?script=sci_abstract&pid=S0100
818	-06832013000300005&lng=en&nrm=iso&tlng=en (Publisher: Sociedade
819	Brasileira de Ciência do Solo) doi: 10.1590/S0100-06832013000300005
820	Bezerra, B. G., Silva, B. B. d., Santos, C. A. C. d., & Bezerra, J. R. C. (2015,
821	July). Actual Evapotranspiration Estimation Using Remote Sensing: Com-
822	parison of SEBAL and SSEB Approaches. Advances in Remote Sensing,
823	4(3), 234-247. Retrieved 2021-04-15, from http://www.scirp.org/Journal/
824	Paperabs.aspx?paperid=59977 (Number: 3 Publisher: Scientific Research
825	Publishing) doi: 10.4236/ars.2015.43019
826	Blunden, J., & Arndt, D. S. (2020, August). State of the Climate in 2019. Bulletin
827	of the American Meteorological Society, 101(8), S1–S429. Retrieved 2020-09-
828	03, from https://journals.ametsoc.org/bams/article/101/8/S1/353885/
829	State-of-the-Climate-in-2019 (Publisher: American Meteorological Soci-
830	ety) doi: 10.1175/2020DAMSStateonneonnate.1
831	Borma, L. S., Rocha, H. R. d., Cabral, O. M., Randow, C. V., Collicchio, E., Kunzetkowski, D. Arteve, P. (2000) Atmosphere and hydrologi
832	cal controls of the evanotranspiration over a flood plain forest in the Ba-
834	nanal Island region Amazonia
835	<i>geosciences</i> , 11/(G1). Retrieved 2020-04-21, from https://agupubs
836	.onlinelibrary.wiley.com/doi/abs/10.1029/2007JG000641 (_eprint:
837	https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2007JG000641) doi:
838	10.1029/2007JG000641
839	Cabral, O. M. R., da Rocha, H. R., Gash, J. H., Freitas, H. C., & Ligo, M. A. V.
840	(2015, September). Water and energy fluxes from a woodland savanna (cer-
841	rado) in southeast Brazil. Journal of Hydrology: Regional Studies, 4, 22–
842	40. Retrieved 2020-08-05, from http://www.sciencedirect.com/science/
843	article/pii/S2214581815000440 doi: 10.1016/j.ejrh.2015.04.010
844	Cabral, O. M. R., Freitas, H. C., Cuadra, S. V., de Andrade, C. A., Ramos, N. P.,
845	Grutzmacher, P., Rossi, P. (2020, March). The sustainability of a sugar-
846	cane plantation in Brazil assessed by the eddy covariance fluxes of greenhouse
847	gases. Agricultural and Forest Meteorology, 282-283, 107864. Retrieved
848	2021-10-01, HOH Attps://WWW.sciencedirect.com/science/article/pii/
849	Cabral O M D Cach I H C Dacha H D Maradar O Line M A M D
850	Cabrai, O. M. K., Gasn, J. H. C., Kocna, H. K., Marsden, C., Ligo, M. A. V., Fre-

851	itas, H. C., Gomes, E. (2011, January). Fluxes of CO2 above a plantation
852	of Eucalyptus in southeast Brazil. Agricultural and Forest Meteorology, 151(1),
853	49-59. Retrieved 2020-07-24, from http://www.sciencedirect.com/science/
854	article/pii/S0168192310002480 doi: 10.1016/j.agrformet.2010.09.003
855	Cabral, O. M. R., Rocha, H. R., Gash, J. H., Ligo, M. A. V., Tatsch, J. D., Freitas,
856	H. C., & Brasilio, E. (2012). Water use in a sugarcane plantation. GCB Bioen-
857	<i>ergy</i> , 4(5), 555-565. Retrieved 2020-07-28, from https://onlinelibrary
858	.wiley.com/doi/abs/10.1111/j.1757-1707.2011.01155.x (_eprint:
859	https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1757-1707.2011.01155.x)
860	doi: 10.1111/j.1757-1707.2011.01155.x
861	Cabral, O. M. R., Rocha, H. R., Gash, J. H. C., Ligo, M. A. V., Freitas, H. C., &
862	Tatsch, J. D. (2010, July). The energy and water balance of a Eucalyp-
863	tus plantation in southeast Brazil. Journal of Hydrology, 388(3), 208–216.
864	Retrieved 2021-04-08, from https://www.sciencedirect.com/science/
865	article/pii/S0022169410002404 doi: 10.1016/j.jhydrol.2010.04.041
866	Campos, S., Mendes, K. R., da Silva, L. L., Mutti, P. R., Medeiros, S. S., Amorim,
867	L. B., Bezerra, B. G. (2019, June). Closure and partitioning of the en-
868	ergy balance in a preserved area of a Brazilian seasonally dry tropical forest.
869	Agricultural and Forest Meteorology, 271, 398–412. Retrieved 2020-05-06, from
870	http://www.sciencedirect.com/science/article/pii/S0168192319301303
871	doi: 10.1016/j.agrformet.2019.03.018
872	Cao, L., Bala, G., Caldeira, K., Nemani, R., & Ban-Weiss, G. (2010, May). Im-
873	portance of carbon dioxide physiological forcing to future climate change. Pro-
874	ceedings of the National Academy of Sciences, 107(21), 9513–9518. Retrieved
875	2021-04-15, from https://www.pnas.org/content/107/21/9513 (Publisher:
876	National Academy of Sciences Section: Physical Sciences) doi: 10.1073/pnas
877	.0913000107
878	Chang, Y., Qin, D., Ding, Y., Zhao, Q., & Zhang, S. (2018, June). A modified
	\mathbf{O}
879	MOD16 algorithm to estimate evapotranspiration over alpine meadow on
879 880	MOD16 algorithm to estimate evapotranspiration over alpine meadow on the Tibetan Plateau, China. <i>Journal of Hydrology</i> , 561, 16–30. Retrieved
879 880 881	MOD16 algorithm to estimate evapotranspiration over alpine meadow on the Tibetan Plateau, China. <i>Journal of Hydrology</i> , 561, 16–30. Retrieved 2021-04-15, from https://www.sciencedirect.com/science/article/pii/
879 880 881 882	MOD16 algorithm to estimate evapotranspiration over alpine meadow on the Tibetan Plateau, China. <i>Journal of Hydrology</i> , 561, 16–30. Retrieved 2021-04-15, from https://www.sciencedirect.com/science/article/pii/ S0022169418302269 doi: 10.1016/j.jhydrol.2018.03.054
879 880 881 882 883	MOD16 algorithm to estimate evapotranspiration over alpine meadow on the Tibetan Plateau, China. Journal of Hydrology, 561, 16-30. Retrieved 2021-04-15, from https://www.sciencedirect.com/science/article/pii/ S0022169418302269 doi: 10.1016/j.jhydrol.2018.03.054 Chen, B., Black, T. A., Coops, N. C., Hilker, T., (Tony) Trofymow, J. A., & Mor-
879 880 881 882 883 884	 MOD16 algorithm to estimate evapotranspiration over alpine meadow on the Tibetan Plateau, China. Journal of Hydrology, 561, 16-30. Retrieved 2021-04-15, from https://www.sciencedirect.com/science/article/pii/ S0022169418302269 doi: 10.1016/j.jhydrol.2018.03.054 Chen, B., Black, T. A., Coops, N. C., Hilker, T., (Tony) Trofymow, J. A., & Mor- genstern, K. (2009, February). Assessing Tower Flux Footprint Clima-
879 880 881 882 883 884 885	 MOD16 algorithm to estimate evapotranspiration over alpine meadow on the Tibetan Plateau, China. Journal of Hydrology, 561, 16-30. Retrieved 2021-04-15, from https://www.sciencedirect.com/science/article/pii/ S0022169418302269 doi: 10.1016/j.jhydrol.2018.03.054 Chen, B., Black, T. A., Coops, N. C., Hilker, T., (Tony) Trofymow, J. A., & Mor- genstern, K. (2009, February). Assessing Tower Flux Footprint Clima- tology and Scaling Between Remotely Sensed and Eddy Covariance Mea-
879 880 881 882 883 884 884 885 886	 MOD16 algorithm to estimate evapotranspiration over alpine meadow on the Tibetan Plateau, China. Journal of Hydrology, 561, 16-30. Retrieved 2021-04-15, from https://www.sciencedirect.com/science/article/pii/ S0022169418302269 doi: 10.1016/j.jhydrol.2018.03.054 Chen, B., Black, T. A., Coops, N. C., Hilker, T., (Tony) Trofymow, J. A., & Mor- genstern, K. (2009, February). Assessing Tower Flux Footprint Clima- tology and Scaling Between Remotely Sensed and Eddy Covariance Mea- surements. Boundary-Layer Meteorology, 130(2), 137-167. Retrieved
879 880 881 882 883 884 885 885 886 887	 MOD16 algorithm to estimate evapotranspiration over alpine meadow on the Tibetan Plateau, China. Journal of Hydrology, 561, 16-30. Retrieved 2021-04-15, from https://www.sciencedirect.com/science/article/pii/ S0022169418302269 doi: 10.1016/j.jhydrol.2018.03.054 Chen, B., Black, T. A., Coops, N. C., Hilker, T., (Tony) Trofymow, J. A., & Mor- genstern, K. (2009, February). Assessing Tower Flux Footprint Clima- tology and Scaling Between Remotely Sensed and Eddy Covariance Mea- surements. Boundary-Layer Meteorology, 130(2), 137-167. Retrieved 2020-07-09, from https://doi.org/10.1007/s10546-008-9339-1 doi:
879 880 881 882 883 884 885 886 886 887 888	 MOD16 algorithm to estimate evapotranspiration over alpine meadow on the Tibetan Plateau, China. Journal of Hydrology, 561, 16–30. Retrieved 2021-04-15, from https://www.sciencedirect.com/science/article/pii/ S0022169418302269 doi: 10.1016/j.jhydrol.2018.03.054 Chen, B., Black, T. A., Coops, N. C., Hilker, T., (Tony) Trofymow, J. A., & Mor- genstern, K. (2009, February). Assessing Tower Flux Footprint Clima- tology and Scaling Between Remotely Sensed and Eddy Covariance Mea- surements. Boundary-Layer Meteorology, 130(2), 137–167. Retrieved 2020-07-09, from https://doi.org/10.1007/s10546-008-9339-1 doi: 10.1007/s10546-008-9339-1
879 880 881 882 883 884 885 886 887 888 889	 MOD16 algorithm to estimate evapotranspiration over alpine meadow on the Tibetan Plateau, China. Journal of Hydrology, 561, 16-30. Retrieved 2021-04-15, from https://www.sciencedirect.com/science/article/pii/ S0022169418302269 doi: 10.1016/j.jhydrol.2018.03.054 Chen, B., Black, T. A., Coops, N. C., Hilker, T., (Tony) Trofymow, J. A., & Mor- genstern, K. (2009, February). Assessing Tower Flux Footprint Clima- tology and Scaling Between Remotely Sensed and Eddy Covariance Mea- surements. Boundary-Layer Meteorology, 130(2), 137-167. Retrieved 2020-07-09, from https://doi.org/10.1007/s10546-008-9339-1 doi: 10.1007/s10546-008-9339-1 Chong, D. L. S., Mougin, E., & Gastellu-Etchegorry. (1993, May). Relating the
879 880 881 882 883 884 885 886 886 888 888 889	 MOD16 algorithm to estimate evapotranspiration over alpine meadow on the Tibetan Plateau, China. Journal of Hydrology, 561, 16-30. Retrieved 2021-04-15, from https://www.sciencedirect.com/science/article/pii/ S0022169418302269 doi: 10.1016/j.jhydrol.2018.03.054 Chen, B., Black, T. A., Coops, N. C., Hilker, T., (Tony) Trofymow, J. A., & Mor- genstern, K. (2009, February). Assessing Tower Flux Footprint Clima- tology and Scaling Between Remotely Sensed and Eddy Covariance Mea- surements. Boundary-Layer Meteorology, 130(2), 137-167. Retrieved 2020-07-09, from https://doi.org/10.1007/s10546-008-9339-1 doi: 10.1007/s10546-008-9339-1 Chong, D. L. S., Mougin, E., & Gastellu-Etchegorry. (1993, May). Relating the Global Vegetation Index to net primary productivity and actual evapotranspi-
879 880 881 882 883 884 885 886 886 888 888 888 889 890	 MOD16 algorithm to estimate evapotranspiration over alpine meadow on the Tibetan Plateau, China. Journal of Hydrology, 561, 16-30. Retrieved 2021-04-15, from https://www.sciencedirect.com/science/article/pii/ S0022169418302269 doi: 10.1016/j.jhydrol.2018.03.054 Chen, B., Black, T. A., Coops, N. C., Hilker, T., (Tony) Trofymow, J. A., & Mor- genstern, K. (2009, February). Assessing Tower Flux Footprint Clima- tology and Scaling Between Remotely Sensed and Eddy Covariance Mea- surements. Boundary-Layer Meteorology, 130(2), 137-167. Retrieved 2020-07-09, from https://doi.org/10.1007/s10546-008-9339-1 doi: 10.1007/s10546-008-9339-1 Chong, D. L. S., Mougin, E., & Gastellu-Etchegorry. (1993, May). Relating the Global Vegetation Index to net primary productivity and actual evapotranspi- ration over Africa. International Journal of Remote Sensing, 14(8), 1517-1546.
879 880 881 882 883 884 885 886 887 888 888 889 890 891	 MOD16 algorithm to estimate evapotranspiration over alpine meadow on the Tibetan Plateau, China. Journal of Hydrology, 561, 16-30. Retrieved 2021-04-15, from https://www.sciencedirect.com/science/article/pii/ S0022169418302269 doi: 10.1016/j.jhydrol.2018.03.054 Chen, B., Black, T. A., Coops, N. C., Hilker, T., (Tony) Trofymow, J. A., & Mor- genstern, K. (2009, February). Assessing Tower Flux Footprint Clima- tology and Scaling Between Remotely Sensed and Eddy Covariance Mea- surements. Boundary-Layer Meteorology, 130(2), 137-167. Retrieved 2020-07-09, from https://doi.org/10.1007/s10546-008-9339-1 doi: 10.1007/s10546-008-9339-1 Chong, D. L. S., Mougin, E., & Gastellu-Etchegorry. (1993, May). Relating the Global Vegetation Index to net primary productivity and actual evapotranspi- ration over Africa. International Journal of Remote Sensing, 14(8), 1517-1546. Retrieved 2019-09-05, from https://doi.org/10.1080/01431169308953984
879 880 881 882 883 884 885 886 886 888 889 890 891 892 893	 MOD16 algorithm to estimate evapotranspiration over alpine meadow on the Tibetan Plateau, China. Journal of Hydrology, 561, 16-30. Retrieved 2021-04-15, from https://www.sciencedirect.com/science/article/pii/ S0022169418302269 doi: 10.1016/j.jhydrol.2018.03.054 Chen, B., Black, T. A., Coops, N. C., Hilker, T., (Tony) Trofymow, J. A., & Mor- genstern, K. (2009, February). Assessing Tower Flux Footprint Clima- tology and Scaling Between Remotely Sensed and Eddy Covariance Mea- surements. Boundary-Layer Meteorology, 130(2), 137-167. Retrieved 2020-07-09, from https://doi.org/10.1007/s10546-008-9339-1 doi: 10.1007/s10546-008-9339-1 Chong, D. L. S., Mougin, E., & Gastellu-Etchegorry. (1993, May). Relating the Global Vegetation Index to net primary productivity and actual evapotranspi- ration over Africa. International Journal of Remote Sensing, 14(8), 1517-1546. Retrieved 2019-09-05, from https://doi.org/10.1080/01431169308953984 doi: 10.1080/01431169308953984
879 880 881 882 883 884 885 886 887 888 889 890 891 891 892 893	 MOD16 algorithm to estimate evapotranspiration over alpine meadow on the Tibetan Plateau, China. Journal of Hydrology, 561, 16-30. Retrieved 2021-04-15, from https://www.sciencedirect.com/science/article/pii/ S0022169418302269 doi: 10.1016/j.jhydrol.2018.03.054 Chen, B., Black, T. A., Coops, N. C., Hilker, T., (Tony) Trofymow, J. A., & Mor- genstern, K. (2009, February). Assessing Tower Flux Footprint Clima- tology and Scaling Between Remotely Sensed and Eddy Covariance Mea- surements. Boundary-Layer Meteorology, 130(2), 137-167. Retrieved 2020-07-09, from https://doi.org/10.1007/s10546-008-9339-1 doi: 10.1007/s10546-008-9339-1 Chong, D. L. S., Mougin, E., & Gastellu-Etchegorry. (1993, May). Relating the Global Vegetation Index to net primary productivity and actual evapotranspi- ration over Africa. International Journal of Remote Sensing, 14(8), 1517-1546. Retrieved 2019-09-05, from https://doi.org/10.1080/01431169308953984 doi: 10.1080/01431169308953984 Costanza, R., d'Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B.,
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894	 MOD16 algorithm to estimate evapotranspiration over alpine meadow on the Tibetan Plateau, China. Journal of Hydrology, 561, 16-30. Retrieved 2021-04-15, from https://www.sciencedirect.com/science/article/pii/ S0022169418302269 doi: 10.1016/j.jhydrol.2018.03.054 Chen, B., Black, T. A., Coops, N. C., Hilker, T., (Tony) Trofymow, J. A., & Mor- genstern, K. (2009, February). Assessing Tower Flux Footprint Clima- tology and Scaling Between Remotely Sensed and Eddy Covariance Mea- surements. Boundary-Layer Meteorology, 130(2), 137-167. Retrieved 2020-07-09, from https://doi.org/10.1007/s10546-008-9339-1 doi: 10.1007/s10546-008-9339-1 Chong, D. L. S., Mougin, E., & Gastellu-Etchegorry. (1993, May). Relating the Global Vegetation Index to net primary productivity and actual evapotranspi- ration over Africa. International Journal of Remote Sensing, 14(8), 1517-1546. Retrieved 2019-09-05, from https://doi.org/10.1080/01431169308953984 doi: 10.1080/01431169308953984 Costanza, R., d'Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., van den Belt, M. (1997, May). The value of the world's ecosystem services
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 893 894 895	 MOD16 algorithm to estimate evapotranspiration over alpine meadow on the Tibetan Plateau, China. Journal of Hydrology, 561, 16-30. Retrieved 2021-04-15, from https://www.sciencedirect.com/science/article/pii/ S0022169418302269 doi: 10.1016/j.jhydrol.2018.03.054 Chen, B., Black, T. A., Coops, N. C., Hilker, T., (Tony) Trofymow, J. A., & Mor- genstern, K. (2009, February). Assessing Tower Flux Footprint Clima- tology and Scaling Between Remotely Sensed and Eddy Covariance Mea- surements. Boundary-Layer Meteorology, 130(2), 137-167. Retrieved 2020-07-09, from https://doi.org/10.1007/s10546-008-9339-1 doi: 10.1007/s10546-008-9339-1 Chong, D. L. S., Mougin, E., & Gastellu-Etchegorry. (1993, May). Relating the Global Vegetation Index to net primary productivity and actual evapotranspi- ration over Africa. International Journal of Remote Sensing, 14(8), 1517-1546. Retrieved 2019-09-05, from https://doi.org/10.1080/01431169308953984 doi: 10.1080/01431169308953984 Costanza, R., d'Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., van den Belt, M. (1997, May). The value of the world's ecosystem services and natural capital. Nature, 387(6630), 253-260. Retrieved 2021-04-22, from
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 893 894 895 897	 MOD16 algorithm to estimate evapotranspiration over alpine meadow on the Tibetan Plateau, China. Journal of Hydrology, 561, 16-30. Retrieved 2021-04-15, from https://www.sciencedirect.com/science/article/pii/ S0022169418302269 doi: 10.1016/j.jhydrol.2018.03.054 Chen, B., Black, T. A., Coops, N. C., Hilker, T., (Tony) Trofymow, J. A., & Mor- genstern, K. (2009, February). Assessing Tower Flux Footprint Clima- tology and Scaling Between Remotely Sensed and Eddy Covariance Mea- surements. Boundary-Layer Meteorology, 130(2), 137-167. Retrieved 2020-07-09, from https://doi.org/10.1007/s10546-008-9339-1 doi: 10.1007/s10546-008-9339-1 Chong, D. L. S., Mougin, E., & Gastellu-Etchegorry. (1993, May). Relating the Global Vegetation Index to net primary productivity and actual evapotranspi- ration over Africa. International Journal of Remote Sensing, 14(8), 1517-1546. Retrieved 2019-09-05, from https://doi.org/10.1080/01431169308953984 doi: 10.1080/01431169308953984 Costanza, R., d'Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., van den Belt, M. (1997, May). The value of the world's ecosystem services and natural capital. Nature, 387(6630), 253-260. Retrieved 2021-04-22, from https://www.nature.com/articles/387253a0 (Number: 6630 Publisher:
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 895 896	 MOD16 algorithm to estimate evapotranspiration over alpine meadow on the Tibetan Plateau, China. Journal of Hydrology, 561, 16-30. Retrieved 2021-04-15, from https://www.sciencedirect.com/science/article/pii/S0022169418302269 doi: 10.1016/j.jhydrol.2018.03.054 Chen, B., Black, T. A., Coops, N. C., Hilker, T., (Tony) Trofymow, J. A., & Morgenstern, K. (2009, February). Assessing Tower Flux Footprint Climatology and Scaling Between Remotely Sensed and Eddy Covariance Measurements. Boundary-Layer Meteorology, 130(2), 137-167. Retrieved 2020-07-09, from https://doi.org/10.1007/s10546-008-9339-1 doi: 10.1007/s10546-008-9339-1 Chong, D. L. S., Mougin, E., & Gastellu-Etchegorry. (1993, May). Relating the Global Vegetation Index to net primary productivity and actual evapotranspiration over Africa. International Journal of Remote Sensing, 14(8), 1517-1546. Retrieved 2019-09-05, from https://doi.org/10.1080/01431169308953984 Costanza, R., d'Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., van den Belt, M. (1997, May). The value of the world's ecosystem services and natural capital. Nature, 387(6630), 253-260. Retrieved 2021-04-22, from https://www.nature.com/articles/387253a0 (Number: 6630 Publisher: Nature Publishing Group) doi: 10.1038/387253a0
879 880 881 882 883 884 885 886 887 888 890 890 891 892 893 894 895 896 897 898	 MOD16 algorithm to estimate evapotranspiration over alpine meadow on the Tibetan Plateau, China. Journal of Hydrology, 561, 16-30. Retrieved 2021-04-15, from https://www.sciencedirect.com/science/article/pii/ S0022169418302269 doi: 10.1016/j.jhydrol.2018.03.054 Chen, B., Black, T. A., Coops, N. C., Hilker, T., (Tony) Trofymow, J. A., & Mor- genstern, K. (2009, February). Assessing Tower Flux Footprint Clima- tology and Scaling Between Remotely Sensed and Eddy Covariance Mea- surements. Boundary-Layer Meteorology, 130(2), 137-167. Retrieved 2020-07-09, from https://doi.org/10.1007/s10546-008-9339-1 doi: 10.1007/s10546-008-9339-1 Chong, D. L. S., Mougin, E., & Gastellu-Etchegorry. (1993, May). Relating the Global Vegetation Index to net primary productivity and actual evapotranspi- ration over Africa. International Journal of Remote Sensing, 14(8), 1517-1546. Retrieved 2019-09-05, from https://doi.org/10.1080/01431169308953984 doi: 10.1080/01431169308953984 Costanza, R., d'Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., van den Belt, M. (1997, May). The value of the world's ecosystem services and natural capital. Nature, 387(6630), 253-260. Retrieved 2021-04-22, from https://www.nature.com/articles/387253a0 (Number: 6630 Publisher: Nature Publishing Group) doi: 10.1038/387253a0
879 880 881 882 883 884 885 886 887 888 890 890 891 892 893 894 895 896 897 898 899	 MOD16 algorithm to estimate evapotranspiration over alpine meadow on the Tibetan Plateau, China. Journal of Hydrology, 561, 16-30. Retrieved 2021-04-15, from https://www.sciencedirect.com/science/article/pii/ S0022169418302269 doi: 10.1016/j.jhydrol.2018.03.054 Chen, B., Black, T. A., Coops, N. C., Hilker, T., (Tony) Trofymow, J. A., & Mor- genstern, K. (2009, February). Assessing Tower Flux Footprint Clima- tology and Scaling Between Remotely Sensed and Eddy Covariance Mea- surements. Boundary-Layer Meteorology, 130(2), 137-167. Retrieved 2020-07-09, from https://doi.org/10.1007/s10546-008-9339-1 doi: 10.1007/s10546-008-9339-1 Chong, D. L. S., Mougin, E., & Gastellu-Etchegorry. (1993, May). Relating the Global Vegetation Index to net primary productivity and actual evapotranspi- ration over Africa. International Journal of Remote Sensing, 14(8), 1517-1546. Retrieved 2019-09-05, from https://doi.org/10.1080/01431169308953984 doi: 10.1080/01431169308953984 Costanza, R., d'Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., van den Belt, M. (1997, May). The value of the world's ecosystem services and natural capital. Nature, 387(6630), 253-260. Retrieved 2021-04-22, from https://www.nature.com/articles/387253a0 (Number: 6630 Publisher: Nature Publishing Group) doi: 10.1038/387253a0 Curto, L., Covi, M., & Gassmann, M. I. (2019, December). Actual evapotranspi- ration and the pattern of soil water extraction of a soybean (Glycine max)
879 880 881 882 883 884 885 886 887 888 890 890 891 893 893 894 895 896 897 898 899 900 901	 MOD16 algorithm to estimate evapotranspiration over alpine meadow on the Tibetan Plateau, China. Journal of Hydrology, 561, 16-30. Retrieved 2021-04-15, from https://www.sciencedirect.com/science/article/pii/S0022169418302269 doi: 10.1016/j.jhydrol.2018.03.054 Chen, B., Black, T. A., Coops, N. C., Hilker, T., (Tony) Trofymow, J. A., & Morgenstern, K. (2009, February). Assessing Tower Flux Footprint Climatology and Scaling Between Remotely Sensed and Eddy Covariance Measurements. Boundary-Layer Meteorology, 130(2), 137-167. Retrieved 2020-07-09, from https://doi.org/10.1007/s10546-008-9339-1 doi: 10.1007/s10546-008-9339-1 doi: 10.1007/s10546-008-9339-1 Chong, D. L. S., Mougin, E., & Gastellu-Etchegorry. (1993, May). Relating the Global Vegetation Index to net primary productivity and actual evapotranspiration over Africa. International Journal of Remote Sensing, 14(8), 1517-1546. Retrieved 2019-09-05, from https://doi.org/10.1080/01431169308953984 Costanza, R., d'Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., van den Belt, M. (1997, May). The value of the world's ecosystem services and natural capital. Nature, 387(6630), 253-260. Retrieved 2021-04-22, from https://www.nature.com/articles/387253a0 (Number: 6630 Publisher: Nature Publishing Group) doi: 10.1038/387253a0 Curto, L., Covi, M., & Gassmann, M. I. (2019, December). Actual evapotranspiration and the pattern of soil water extraction of a soybean (Glycine max) crop. Revista de la Facultad de Ciencias Arrarias UNCuno. 51(2), 125-141
879 880 881 882 883 884 885 886 887 890 891 892 893 894 895 896 897 898 899 900 901 902	 MOD16 algorithm to estimate evapotranspiration over alpine meadow on the Tibetan Plateau, China. Journal of Hydrology, 561, 16-30. Retrieved 2021-04-15, from https://www.sciencedirect.com/science/article/pii/ S0022169418302269 doi: 10.1016/j.jhydrol.2018.03.054 Chen, B., Black, T. A., Coops, N. C., Hilker, T., (Tony) Trofymow, J. A., & Mor- genstern, K. (2009, February). Assessing Tower Flux Footprint Clima- tology and Scaling Between Remotely Sensed and Eddy Covariance Mea- surements. Boundary-Layer Meteorology, 130(2), 137-167. Retrieved 2020-07-09, from https://doi.org/10.1007/s10546-008-9339-1 doi: 10.1007/s10546-008-9339-1 Chong, D. L. S., Mougin, E., & Gastellu-Etchegorry. (1993, May). Relating the Global Vegetation Index to net primary productivity and actual evapotranspi- ration over Africa. International Journal of Remote Sensing, 14 (8), 1517-1546. Retrieved 2019-09-05, from https://doi.org/10.1080/01431169308953984 doi: 10.1080/01431169308953984 Costanza, R., d'Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., van den Belt, M. (1997, May). The value of the world's ecosystem services and natural capital. Nature, 387(6630), 253-260. Retrieved 2021-04-22, from https://www.nature.com/articles/387253a0 (Number: 6630 Publisher: Nature Publishing Group) doi: 10.1038/387253a0 Curto, L., Covi, M., & Gassmann, M. I. (2019, December). Actual evapotranspi- ration and the pattern of soil water extraction of a soybean (Glycine max) crop. Revista de la Facultad de Ciencias Agrarias UNCuyo, 51(2), 125-141. Retrieved 2021-03-11, from http://revistas.uncu.edu.ar/ois/index.pbp/
 879 880 881 882 884 885 886 887 888 890 891 892 893 894 895 896 897 898 899 900 901 902 903 	 MOD16 algorithm to estimate evapotranspiration over alpine meadow on the Tibetan Plateau, China. Journal of Hydrology, 561, 16-30. Retrieved 2021-04-15, from https://www.sciencedirect.com/science/article/pii/ S0022169418302269 doi: 10.1016/j.jhydrol.2018.03.054 Chen, B., Black, T. A., Coops, N. C., Hilker, T., (Tony) Trofymow, J. A., & Mor- genstern, K. (2009, February). Assessing Tower Flux Footprint Clima- tology and Scaling Between Remotely Sensed and Eddy Covariance Mea- surements. Boundary-Layer Meteorology, 130(2), 137-167. Retrieved 2020-07-09, from https://doi.org/10.1007/s10546-008-9339-1 doi: 10.1007/s10546-008-9339-1 Chong, D. L. S., Mougin, E., & Gastellu-Etchegorry. (1993, May). Relating the Global Vegetation Index to net primary productivity and actual evapotranspi- ration over Africa. International Journal of Remote Sensing, 14 (8), 1517-1546. Retrieved 2019-09-05, from https://doi.org/10.1080/01431169308953984 doi: 10.1080/01431169308953984 Costanza, R., d'Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., van den Belt, M. (1997, May). The value of the world's ecosystem services and natural capital. Nature, 387(6630), 253-260. Retrieved 2021-04-22, from https://www.nature.com/articles/387253a0 (Number: 6630 Publisher: Nature Publishing Group) doi: 10.1038/387253a0 Curto, L., Covi, M., & Gassmann, M. I. (2019, December). Actual evapotranspi- ration and the pattern of soil water extraction of a soybean (Glycine max) crop. Revista de la Facultad de Ciencias Agrarias UNCuyo, 51(2), 125-141. Retrieved 2021-03-11, from http://revistas.uncu.edu.ar/ojs/index.php/ RFCA/article/view/2615 (Number: 2)
879 880 881 882 883 884 885 886 887 898 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904	 MOD16 algorithm to estimate evapotranspiration over alpine meadow on the Tibetan Plateau, China. Journal of Hydrology, 561, 16-30. Retrieved 2021-04-15, from https://www.sciencedirect.com/science/article/pii/S0022169418302269 doi: 10.1016/j.jhydrol.2018.03.054 Chen, B., Black, T. A., Coops, N. C., Hilker, T., (Tony) Trofymow, J. A., & Morgenstern, K. (2009, February). Assessing Tower Flux Footprint Climatology and Scaling Between Remotely Sensed and Eddy Covariance Measurements. Boundary-Layer Meteorology, 130(2), 137-167. Retrieved 2020-07-09, from https://doi.org/10.1007/s10546-008-9339-1 Chong, D. L. S., Mougin, E., & Gastellu-Etchegorry. (1993, May). Relating the Global Vegetation Index to net primary productivity and actual evapotranspiration over Africa. International Journal of Remote Sensing, 14(8), 1517-1546. Retrieved 2019-09-05, from https://doi.org/10.1080/01431169308953984 Costanza, R., d'Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., van den Belt, M. (1997, May). The value of the world's ecosystem services and natural capital. Nature, 387(6630), 253-260. Retrieved 2021-04-22, from https://www.nature.com/articles/387253a0 (Number: 6630 Publisher: Nature Publishing Group) doi: 10.1038/387253a0 Curto, L., Covi, M., & Gassmann, M. I. (2019, December). Actual evapotranspiration and the pattern of soil water extraction of a soybean (Glycine max) crop. Revista de la Facultad de Ciencias Agrarias UNCuyo, 51(2), 125-141. Retrieved 2021-03-11, from http://revistas.uncu.edu.ar/ojs/index.php/RFCA/article/view/2615 (Number: 2) Dalmagro, H. J., Lathuillière, M. J., Hawthorne, L. Morais, D. D., Pinto, Jr. O. B.
 879 880 881 882 883 884 885 886 887 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 	 MOD16 algorithm to estimate evapotranspiration over alpine meadow on the Tibetan Plateau, China. Journal of Hydrology, 561, 16-30. Retrieved 2021-04-15, from https://www.sciencedirect.com/science/article/pii/S0022169418302269 doi: 10.1016/j.jhydrol.2018.03.054 Chen, B., Black, T. A., Coops, N. C., Hilker, T., (Tony) Trofymow, J. A., & Morgenstern, K. (2009, February). Assessing Tower Flux Footprint Climatology and Scaling Between Remotely Sensed and Eddy Covariance Measurements. Boundary-Layer Meteorology, 130(2), 137-167. Retrieved 2020-07-09, from https://doi.org/10.1007/s10546-008-9339-1 doi: 10.1007/s10546-008-9339-1 doi: 10.1007/s10546-008-9339-1 doi: 10.1007/s10546-008-9339-1 doi: 10.1007/s10546-008-9339-1 doi: 10.1007/s10546-008-9339-1 Chong, D. L. S., Mougin, E., & Gastellu-Etchegorry. (1993, May). Relating the Global Vegetation Index to net primary productivity and actual evapotranspiration over Africa. International Journal of Remote Sensing, 14(8), 1517-1546. Retrieved 2019-09-05, from https://doi.org/10.1080/01431169308953984 Costanza, R., d'Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., van den Belt, M. (1997, May). The value of the world's ecosystem services and natural capital. Nature, 387(6630), 253-260. Retrieved 2021-04-22, from https://www.nature.com/articles/387253a0 (Number: 6630 Publisher: Nature Publishing Group) doi: 10.1038/387253a0 Curto, L., Covi, M., & Gassmann, M. I. (2019, December). Actual evapotranspiration and the pattern of soil water extraction of a soybean (Glycine max) crop. Revista de la Facultad de Ciencias Agrarias UNCuyo, 51(2), 125-141. Retrieved 2021-03-11, from http://revistas.uncu.edu.ar/ojs/index.php/RFCA/article/view/2615 (Number: 2) Dalmagro, H. J., Lathuillière, M. J., Hawthorne, I., Morais, D. D., Pinto Jr, O. B., Couto, E. G., & Johnson, M. S. (2018, June) Carbon biogrochemistry

906	of a flooded Pantanal forest over three annual flood cycles. Biogeochem-
907	<i>istry</i> , 139(1), 1–18. Retrieved 2020-08-18, from https://doi.org/10.1007/
908	s10533-018-0450-1 doi: 10.1007/s10533-018-0450-1
909	Denmead, O. T., Mayocchi, C. L., & Dunin, F. X. (1997). Does green cane harvest-
910	ing conserve soil water? In Proceedings of the australian society of sugar cane
911	technologists (Vol. 19, pp. 139–146).
912	de Oliveira, R. G., Valle Júnior, L. C. G., da Silva, J. B., Espíndola, D. A. L. F.,
913	Lopes, R. D., Nogueira, J. S., Rodrigues, T. R. (2021, May). Temporal
914	trend changes in reference evapotranspiration contrasting different land uses
915	in southern Amazon basin. Agricultural Water Management, 250, 106815.
916	Retrieved 2021-04-01, from https://www.sciencedirect.com/science/
917	article/pii/S0378377421000809 doi: 10.1016/j.agwat.2021.106815
918	de Queiroz, M. G., da Silva, T. G. F., Zolnier, S., de Souza, C. A. A., de Souza,
919	L. S. B., do Nascimento Araújo, G., de Moura, M. S. B. (2020, April).
920	Partitioning of rainfall in a seasonal dry tropical forest. <i>Ecohydrology</i>
921	& Hydrobiology, 20(2), 230-242. Retrieved 2021-03-31, from https://
922	www.sciencedirect.com/science/article/pii/S1642359320300124 doi:
923	10.1016/j.ecohyd.2020.02.001
924	Embry, J. L., & Nothnagel, E. A. (1994, September). Leaf Senescence of Post-
925	production Poinsettias in Low-light Stress. Journal of the American So-
926	ciety for Horticultural Science, $119(5)$, $1006-1013$. Retrieved 2021-04-22.
927	from https://journals.ashs.org/jashs/view/journals/jashs/119/5/
928	article-p1006.xml (Publisher: American Society for Horticultural Sci-
929	ence Section: Journal of the American Society for Horticultural Science) doi:
930	10.21273/JASHS.119.5.1006
931	Ershadi, A., McCabe, M. F., Evans, J. P., Chanev, N. W., & Wood, E. F. (2014,
932	April). Multi-site evaluation of terrestrial evaporation models using FLUXNET
933	data. Agricultural and Forest Meteorology, 187, 46–61. Retrieved 2020-
934	01-15, from http://www.sciencedirect.com/science/article/pii/
935	S0168192313002980 doi: 10.1016/j.agrformet.2013.11.008
936	Ershadi, A., McCabe, M. F., Evans, J. P., & Wood, E. F. (2015, June). Impact of
937	model structure and parameterization on Penman–Monteith type evaporation
938	models. Journal of Hydrology, 525, 521–535. Retrieved 2020-06-22, from
939	http://www.sciencedirect.com/science/article/pii/S0022169415002577
940	doi: 10.1016/j.jhydrol.2015.04.008
941	Ferguson, C. R., Sheffield, J., Wood, E. F., & Gao, H. (2010, August). Quan-
942	tifying uncertainty in a remote sensing-based estimate of evapotranspi-
943	ration over continental USA. International Journal of Remote Sens-
944	ing, 31(14), 3821-3865. Retrieved 2020-09-03, from https://doi.org/
945	10.1080/01431161.2010.483490 (Publisher: Taylor & Francis _eprint:
946	https://doi.org/10.1080/01431161.2010.483490) doi: 10.1080/01431161.2010
947	.483490
948	Ferretti, D. F., Pendall, E., Morgan, J. A., Nelson, J. A., LeCain, D., & Mosier,
949	A. R. (2003, July). Partitioning evapotranspiration fluxes from a Colorado
950	grassland using stable isotopes: Seasonal variations and ecosystem implica-
951	tions of elevated atmospheric CO2. Plant and Soil, 254(2), 291–303. Re-
952	trieved 2021-04-19, from https://doi.org/10.1023/A:1025511618571 doi:
953	10.1023/A:1025511618571
954	Fisher, J. B., Lee, B., Purdy, A. J., Halverson, G. H., Dohlen, M. B.,
955	Cawse-Nicholson, K., Hook, S. (2020). ECOSTRESS: NASA's
956	Next Generation Mission to Measure Evapotranspiration From the
957	International Space Station. $Water Resources Research, 56(4),$
958	e2019WR026058. Retrieved 2020-08-31, from https://agupubs
959	.onlinelibrary.wiley.com/doi/abs/10.1029/2019WR026058 (_eprint:
960	https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2019WR026058) doi:

961	10.1029/2019WR026058
962	Fisher, J. B., Malhi, Y., Bonal, D., Rocha, H. R. D., Araújo, A. C. D., Gamo, M.,
963	Randow, C. V. (2009). The land-atmosphere water flux in the trop-
964	ics. Global Change Biology, 15(11), 2694–2714. Retrieved 2021-01-26, from
965	https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2486.2008
966	.01813.x (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-
967	2486.2008.01813.x) doi: https://doi.org/10.1111/j.1365-2486.2008.01813.x
968	Fisher, J. B., Melton, F., Middleton, E., Hain, C., Anderson, M., Allen, R.,
969	Wood, E. F. (2017). The future of evapotranspiration: Global re-
970	quirements for ecosystem functioning, carbon and climate feedbacks,
971	agricultural management, and water resources. Water Resources Re-
972	search, 53(4), 2618–2626. Retrieved 2020-08-31, from https://agupubs
973	.onlinelibrary.wiley.com/doi/abs/10.1002/2016WR020175 (_eprint:
974	https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2016WR020175) doi:
975	10.1002/2016 WR020175
976	Fisher, J. B., Tu, K. P., & Baldocchi, D. D. (2008, March). Global estimates of the
977	land-atmosphere water flux based on monthly AVHRR and ISLSCP-II data,
978	validated at 16 FLUXNET sites. Remote Sensing of Environment, 112(3),
979	901-919. Retrieved 2018-08-09, from http://www.sciencedirect.com/
980	science/article/pii/S0034425707003938 doi: 10.1016/j.rse.2007.06.025
981	Fisher, J. B., Whittaker, R. J., & Malhi, Y. (2011). ET come home: potential
982	evapotranspiration in geographical ecology. Global Ecology and Biogeog-
983	raphy, 20(1), 1-18. Retrieved 2020-08-31, from https://onlinelibrary
984	.wiley.com/doi/abs/10.1111/j.1466-8238.2010.00578.x (_eprint:
985	https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1466-8238.2010.00578.x)
986	doi: 10.1111/j.1466-8238.2010.00578.x
987	Foken, T. (2008). The Energy Balance Closure Problem: An Overview. Ecolog-
988	<i>ical Applications</i> , 18(6), 1351–1367. Retrieved 2021-02-19, from https://
989	esajournals.onlinelibrary.wiley.com/doi/abs/10.1890/06-0922.1
990	$(_eprint: https://esajournals.onlinelibrary.wiley.com/doi/pdf/10.1890/06-$
991	0922.1) doi: https://doi.org/10.1890/06-0922.1
992	Gaj, M., Beyer, M., Koeniger, P., Wanke, H., Hamutoko, J., & Himmelsbach, T.
993	(2016, February). In situ unsaturated zone water stable isotope (² H and
994	18 O) measurements in semi-arid environments: a soil water balance. <i>Hy</i> -
995	drology and Earth System Sciences, $20(2)$, 715–731. Retrieved 2021-04-08,
996	from https://hess.copernicus.org/articles/20/715/2016/ (Publisher:
997	Copernicus GmbH) doi: $10.5194/hess-20-715-2016$
998	García, A. G., Di Bella, C. M., Houspanossian, J., Magliano, P. N., Jobbágy,
999	E. G., Posse, G., Nosetto, M. D. (2017, December). Patterns and
1000	controls of carbon dioxide and water vapor fluxes in a dry forest of central
1001	Argentina. Agricultural and Forest Meteorology, 247, 520–532. Retrieved
1002	2021-03-11, from https://www.sciencedirect.com/science/article/pii/
1003	S0168192317302721 doi: 10.1016/j.agrformet.2017.08.015
1004	García, M., Sandholt, I., Ceccato, P., Ridler, M., Mougin, E., Kergoat, L.,
1005	Domingo, F. (2013, April). Actual evapotranspiration in drylands de-
1006	rived from in-situ and satellite data: Assessing biophysical constraints. Re-
1007	mote Sensing of Environment, 131, 103–118. Retrieved 2020-06-23, from
1008	<pre>http://www.sciencedirect.com/science/article/pii/S0034425712004828 h i 10 1016/; 2010 10 016</pre>
1009	doi: 10.1016/j.rse.2012.12.016
1010	Gash, J. H. C. (1979). An analytical model of rainfall interception
1011	by forests. Quarterly Journal of the Royal Meteorological Soci-
1012	ety, 105(445), 43-55. Retrieved 2021-04-15, from https://rmets
1013	.onlinelibrary.wiley.com/doi/abs/10.1002/qj.49/10544304 (_eprint:
1014	https://finets.onlinehbrary.whey.com/doi/pdf/10.1002/qJ.49/10544304) doi:https://doi.org/10.1002/cj.40710544204
1015	nttps://d01.0rg/10.1002/q].49/10344304

- 1016Gash, J. H. C., Lloyd, C. R., & Lachaud, G.(1995, August).Estimat-1017ing sparse forest rainfall interception with an analytical model.Jour-1018nal of Hydrology, 170(1), 79–86.Retrieved 2020-07-28, from http://1019www.sciencedirect.com/science/article/pii/002216949502697Ndoi:102010.1016/0022-1694(95)02697-N
- 1021Goymer, P. (2017, March).Spotlight on South America.Nature Ecology & Evo-1022lution, 1(4), 1-2.Retrieved 2020-07-08, from https://www.nature.com/1023articles/s41559-017-0129(Number: 4 Publisher: Nature Publishing1024Group) doi: 10.1038/s41559-017-0129
- 1025Harris, I., Osborn, T. J., Jones, P., & Lister, D.(2020, April).Version 4 of the1026CRU TS monthly high-resolution gridded multivariate climate dataset.Scien-1027tific Data, 7(1), 109.Retrieved 2021-02-19, from https://www.nature.com/1028articles/s41597-020-0453-3(Number: 1 Publisher: Nature Publishing1029Group) doi: 10.1038/s41597-020-0453-3

1030

1031

1032

1033

- Hasler, N., & Avissar, R. (2007, June). What Controls Evapotranspiration in the Amazon Basin? Journal of Hydrometeorology, 8(3), 380-395. Retrieved 2020-03-23, from https://journals.ametsoc.org/doi/full/10.1175/JHM587.1 (Publisher: American Meteorological Society) doi: 10.1175/JHM587.1
- Holl, D., Pancotto, V., Heger, A., Camargo, S., & Kutzbach, L. (2019). Cushion bogs are stronger carbon dioxide net sinks than moss-dominated bogs
 as revealed by eddy covariance measurements on tierra del fuego, argentina. *Biogeosciences*, 16, 3397-3423. doi: https://doi.org/10.5194/bg-16-3397-2019
- Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002, November). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. *Remote Sensing of Environment*, 83(1), 195– 213. Retrieved 2019-09-03, from http://www.sciencedirect.com/science/ article/pii/S0034425702000962 doi: 10.1016/S0034-4257(02)00096-2
- Hutyra, L. R., Munger, J. W., Saleska, S. R., Gottlieb, E., Daube, B. C., Dunn, 1043 A. L., ... Wofsy, S. C. (2007).Seasonal controls on the exchange of carbon 1044 and water in an Amazonian rain forest. Journal of Geophysical Research: 1045 Retrieved 2020-03-23, from https://agupubs Biogeosciences, 112(G3).1046 .onlinelibrary.wiley.com/doi/abs/10.1029/2006JG000365 (_eprint: 1047 https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2006JG000365) doi: 1048 10.1029/2006JG000365 1049
- Jang, K., Kang, S., Lim, Y.-J., Jeong, S., Kim, J., Kimball, J. S., & Hong, 1050 (2013).Monitoring daily evapotranspiration in North-S. Y. 1051 east Asia using MODIS and a regional Land Data Assimilation Sys-1052 Journal of Geophysical Research: Atmospheres, 118(23), tem. 1053 12,927-12,940.Retrieved 2021-04-15, from https://agupubs 1054 .onlinelibrary.wiley.com/doi/abs/10.1002/2013JD020639 (_eprint: 1055 https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2013JD020639) doi: 1056
- https://doi.org/10.1002/2013JD020639 1057 Jarchow, C. J., Nagler, P. L., Glenn, E. P., Ramírez-Hernández, J., & Rodríguez-1058 Burgueño, J. E. (2017, September). Evapotranspiration by remote sens-1059 ing: An analysis of the Colorado River Delta before and after the Minute 1060 319 pulse flow to Mexico. Ecological Engineering, 106, 725–732. Retrieved 1061 2019-09-05, from http://www.sciencedirect.com/science/article/pii/ 1062 S0925857416305833 doi: 10.1016/j.ecoleng.2016.10.056 1063
- 1064Jasechko, S., Sharp, Z. D., Gibson, J. J., Birks, S. J., Yi, Y., & Fawcett, P. J. (2013,1065April). Terrestrial water fluxes dominated by transpiration. Nature, 496(7445),1066347–350. Retrieved 2021-04-13, from https://www.nature.com/articles/1067nature11983 (Number: 7445 Publisher: Nature Publishing Group) doi:106810.1038/nature11983
- Junk, W. J., Brown, M., Campbell, I. C., Finlayson, M., Gopal, B., Ramberg, L.,
 & Warner, B. G. (2006, October). The comparative biodiversity of seven

1071	globally important wetlands: a synthesis. Aquatic Sciences, $68(3)$, 400–414.
1072	Retrieved 2021-04-22, from https://doi.org/10.1007/s00027-006-0856-z
1073	doi: 10.1007/s00027-006-0856-z
1074	Junk, W. J., da Cunha, C. N., Wantzen, K. M., Petermann, P., Strüssmann, C.,
1075	Marques, M. I., & Adis, J. (2006, October). Biodiversity and its conservation
1076	in the Pantanal of Mato Grosso, Brazil. $Aquatic Sciences, 68(3), 278-309.$
1077	Retrieved 2021-04-22, from https://doi.org/10.1007/s00027-006-0851-4
1078	doi: 10.1007/s00027-006-0851-4
1079	Khan, M. S., Liaqat, U. W., Baik, J., & Choi, M. (2018, April). Stand-alone uncer-
1080	tainty characterization of GLEAM, GLDAS and MOD16 evapotranspiration
1081	products using an extended triple collocation approach. Agricultural and
1082	Forest Meteorology, 252, 256–268. Retrieved 2021-04-15, from https://
1083	www.sciencedirect.com/science/article/pii/S0168192318300224 doi:
1084	10.1016/j.agrformet.2018.01.022
1085	Khosa, F. V., Feig, G. T., van der Merwe, M. R., Mateyisi, M. J., Mudau, A. E.,
1086	& Savage, M. J. (2019, December). Evaluation of modeled actual evap-
1087	otranspiration estimates from a land surface, empirical and satellite-based
1088	models using in situ observations from a South African semi-arid savanna
1089	ecosystem. Agricultural and Forest Meteorology, 279, 107706. Retrieved
1090	2021-04-10, IfOII https://www.sciencedirect.com/science/article/pii/
1091	S0108192319303223 doi: $10.1010/J.agriormet.2019.107700$
1092	station heat flux predictions using a simple two source model with re-
1093	diametric temperatures for partial canopy cover
1094	est Meteorology $9/(1)$ 13–29 Retrieved 2021-04-15 from https://
1095	www.sciencedirect.com/science/article/nii/S0168192399000052 doi:
1097	10.1016/S0168-1923(99)00005-2
1008	Kutzbach L (2019a) Lars Kutzbach (2019) AmeriFlux AB-TF1 Rio Moat bog
1099	Ver. 1-5. AmeriFlux AMP. (Dataset) Retrieved 2021-04-15. from https://
1100	ameriflux.lbl.gov/doi/AmeriFlux/AR-TF1 doi: https://doi.org/10.17190/
1101	AMF/1543389
1102	Kutzbach, L. (2019b). Lars Kutzbach (2019), AmeriFlux AR-TF2 Rio Pipo bog,
1103	Ver. 1-5, AmeriFlux AMP, (Dataset) Retrieved 2021-04-15, from https://
1104	ameriflux.lbl.gov/sites/siteinfo/AR-TF2 doi: https://doi.org/10.17190/
1105	AMF/1543388
1106	Leopoldo, P. R., Franken, W. K., & Villa Nova, N. A. (1995, May). Real evap-
1107	otranspiration and transpiration through a tropical rain forest in central
1108	Amazonia as estimated by the water balance method. Forest Ecology
1109	and Management, 73(1), 185–195. Retrieved 2021-04-08, from https://
1110	www.sciencedirect.com/science/article/pii/037811279403487H doi:
1111	10.1010/03/8-112/(94)0348/-H
1112	Levy, P., Drewer, J., Jammet, M., Leeson, S., Friborg, T., Skiba, U., & Oijen, M. v.
1113	(2020, January). Interence of spatial heterogeneity in surface fluxes from
1114	eddy covariance data: A case study from a subarctic finite ecosystem. Agri-
1115	bttp://www.sciencedirect.com/science/article/pii/S0168192319303995
1116	doi: 10.1016/i.agrformet 2010.107783
1117	Li X Long D Han Z Scanlon B B Sun Z Han P & Hou A (2010)
1110	November) Evanotranspiration Estimation for Tibetan Plateau Headwa-
1120	ters Using Conjoint Terrestrial and Atmospheric Water Balances and Mul-
1120	tisource Remote Sensing. Water Resources Research 55(11) 8608–8630
1122	Retrieved 2021-04-15, from https://agupubs.onlinelibrary.wilev.com/
1123	doi/10.1029/2019WR025196 (Publisher: John Wiley & Sons, Ltd) doi:
1124	10.1029/2019WR025196
1125	Liu, Y. Y., Dijk, A. I. J. M. v., McCabe, M. F., Evans, J. P., & Jeu, R. A. M. d.

1126	(2013). Global vegetation biomass change (1988–2008) and attribu-
1127	tion to environmental and human drivers. Global Ecology and Bio-
1128	geography, 22(6), 692–705. Retrieved 2021-04-15, from https://
1129	onlinelibrary.wiley.com/doi/abs/10.1111/geb.12024 (_eprint:
1130	https://onlinelibrary.wiley.com/doi/pdf/10.1111/geb.12024) doi: https://
1131	doi.org/10.1111/geb.12024
1132	Lopes, J. D., Rodrigues, L. N., Imbuzeiro, H. M. A., & Pruski, F. F. (2019,
1133	September). Performance of SSEBop model for estimating wheat actual
1134	evapotranspiration in the Brazilian Savannah region. International Jour-
1135	nal of Remote Sensing, $40(18)$, 6930–6947. Retrieved 2021-04-15, from
1136	https://doi.org/10.1080/01431161.2019.1597304 (Publisher: Tay-
1137	lor & Francis _eprint: https://doi.org/10.1080/01431161.2019.1597304) doi:
1138	10.1080/01431161.2019.1597304
1139	Machado, C. B., Lima, J. R. d. S., Antonino, A. C. D., Souza, E. S. d., Souza,
1140	R. M. S., Alves, E. M., Alves, E. M. (2016, September). Daily and sea-
1141	sonal patterns of CO2 fluxes and evapotranspiration in maize-grass intercrop-
1142	ping. Revista Brasileira de Engenharia Agrícola e Ambiental, 20(9), 777–782.
1143	Retrieved 2021-03-11, from http://www.scielo.br/scielo.php?script=
1144	sci_abstract&pid=S1415-43662016000900777&lng=en&nrm=iso&tlng=en
1145	(Publisher: Departamento de Engenharia Agricola - UFCG / Cnpq) doi:
1146	10.1590/1807-1929/agriamol.v20n9p777-782
1147	Mao, J., Fu, W., Shi, X., Ricciuto, D. M., Fisher, J. B., Dickinson, R. E., Zhu,
1148	Σ . (2015, sep). Disentanging climatic and anthropogenic controls on global tomostrial group strangementation transfer E maintenance and L because L between $10(0)$
1149	004008 Detrieved from https://doi.org/10.1088/1748-0226/10/0/004008
1150	doi: 10.1088/1748-0326/10/0/004008
1151	Marques T V Mondes K Mutti P Medeiros S Silva I Perez Marin A M
1152	Bezerra B (2020 June) Environmental and biophysical controls of evan-
1155	otranspiration from Seasonally Dry Tropical Forests (Caatinga) in the Brazil-
1155	ian Semiarid. Agricultural and Forest Meteorology. 287, 107957. Retrieved
1156	2021-04-22, from https://www.sciencedirect.com/science/article/pii/
1157	S0168192320300599 doi: 10.1016/j.agrformet.2020.107957
1158	Martens, B., Miralles, D., Lievens, H., Fernández-Prieto, D., & Verhoest, N. E. C.
1159	(2016, June). Improving terrestrial evaporation estimates over continental
1160	Australia through assimilation of SMOS soil moisture. International Journal
1161	of Applied Earth Observation and Geoinformation, 48, 146–162. Retrieved
1162	2021-04-13, from https://www.sciencedirect.com/science/article/pii/
1163	S0303243415300350 doi: 10.1016/j.jag.2015.09.012
1164	Martens, B., Miralles, D. G., Lievens, H., Schalie, R. v. d., Jeu, R. A. M. d.,
1165	Fernández-Prieto, D., Verhoest, N. E. C. (2017, May). GLEAM v3:
1166	satellite-based land evaporation and root-zone soil moisture. Geoscien-
1167	tific Model Development, $10(5)$, $1903-1925$. Retrieved 2020-07-01, from
1168	https://gmd.copernicus.org/articles/10/1903/2017/ (Publisher: Coper-
1169	nicus GmbH) doi: https://doi.org/10.5194/gmd-10-1903-2017
1170	Mauder, M., Foken, T., & Cuxart, J. (2020, December). Surface-Energy-Balance
1171	Closure over Land: A Review. Boundary-Layer Meteorology, 177(2), 395–426.
1172	Retrieved 2021-02-19, from https://doi.org/10.1007/s10546-020-00529-6
1173	doi: 10.1007/S10540-020-00529-6
1174	McCabe, M. F., Ersnadi, A., Jimenez, C., Miralles, D. G., Michel, D., & Wood, E. E. (2016, January) The CEWEY LondEline and interaction of the later
1175	E. F. (2010, January). The GEWEA LandFlux project: evaluation of model
1176	evaporation using tower-based and globally gridded forcing data. Geosci- entific Model Development 0(1) 282 205 Detrieved 2010 08 20 from
1177	$t_{1}, 203-303$. Retrieved 2019-06-29, from https://www.geosci-model-dev.net/0/283/2016/
1178	10 5194/gmd-9-283-2016
1100	McColl K Δ (2020) Practical and Theoretical Reputits of an Alterna
1190	(2020). I factical and i neoretical Denents of all Alterna-

1181	tive to the Penman-Monteith Evapotranspiration Equation. Water Re-
1182	sources Research, 56(6), e2020WR027106. Retrieved 2021-09-30, from
1183	https://onlinelibrary.wiley.com/doi/abs/10.1029/2020WR027106
1184	(_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2020WR027106)
1185	doi: 10.1029/2020WR027106
1186	Michel, D., Jiménez, C., Miralles, D. G., Jung, M., Hirschi, M., Ershadi, A.,
1187	Fernández-Prieto, D. (2016, February). The WACMOS-ET project & ndash;
1188	Part 1: Tower-scale evaluation of four remote-sensing-based evapotranspiration
1189	algorithms. Hydrology and Earth System Sciences, 20(2), 803–822. Retrieved
1190	2019-08-29, from https://www.hydrol-earth-syst-sci.net/20/803/2016/
1191	doi: $https://doi.org/10.5194/hess-20-803-2016$
1192	Miralles, D. G., Gash, J. H., Holmes, T. R. H., Jeu, R. A. M. d., & Dol-
1193	man, A. J. (2010). Global canopy interception from satel-
1194	lite observations. Journal of Geophysical Research: Atmo-
1195	spheres, 115(D16). Retrieved 2020-09-04, from https://agupubs
1196	.onlinelibrary.wiley.com/doi/abs/10.1029/2009JD013530 (_eprint:
1197	https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2009JD013530) doi:
1198	10.1029/2009JD013530
1199	Miralles, D. G., Holmes, T. R. H., Jeu, R. A. M. D., Gash, J. H., Meesters,
1200	A. G. C. A., & Dolman, A. J. (2011, February). Global land-surface evapora-
1201	tion estimated from satellite-based observations. Hydrology and Earth System
1202	Sciences, 15(2), 453–469. Retrieved 2020-06-15, from https://www.hydrol
1203	-earth-syst-sci.net/15/453/2011/hess-15-453-2011.html (Publisher:
1204	Copernicus GmbH) doi: https://doi.org/10.5194/ness-15-453-2011
1205	Miralles, D. G., Jimenez, C., Jung, M., Michel, D., Ershadi, A., McCabe, M. F.,
1206	Fernandez-Prieto, D. (2016, February). The WACMOS-ET project
1207	Hy- drology and Earth System Sciences $\Omega(2)$ 822 842 Detrived 2010 08
1208	20 from https://www.hwdrol-corth-gust-gci.not/20/822/2016/
1209	https://doi.org/10.5104/hess-20-823-2016
1210	Miranda B d O. Calvíncia I D. Moura M S B d. Jones C A. & Srini
1211	vasan B (2017) Reliability of MODIS Evanotrangenization Products for
1212	Heterogeneous Dry Forest: A Study Case of Capting [Research Article] Re-
1213	trieved 2020-05-06, from https://www.hindawi.com/journals/amete/2017/
1215	9314801/ (ISSN: 1687-9309 Library Catalog: www.hindawi.com Pages:
1216	e9314801 Publisher: Hindawi Volume: 2017) doi: https://doi.org/10.1155/
1217	2017/9314801
1218	Moesinger, L., Dorigo, W., de Jeu, R., van der Schalie, R., Scanlon, T., Teub-
1219	ner, I., & Forkel, M. (2020, January). The global long-term microwave
1220	Vegetation Optical Depth Climate Archive (VODCA). Earth System
1221	Science Data, 12(1), 177–196. Retrieved 2021-04-13, from https://
1222	essd.copernicus.org/articles/12/177/2020/ (Publisher: Copernicus
1223	GmbH) doi: $10.5194/essd-12-177-2020$
1224	Moreira, A. A., Ruhoff, A. L., Roberti, D. R., Souza, V. d. A., da Rocha, H. R., &
1225	Paiva, R. C. D. d. (2019, August). Assessment of terrestrial water balance
1226	using remote sensing data in South America. Journal of Hydrology, 575, 131–
1227	147. Retrieved 2019-08-28, from http://www.sciencedirect.com/science/
1228	article/pii/S0022169419304664 doi: 10.1016/j.jhydrol.2019.05.021
1229	Mu, Q., Heinsch, F. A., Zhao, M., & Running, S. W. (2007, December). Develop-
1230	ment of a global evapotranspiration algorithm based on MODIS and global
1231	meteorology data. Remote Sensing of Environment, 111(4), 519–536. Re-
1232	trieved 2017-09-21, from http://www.sciencedirect.com/science/article/
1233	p11/S0034425707001903 doi: 10.1016/j.rse.2007.04.015
1234	Mu, Q., Zhao, M., & Running, S. W. (2011, August). Improvements to a
1235	MODIS global terrestrial evapotranspiration algorithm. Remote Sens-

1236	ing of Environment, 115(8), 1781–1800. Retrieved 2020-06-21, from
1237	http://www.sciencedirect.com/science/article/pii/S0034425711000691
1238	doi: 10.1016/j.rse.2011.02.019
1239	Mutti, P. R., da Silva, L. L., Medeiros, S. d. S., Dubreuil, V., Mendes, K. R.,
1240	Marques, T. V., Bezerra, B. G. (2019, March). Basin scale rainfall-
1241	evapotranspiration dynamics in a tropical semiarid environment during
1242	dry and wet years. International Journal of Applied Earth Observation
1243	and Geoinformation, 75, 29–43. Retrieved 2021-04-15, from https://
1244	www.sciencedirect.com/science/article/pii/S0303243418307244 doi:
1245	10.1016/j.jag.2018.10.007
1246	Myers, N., Mittermeier, R. A., Mittermeier, C. G., Fonseca, G. A. B. d., & Kent, J.
1247	(2000, February). Biodiversity hotspots for conservation priorities. Nature,
1248	403(6772), 853-858. Retrieved 2019-08-28, from https://www.nature.com/
1249	articles/35002501 doi: 10.1038/35002501
1250	Nagler, P. L., Cleverly, J., Glenn, E., Lampkin, D., Huete, A., & Wan, Z. (2005,
1251	January). Predicting riparian evapotranspiration from MODIS vegetation
1252	indices and meteorological data. Remote Sensing of Environment, 94(1), 17-
1253	30. Retrieved 2020-06-19, from http://www.sciencedirect.com/science/
1254	article/pii/S0034425704002615 doi: 10.1016/j.rse.2004.08.009
1255	Nagler, P. L., Glenn, E. P., Kim, H., Emmerich, W., Scott, R. L., Huxman, T. E.,
1256	& Huete, A. R. (2007, August). Relationship between evapotranspiration and
1257	precipitation pulses in a semiarid rangeland estimated by moisture flux towers
1258	and MODIS vegetation indices. Journal of Arid Environments, 70(3), 443–
1259	462. Retrieved 2019-09-05, from http://www.sciencedirect.com/science/
1260	article/pii/S0140196307000249 doi: 10.1016/j.jaridenv.2006.12.026
1261	Nagler, P. L., Glenn, E. P., Nguyen, U., Scott, R. L., & Doody, T. (2013, Au-
1262	gust). Estimating Riparian and Agricultural Actual Evapotranspiration
1263	by Reference Evapotranspiration and MODIS Enhanced Vegetation In-
1264	dex. Remote Sensing, 5(8), 3849–3871. Retrieved 2019-09-03, from
1265	https://www.mdpi.com/2072-4292/5/8/3849 doi: 10.3390/rs5083849
1266	Nagler, P. L., Morino, K., Murray, R. S., Osterberg, J., & Glenn, E. P. (2009, De-
1267	cember). An Empirical Algorithm for Estimating Agricultural and Riparian
1268	Evapotranspiration Using MODIS Enhanced Vegetation Index and Ground
1269	Measurements of ET. I. Description of Method. Remote Sensing, 1(4), 1273-
1270	1297. Retrieved 2019-09-03, from https://www.mdpi.com/2072-4292/1/4/
1271	1273 doi: 10.3390/rs1041273
1272	Norman, J. M., Kustas, W. P., & Humes, K. S. (1995, December). Source ap-
1273	proach for estimating soil and vegetation energy fluxes in observations
1274	of directional radiometric surface temperature. Agricultural and For-
1275	est Meteorology, 77(3), 263–293. Retrieved 2021-04-15, from https://
1276	www.sciencedirect.com/science/article/pii/016819239502265Y doi:
1277	10.1016/0168-1923(95)02265-Y
1278	Nouri, H., Glenn, E. P., Beecham, S., Chavoshi Boroujeni, S., Sutton, P., Alagh-
1279	mand, S., Nagler, P. (2016, June). Comparing Three Approaches of
1280	Evapotranspiration Estimation in Mixed Urban Vegetation: Field-Based, Re-
1281	mote Sensing-Based and Observational-Based Methods. Remote Sensing, $8(6)$,
1282	492. Retrieved 2019-09-05, from https://www.mdpi.com/2072-4292/8/6/492
1283	doi: 10.3390/rs8060492
1284	Novick, K. A., Biederman, J. A., Desai, A. R., Litvak, M. E., Moore, D. J. P., Scott,
1285	R. L., & Torn, M. S. (2018, February). The AmeriFlux network: A coalition
1286	of the willing. Agricultural and Forest Meteorology, 249, 444–456. Retrieved
1287	2021-04-15, from https://www.sciencedirect.com/science/article/pii/
1288	S0168192317303295 doi: 10.1016/j.agrformet.2017.10.009
1289	Oliveira, B. S., Moraes, E. C., Carrasco-Benavides, M., Bertani, G., & Mataveli,
1290	G. A. V. (2018, August). Improved Albedo Estimates Implemented in the

1291	METRIC Model for Modeling Energy Balance Fluxes and Evapotranspira-
1292	tion over Agricultural and Natural Areas in the Brazilian Cerrado. <i>Remote</i>
1293	Sensing, 10(8), 1181. Retrieved 2020-06-27, from https://www.mdpi.com/
1294	2072–4292/10/8/1181 (Number: 8 Publisher: Multidisciplinary Digital
1295	Publishing Institute) doi: 10.3390/rs10081181
1206	Oliveira P T S Wendland E Nearing M A Scott B L Bosolem B
1290	& da Rocha H B (2015 June) The water balance components of
1297	undisturbed tropical woodlands in the Brazilian cerrado
1290	and Earth System Sciences 19(6) 2899–2910 Retrieved 2019-09-05
1299	from https://www.hydrol-earth-syst-sci.net/19/2899/2015/ $doi:$
1201	https://doi.org/10.5194/hess-19-2899-2015
1501	Olivera Cuerra I. Mattar C. Marlin O. Durán Alargán C. Santamaría
1302	Artigog A & Fustor P (2017 June) An operational method for
1303	the disaggregation of land surface temperature to estimate actual evapo
1304	transpiration in the arid version of Chile
1305	metry and Demote Sensing 102 170 181 Detriored 2020 00 04 from
1306	the first and the first set of the first
1307	http://www.sciencedirect.com/science/article/pii/S09242/1010303090
1308	doi: $10.1016/J.sprs.prs.2017.03.014$
1309	Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell,
1310	G. V. N., Underwood, E. C., Kassem, K. R. (2001, November). Terres-
1311	trial Ecoregions of the World: A New Map of Life on EarthA new global map
1312	of terrestrial ecoregions provides an innovative tool for conserving biodiver-
1313	sity. <i>BioScience</i> , 51(11), 933–938. Retrieved 2020-05-06, from https://
1314	academic.oup.com/bioscience/article/51/11/933/227116 (Publisher:
1315	Oxford Academic) doi: $10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2$
1316	Paca, V. H. d. M., Espinoza-Dávalos, G. E., Hessels, T. M., Moreira, D. M., Comair,
1317	G. F., & Bastiaanssen, W. G. M. (2019, February). The spatial variability
1318	of actual evapotranspiration across the Amazon River Basin based on remote
1319	sensing products validated with flux towers. $Ecological Processes, 8(1), 6.$
1320	Retrieved 2020-03-23, from https://doi.org/10.1186/s13717-019-0158-8
1321	doi: 10.1186/s13717-019-0158-8
1322	Paiva, C. M., França, G. B., Liu, W. T. H., & Filho, O. C. R. (2011, March).
1323	A comparison of experimental energy balance components data and SE-
1324	BAL model results in Dourados, Brazil. International Journal of Re-
1325	mote Sensing, 32(6), 1731–1745. Retrieved 2021-04-15, from https://
1326	doi.org/10.1080/01431161003623425 (Publisher: Taylor & Fran-
1327	cis _eprint: https://doi.org/10.1080/01431161003623425) doi: 10.1080/
1328	01431161003623425
1329	Paschalis, A., Fatichi, S., Pappas, C., & Or, D. (2018, October). Covariation of veg-
1330	etation and climate constrains present and future T/ET variability. Environ-
1331	mental Research Letters, 13(10), 104012. Retrieved 2021-03-22, from https://
1332	doi.org/10.1088/1748-9326/aae267 (Publisher: IOP Publishing) doi: 10
1333	.1088/1748-9326/aae267
1334	Pastorello, G., Trotta, C., Canfora, E., Chu, H., Christianson, D., Cheah, YW.,
1335	Papale, D. (2020, July). The FLUXNET2015 dataset and the ONE-
1336	Flux processing pipeline for eddy covariance data. Scientific Data, 7(1).
1337	225. Retrieved 2021-04-21, from https://www.nature.com/articles/
1338	s41597-020-0534-3 (Number: 1 Publisher: Nature Publishing Group) doi:
1339	10.1038/s41597-020-0534-3
1240	Paul-Limoges E. Wolf S. Schneider F. D. Longo M. Moorcroft P. Gharun
1341	M. & Damm. A. (2020 January) Partitioning evanotranspiration with
1341	concurrent eddy covariance measurements in a mixed forest <i>Aaricultural</i>
13/3	and Forest Meteorology 280 107786 Retrieved 2021-04-11 from https://
1344	www.sciencedirect.com/science/article/nii/S0168192319304022
1345	10.1016/i.agrformet.2019.107786
	/J

- Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007, October). Updated world map of the Köppen-Geiger climate classification. *Hydrology and Earth System Sciences*, 11(5), 1633–1644. Retrieved 2020-05-06, from https://www.hydrol
 -earth-syst-sci.net/11/1633/2007/ (Publisher: Copernicus GmbH) doi: https://doi.org/10.5194/hess-11-1633-2007
- Poblete-Echeverría, C., & Ortega-Farias, S. (2012, November). Calibration and val idation of a remote sensing algorithm to estimate energy balance components
 and daily actual evapotranspiration over a drip-irrigated Merlot vineyard. Irri gation Science, 30(6), 537–553. Retrieved 2021-04-15, from https://doi.org/
 10.1007/s00271-012-0381-x doi: 10.1007/s00271-012-0381-x
- Potter, C. S., Randerson, J. T., Field, C. B., Matson, P. A., Vitousek, P. M.,
 Mooney, H. A., & Klooster, S. A. (1993). Terrestrial ecosystem production: A process model based on global satellite and surface data.
 Global Biogeochemical Cycles, 7(4), 811–841. Retrieved 2019-12-20, from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/93GB02725
 doi: 10.1029/93GB02725
- Priestlev, C. H. B., & Taylor, R. J. (1972, February). On the Assessment of Sur-1362 face Heat Flux and Evaporation Using Large-Scale Parameters. Monthly 1363 Weather Review, 100(2), 81-92. Retrieved 2021-04-15, from https:// 1364 journals.ametsoc.org/view/journals/mwre/100/2/1520-0493_1972_100 1365 _0081_otaosh_2_3_co_2.xml (Publisher: American Meteorological Society 1366 Section: Monthly Weather Review) doi: 10.1175/1520-0493(1972)100(0081: OTAOSH 2.3.CO;2 1368
- Rahimzadegan, M., & Janani, A. (2019, May). Estimating evapotranspiration
 of pistachio crop based on SEBAL algorithm using Landsat 8 satellite im agery. Agricultural Water Management, 217, 383–390. Retrieved 2021 04-15, from https://www.sciencedirect.com/science/article/pii/
 S037837741831179X doi: 10.1016/j.agwat.2019.03.018
- Restrepo-Coupe, N., da Rocha, H. R., Hutyra, L. R., da Araujo, A. C., Borma, 1374 L. S., Christoffersen, B., ... Saleska, S. R. (2013, December). What drives the 1375 seasonality of photosynthesis across the Amazon basin? A cross-site analysis of 1376 eddy flux tower measurements from the Brasil flux network. Agricultural and 1377 Forest Meteorology, 182-183, 128-144. Retrieved 2021-04-15, from https:// 1378 www.sciencedirect.com/science/article/pii/S0168192313001184 doi: 1379 10.1016/j.agrformet.2013.04.031 1380
 - Rocha, H. R. d., Manzi, A. O., Cabral, O. M., Miller, S. D., Goulden, M. L.,

1381

- 1382Saleska, S. R., ... Maia, J. F. (2009). Patterns of water and heat flux across a1383biome gradient from tropical forest to savanna in Brazil. Journal of Geophysi-1384cal Research: Biogeosciences, 114 (G1). Retrieved 2019-08-30, from https://1385agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2007JG000640138610.1029/2007JG000640
- Rodrigues, T. R., Vourlitis, G. L., Lobo, F. d. A., Oliveira, R. G. d., & 1387 Nogueira, J. d. S. (2014).Seasonal variation in energy balance and 1388 canopy conductance for a tropical savanna ecosystem of south cen-1389 tral Mato Grosso, Brazil. Journal of Geophysical Research: Biogeo-1390 sciences, 119(1), 1–13. Retrieved 2020-05-12, from https://agupubs 1391 .onlinelibrary.wiley.com/doi/abs/10.1002/2013JG002472 (_eprint: 1392 https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2013JG002472) doi: 1393 10.1002/2013JG002472 1394
- Rodrigues, T. R., Vourlitis, G. L., Lobo, F. d. A., Santanna, F. B., de Arruda, 1395 P. H. Z., & Nogueira, J. d. S. (2016, March). Modeling canopy con-1396 ductance under contrasting seasonal conditions for a tropical savanna 1397 ecosystem of south central Mato Grosso, Brazil. Agricultural and For-1398 est Meteorology, 218-219, 218-229. Retrieved 2020-08-31, from http:// 1399 www.sciencedirect.com/science/article/pii/S0168192315300216 doi: 1400

1401	10.1016/j.agrformet.2015.12.060
1402	Roerink, G. J., Su, Z., & Menenti, M. (2000, January). S-SEBI: A simple remote
1403	sensing algorithm to estimate the surface energy balance. Physics and Chem-
1404	istry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 25(2), 147–
1405	157. Retrieved 2021-04-15, from https://www.sciencedirect.com/science/
1406	article/pii/S1464190999001288 doi: 10.1016/S1464-1909(99)00128-8
1407	Ruhoff, A. L., Paz, A. R., Aragao, L. E. O. C., Mu, Q., Malhi, Y., Collischonn, W.,
1408	Running, S. W. (2013, November). Assessment of the MODIS global
1409	evapotranspiration algorithm using eddy covariance measurements and hy-
1410	drological modelling in the Rio Grande basin. Hydrological Sciences Journal,
1411	58(8), 1658-1676. Retrieved 2017-09-21, from http://dx.doi.org/10.1080/
1412	02626667.2013.837578 doi: 10.1080/02626667.2013.837578
1413	Running, S. W., Mu, Q., Zhao, M., & Moreno, A. (2019, January). User's
1414	Guide: MODIS Global Terrestrial Evapotranspiration (ET) Product, Ver-
1415	sion 2.0. Retrieved from https://modis-land.gsfc.nasa.gov/pdf/
1416	MOD16UsersGuideV2.022019.pdf
1417	Rwasoka, D. T., Gumindoga, W., & Gwenzi, J. (2011, January). Estimation of
1418	actual evapotranspiration using the Surface Energy Balance System (SEBS)
1419	algorithm in the Upper Manyame catchment in Zimbabwe. Physics and
1420	Chemistry of the Earth. Parts $A/B/C$, $36(14)$, $736-746$. Retrieved 2021-
1421	04-15. from https://www.sciencedirect.com/science/article/pii/
1422	S1474706511001513 doi: 10.1016/j.pce.2011.07.035
1423	Saleska, S. R., Da Rocha, H. R., Huete, A. R., Nobre, A. D., Artaxo, P. E., &
1424	Shimabukuro, Y. E. (2013, July). LBA-ECO CD-32 Flux Tower Network
1425	Data Compilation, Brazilian Amazon: 1999-2006. ORNL DAAC. Retrieved
1426	2020-05-06. from https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1174
1427	doi: https://doi.org/10.3334/ORNLDAAC/1174
1428	Schotanus, P., Nieuwstadt, F., & De Bruin, H. (1983, Max). Temperature mea-
1429	surgement with a sonic anemometer and its application to heat and moisture
1430	fluxes. Boundary-Layer Meteorology, 26(1), 81–93. Retrieved 2021-10-01, from
1431	https://doi.org/10.1007/BF00164332_doi: 10.1007/BF00164332
1432	Seddon, A. W. R., Macias-Fauria, M., Long, P. R., Benz, D., & Willis, K. J.
1433	(2016, March). Sensitivity of global terrestrial ecosystems to climate
1434	variability. <i>Nature</i> , 531(7593), 229–232. Retrieved 2020-07-08. from
1435	https://www.nature.com/articles/nature16986 (Number: 7593 Pub-
1436	lisher: Nature Publishing Group) doi: 10.1038/nature16986
1437	Senav G B Budde M Verdin J P & Melesse A M (2007 June) A Coupled
1438	Remote Sensing and Simplified Surface Energy Balance Approach to Estimate
1439	Actual Evapotranspiration from Irrigated Fields. Sensors. 7(6), 979–1000.
1440	Retrieved 2021-04-15. from https://www.mdpi.com/1424-8220/7/6/979
1441	(Number: 6 Publisher: Molecular Diversity Preservation International) doi:
1442	10.3390/s7060979
1443	Shuttleworth W. J. & Pereira H. C. (1988 April) Evaporation from Ama-
1445	zonian rainforest Proceedings of the Royal Society of London Series
1445	B. Biological Sciences, 233(1272), 321–346. Retrieved 2021-04-08. from
1446	https://rovalsocietypublishing.org/doi/10.1098/rspb.1988.0024
1447	(Publisher: Royal Society) doi: 10.1098/rspb.1988.0024
1448	Silva P F d Lima J B d S Antonino A C D Souza B Souza E S d
1449	Silva, J. R. L. & Alves, E. M. (2017, December) Seasonal patterns of carbon
1450	dioxide, water and energy fluxes over the Caatinga and grassland in the semi-
1451	arid region of Brazil. Journal of Arid Environments 1/7 71–82. Retrieved
1452	2021-04-15. from https://www.sciencedirect.com/science/article/pii/
1453	S0140196317301672 doi: 10.1016/j.jarideny.2017.09.003
1454	Sánchez, J. M., López-Urrea, R., Valentín, F. Caselles, V. & Galve, J. M. (2019)
1455	Lysimeter assessment of the simplified two-source energy balance model
	· · · · · · · · · · · · · · · · · · ·

1456	and eddy covariance system to estimate vineyard evapotranspiration. Agri-
1457	cultural and Forest Meteorology, 274, 172-183. Retrieved from https://
1458	www.sciencedirect.com/science/article/pii/S0168192319301777 doi:
1459	https://doi.org/10.1016/j.agrformet.2019.05.006
1460	Souza, L. S. B. d., Moura, M. S. B. d., Sediyama, G. C., Silva, T. G. F. d.,
1461	Souza, L. S. B. d., Moura, M. S. B. d., Silva, T. G. F. d. (2015, Au-
1462	gust). Balanço de energia e controle biofísico da evapotranspiração na
1463	Caatinga em condições de seca intensa. Pesquisa Agropecuária Brasileira.
1464	50(8), 627-636. Retrieved 2020-08-31, from http://www.scielo.br/
1465	scielo.php?script=sci abstract&pid=S0100-204X2015000800627&lng=
1466	enknrm=isoktlng=pt (Publisher: Embrana Informação Tecnológica) doi:
1467	10.1590/S0100-204X2015000800001
1468	Souza V d A Roberti D R Ruhoff A L Zimmer T Adamatti D S
1460	Goncalves L G G d Moraes O L L d (2019 September) Eval-
1409	uation of MOD16 Algorithm over Irrigated Rice Paddy Using Flux Tower
1470	Measurements in Southern Brazil $Water 11(9)$ 1911 Betrieved 2020-06-23
1471	from https://www.mdpi.com/2073-4441/11/9/1911 (Number: 9 Publisher:
1472	Multidisciplinary Digital Publishing Institute) doi: 10.3300/w11001011
1473	Ster D C El Medery T S Eichen I D Centine D Center T Cood S D
1474	Walf S (2010 October) Devices and supplications the shall
1475	won, S. (2019, October). Reviews and syntheses: Turning the char-
1476	lenges of partitioning ecosystem evaporation and transpiration into oppor-
1477	tunities. Biogeosciences, $10(19)$, $3/4/-3/75$. Retrieved 2021-03-23, from
1478	https://bg.copernicus.org/articles/16/3/4//2019/ (Publisher: Coper-
1479	nicus GmbH) doi: $10.5194/bg-16-3747-2019$
1480	Stoy, P. C., Mauder, M., Foken, T., Marcolla, B., Boegh, E., Ibrom, A., Var-
1481	lagin, A. (2013, April). A data-driven analysis of energy balance closure
1482	across FLUXNET research sites: The role of landscape scale heterogeneity.
1483	Agricultural and Forest Meteorology, 171-172, 137–152. Retrieved 2021-
1484	02-19, from https://www.sciencedirect.com/science/article/pii/
1484 1485	02-19, from https://www.sciencedirect.com/science/article/pii/ S0168192312003413 doi: 10.1016/j.agrformet.2012.11.004
1484 1485 1486	02-19, from https://www.sciencedirect.com/science/article/pii/ S0168192312003413 doi: 10.1016/j.agrformet.2012.11.004 Su, Z. (2002, February). The Surface Energy Balance System (SEBS) for estima-
1484 1485 1486 1487	02-19, from https://www.sciencedirect.com/science/article/pii/ S0168192312003413 doi: 10.1016/j.agrformet.2012.11.004 Su, Z. (2002, February). The Surface Energy Balance System (SEBS) for estima- tion of turbulent heat fluxes. <i>Hydrology and Earth System Sciences</i> , 6(1), 85-
1484 1485 1486 1487 1488	 02-19, from https://www.sciencedirect.com/science/article/pii/ S0168192312003413 doi: 10.1016/j.agrformet.2012.11.004 Su, Z. (2002, February). The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. <i>Hydrology and Earth System Sciences</i>, 6(1), 85–100. Retrieved 2021-04-15, from https://hess.copernicus.org/articles/6/
1484 1485 1486 1487 1488 1489	 02-19, from https://www.sciencedirect.com/science/article/pii/ S0168192312003413 doi: 10.1016/j.agrformet.2012.11.004 Su, Z. (2002, February). The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. <i>Hydrology and Earth System Sciences</i>, 6(1), 85–100. Retrieved 2021-04-15, from https://hess.copernicus.org/articles/6/85/2002/ (Publisher: Copernicus GmbH) doi: 10.5194/hess-6-85-2002
1484 1485 1486 1487 1488 1489 1490	 02-19, from https://www.sciencedirect.com/science/article/pii/ S0168192312003413 doi: 10.1016/j.agrformet.2012.11.004 Su, Z. (2002, February). The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. <i>Hydrology and Earth System Sciences</i>, 6(1), 85–100. Retrieved 2021-04-15, from https://hess.copernicus.org/articles/6/85/2002/ (Publisher: Copernicus GmbH) doi: 10.5194/hess-6-85-2002 Sun, X., Wilcox, B. P., & Zou, C. B. (2019, September). Evapotranspiration par-
1484 1485 1486 1487 1488 1489 1490 1491	 02-19, from https://www.sciencedirect.com/science/article/pii/ S0168192312003413 doi: 10.1016/j.agrformet.2012.11.004 Su, Z. (2002, February). The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrology and Earth System Sciences, 6(1), 85–100. Retrieved 2021-04-15, from https://hess.copernicus.org/articles/6/85/2002/ (Publisher: Copernicus GmbH) doi: 10.5194/hess-6-85-2002 Sun, X., Wilcox, B. P., & Zou, C. B. (2019, September). Evapotranspiration partitioning in dryland ecosystems: A global meta-analysis of in situ studies.
1484 1485 1486 1487 1488 1489 1490 1491 1492	 02-19, from https://www.sciencedirect.com/science/article/pii/ S0168192312003413 doi: 10.1016/j.agrformet.2012.11.004 Su, Z. (2002, February). The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrology and Earth System Sciences, 6(1), 85–100. Retrieved 2021-04-15, from https://hess.copernicus.org/articles/6/85/2002/ (Publisher: Copernicus GmbH) doi: 10.5194/hess-6-85-2002 Sun, X., Wilcox, B. P., & Zou, C. B. (2019, September). Evapotranspiration partitioning in dryland ecosystems: A global meta-analysis of in situ studies. Journal of Hydrology, 576, 123-136. Retrieved 2021-04-08, from https://
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493	 02-19, from https://www.sciencedirect.com/science/article/pii/ S0168192312003413 doi: 10.1016/j.agrformet.2012.11.004 Su, Z. (2002, February). The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrology and Earth System Sciences, 6(1), 85–100. Retrieved 2021-04-15, from https://hess.copernicus.org/articles/6/85/2002/ (Publisher: Copernicus GmbH) doi: 10.5194/hess-6-85-2002 Sun, X., Wilcox, B. P., & Zou, C. B. (2019, September). Evapotranspiration partitioning in dryland ecosystems: A global meta-analysis of in situ studies. Journal of Hydrology, 576, 123–136. Retrieved 2021-04-08, from https://www.sciencedirect.com/science/article/pii/S0022169419305736 doi:
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494	 02-19, from https://www.sciencedirect.com/science/article/pii/ S0168192312003413 doi: 10.1016/j.agrformet.2012.11.004 Su, Z. (2002, February). The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. <i>Hydrology and Earth System Sciences</i>, 6(1), 85–100. Retrieved 2021-04-15, from https://hess.copernicus.org/articles/6/85/2002/ (Publisher: Copernicus GmbH) doi: 10.5194/hess-6-85-2002 Sun, X., Wilcox, B. P., & Zou, C. B. (2019, September). Evapotranspiration partitioning in dryland ecosystems: A global meta-analysis of in situ studies. <i>Journal of Hydrology</i>, 576, 123–136. Retrieved 2021-04-08, from https://www.sciencedirect.com/science/article/pii/S0022169419305736 doi: 10.1016/j.jhydrol.2019.06.022
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494	 02-19, from https://www.sciencedirect.com/science/article/pii/ S0168192312003413 doi: 10.1016/j.agrformet.2012.11.004 Su, Z. (2002, February). The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrology and Earth System Sciences, 6(1), 85–100. Retrieved 2021-04-15, from https://hess.copernicus.org/articles/6/85/2002/ (Publisher: Copernicus GmbH) doi: 10.5194/hess-6-85-2002 Sun, X., Wilcox, B. P., & Zou, C. B. (2019, September). Evapotranspiration partitioning in dryland ecosystems: A global meta-analysis of in situ studies. Journal of Hydrology, 576, 123–136. Retrieved 2021-04-08, from https://www.sciencedirect.com/science/article/pii/S0022169419305736 doi: 10.1016/j.jhydrol.2019.06.022 Sutanto, S. J., Wenninger, J., Coenders-Gerrits, A. M. J., & Uhlenbrook, S. (2012, September).
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496	 02-19, from https://www.sciencedirect.com/science/article/pii/ S0168192312003413 doi: 10.1016/j.agrformet.2012.11.004 Su, Z. (2002, February). The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrology and Earth System Sciences, 6(1), 85–100. Retrieved 2021-04-15, from https://hess.copernicus.org/articles/6/85/2002/ (Publisher: Copernicus GmbH) doi: 10.5194/hess-6-85-2002 Sun, X., Wilcox, B. P., & Zou, C. B. (2019, September). Evapotranspiration partitioning in dryland ecosystems: A global meta-analysis of in situ studies. Journal of Hydrology, 576, 123–136. Retrieved 2021-04-08, from https://www.sciencedirect.com/science/article/pii/S0022169419305736 doi: 10.1016/j.jhydrol.2019.06.022 Sutanto, S. J., Wenninger, J., Coenders-Gerrits, A. M. J., & Uhlenbrook, S. (2012, August). Partitioning of evaporation into transpiration, soil evaporation and
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497	 02-19, from https://www.sciencedirect.com/science/article/pii/ S0168192312003413 doi: 10.1016/j.agrformet.2012.11.004 Su, Z. (2002, February). The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrology and Earth System Sciences, 6(1), 85–100. Retrieved 2021-04-15, from https://hess.copernicus.org/articles/6/85/2002/ (Publisher: Copernicus GmbH) doi: 10.5194/hess-6-85-2002 Sun, X., Wilcox, B. P., & Zou, C. B. (2019, September). Evapotranspiration partitioning in dryland ecosystems: A global meta-analysis of in situ studies. Journal of Hydrology, 576, 123–136. Retrieved 2021-04-08, from https://www.sciencedirect.com/science/article/pii/S0022169419305736 doi: 10.1016/j.jhydrol.2019.06.022 Sutanto, S. J., Wenninger, J., Coenders-Gerrits, A. M. J., & Uhlenbrook, S. (2012, August). Partitioning of evaporation into transpiration, soil evaporation and interception: a comparison between isotope measurements and a HYDRUS-1D
1484 1485 1486 1487 1488 1489 1490 1491 1493 1493 1494 1495 1496 1497 1498	 02-19, from https://www.sciencedirect.com/science/article/pii/ S0168192312003413 doi: 10.1016/j.agrformet.2012.11.004 Su, Z. (2002, February). The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrology and Earth System Sciences, 6(1), 85–100. Retrieved 2021-04-15, from https://hess.copernicus.org/articles/6/85/2002/ (Publisher: Copernicus GmbH) doi: 10.5194/hess-6-85-2002 Sun, X., Wilcox, B. P., & Zou, C. B. (2019, September). Evapotranspiration partitioning in dryland ecosystems: A global meta-analysis of in situ studies. Journal of Hydrology, 576, 123–136. Retrieved 2021-04-08, from https://www.sciencedirect.com/science/article/pii/S0022169419305736 doi: 10.1016/j.jhydrol.2019.06.022 Sutanto, S. J., Wenninger, J., Coenders-Gerrits, A. M. J., & Uhlenbrook, S. (2012, August). Partitioning of evaporation into transpiration, soil evaporation and interception: a comparison between isotope measurements and a HYDRUS-1D model. Hudrology and Earth System Sciences, 16(8), 2605-2616. Retrieved
1484 1485 1486 1487 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498	 02-19, from https://www.sciencedirect.com/science/article/pii/ S0168192312003413 doi: 10.1016/j.agrformet.2012.11.004 Su, Z. (2002, February). The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrology and Earth System Sciences, 6(1), 85–100. Retrieved 2021-04-15, from https://hess.copernicus.org/articles/6/85/2002/ (Publisher: Copernicus GmbH) doi: 10.5194/hess-6-85-2002 Sun, X., Wilcox, B. P., & Zou, C. B. (2019, September). Evapotranspiration partitioning in dryland ecosystems: A global meta-analysis of in situ studies. Journal of Hydrology, 576, 123–136. Retrieved 2021-04-08, from https://www.sciencedirect.com/science/article/pii/S0022169419305736 doi: 10.1016/j.jhydrol.2019.06.022 Sutanto, S. J., Wenninger, J., Coenders-Gerrits, A. M. J., & Uhlenbrook, S. (2012, August). Partitioning of evaporation into transpiration, soil evaporation and interception: a comparison between isotope measurements and a HYDRUS-1D model. Hydrology and Earth System Sciences, 16(8), 2605-2616. Retrieved 2021-04-11. from https://hess.copernicus.org/articles/16/2605/2012/
1484 1485 1486 1487 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499	 02-19, from https://www.sciencedirect.com/science/article/pii/ S0168192312003413 doi: 10.1016/j.agrformet.2012.11.004 Su, Z. (2002, February). The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. <i>Hydrology and Earth System Sciences</i>, 6(1), 85–100. Retrieved 2021-04-15, from https://hess.copernicus.org/articles/6/85/2002/ (Publisher: Copernicus GmbH) doi: 10.5194/hess-6-85-2002 Sun, X., Wilcox, B. P., & Zou, C. B. (2019, September). Evapotranspiration partitioning in dryland ecosystems: A global meta-analysis of in situ studies. <i>Journal of Hydrology</i>, 576, 123–136. Retrieved 2021-04-08, from https://www.sciencedirect.com/science/article/pii/S0022169419305736 doi: 10.1016/j.jhydrol.2019.06.022 Sutanto, S. J., Wenninger, J., Coenders-Gerrits, A. M. J., & Uhlenbrook, S. (2012, August). Partitioning of evaporation into transpiration, soil evaporation and interception: a comparison between isotope measurements and a HYDRUS-1D model. <i>Hydrology and Earth System Sciences</i>, 16(8), 2605–2616. Retrieved 2021-04-11, from https://hess.copernicus.org/articles/16/2605/2012/ (Publisher: Copernicus GmbH) doi: 10.5194/hess-16-2605-2012
1484 1485 1486 1487 1489 1490 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500	 02-19, from https://www.sciencedirect.com/science/article/pii/ S0168192312003413 doi: 10.1016/j.agrformet.2012.11.004 Su, Z. (2002, February). The Surface Energy Balance System (SEBS) for estima- tion of turbulent heat fluxes. Hydrology and Earth System Sciences, 6(1), 85– 100. Retrieved 2021-04-15, from https://hess.copernicus.org/articles/6/ 85/2002/ (Publisher: Copernicus GmbH) doi: 10.5194/hess-6-85-2002 Sun, X., Wilcox, B. P., & Zou, C. B. (2019, September). Evapotranspiration par- titioning in dryland ecosystems: A global meta-analysis of in situ studies. Journal of Hydrology, 576, 123-136. Retrieved 2021-04-08, from https:// www.sciencedirect.com/science/article/pii/S0022169419305736 doi: 10.1016/j.jhydrol.2019.06.022 Sutanto, S. J., Wenninger, J., Coenders-Gerrits, A. M. J., & Uhlenbrook, S. (2012, August). Partitioning of evaporation into transpiration, soil evaporation and interception: a comparison between isotope measurements and a HYDRUS-1D model. Hydrology and Earth System Sciences, 16(8), 2605-2616. Retrieved 2021-04-11, from https://hess.copernicus.org/articles/16/2605/2012/ (Publisher: Copernicus GmbH) doi: 10.5194/hess-16-2605-2012 Talsma C. I. Good S. P. Jimenez C. Martens B. Eisher, I. B. Miralles D. G.
1484 1485 1486 1487 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500	 02-19, from https://www.sciencedirect.com/science/article/pii/ S0168192312003413 doi: 10.1016/j.agrformet.2012.11.004 Su, Z. (2002, February). The Surface Energy Balance System (SEBS) for estima- tion of turbulent heat fluxes. Hydrology and Earth System Sciences, 6(1), 85– 100. Retrieved 2021-04-15, from https://hess.copernicus.org/articles/6/ 85/2002/ (Publisher: Copernicus GmbH) doi: 10.5194/hess-6-85-2002 Sun, X., Wilcox, B. P., & Zou, C. B. (2019, September). Evapotranspiration par- titioning in dryland ecosystems: A global meta-analysis of in situ studies. Journal of Hydrology, 576, 123–136. Retrieved 2021-04-08, from https:// www.sciencedirect.com/science/article/pii/S0022169419305736 doi: 10.1016/j.jhydrol.2019.06.022 Sutanto, S. J., Wenninger, J., Coenders-Gerrits, A. M. J., & Uhlenbrook, S. (2012, August). Partitioning of evaporation into transpiration, soil evaporation and interception: a comparison between isotope measurements and a HYDRUS-1D model. Hydrology and Earth System Sciences, 16(8), 2605–2616. Retrieved 2021-04-11, from https://hess.copernicus.org/articles/16/2605/2012/ (Publisher: Copernicus GmbH) doi: 10.5194/hess-16-2605-2012 Talsma, C. J., Good, S. P., Jimenez, C., Martens, B., Fisher, J. B., Miralles, D. G., Purdy A. J. (2018 October) Partitioning of evapotranspiration in remote
1484 1485 1486 1487 1489 1490 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500	 02-19, from https://www.sciencedirect.com/science/article/pii/ S0168192312003413 doi: 10.1016/j.agrformet.2012.11.004 Su, Z. (2002, February). The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrology and Earth System Sciences, 6(1), 85–100. Retrieved 2021-04-15, from https://hess.copernicus.org/articles/6/85/2002/ (Publisher: Copernicus GmbH) doi: 10.5194/hess-6-85-2002 Sun, X., Wilcox, B. P., & Zou, C. B. (2019, September). Evapotranspiration partitioning in dryland ecosystems: A global meta-analysis of in situ studies. Journal of Hydrology, 576, 123–136. Retrieved 2021-04-08, from https://www.sciencedirect.com/science/article/pii/S0022169419305736 doi: 10.1016/j.jhydrol.2019.06.022 Sutanto, S. J., Wenninger, J., Coenders-Gerrits, A. M. J., & Uhlenbrook, S. (2012, August). Partitioning of evaporation into transpiration, soil evaporation and interception: a comparison between isotope measurements and a HYDRUS-1D model. Hydrology and Earth System Sciences, 16(8), 2605–2616. Retrieved 2021-04-11, from https://hess.copernicus.org/articles/16/2605/2012/ (Publisher: Copernicus GmbH) doi: 10.5194/hess-16-2605-2012 Talsma, C. J., Good, S. P., Jimenez, C., Martens, B., Fisher, J. B., Miralles, D. G., Purdy, A. J. (2018, October). Partitioning of evaportanspiration in remote sensine-based models. Agricultural and Forest Meteorology 260-261 131-
1484 1485 1486 1487 1489 1490 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501	 02-19, from https://www.sciencedirect.com/science/article/pii/ S0168192312003413 doi: 10.1016/j.agrformet.2012.11.004 Su, Z. (2002, February). The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. <i>Hydrology and Earth System Sciences</i>, 6(1), 85–100. Retrieved 2021-04-15, from https://hess.copernicus.org/articles/6/85/2002/ (Publisher: Copernicus GmbH) doi: 10.5194/hess-6-85-2002 Sun, X., Wilcox, B. P., & Zou, C. B. (2019, September). Evapotranspiration partitioning in dryland ecosystems: A global meta-analysis of in situ studies. <i>Journal of Hydrology</i>, 576, 123–136. Retrieved 2021-04-08, from https://www.sciencedirect.com/science/article/pii/S0022169419305736 doi: 10.1016/j.jhydrol.2019.06.022 Sutanto, S. J., Wenninger, J., Coenders-Gerrits, A. M. J., & Uhlenbrook, S. (2012, August). Partitioning of evaporation into transpiration, soil evaporation and interception: a comparison between isotope measurements and a HYDRUS-1D model. <i>Hydrology and Earth System Sciences</i>, 16(8), 2605-2616. Retrieved 2021-04-11, from https://hess.copernicus.org/articles/16/2605/2012/ (Publisher: Copernicus GmbH) doi: 10.5194/hess-16-2605-2012 Talsma, C. J., Good, S. P., Jimenez, C., Martens, B., Fisher, J. B., Miralles, D. G., Purdy, A. J. (2018, October). Partitioning of evaporation in remote sensing-based models. <i>Agricultural and Forest Meteorology</i>, 260-261, 131–143. Retrieved 2020-09.01 from http://www.sciencedirect.com/science/
1484 1485 1486 1487 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502	 02-19, from https://www.sciencedirect.com/science/article/pii/ S0168192312003413 doi: 10.1016/j.agrformet.2012.11.004 Su, Z. (2002, February). The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. <i>Hydrology and Earth System Sciences</i>, 6(1), 85–100. Retrieved 2021-04-15, from https://hess.copernicus.org/articles/6/85/2002/ (Publisher: Copernicus GmbH) doi: 10.5194/hess-6-85-2002 Sun, X., Wilcox, B. P., & Zou, C. B. (2019, September). Evapotranspiration partitioning in dryland ecosystems: A global meta-analysis of in situ studies. <i>Journal of Hydrology</i>, 576, 123–136. Retrieved 2021-04-08, from https://www.sciencedirect.com/science/article/pii/S0022169419305736 doi: 10.1016/j.jhydrol.2019.06.022 Sutanto, S. J., Wenninger, J., Coenders-Gerrits, A. M. J., & Uhlenbrook, S. (2012, August). Partitioning of evaporation into transpiration, soil evaporation and interception: a comparison between isotope measurements and a HYDRUS-1D model. <i>Hydrology and Earth System Sciences</i>, 16(8), 2605-2616. Retrieved 2021-04-11, from https://hess.copernicus.org/articles/16/2605/2012/ (Publisher: Copernicus GmbH) doi: 10.5194/hess-16-2605-2012 Talsma, C. J., Good, S. P., Jimenez, C., Martens, B., Fisher, J. B., Miralles, D. G., Purdy, A. J. (2018, October). Partitioning of evaporationing of evaporationing of evaporationing respiration in remote sensing-based models. <i>Agricultural and Forest Meteorology</i>, 260-261, 131–143. Retrieved 2020-09-01, from http://www.sciencedirect.com/science/article/pii/S016819231830162X. doi: 10.1016/j.agrformet.2018.05.010
1484 1485 1486 1487 1489 1490 1491 1492 1493 1494 1495 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504	 02-19, from https://www.sciencedirect.com/science/article/pii/ S0168192312003413 doi: 10.1016/j.agrformet.2012.11.004 Su, Z. (2002, February). The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. <i>Hydrology and Earth System Sciences</i>, 6(1), 85–100. Retrieved 2021-04-15, from https://hess.copernicus.org/articles/6/85/2002/ (Publisher: Copernicus GmbH) doi: 10.5194/hess-6-85-2002 Sun, X., Wilcox, B. P., & Zou, C. B. (2019, September). Evapotranspiration partitioning in dryland ecosystems: A global meta-analysis of in situ studies. <i>Journal of Hydrology</i>, 576, 123–136. Retrieved 2021-04-08, from https://www.sciencedirect.com/science/article/pii/S0022169419305736 doi: 10.1016/j.jhydrol.2019.06.022 Sutanto, S. J., Wenninger, J., Coenders-Gerrits, A. M. J., & Uhlenbrook, S. (2012, August). Partitioning of evaporation into transpiration, soil evaporation and interception: a comparison between isotope measurements and a HYDRUS-1D model. <i>Hydrology and Earth System Sciences</i>, 16(8), 2605–2616. Retrieved 2021-04-11, from https://hess.copernicus.org/articles/16/2605/2012/ (Publisher: Copernicus GmbH) doi: 10.5194/hess-16-2605-2012 Talsma, C. J., Good, S. P., Jimenez, C., Martens, B., Fisher, J. B., Miralles, D. G., Purdy, A. J. (2018, October). Partitioning of evaporationing in remote sensing-based models. <i>Agricultural and Forest Meteorology</i>, 260-261, 131–143. Retrieved 2020-09-01, from http://www.sciencedirect.com/science/article/pii/S016819231830162X doi: 10.1016/j.agrformet.2018.05.010
1484 1485 1486 1487 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505	 02-19, from https://www.sciencedirect.com/science/article/pii/S0168192312003413 doi: 10.1016/j.agrformet.2012.11.004 Su, Z. (2002, February). The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrology and Earth System Sciences, 6(1), 85–100. Retrieved 2021-04-15, from https://hess.copernicus.org/articles/6/85/2002/ (Publisher: Copernicus GmbH) doi: 10.5194/hess-6-85-2002 Sun, X., Wilcox, B. P., & Zou, C. B. (2019, September). Evapotranspiration partitioning in dryland ecosystems: A global meta-analysis of in situ studies. Journal of Hydrology, 576, 123–136. Retrieved 2021-04-08, from https://www.sciencedirect.com/science/article/pii/S0022169419305736 doi: 10.1016/j.jhydrol.2019.06.022 Sutanto, S. J., Wenninger, J., Coenders-Gerrits, A. M. J., & Uhlenbrook, S. (2012, August). Partitioning of evaporation into transpiration, soil evaporation and interception: a comparison between isotope measurements and a HYDRUS-1D model. Hydrology and Earth System Sciences, 16(8), 2605–2616. Retrieved 2021-04-11, from https://hess.copernicus.org/articles/16/2605/2012/ (Publisher: Copernicus GmbH) doi: 10.5194/hess-16-2605-2012 Talsma, C. J., Good, S. P., Jimenez, C., Martens, B., Fisher, J. B., Miralles, D. G., Purdy, A. J. (2018, October). Partitioning of evapotranspiration in remote sensing-based models. Agricultural and Forest Meteorology, 260-261, 131–143. Retrieved 2020-09-01, from http://www.sciencedirect.com/science/article/pii/S016819231830162X doi: 10.1016/j.agrformet.2018.05.010 Talsma, C. J., Good, S. P., Miralles, D. G., Fisher, J. B., Martens, B., Jimenez, C. & Sumdy. A. L. (2018, October). Somitivity of Europers.edu.
1484 1485 1486 1487 1489 1490 1491 1492 1493 1494 1495 1496 1495 1500 1501 1502 1503 1504 1505 1506	 02-19, from https://www.sciencedirect.com/science/article/pii/S0168192312003413 doi: 10.1016/j.agrformet.2012.11.004 Su, Z. (2002, February). The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrology and Earth System Sciences, 6(1), 85-100. Retrieved 2021-04-15, from https://hess.copernicus.org/articles/6/85/2002/ (Publisher: Copernicus GmbH) doi: 10.5194/hess-6-85-2002 Sun, X., Wilcox, B. P., & Zou, C. B. (2019, September). Evapotranspiration partitioning in dryland ecosystems: A global meta-analysis of in situ studies. Journal of Hydrology, 576, 123-136. Retrieved 2021-04-08, from https://www.sciencedirect.com/science/article/pii/S0022169419305736 doi: 10.1016/j.jhydrol.2019.06.022 Sutanto, S. J., Wenninger, J., Coenders-Gerrits, A. M. J., & Uhlenbrook, S. (2012, August). Partitioning of evaporation into transpiration, soil evaporation and interception: a comparison between isotope measurements and a HYDRUS-1D model. Hydrology and Earth System Sciences, 16(8), 2605-2616. Retrieved 2021-04-11, from https://hess.copernicus.org/articles/16/2605/2012/ (Publisher: Copernicus GmbH) doi: 10.5194/hess-16-2605-2012 Talsma, C. J., Good, S. P., Jimenez, C., Martens, B., Fisher, J. B., Miralles, D. G., Purdy, A. J. (2018, October). Partitioning of evapotranspiration in remote sensing-based models. Agricultural and Forest Meteorology, 260-261, 131-143. Retrieved 2020-09-01, from http://www.sciencedirect.com/science/article/pii/S016819231830162X doi: 10.1016/j.agrformet.2018.05.010 Talsma, C. J., Good, S. P., Miralles, D. G., Fisher, J. B., Martens, B., Jimenez, C., & Purdy, A. J. (2018, October). Sensitivity of Evapotranspiration Components in Pompeta Sensing-Based models. Agricultural and Forest Meteorology, 260-261, 131-143. Retrieved 2020-09-01, from http://www.sciencedirect.com/science/article/pii/S016819231830162X doi: 10.1016/j.agrformet.2018.05.010
1484 1485 1486 1487 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507	 02-19, from https://www.sciencedirect.com/science/article/pii/S0168192312003413 doi: 10.1016/j.agrformet.2012.11.004 Su, Z. (2002, February). The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrology and Earth System Sciences, 6(1), 85–100. Retrieved 2021-04-15, from https://hess.copernicus.org/articles/6/85/2002/ (Publisher: Copernicus GmbH) doi: 10.5194/hess-6-85-2002 Sun, X., Wilcox, B. P., & Zou, C. B. (2019, September). Evapotranspiration partitioning in dryland ecosystems: A global meta-analysis of in situ studies. Journal of Hydrology, 576, 123–136. Retrieved 2021-04-08, from https://www.sciencedirect.com/science/article/pii/S0022169419305736 doi: 10.1016/j.jhydrol.2019.06.022 Sutanto, S. J., Wenninger, J., Coenders-Gerrits, A. M. J., & Uhlenbrook, S. (2012, August). Partitioning of evaporation into transpiration, soil evaporation and interception: a comparison between isotope measurements and a HYDRUS-1D model. Hydrology and Earth System Sciences, 16(8), 2605–2616. Retrieved 2021-04-11, from https://hess.copernicus.org/articles/16/2605/2012/ (Publisher: Copernicus GmbH) doi: 10.5194/hess-16-2605-2012 Talsma, C. J., Good, S. P., Jimenez, C., Martens, B., Fisher, J. B., Miralles, D. G., Purdy, A. J. (2018, October). Partitioning of evapotranspiration in remote sensing-based models. Agricultural and Forest Meteorology, 260-261, 131–143. Retrieved 2020-09-01, from http://www.sciencedirect.com/science/article/pii/S016819231830162X doi: 10.1016/j.agrformet.2018.05.010 Talsma, C. J., Good, S. P., Miralles, D. G., Fisher, J. B., Martens, B., Jimenez, C., & Purdy, A. J. (2018, October). Sensitivity of Evapotranspiration form-ponents in Remote Sensing-Based Models. Remote Sensing.10(10), 1601. Patriarda 2020 06-20, from http://www.sciencedirect.com/science/article/pii/S016819231830162X doi: 10.1016/j.agrformet.2018.05.010 Talsma, C. J., Good, S. P., Miralles, D. G., Fisher, J. B., Martens, B., Jimenez, C.
1484 1485 1486 1487 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508	 02-19, from https://www.sciencedirect.com/science/article/pii/ S0168192312003413 doi: 10.1016/j.agrformet.2012.11.004 Su, Z. (2002, February). The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrology and Earth System Sciences, 6(1), 85–100. Retrieved 2021-04-15, from https://hess.copernicus.org/articles/6/85/2002/ (Publisher: Copernicus GmbH) doi: 10.5194/hess-6-85-2002 Sun, X., Wilcox, B. P., & Zou, C. B. (2019, September). Evapotranspiration partitioning in dryland ecosystems: A global meta-analysis of in situ studies. Journal of Hydrology, 576, 123–136. Retrieved 2021-04-08, from https://www.sciencedirect.com/science/article/pii/S0022169419305736 doi: 10.1016/j.jhydrol.2019.06.022 Sutanto, S. J., Wenninger, J., Coenders-Gerrits, A. M. J., & Uhlenbrook, S. (2012, August). Partitioning of evaporation into transpiration, soil evaporation and interception: a comparison between isotope measurements and a HYDRUS-1D model. Hydrology and Earth System Sciences, 16(8), 2605–2616. Retrieved 2021-04-11, from https://hess.copernicus.org/articles/16/2605/2012/ (Publisher: Copernicus GmbH) doi: 10.5194/hess-16-2605-2012 Talsma, C. J., Good, S. P., Jimenez, C., Martens, B., Fisher, J. B., Miralles, D. G., Purdy, A. J. (2018, October). Partitioning of evapotranspiration in remote sensing-based models. Agricultural and Forest Meteorology, 260-261, 131–143. Retrieved 2020-09-01, from http://www.sciencedirect.com/science/article/pii/S016819231830162X doi: 10.1016/j.agrformet.2018.05.010 Talsma, C. J., Good, S. P., Miralles, D. G., Fisher, J. B., Martens, B., Jimenez, C., & Purdy, A. J. (2018, October). Sensitivity of Evapotranspiration Components in Remote Sensing-Based Models. Remote Sensing. 10(10), 1601. Retrieved 2020-06-29, from https://www.mdpi.com/2072-4222/10/10/1601 (Nurbar, 10. Dublicher, Mutidiaginglengue Dicited Dublicher Sensing. Jarticles/ 10.2018.00000000000000000000000000000000

Ahmad, M. D., & Bos, M. G. input parameters for assessing evap- the Low-Middle São Francisco ad validation. Agricultural Retrieved 2020-06-26, from a/article/pii/S0168192308002566 andez, F. B. T., Andrade, R. G., & cale Water Productivity Assessments Arid Environment: A Brazilian 3–5804. Retrieved 2021-04-15, from /5783 (Number: 11 Publisher: ute) doi: 10.3390/rs5115783 <i>e Begriffe</i> . Friedrich Vieweg & Sohn //books.google.com.br/books?id= <i>a simulation: Combining surface- and es between terrestrial energy and</i> Montana, Missoula, MT,. N. (2017, February). Envi- n a mixed plantation in North <i>corology</i> , 61(2), 227–238. Retrieved 07/s00484-016-1205-0 doi: (2018, December). First results sh on southeastern South Amer-
a input parameters for assessing evap- the Low-Middle São Francisco ad validation. Agricultural Retrieved 2020-06-26, from e/article/pii/S0168192308002566 andez, F. B. T., Andrade, R. G., & cale Water Productivity Assessments Arid Environment: A Brazilian 3-5804. Retrieved 2021-04-15, from /5783 (Number: 11 Publisher: ute) doi: 10.3390/rs5115783 e Begriffe. Friedrich Vieweg & Sohn //books.google.com.br/books?id= a simulation: Combining surface- and es between terrestrial energy and Montana, Missoula, MT,. N. (2017, February). Envi- n a mixed plantation in North corology, 61(2), 227-238. Retrieved 07/s00484-016-1205-0 doi: (2018, December). First results sh on southeastern South Amer-
the Low-Middle São Francisco and validation. Agricultural Retrieved 2020-06-26, from e/article/pii/S0168192308002566 andez, F. B. T., Andrade, R. G., & cale Water Productivity Assessments Arid Environment: A Brazilian 3-5804. Retrieved 2021-04-15, from /5783 (Number: 11 Publisher: ute) doi: 10.3390/rs5115783 e Begriffe. Friedrich Vieweg & Sohn //books.google.com.br/books?id= a simulation: Combining surface- and es between terrestrial energy and Montana, Missoula, MT,. N. (2017, February). Envi- n a mixed plantation in North corology, 61(2), 227-238. Retrieved 07/s00484-016-1205-0 doi: (2018, December). First results sh on southeastern South Amer-
nd validation. Agricultural Retrieved 2020-06-26, from e/article/pii/S0168192308002566 andez, F. B. T., Andrade, R. G., & cale Water Productivity Assessments Arid Environment: A Brazilian 3-5804. Retrieved 2021-04-15, from /5783 (Number: 11 Publisher: ute) doi: 10.3390/rs5115783 e Begriffe. Friedrich Vieweg & Sohn //books.google.com.br/books?id= a simulation: Combining surface- and es between terrestrial energy and Montana, Missoula, MT,. N. (2017, February). Envi- n a mixed plantation in North corology, 61(2), 227-238. Retrieved 07/s00484-016-1205-0 doi: (2018, December). First results sh on southeastern South Amer-
Retrieved 2020-06-26, from e/article/pii/S0168192308002566 andez, F. B. T., Andrade, R. G., & cale Water Productivity Assessments Arid Environment: A Brazilian 3-5804. Retrieved 2021-04-15, from /5783 (Number: 11 Publisher: ute) doi: 10.3390/rs5115783 e Begriffe. Friedrich Vieweg & Sohn //books.google.com.br/books?id= a simulation: Combining surface- and es between terrestrial energy and Montana, Missoula, MT,. N. (2017, February). Envi- n a mixed plantation in North corology, 61(2), 227-238. Retrieved 07/s00484-016-1205-0 doi: (2018, December). First results sh on southeastern South Amer-
<pre>e/article/pii/S0168192308002566 andez, F. B. T., Andrade, R. G., & cale Water Productivity Assessments Arid Environment: A Brazilian 3-5804. Retrieved 2021-04-15, from /5783 (Number: 11 Publisher: ute) doi: 10.3390/rs5115783 e Begriffe. Friedrich Vieweg & Sohn //books.google.com.br/books?id= n simulation: Combining surface- and es between terrestrial energy and Montana, Missoula, MT,. N. (2017, February). Envi- n a mixed plantation in North corology, 61(2), 227-238. Retrieved 07/s00484-016-1205-0 doi: (2018, December). First results sh on southeastern South Amer-</pre>
andez, F. B. T., Andrade, R. G., & cale Water Productivity Assessments Arid Environment: A Brazilian 3–5804. Retrieved 2021-04-15, from /5783 (Number: 11 Publisher: ute) doi: 10.3390/rs5115783 e Begriffe. Friedrich Vieweg & Sohn //books.google.com.br/books?id= n simulation: Combining surface- and es between terrestrial energy and Montana, Missoula, MT,. N. (2017, February). Envi- n a mixed plantation in North corology, 61(2), 227–238. Retrieved 07/s00484-016-1205-0 doi: (2018, December). First results sh on southeastern South Amer-
andez, F. B. T., Andrade, R. G., & cale Water Productivity Assessments Arid Environment: A Brazilian 3–5804. Retrieved 2021-04-15, from /5783 (Number: 11 Publisher: ute) doi: 10.3390/rs5115783 e Begriffe. Friedrich Vieweg & Sohn //books.google.com.br/books?id= a simulation: Combining surface- and es between terrestrial energy and Montana, Missoula, MT,. N. (2017, February). Envi- n a mixed plantation in North corology, 61(2), 227–238. Retrieved 07/s00484-016-1205-0 doi: (2018, December). First results sh on southeastern South Amer-
 cale Water Productivity Assessments Arid Environment: A Brazilian 3-5804. Retrieved 2021-04-15, from /5783 (Number: 11 Publisher: ute) doi: 10.3390/rs5115783 e Begriffe. Friedrich Vieweg & Sohn //books.google.com.br/books?id= n simulation: Combining surface- and es between terrestrial energy and Montana, Missoula, MT,. N. (2017, February). Envi- n a mixed plantation in North corology, 61(2), 227-238. Retrieved 07/s00484-016-1205-0 doi: (2018, December). First results sh on southeastern South Amer-
Arid Environment: A Brazilian 3-5804. Retrieved 2021-04-15, from /5783 (Number: 11 Publisher: ute) doi: 10.3390/rs5115783 e Begriffe. Friedrich Vieweg & Sohn //books.google.com.br/books?id= a simulation: Combining surface- and es between terrestrial energy and Montana, Missoula, MT,. N. (2017, February). Envi- n a mixed plantation in North corology, 61(2), 227-238. Retrieved 07/s00484-016-1205-0 doi: (2018, December). First results sh on southeastern South Amer-
 3-5804. Retrieved 2021-04-15, from /5783 (Number: 11 Publisher: ute) doi: 10.3390/rs5115783 e Begriffe. Friedrich Vieweg & Sohn //books.google.com.br/books?id= n simulation: Combining surface- and es between terrestrial energy and Montana, Missoula, MT,. N. (2017, February). Envi- n a mixed plantation in North corology, 61(2), 227-238. Retrieved 07/s00484-016-1205-0 doi: (2018, December). First results sh on southeastern South Amer-
 (Number: 11 Publisher: ute) doi: 10.3390/rs5115783 <i>e Begriffe</i>. Friedrich Vieweg & Sohn //books.google.com.br/books?id= <i>a simulation: Combining surface- and</i> <i>e between terrestrial energy and</i> Montana, Missoula, MT,. N. (2017, February). Envina a mixed plantation in North <i>corology</i>, 61(2), 227–238. Retrieved 07/s00484-016-1205-0 doi: (2018, December). First results sh on southeastern South Amer-
ute) doi: 10.3390/rs5115783 e Begriffe. Friedrich Vieweg & Sohn //books.google.com.br/books?id= n simulation: Combining surface- and es between terrestrial energy and ? Montana, Missoula, MT,. N. (2017, February). Envi- n a mixed plantation in North corology, 61(2), 227-238. Retrieved 07/s00484-016-1205-0 doi: (2018, December). First results sh on southeastern South Amer-
e Begriffe. Friedrich Vieweg & Sohn //books.google.com.br/books?id= n simulation: Combining surface- and es between terrestrial energy and Montana, Missoula, MT,. N. (2017, February). Envi- n a mixed plantation in North corology, 61(2), 227–238. Retrieved 07/s00484-016-1205-0 doi: (2018, December). First results sh on southeastern South Amer-
<pre>//books.google.com.br/books?id= //books.google.com.br/books?id= //books?id= //books.google.com.br/books?id= //books.googl</pre>
a simulation: Combining surface- and es between terrestrial energy and Montana, Missoula, MT,. N. (2017, February). Envi- a mixed plantation in North corology, 61(2), 227–238. Retrieved 07/s00484-016-1205-0 doi: (2018, December). First results sh on southeastern South Amer-
n simulation: Combining surface- and es between terrestrial energy and Montana, Missoula, MT,. N. (2017, February). Envi- n a mixed plantation in North corology, 61(2), 227–238. Retrieved 07/s00484-016-1205-0 doi: (2018, December). First results sh on southeastern South Amer-
es between terrestrial energy and Montana, Missoula, MT,. N. (2017, February). Envi- n a mixed plantation in North corology, 61(2), 227–238. Retrieved 07/s00484-016-1205-0 doi: (2018, December). First results sh on southeastern South Amer-
 Montana, Missoula, MT,. N. (2017, February). Envina a mixed plantation in North corology, 61(2), 227–238. Retrieved 07/s00484-016-1205-0 doi: (2018, December). First results sh on southeastern South Amer-
N. (2017, February). Envi- n a mixed plantation in North corology, 61(2), 227–238. Retrieved 07/s00484-016-1205-0 doi: (2018, December). First results sh on southeastern South Amer-
n a mixed plantation in North zorology, 61(2), 227–238. Retrieved 07/s00484-016-1205-0 doi: (2018, December). First results sh on southeastern South Amer-
<i>corology</i> , 61(2), 227–238. Retrieved 07/s00484-016-1205-0 doi: (2018, December). First results sh on southeastern South Amer-
(2018, December). First results sh on southeastern South Amer-
(2018, December). First results sh on southeastern South Amer-
(2018, December). First results sh on southeastern South Amer-
sh on southeastern South Amer-
sii oli southeasterii southi milei-
2021 263 59-68 Retrieved 2021-
com/science/article/nii/
met 2018 08 001
Global Aridity Index and Poten-
tabase v ² Betrieved 2020-05-
es/Global Aridity Index and
mate Database $v2/(504448)$ doi:
<pre>imate_Database_v2//504448 doi:</pre>
Biodiversity in South America
Biodiversity in South America. In
Biodiversity in South America. In Eds.), Encyclopedia of Caves (Third Betrieved 2020-07-08 from http://
Biodiversity in South America. In Eds.), Encyclopedia of Caves (Third Retrieved 2020-07-08, from http://
Biodiversity in South America. In Eds.), Encyclopedia of Caves (Third Retrieved 2020-07-08, from http:// le/pii/B9780128141243000194
Biodiversity in South America. In Eds.), Encyclopedia of Caves (Third Retrieved 2020-07-08, from http:// Le/pii/B9780128141243000194
Biodiversity in South America. In Eds.), <i>Encyclopedia of Caves (Third</i> Retrieved 2020-07-08, from http:// Le/pii/B9780128141243000194
Biodiversity in South America. In Eds.), Encyclopedia of Caves (Third Retrieved 2020-07-08, from http:// Le/pii/B9780128141243000194 bok, D. R., Houser, P. R., Meyers, precting eddy-covariance flux under- and Forest Meteorology 103(3) 279-
Biodiversity in South America. In Eds.), <i>Encyclopedia of Caves (Third</i> Retrieved 2020-07-08, from http:// le/pii/B9780128141243000194 bok, D. R., Houser, P. R., Meyers, orrecting eddy-covariance flux under- and Forest Meteorology, 103(3), 279-
Biodiversity in South America. In Eds.), Encyclopedia of Caves (Third Retrieved 2020-07-08, from http:// le/pii/B9780128141243000194 bok, D. R., Houser, P. R., Meyers, orrecting eddy-covariance flux under- and Forest Meteorology, 103(3), 279- /www.sciencedirect.com/science/ D 1016/S0168-1923(00)00123-4
Biodiversity in South America. In Eds.), Encyclopedia of Caves (Third Retrieved 2020-07-08, from http:// le/pii/B9780128141243000194 bok, D. R., Houser, P. R., Meyers, orrecting eddy-covariance flux under- and Forest Meteorology, 103(3), 279- /www.sciencedirect.com/science/ 0.1016/S0168-1923(00)00123-4 97 March) Modelling interception
Biodiversity in South America. In Eds.), Encyclopedia of Caves (Third Retrieved 2020-07-08, from http:// le/pii/B9780128141243000194 wok, D. R., Houser, P. R., Meyers, orrecting eddy-covariance flux under- and Forest Meteorology, 103(3), 279- /www.sciencedirect.com/science/ 0.1016/S0168-1923(00)00123-4 97, March). Modelling interception ts in central Portugal using reformu-
Biodiversity in South America. In Eds.), Encyclopedia of Caves (Third Retrieved 2020-07-08, from http:// le/pii/B9780128141243000194 bok, D. R., Houser, P. R., Meyers, orrecting eddy-covariance flux under- and Forest Meteorology, 103(3), 279- /www.sciencedirect.com/science/ 0.1016/S0168-1923(00)00123-4 97, March). Modelling interception ts in central Portugal using reformu- Journal of Hudrology, 190(1), 141-
 Biodiversity in South America. In Eds.), Encyclopedia of Caves (Third Retrieved 2020-07-08, from http:// Le/pii/B9780128141243000194 bok, D. R., Houser, P. R., Meyers, orrecting eddy-covariance flux under- and Forest Meteorology, 103(3), 279– /www.sciencedirect.com/science/ 0.1016/S0168-1923(00)00123-4 97, March). Modelling interception ts in central Portugal using reformu- Journal of Hydrology, 190(1), 141– /www.sciencedirect.com/science/
 Biodiversity in South America. In Eds.), Encyclopedia of Caves (Third Retrieved 2020-07-08, from http:// Le/pii/B9780128141243000194 bok, D. R., Houser, P. R., Meyers, orrecting eddy-covariance flux under- and Forest Meteorology, 103(3), 279– /www.sciencedirect.com/science/ 0.1016/S0168-1923(00)00123-4 97, March). Modelling interception ts in central Portugal using reformu- Journal of Hydrology, 190(1), 141– /www.sciencedirect.com/science/ 0.1016/S0022-1694(96)03066-1
 Biodiversity in South America. In Eds.), Encyclopedia of Caves (Third Retrieved 2020-07-08, from http:// le/pii/B9780128141243000194 bok, D. R., Houser, P. R., Meyers, orrecting eddy-covariance flux under- and Forest Meteorology, 103(3), 279- /www.sciencedirect.com/science/ 0.1016/S0168-1923(00)00123-4 197, March). Modelling interception ts in central Portugal using reformu- Journal of Hydrology, 190(1), 141- /www.sciencedirect.com/science/ 0.1016/S0022-1694(96)03066-1 S. R. de S. Nogueira, I. de
 Biodiversity in South America. In Eds.), Encyclopedia of Caves (Third Retrieved 2020-07-08, from http:// Le/pii/B9780128141243000194 bok, D. R., Houser, P. R., Meyers, orrecting eddy-covariance flux under- and Forest Meteorology, 103(3), 279- /www.sciencedirect.com/science/ 0.1016/S0168-1923(00)00123-4 97, March). Modelling interception ts in central Portugal using reformu- Journal of Hydrology, 190(1), 141- /www.sciencedirect.com/science/ 0.1016/S0022-1694(96)03066-1 R. S. R., de S. Nogueira, J., de T. B. (2020 April) Comparative
 Biodiversity in South America. In Eds.), Encyclopedia of Caves (Third Retrieved 2020-07-08, from http:// le/pii/B9780128141243000194 bok, D. R., Houser, P. R., Meyers, orrecting eddy-covariance flux under- and Forest Meteorology, 103(3), 279- /www.sciencedirect.com/science/ 0.1016/S0168-1923(00)00123-4 97, March). Modelling interception ts in central Portugal using reformu- Journal of Hydrology, 190(1), 141- /www.sciencedirect.com/science/ 0.1016/S0022-1694(96)03066-1 R. S. R., de S. Nogueira, J., de T. R. (2020, April). Comparative ence evapotranspiration methods for
 Biodiversity in South America. In Eds.), Encyclopedia of Caves (Third Retrieved 2020-07-08, from http:// Le/pii/B9780128141243000194 bok, D. R., Houser, P. R., Meyers, orrecting eddy-covariance flux under- and Forest Meteorology, 103(3), 279– /www.sciencedirect.com/science/ 0.1016/S0168-1923(00)00123-4 197, March). Modelling interception ts in central Portugal using reformu- Journal of Hydrology, 190(1), 141– /www.sciencedirect.com/science/ 0.1016/S0022-1694(96)03066-1 R. S. R., de S. Nogueira, J., de T. R. (2020, April). Comparative ence evapotranspiration methods for Janagement, 232, 106040. Retrieved
Global Aridity Index tabase v2. Retriev s/Global_Aridity_Index

 Verhoef, A., & Allen, S. J. (2000, March). A SVAT scheme describing energy and CO2 fluxes for multi-component vegetation: calibration and test for a Sahelian savannah. <i>Ecological Modelling</i>, 127(2), 245–267. Retrieved 2021- 04-10, from https://www.sciencedirect.com/science/article/pii/ S0304380099002136 doi: 10.1016/S0304.3800(9)00213-6 Verhoef, A., & Campbell, C. L. (2006). Evaporation Measurement. In <i>Encyclopedia of Hydrological Sciences</i>. American Cancer Soci- ety. Retrieved 2021-02-19, from https://onlinelibrary.wiley.com/doi/phs/10.1002/0470848944.hsa043 (Scction: 40 ceprint: bttps://onlinelibrary.wiley.com/doi/pdf/10.1002/0470848944.hsa043) doi: 10.1002/0470848944.hsa043 Villarreal, S., & Vargas, R. (2021). Representativeness of FLUXNET sites across Latin America. <i>Journal of Geophysical Research: Biogeosciences</i>, <i>126</i>(3), e2020JG006090. Retrieved 2021-02-19, from https://agupubs .onlinelibrary.wiley.com/doi/abs/10.1029/2020JG006090 https://doi.org/10.1029/2020JG006090 Vinukollu, R. K., Wood, E. F., Ferguson, C. R., & Fisher, J. B. (2011, March). Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: Evaluation of three process-based approaches. <i>Re- note Sensing of Environment</i>, <i>115</i>(3), 801–823. Retrieved 2017-09-21, from http://www.sciencedirect.com/science/article/pii/S0034425710003251 doi: 10.1016/j.ise.2010.11.006 von Randow, C., Manzi, A. O., Kruijt, B., de Oliveira, P. J., Zanchi, F. B., Silva, R. L.,, Kabat, P. (2004, June). Comparative measurements and seasonal variations in energy and carbon exchange over forest and pasture in South West Amazonia. <i>Theoretical and Applied Climatology</i>, 78(1), 5–26. Retrieved 2020-03-19, from https://doi.org/10.1007/s00704-004-041-z Vourlitis, G. L., Nogueira, J. d. S., Lobo, F. d. A., Sendall, K. M., Paulo, S. R. d., Dias, C. A. A., Andride, N. L. R. d. (2008). En- ergy balance and canopy conductance of a tropical semi-deciduous f	1566	S0378377419314489 doi: 10.1016/j.agwat.2020.106040
 and CO2 fluxes for multi-component vegetation: calibration and test for a Sahelian savannah. Ecological Modelling, 127(2), 245–267. Retrieved 2021- 04-10, from https://www.sciencedirect.com/science/article/pii/ S0304380099002136 doi: 10.1016/S0304-3800(99)00213-6 Verhoef, A., & Campbell, C. L. (2006). Evaporation Measurement. In Encyclopedia of Hydrological Sciences. American Cancer Soci- ety. Retrieved 2021-02-19, from https://onlinelibrary.wiley. com/doi/abb/10.1002/047084944.hsa043 (Section: 40.eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/0470848944.hsa043) doi: 10.1002/0470848944.hsa043 Villarreal, S., & Vargas, R. (2021). Representativeness of FLUXNET sites across Latin America. Journal of Geophysical Research: Biogeosciences, 126(3), e20201G006090. Retrieved 2021-02.19, from https://agupube onlinelibrary.wiley.com/doi/abs/10.1029/2020JG066090 doi: https://doi.org/10.1029/2020JG006090 Vinukollu, R. K., Wood, E. F., Ferguson, C. R., & Fisher, J. B. (2011, March). Global estimates of evaportanspiration for climate studies using multi-sensor remote sensing data: Evaluation of three process-based approaches. Re- mote Sensing of Environment, 115(3), 801–823. Retrieved 2017-09-21, from http://www.sciencedirect.com/science/article/pii/S003425710003251 doi: 10.1016/j.se.2010.11.006 von Randow, C., Manzi, A. O., Kruijt, B., de Oliveira, P. J., Zanchi, F. B., Silva, R. L., Kabat, P. (2004, June). Comparative measurements and seasonal variations in neergy and carbon exchange over forest and pasture in South West Amazonia. Theoretical and Applied Climatology, 78(1), 5-26. Retrieved 2020-03-19, from https://doi.org/10.1007/s00704-004-0041-z 00: 10.1007/s00704-004-0041-z Vourlitis, G. L., Nogueira, J. d. S., Lobo, F. d. A., Sendall, K. M., Paulo, S. R. d., Dias, C. A. A Andrade, N. L. R. d. (2008). En- ergy balance and canopy conductance of a tropical semi-deciduous forest of the southern Amazon Basin. Water Resources Re- s	1567	Verhoef, A., & Allen, S. J. (2000, March). A SVAT scheme describing energy
 Sahelian savannah. Ecological Modelling, 127(2), 245–267. Retrieved 2021-04-10, from https://www.sciencedirect.com/science/article/pii/ S0304380099002136 doi: 10.1016/S03004-S800(99)00213-6 Verhoef, A., & Campbell, C. L. (2006). Evaporation Measurement. In Encyclopedia of Hydrological Sciences. American Cancer Society. Retrieved 2021-02-19, from https://ollinelibrary.wiley.com/doi/pdf/10.1002/0470848944.hsa043 (Section: 40 eprint: https://ollinelibrary.wiley.com/doi/pdf/10.1002/0470848944.hsa043) doi: 10.1002/0470848944.hsa043 Villarreal, S., & Vargas, R. (2021). Representativeness of FLUXNET sites across Latin America. Journal of Geophysical Research: Biogeosciences, 126(3), e2020JG006000. Retrieved 2021-02-19, from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020JG006090 doi: https://doi.org/10.1029/2020JG006000 Vimkollu, R. K., Wood, E. F., Ferguson, C. R., & Fisher, J. B. (2011, March). Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: Evaluation of three process-based approaches. Remote Sensing of Environment, 115(3), 801–823. Retrieved 2017-09-21, from http://www.sciencedirect.com/science/article/pii/S0034425710003251 doi: 10.1016/j.rsc.2010.11.006 von Randow, C., Manzi, A. O, Kruijt, B., de Oliveira, P. J., Zanchi, F. B., Silva, R. L., KAbat, P. (2004, June). Comparative measurements and seasonal variations in energy and carbon exchange over forest and pasture in South West Amazonia. Theoretical and Applied Climatology, 78(1), 5–26. Retrieved 2020-03-19, from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2006WR005526 Vourlitis, G. L. N., Queitra, J. A. S., Lobo, F. d. A., Sendall, K. M., Paulo, S. R. d., Dias, C. A. A., Andrade, N. L. R. d. (2008). Energy balance and canopy conductance of a tropical seni-deciduous forest of the southern Amazon Basin. Water Resources Research. J44(3). Retrieved 2020-05-12, from https://www.sciencedirect.c	1568	and CO2 fluxes for multi-component vegetation: calibration and test for a
 04-10. from https://www.sciencedirect.com/science/article/pii/ S0304380099002136 doi: 10.1016/S0304-3800(99)00213-6 Verhoef, A., & Campbell, C. L. (2006). Evaporation Measurement. In Encyclopedia of Hydrological Sciences. American Cancer Soci- ety. Retrieved 2021-02-19, from https://onlinelibrary.wiley. com/doi/abs/10.1002/0470848944.hsa043 (Section: 40 .eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/0470848944.hsa043) Villarreal, S., & Vargas, R. (2021). Representativeness of FLUXNET sites across Latin America. Journal of Geophysical Research: Biogeosciences, 1786(3), e22004600600. Retrieved 2021-02-19, from https://agupubs .onlinelibrary.wiley.com/doi/abs/10.1029/2020JG006090 doi: https://doi.org/10.1029/2020JG006000 Vimukollu, R. K., Wood, E. F., Ferguson, C. R., & Fisher, J. B. (2011, March). Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: Evaluation of three process-based approaches. Re- mote Sensing of Environment, 115(3), 801-823. Retrieved 2017-09-21, from http://doi.org/10.1029/02.020452510003251 doi: 10.1016/j.nse.2010.11.006 von Randow, C., Manzi, A. O., Kruijt, B., de Oliveira, P. J., Zanchi, F. B., Silva, R. L., Kabat, P. (2004, Junc). Comparative measurements and seasonal variations in energy and carbon exchange over forest and pasture in South West Amazonia. Theoretical and Applied Climatology, 78(1), 5-26. Retrieved 2020-03-19, from https://doi.org/10.1007/s00704-004-0041-2 doi: 10.1007/s00704-004-041-2 Vouritis, S. d. J., Ngae, C. A. A., Andrade, N. L. R. d. (2008). En- ergy balance and canopy conductance of a tropical semi-deciduous forest of the southern Amazon Basin. Water Resources Re- search, 44(3). Retrieved 2020-05-12, from https://agupubs .onlinelibrary.wiley.com/doi/abs/10.1029/2006WR005526 (cprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2006WR005526 doi: 10.1029/2006WR005526 Wang, X., Huo, Z., Shukla, M. K., Wan	1569	Sahelian savannah. Ecological Modelling, 127(2), 245–267. Retrieved 2021-
 S030438009002136 doi: 10.1016/S0304-3800(99)00213-6 Verhoef, A., & Campbell, C. L. (2006). Evaporation Measurement. In Encyclopedia of Hydrological Sciences. American Cancer Society. Retrieved 2021-02-19, from https://onlinelibrary.wiley.com/doi/abs/10.1002/0470848944.hsa043 Villarreal, S., & Vargas, R. (2021). Representativeness of FLUXNET sites across Latin America. Journal of Geophysical Research: Biogeosciences, 126(3), e2020JG006090. Retrieved 2021-02-19, from https://gupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020JG006090 Villarreal, S., & Vargas, R. (2021). Representativeness of FLUXNET sites across Latin America. Journal of Geophysical Research: Biogeosciences, 126(3), e2020JG006090. Retrieved 2021-02-19, from https://doi.org/10.1029/2020JG006090 Vinukollu, R. K., Wood, E. F., Ferguson, C. R., & Fisher, J. B. (2011, March). Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: Evaluation of three process-based approaches. Remote Sensing of Environment, 115(3), 801-823. Retrieved 2017-09-21, from http://www.sciencedirect.com/scienc/article/pii/S0034425710003251 doi: 10.1016/j.rsc.2010.11.006 von Randow, C., Manzi, A. O., Kruijt, B., de Oliveira, P. J., Zanchi, F. B., Silva, R. L., Kabat, P. (2004, June). Comparative measurements and seasonal variations in energy and carbon exchange over forest and pasture in South West Amazonia. Theoretical and Applied Climatology, 78(1), 5-26. Retrieved 2020-03-19, from https://doi.org/10.1007/s00704-004-041-z doi: 10.1007/s00704-004-041-z doi: 10.1007/s00704	1570	04-10, from https://www.sciencedirect.com/science/article/pii/
 Verhoef, A., & Campbell, C. L. (2006). Evaporation Measurement. In Encyclopedia of Hydrological Sciences. American Cancer Society. Retrieved 2021-02-19, from https://onlinelibrary.wiley.com/doi/abs/10.1002/0470848944.hsa043 (Section: 40.eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/0470848944.hsa043 doi: 10.1002/0470848944.hsa043 (Section: 40.eprint: https://olinelibrary.wiley.com/doi/abs/10.1002/0470848944.hsa043 doi: 10.1002/0470848944.hsa043 Villarreal, S., & Vargas, R. (2021). Representativeness of FLUXNET sites across Latin America. Journal of Geophysical Research: Biogeosciences, 126(3), e2020JG006090. Retrieved 2021-02-19, from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020JG006090 Vinukollu, R. K., Wood, E. F., Ferguson, C. R., & Fisher, J. B. (2011, March). Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: Evaluation of three process-based approaches. Remote Sensing of Environment, 115(3), 801-823. Retrieved 2017-09-21, from http://www.sciencedirect.com/science/article/pii/S0034425710003251 doi: 10.1016/j.rse.2010.1006 von Randow, C., Manzi, A. O., Kruijt, B., de Oliveira, P. J., Zanchi, F. B., Silva, R. L., Kabat, P. (2004, June). Comparative measurements and seasonal variations in energy and carbon exchange over forest and pasture in South West Amazonia. Theoretical and Applied Climatology, 78(1), 5-26. Retrieved 2020-03-19, from https://doi.org/10.1007/s00704-004-0041-z doi: 10.1016/jor04-004041-z Vourlitis, G. L., Nogueira, J. d. S., Loho, F. d. A., Sendall, K. M., Paulo, S. R. d., Dias, C. A. A., Andrade, N. L. R. d. (2008). Energy balance and canopy conductance of a tropical semi-deciduous forest of the southern Amazon Basin. Water Resources Research, 44(3). Retrieved 2020-05-12, from https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2006WR05526 (oi: 10.1029/2006WR05526) Wang, X., Huo, Z., Shukla, M. K., Wang, X., Guo, P., Xu, X., & H	1571	S0304380099002136 doi: 10.1016/S0304-3800(99)00213-6
In Encyclopedia of Hydrological Sciences. American Cancer Society. In Encyclopedia Sciences. Integer Sciences. Integer Sciences. Integer Sciences. <t< td=""><td>1572</td><td>Verhoef, A., & Campbell, C. L. (2006). Evaporation Measurement.</td></t<>	1572	Verhoef, A., & Campbell, C. L. (2006). Evaporation Measurement.
 ety. Retrieved 2021-02-19, from https://onlinelibrary.wiley .com/doi/abs/10.1002/0470848944.hsa043 (Section: 40.ceprint: thtps://onlinelibrary.wiley.com/doi/pdf/10.1002/0470848944.hsa043 doi: 10.1002/0470848944.hsa043 (Section: 40.ceprint: thtps://onlinelibrary.wiley.com/doi/pdf/10.1002/0470848944.hsa043 doi: 10.1002/0470848944.hsa043 (2021). Representativeness of FLUXNET sites across Latin America. Journal of Geophysical Research: Biogeosciences, 126(3), e2020JG006090. Retrieved 2021-02-19, from https://doi.org/10.1029/2020JG006090 doi: https://doi.org/10.1029/2020JG006090 doi: https://doi.org/10.1029/2020JG006090 Vimukollu, R. K., Wood, E. F., Ferguson, C. R., & Fisher, J. B. (2011, March). Global estimates of evapotranspiration for climate studies using multi-sense Remote sensing data: Evaluation of three process-based approaches. Retrieved 2017-09-21, from http://www.sciencedirect.com/science/article/pii/S0034425710003254 doi: 10.1016/j.rse.2010.11.006 von Randow, C., Manzi, A. O., Kruijt, B., de Oliveira, P. J., Zanchi, F. B., Silva, R. L., Kabat, P. (2004, June). Comparative measurements and seasonal variations in energy and carbon exchange over forest and pasture in South West Amazonia. Theoretical and Applied Climatology, 78(1), 5-26. Retrieved 2020-03-19, from https://agupuba.org/10.1007/s00704-004-0041-z Vourlitis, G. L., Nogueira, J. d. S., Lobo, F. d. A., Sendall, K. M., Paulo, S. R. d., Dias, C. A. A., Andrade, N. L. R. d. (2008). Energy balance and canopy conductance of a tropical semi-deciduous forest of the southern Amazon Basin. Water Resources Research, 44(3). Retrieved 2020-05-12, from https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2006WR005526 Wang, X., Huo, Z., Shukla, M. K., Wang, X., Guo, P., Xu, X., & Huang, G. (2020, February). Energy fluxe	1573	In Encyclopedia of Hydrological Sciences. American Cancer Soci-
1975 .com/doi/abs/10.1002/0470848944.hsa043 (Section: 40_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/0470848944.hsa043) doi: 10.1002/0470848944.hsa043 1978 Villarreal, S., & Vargas, R. (2021). Representativeness of FLUXNET sites across Latin America. Journal of Gcophysical Research: Biogeosciences, 126(3), e2020JG006000. 1989 .onlinelibrary.wiley.com/doi/abs/10.1029/2020JG006090 doi: https://doi.org/10.1029/2020JG006090 1989 .onlinelibrary.wiley.com/doi/abs/10.1029/2020JG006090 doi: https://doi.org/10.1029/2020JG006090 1989 .onlinelibrary.wiley.com/doi/abs/10.1029/2020JG006090 doi: https://doi.org/10.1029/2020JG006090 1989 .onlinelibrary.wiley.com/doi/abs/10.1029/2020JG006090 doi: https://doi.org/10.1029/2020JG006090 1989 .onlinelibrary.wiley.com/science/article/pii/S0034425710003251 doi: 10.1016/j.rsc.2010.11.006 1989 von Randow, C., Manzi, A. O., Kruijt, B., de Oliveira, P. J., Zanchi, F. B., Silva, R. L., Kabat, P. (2004, June). Comparative measurements and seasonal variations in energy and carbon exchange over forest and pasture in South 1989 von/doi/Jo0704-004-0041-z doi: 10.1007/s00704-004-0041-z doi: 10.1007/s00704-004-0041-z 1089 form https://gupubs.com/doi/abs/10.1029/2006WR005526 (e.print: https://gupubs.com/doi/abs/10.1029/2006WR005526 (e.print: https://gupubs.com/doi/pdf/10.1029/2006WR005526 (e.print: https://gupub	1574	ety. Retrieved 2021-02-19, from https://onlinelibrary.wiley
 https://onlinelibrary.wiley.com/doi/pdf/10.1002/0470848944.hsa043) doi: 10.1002/0470848944.hsa043 Villarreal, S., & Vargas, R. (2021). Representativeness of FLUXNET sites across Latin America. Journal of Geophysical Research: Biogeosciences, 120(3), e2020JG006090. Retrieved 2021-02-19, from https://agupubs onlinelibrary.wiley.com/doi/abs/10.1029/2020JG006090 Vinukollu, R. K., Wood, E. F., Ferguson, C. R., & Fisher, J. B. (2011, March). Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: Evaluation of three process-based approaches. Remote Sensing of Environment, 115(3), 801–823. Retrieved 2017-09-21, from http://www.sciencedirect.com/science/article/pii/S003442571000251 von Randow, C., Manzi, A. O., Kruijt, B., de Oliveira, P. J., Zanchi, F. B., Silva, R. L., Kabat, P. (2004, June). Comparative measurements and seasonal variations in energy and carbon exchange over forest and pasture in South West Amazonia. Theoretical and Applied Climatology, 78(1), 5–26. Retrieved 2020-03-19, from https://doi.org/10.1007/s00704-004-004-1-z Vourlitis, G. L., Nogueira, J. d. S., Lobo, F. d. A., Sendall, K. M., Paulo, S. R. d. Dias, C. A. A., Andrade, N. L. R. d. (2008). Energy balance and canopy conductance of a tropical semi-deciduous forest of the southern Amazon Basin. Water Resources Research, 44(3). Retrieved 2020-05-12, from https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2006WR005526 (.eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2006WR005526 (.eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2006WR005526 (.eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2006WR005526 (.oci 10.1016/j.agwat.2019.105922 Wang, Z., Schaaf, C. B., Strahler, A. H., Chopping, M. J., Román, M. O., Shuai, Y., Fitzjarrald, D. R. (2014, January). Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture an	1575	.com/doi/abs/10.1002/0470848944.hsa043 (Section: 40 _eprint:
 10.1002/0470848944.hsa043 Villarreal, S., & Vargas, R. (2021). Representativeness of FLUXNET sites across Latin America. Journal of Geophysical Research: Biogeosciences, 126(3), e2020JG006090. Retrieved 2021-02-19, from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020JG006090 Vinukollu, R. K., Wood, E. F., Ferguson, C. R., & Fisher, J. B. (2011, March). Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: Evaluation of three process-based approaches. Remote Sensing of Environment, 115(3), 801-823. Retrieved 2017-09-21, from http://www.sciencedirect.com/science/article/pii/S0034425710003251 doi: 10.1016/j.rse.2010.11.006 von Randow, C., Manzi, A. O., Kruijt, B., de Oliveira, P. J., Zanchi, F. B., Silva, R. L., Kabat, P. (2004, June). Comparative measurements and seasonal variations in energy and carbon exchange over forest and pasture in South West Amazonia. Theoretical and Applied Climatology, 78(1), 5-26. Retrieved 2020-03-19, from https://doi.org/10.1007/s00704-004-0041-z doi: 10.1007/s00704-004-0041-z Vourlitis, G. L., Nogueira, J. d. S., Lobo, F. d. A., Sendall, K. M., Paulo, S. R. d., Dias, C. A. A., Andrade, N. L. R. d. (2008). Energy balance and canopy comductance of a tropical semi-deciduous forest of the southern Amazon Basin. Water Resources Research, 44(3). Retrieved 2020-05-12, from https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2006WR005526 (ceprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2006WR005526 (ceprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2006WR005526 (ceprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2006WR005526 Wang, X., Huo, Z., Shukla, M. K., Wang, X., Guo, P., Xu, X., & Huang, G. (2020, February). Energy fluxes and evapotranspiration over irrigated maize field in an arid area with shallow groundwater. Agricultural Water Mangement, 228, 105922. Retrieved 2021-04-15, from https://www.s	1576	https://onlinelibrary.wiley.com/doi/pdf/10.1002/0470848944.hsa043) doi:
 Villarreal, S., & Vargas, R. (2021). Representativeness of FLUXNET sites across Latin America. Journal of Geophysical Research: Biogeosciences, 126(3), e2020JG006090. Retrieved 2012-02-19, from https://agupubs onlinelibrary.viley.com/doi/abs/10.1029/2020JG006090 doi: https://doi.org/10.1029/2020JG006090 Vinukollu, R. K., Wood, E. F., Ferguson, C. R., & Fisher, J. B. (2011, March). Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: Evaluation of three process-based approaches. Remote Sensing of Environment, 115(3), 801–823. Retrieved 2017-09-21, from http://www.sciencedirect.com/science/article/pii/S0034425710003251 doi: 10.1016/j.rsc.2010.11.006 von Randow, C., Manzi, A. O., Kruijt, B., de Oliveira, P. J., Zanchi, F. B., Silva, R. L., Kabat, P. (2004, June). Comparative measurements and seasonal variations in energy and carbon exchange over forest and pasture in South West Amazonia. Theoretical and Applied Climatology, 78(1), 5–26. Retrieved 2020-03-19, from https://doi.org/10.1007/s00704-004-0041-z Vourlitis, G. L., Negueira, J. d. S., Lobo, F. d. A., Sendall, K. M., Paulo, S. R. d., Dias, C. A. A., Andrade, N. L. R. d. (2008). Energy balance and canopy conductance of a tropical semi-deciduous forest of the southern Amazon Basin. Water Resources Research, 44(3). Retrieved 2020-05-12, from https://agupubs unlinelibrary.viley.com/doi/abs/10.1029/2006WR005526 (ceprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2006WR005526 doi: 10.1029/2006WR005526 Wang, X., Huo, Z., Shukla, M. K., Wang, X., Guo, P., Xu, X., & Huang, G. (2020, February). Energy fluxes and evapotranspiration over irrigated maize field in an arid area with shallow groundwater. Agricultural Water Management, 228, 105922. Retrieved 2021-04-15, from https://www.sciencedirect.com/science/article/pii/S03425713002836 doi: 10.1016/j.rsc.2013.08.025 Wardlow, B. D., Egbert, S. L., & Kas	1577	10.1002/0470848944.hsa043
 across Latin America. Journal of Geophysical Research: Biogeosciences, 126(3), e2020JG006090. Retrieved 2021-02-19, from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020JG006090 Vinukollu, R. K., Wood, E. F., Ferguson, C. R., & Fisher, J. B. (2011, March). Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: Evaluation of three process-based approaches. Remote Sensing of Environment, 115(3), 801-823. Retrieved 2017-09-21, from http://www.sciencedirect.com/science/article/pii/S0034425710003251 doi: 10.1016/j.rse.2010.11.006 von Randow, C., Manzi, A. O., Kruijt, B., de Oliveira, P. J., Zanchi, F. B., Silva, R. L., Kabat, P. (2004, June). Comparative measurements and seasonal variations in energy and carbon exchange over forest and pasture in South West Amazonia. Theoretical and Applied Climatology, 78(1), 5-26. Retrieved 2020-03-19, from https://doi.org/10.1007/s00704-004-041-z doi: 10.1007/s00704-004-041-z Vourlitis, G. L., Nogueira, J. d. S., Lobo, F. d. A., Sendall, K. M., Paulo, S. R. d., Dias, C. A. A., Andrade, N. L. R. d. (2008). Energy balance and canopy conductance of a tropical semi-deciduous forest of the southern Amazon Basin. Water Resources Research, 44(3). Retrieved 2020-05-12, from https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2006WR005526 (ceprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2006WR005526 doi: 10.1029/2006WR005526 Mang, X., Huo, Z., Shukla, M. K., Wang, X., Guo, P., Xu, X., & Huang, G. (2020, February). Energy fluxes and evapotranspiration over irrigated maize field in an arid area with shallow groundwater. Agricultural Water Kanagement, 228, 105922. Retrieved 2021-04-15, from https:// Wang, Z., Schaaf, C. B., Strahler, A. H., Chopping, M. J., Román, M. O., Shuai, Y., Fitzjarrald, D. R. (2014, January). Evaluation of MODDIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-cov	1578	Villarreal, S., & Vargas, R. (2021). Representativeness of FLUXNET sites
 126(3), e2020JG006090. Retrieved 2021-02-19, from https://agupubs .onlinelibrary.wiley.com/doi/abs/10.1029/2020JG006090 doi: bittps://doi.org/10.1029/2020JG006090 Vinukollu, R. K., Wood, E. F., Ferguson, C. R., & Fisher, J. B. (2011, March). Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing of Environment, 115(3), 801-823. Retrieved 2017-09-21, from http://www.sciencedirect.com/science/article/pii/S0034425710003251 doi: 10.1016/j.rse.2010.11.006 von Randow, C., Manzi, A. O., Kruijt, B., de Oliveira, P. J., Zanchi, F. B., Silva, R. L., Kabat, P. (2004, June). Comparative measurements and seasonal variations in energy and carbon exchange over forest and pasture in South West Amazonia. Theoretical and Applied Climatology, 78(1), 5-26. Retrieved 2020-03-19, from https://doi.org/10.1007/s00704-004-041-z Vourlitis, G. L., Nogueira, J. d. S., Lobo, F. d. A., Sendall, K. M., Paulo, S. R. d., Dias, C. A. A., Andrade, N. L. R. d. (2008). Energy balance and canopy conductance of a tropical semi-deciduous forest of the southern Amazon Basin. Water Resources Research, 44(3). Retrieved 2020-05-12, from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2006WR005526 (ceprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2006WR005526 doi: 10.1029/2006WR005526 Wang, X., Huo, Z., Slukla, M. K., Wang, X., Guo, P., Xu, X., & Huang, G. (2020, February). Energy fluxes and evapotranspiration over irrigated mair diarea with shallow groundwater. Agricultural Water Mair Mair Mair Mair Mair Mair Mair Mai	1579	across Latin America. Journal of Geophysical Research: Biogeosciences.
 anlinelibrary.wiley.com/doi/abs/10.1029/2020JG006090 bittps://doi.org/10.1029/2020JG006090 Vinukollu, R. K., Wood, E. F., Ferguson, C. R., & Fisher, J. B. (2011, March). Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: Evaluation of three process-based approaches. <i>Remote Sensing of Environment</i>, <i>115</i>(3), 801-823. Retrieved 2017-09-21, from http://www.sciencedirect.com/science/article/pii/S0034425710003251 doi: 10.1016/j.rse.2010.11.006 von Randow, C., Manzi, A. O., Kruijt, B., de Oliveira, P. J., Zanchi, F. B., Silva, R. L., Kabat, P. (2004, June). Comparative measurements and seasonal variations in energy and carbon exchange over forest and pasture in South West Amazonia. <i>Theoretical and Applied Climatology</i>, <i>78</i>(1), 5–26. Retrieved 2020-03-19, from https://doi.org/10.1007/s00704-004-0241-z doi: 10.1007/s00704-004-0401-z Vourlitis, G. L., Nogueira, J. d. S., Lobo, F. d. A., Sendall, K. M., Paulo, S. R. d., Dias, C. A. A., Andrade, N. L. R. d. (2008). Energy balance and canopy conductance of a tropical semi-deciduous forest of the southern Amazon Basin. <i>Water Resources Research</i>, <i>44</i>(3). Retrieved 2020-05-12, from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2006WR005526 (.eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2006WR005526 (.doi: 10.1029/2006WR005526 Wang, X., Huo, Z., Shukla, M. K., Wang, X., Guo, P., Xu, X., & Huang, G. (2020, February). Energy fluxes and evapotranspiration over irrigated maize field in an arid area with shallow groundwater. <i>Agricultural Water Management</i>, <i>228</i>, 105922. Retrieved 2021-04-15, from https://www.sciencedirect.com/science/article/pii/S0378377419311023 doi: 10.1016/j.agwat.2019.105922 Wang, Z., Schaaf, C. B., Strahler, A. H., Chopping, M. J., Román, M. O., Shuai, Y., Fitzjarrald, D. R. (2014, January). Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture a	1580	126(3), e2020JG006090. Retrieved 2021-02-19, from https://agupubs
 https://doi.org/10.1029/2020JG006090 Vinukollu, R. K., Wood, E. F., Ferguson, C. R., & Fisher, J. B. (2011, March). Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: Evaluation of three process-based approaches. <i>Re- mote Sensing of Environment</i>, <i>115</i>(3), 801–823. Retrieved 2017-09-21, from http://www.sciencedirect.com/science/article/pii/S0034225710003251 doi: 10.1016/j.irse.2010.11.006 von Randow, C., Manzi, A. O., Kruijt, B., de Oliveira, P. J., Zanchi, F. B., Silva, R. L., Kabat, P. (2004, June). Comparative measurements and seasonal variations in energy and carbon exchange over forest and pasture in South West Amazonia. <i>Theoretical and Applied Climatology</i>, <i>78</i>(1), 5–26. Retrieved 2020-03-19, from https://doi.org/10.1007/s00704-004-041-z doi: 10.1007/s00704-004-041-z Vourlitis, G. L., Nogueira, J. d. S., Lobo, F. d. A., Sendall, K. M., Paulo, S. R. d., Dias, C. A. A., Andrade, N. L. R. d. (2008). En- ergy balance and canopy conductance of a tropical semi-deciduous forest of the southern Amazon Basin. <i>Water Resources Re- search</i>, <i>44</i>(3). Retrieved 2020-05-12, from https://agupubs .onlinelibrary.wiley.com/doi/abs/10.1029/2006WR005526 (.eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2006WR005526 doi: 10.1029/2006WR005526 Wang, X., Huo, Z., Shukla, M. K., Wang, X., Guo, P., Xu, X., & Huang, G. (2020, February). Energy fluxes and evapotranspiration over irrigated maize field in an aria area with shallow groundwater. <i>Agricultural Wa- ter Management</i>, <i>228</i>, 105922. Retrieved 2021-04-15, from https:// www.sciencedirect.com/science/article/pii/S0378377419311023 doi: 10.1016/j.agwat.2019.105922 Wang, Z., Schaaf, C. B., Strahler, A. H., Chopping, M. J., Román, M. O., Shuai, Y., Fitzjarrald, D. R. (2014, January). Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods. <i>Remote </i>	1581	.onlinelibrarv.wilev.com/doi/abs/10.1029/2020JG006090 doi:
 Vinukollu, R. K., Wood, E. F., Ferguson, C. R., & Fisher, J. B. (2011, March). Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: Evaluation of three process-based approaches. <i>Re- mote Sensing of Environment, 115</i>(3), 801-823. Retrieved 2017-09-21, from http://www.sciencedirect.com/science/article/pii/S0034425710003251 doi: 10.1016/j.rse.2010.11.006 von Randow, C., Manzi, A. O., Kruijt, B., de Oliveira, P. J., Zanchi, F. B., Silva, R. L., Kabat, P. (2004, June). Comparative measurements and seasonal variations in energy and carbon exchange over forest and pasture in South West Amazonia. <i>Theoretical and Applied Climatology, 78</i>(1), 5–26. Retrieved 2020-03-19, from https://doi.org/10.1007/s00704-004-0041-z doi: 10.1007/s00704-004-0041-z Vourlitis, G. L., Nogueira, J. d. S., Lobo, F. d. A., Sendall, K. M., Paulo, S. R. d., Dias, C. A. A., Andrade, N. L. R. d. (2008). En- ergy balance and canopy conductance of a tropical semi-deciduous forest of the southern Amazon Basin. <i>Water Resources Re- search, 44</i>(3). Retrieved 2020-05-12, from https://agupubs .onlinelibrary.wiley.com/doi/abs/10.1029/2006WR005526 (.eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2006WR005526 (.eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2006WR005526 (.eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2006WR005526 Wang, X., Huo, Z., Shukla, M. K., Wang, X., Guo, P., Xu, X., & Huang, G. (2020, February). Energy fluxes and evapotranspiration over irrigated maize field in an arid area with shallow groundwater. <i>Agricultural Wa- ter Management, 228, 105922</i>. Retrieved 2021-04-15, from https:// www.sciencedirect.com/science/article/pii/S0378377419311023 doi: 10.1016/j.agwat.2019.105922 Wang, Z., Schaaf, C. B., Strahler, A. H., Chopping, M. J., Román, M. O., Shuai, Y., Fitzjarrald, D. R. (2014, January). Evaluation of MODIS albedo product (MCD43A) over grassland	1582	https://doi.org/10.1029/2020JG006090
 Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: Evaluation of three process-based approaches. <i>Remote Sensing of Environment</i>, 115(3), 801–823. Retrieved 2017-09-21, from http://www.sciencedirect.com/science/article/pii/S0034425710003251 doi: 10.1016/j.rse.2010.11.006 von Randow, C., Manzi, A. O., Kruijt, B., de Oliveira, P. J., Zanchi, F. B., Silva, R. L., Kabat, P. (2004, June). Comparative measurements and seasonal variations in energy and carbon exchange over forest and pasture in South West Amazonia. <i>Theoretical and Applied Climatology</i>, 78(1), 5–26. Retrieved 2020-03-19, from https://doi.org/10.1007/s00704-0041-z doi: 10.1007/s00704-004-0041-z Vourlitis, G. L., Nogueira, J. d. S., Lobo, F. d. A., Sendall, K. M., Paulo, S. R. d., Dias, C. A. A, Andrade, N. L. R. d. (2008). Energy balance and canopy conductance of a tropical semi-deciduous forest of the southern Amazon Basin. <i>Water Resources Research</i>, 44(3). Retrieved 2020-05-12, from https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2006WR005526 (ceprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2006WR005526 doi: 10.1029/2006WR005526 Wang, X., Huo, Z., Shukla, M. K., Wang, X., Guo, P., Xu, X., & Huang, G. (2020, February). Energy fluxes and evapotranspiration over irrigated maize field in an arid area with shallow groundwater. <i>Agricultural Water Management</i>, 228, 105922. Retrieved 2021-04-15, from https:// fitzjarrald, D. R. (2014, January). Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during domant and snow-covered periods. <i>Remote Sensing of Environment</i>, 140, 60-77. Retrieved 2019-06-14, from http://www.sciencedirect.com/science/article/pii/S003425710302836 doi: 10.1016/j.rse.2013.08.025 Wardlow, B. D., Egbert, S. L., & Kastens, J. H. (2007, June). Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Gre	1583	Vinukollu, R. K., Wood, E. F., Ferguson, C. R., & Fisher, J. B. (2011, March).
 remote sensing data: Evaluation of three process-based approaches. Remote Sensing of Environment, 115(3), 801-823. Retrieved 2017-09-21, from http://www.sciencedirect.com/science/article/pii/S0034425710003251 von Randow, C., Manzi, A. O., Kruijt, B., de Oliveira, P. J., Zanchi, F. B., Silva, R. L., Kabat, P. (2004, June). Comparative measurements and seasonal variations in energy and carbon exchange over forest and pasture in South West Amazonia. Theoretical and Applied Climatology, 78(1), 5–26. Retrieved 2020-03-19, from https://doi.org/10.1007/s00704-004-0041-z doi: 10.1007/s00704-004-0041-z doi: 10.1007/s00704-004-0041-z Vourlitis, G. L., Nogueira, J. d. S., Lobo, F. d. A., Sendall, K. M., Paulo, S. R. d., Dias, C. A., Andrade, N. L. R. d. (2008). Energy balance and canopy conductance of a tropical semi-deciduous forest of the southern Amazon Basin. Water Resources Research, 44(3). Retrieved 2020-05-12, from https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2006WR005526 (ceprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2006WR005526) doi: 10.1029/2006WR005526) doi: 10.1029/2006WR005526) Wang, X., Huo, Z., Shukla, M. K., Wang, X., Guo, P., Xu, X., & Huang, G. (2020, February). Energy fluxes and evapotranspiration over irrigated maize field in an arid area with shallow groundwater. Agricultural Water Management, 228, 105922. Retrieved 2021-04-15, from https://www.sciencedirect.com/science/article/pii/S0378377419311023 doi: 10.1016/j.agwat.2019.105922 Wang, Z., Schaaf, C. B., Strahler, A. H., Chopping, M. J., Román, M. O., Shuai, Y., Fitzjarrald, D. R. (2014, January). Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types duing domant and snow-covered periods. Remote Sensing of Environment, 140, 60-77. Retrieved 2019-06-14, from http://www.sciencedirect.com/science/article/pii/S003425713002836 doi: 10.1016/j.rse.2013.08.025 Wardlow, B. D., Egbert, S. L., & Kas	1584	Global estimates of evapotranspiration for climate studies using multi-sensor
 mote Sensing of Environment, 115(3), 801–823. Retrieved 2017-09-21, from http://www.sciencedirect.com/science/article/pii/S0034425710003251 doi: 10.1016/j.rsc.2010.11.006 von Randow, C., Manzi, A. O., Kruijt, B., de Oliveira, P. J., Zanchi, F. B., Silva, R. L., Kabat, P. (2004, June). Comparative measurements and seasonal variations in energy and carbon exchange over forest and pasture in South West Amazonia. Theoretical and Applied Climatology, 78(1), 5–26. Retrieved 2020-03-19, from https://doi.org/10.1007/s00704-004-0041-z Vourlitis, G. L., Nogueira, J. d. S., Lobo, F. d. A., Sendall, K. M., Paulo, S. R. d., Dias, C. A. A., Andrade, N. L. R. d. (2008). En- ergy balance and canopy conductance of a tropical semi-deciduous forest of the southern Amazon Basin. Water Resources Re- search, 44(3). Retrieved 2020-05-12, from https://agupubs .onlinelibrary.wiley.com/doi/abs/10.1029/2006WR005526 (.eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2006WR005526 doi: 10.1029/2006WR005526 Wang, X., Huo, Z., Shukla, M. K., Wang, X., Guo, P., Xu, X., & Huang, G. (2020, February). Energy fluxes and evapotranspiration over irrigated maize field in an arid area with shallow groundwater. Agricultural Wa- ter Management, 228, 105922. Retrieved 2021-04-15, from https:// www.sciencedirect.com/science/article/pii/S0378377419311023 doi: 10.1016/j.agwat.2019.105922 Wang, Z., Schaaf, C. B., Strahler, A. H., Chopping, M. J., Román, M. O., Shuai, Y., Fitzjarrald, D. R. (2014, January). Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods. Remote Sensing of Environment, 140, 60–77. Re- trieved 2019-06-14, from http://www.sciencedirect.com/science/article/ pii/S0034425713002836 doi: 10.1016/j.rse.2013.08.025 Wardlow, B. D., Egbert, S. L., & Kastens, J. H. (2007, June). Analysis of time-series MODIS 250 m vegetation index data for crop classification in t	1585	remote sensing data: Evaluation of three process-based approaches <i>Be</i> -
 http://www.sciencedirect.com/science/article/pii/S0034425710003251 doi: 10.1016/j.rsc.2010.11.006 von Randow, C., Manzi, A. O., Kruijt, B., de Oliveira, P. J., Zanchi, F. B., Silva, R. L., Kabat, P. (2004, June). Comparative measurements and seasonal variations in energy and carbon exchange over forest and pasture in South West Amazonia. Theoretical and Applied Climatology, 78(1), 5–26. Retrieved 2020-03-19, from https://doi.org/10.1007/s00704-004-0041-z doi: 10.1007/s00704-004-0041-z Vourlitis, G. L., Nogueira, J. d. S., Lobo, F. d. A., Sendall, K. M., Paulo, S. R. d., Dias, C. A. A., Andrade, N. L. R. d. (2008). Energy balance and canopy conductance of a tropical semi-deciduous forest of the southern Amazon Basin. Water Resources Research, 44(3). Retrieved 2020-05-12, from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2006WR005526 (cprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2006WR005526) doi: 10.1029/2006WR005526 Wang, X., Huo, Z., Shukla, M. K., Wang, X., Guo, P., Xu, X., & Huang, G. (2020, February). Energy fluxes and evapotranspiration over irrigated maize field in an arid area with shallow groundwater. Agricultural Water Management, 228, 105922. Retrieved 2021-04-15, from https:// www.sciencedirect.com/science/article/pii/S0378377419311023 Mang, Z., Schaaf, C. B., Strahler, A. H., Chopping, M. J., Román, M. O., Shuai, Y., Fitzjarrald, D. R. (2014, January). Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods. Remote Sensing of Environment, 140, 60-77. Retrieved 2019-06-14, from http://www.sciencedirect.com/science/article/pii/S0034425713002836 Wardlow, B. D., Egbert, S. L., & Kastens, J. H. (2007, J	1586	mote Sensing of Environment, 115(3), 801–823. Retrieved 2017-09-21, from
 doi: 10.1016/j.rse.2010.11.006 von Randow, C., Manzi, A. O., Kruijt, B., de Oliveira, P. J., Zanchi, F. B., Silva, R. L., Kabat, P. (2004, June). Comparative measurements and seasonal variations in energy and carbon exchange over forest and pasture in South West Amazonia. Theoretical and Applied Climatology, 78(1), 5–26. Retrieved 2020-03-19, from https://doi.org/10.1007/s00704-004-0041-z doi: 10.1007/s00704-004-0041-z Vourlitis, G. L., Nogueira, J. d. S., Lobo, F. d. A., Sendall, K. M., Paulo, S. R. d., Dias, C. A. A., Andrade, N. L. R. d. (2008). En- ergy balance and canopy conductance of a tropical semi-deciduous forest of the southern Amazon Basin. Water Resources Re- search, 44 (3). Retrieved 2020-05-12, from https://agupubs .onlinelibrary.wiley.com/doi/abs/10.1029/2006WR005526 (.eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2006WR005526) doi: 10.1029/2006WR005526 Wang, X., Huo, Z., Shukla, M. K., Wang, X., Guo, P., Xu, X., & Huang, G. (2020, February). Energy fluxes and evapotranspiration over irrigated maize field in an arid area with shallow groundwater. Agricultural Wa- ter Management, 228, 105922. Retrieved 2021-04-15, from https:// www.sciencedirect.com/science/article/pii/S0378377419311023 doi: 10.1016/j.agwat.2019.105922 Wang, Z., Schaaf, C. B., Strahler, A. H., Chopping, M. J., Román, M. O., Shuai, Y., Fitzjarrald, D. R. (2014, January). Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods. Remote Sensing of Environment, 140, 60–77. Re- trieved 2019-06-14, from http://www.sciencedirect.com/science/article/ pii/S0034425713002836 doi: 10.1016/j.rse.2013.80.25 Wardlow, B. D., Egbert, S. L., & Kastens, J. H. (2007, June). Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains. Remote Sensing of Environment, 108(3), 290–310. Retrieved 2020-06-22, from htt	1587	http://www.sciencedirect.com/science/article/pii/S0034425710003251
 von Randow, C., Manzi, A. O., Kruijt, B., de Oliveira, P. J., Zanchi, F. B., Silva, R. L., Kabat, P. (2004, June). Comparative measurements and seasonal variations in energy and carbon exchange over forest and pasture in South West Amazonia. Theoretical and Applied Climatology, 78(1), 5–26. Retrieved 2020-03-19, from https://doi.org/10.1007/s00704-004-0041-z doi: 10.1007/s00704-004-0041-z Vourlitis, G. L., Nogueira, J. d. S., Lobo, F. d. A., Sendall, K. M., Paulo, S. R. d., Dias, C. A. A., Andrade, N. L. R. d. (2008). En- ergy balance and canopy conductance of a tropical semi-deciduous forest of the southern Amazon Basin. Water Resources Re- search, 44(3). Retrieved 2020-05-12, from https://agupubs .onlinelibrary.wiley.com/doi/abs/10.1029/2006WR005526 (.eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2006WR005526) doi: 10.1029/2006WR005526 Wang, X., Huo, Z., Shukla, M. K., Wang, X., Guo, P., Xu, X., & Huang, G. (2020, February). Energy fluxes and evapotranspiration over irrigated maize field in an arid area with shallow groundwater. Agricultural Wa- ter Management, 228, 105922. Retrieved 2021-04-15, from https:// www.sciencedirect.com/science/article/pii/S0378377419311023 doi: 10.1016/j.agwat.2019.105922 Wang, Z., Schaaf, C. B., Strahler, A. H., Chopping, M. J., Román, M. O., Shuai, Y., Fitzjarrald, D. R. (2014, January). Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods. Remote Sensing of Environment, 140, 60-77. Re- trieved 2019-06-14, from http://www.sciencedirect.com/science/article/ pii/S0034425713002836 doi: 10.1016/j.rsc.2013.08.025 Wardlow, B. D., Egbert, S. L., & Kastens, J. H. (2007, June). Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains. Remote Sensing of Environment, 108(3), 290-310. Retrieved 2020-06-22, from http://www.sciencedirect.com/science/article/pi	1588	doi: 10.1016/i.rse.2010.11.006
 R. L., Kabat, P. (2004, June). Comparative measurements and seasonal variations in energy and carbon exchange over forest and pasture in South West Amazonia. Theoretical and Applied Climatology, 78(1), 5–26. Retrieved 2020-03-19, from https://doi.org/10.1007/s00704-004-0041-z Vourlitis, G. L., Nogueira, J. d. S., Lobo, F. d. A., Sendall, K. M., Paulo, S. R. d., Dias, C. A. A., Andrade, N. L. R. d. (2008). Energy balance and canopy conductance of a tropical semi-deciduous forest of the southern Amazon Basin. Water Resources Research, 44(3). Retrieved 2020-05-12, from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2006WR005526 (.eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2006WR005526) doi: 10.1029/2006WR005526 Wang, X., Huo, Z., Shukla, M. K., Wang, X., Guo, P., Xu, X., & Huang, G. (2020, February). Energy fluxes and evapotranspiration over irrigated maize field in an arid area with shallow groundwater. Agricultural Water Management, 228, 105922. Retrieved 2021-04-15, from https://www.sciencedirect.com/science/article/pii/S0378377419311023 doi: 10.1016/j.agwat.2019.105922 Wang, Z., Schaaf, C. B., Strahler, A. H., Chopping, M. J., Román, M. O., Shuai, Y., Fitzjarrald, D. R. (2014, January). Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods. Remote Sensing of Environment, 140, 60-77. Retrieved 2019-06-14, from http://www.sciencedirect.com/science/article/pii/S034425713002836 doi: 10.1016/j.rse.2013.08.025 Wardlow, B. D., Egbert, S. L., & Kastens, J. H. (2007, June). Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains. Remote Sensing of Environment, 108(3), 290-310. Retrieved 2020-06-22, from http://www.sciencedirect.com/science/article/pii/S03442570600494 doi: 10.1016/j.rse.2006.11.021 	1589	von Bandow C. Manzi A. O. Kruijt B. de Oliveira P. J. Zanchi F. B. Silva
 ¹¹⁵⁰ ¹¹⁵¹ ¹¹⁵² ¹¹⁵² ¹¹⁵² ¹¹⁵² ¹¹⁵² ¹¹⁵² ¹¹⁵² ¹¹⁵² ¹¹⁵³ ¹¹⁵⁴ ¹¹⁵⁵ ¹¹⁵⁵⁵ ¹¹⁵⁵ ¹¹⁵⁵ ¹¹⁵⁵ ¹¹⁵⁵ ¹¹⁵⁵ ¹¹⁵⁵ ¹¹⁵⁵ ¹¹⁵⁵ ¹	1509	B L Kabat P (2004 June) Comparative measurements and seasonal
 West Amazonia. Theoretical and Applied Climatology, 78(1), 5–26. Retrieved 2020-03-19, from https://doi.org/10.1007/s00704-004-0041-z Vourlitis, G. L., Nogueira, J. d. S., Lobo, F. d. A., Sendall, K. M., Paulo, S. R. d., Dias, C. A. A., Andrade, N. L. R. d. (2008). Energy balance and canopy conductance of a tropical semi-deciduous forest of the southern Amazon Basin. Water Resources Research, 44(3). Retrieved 2020-05-12, from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2006WR005526 (.eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2006WR005526) doi: 10.1029/2006WR005526 Wang, X., Huo, Z., Shukla, M. K., Wang, X., Guo, P., Xu, X., & Huang, G. (2020, February). Energy fluxes and evapotranspiration over irrigated maize field in an arid area with shallow groundwater. Agricultural Water Management, 228, 105922. Retrieved 2021-04-15, from https://www.sciencedirect.com/science/article/pii/S0378377419311023 doi: 10.1016/j.agwat.2019.105922 Wang, Z., Schaaf, C. B., Strahler, A. H., Chopping, M. J., Román, M. O., Shuai, Y., Fitzjarrald, D. R. (2014, January). Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods. Remote Sensing of Environment, 140, 60-77. Retrieved 2019-06-14, from http://www.sciencedirect.com/science/article/pii/S0034425713002836 doi: 10.1016/j.rse.2013.08.025 Wardlow, B. D., Egbert, S. L., & Kastens, J. H. (2007, June). Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains. Remote Sensing of Environment, 108(3), 290-310. Retrieved 2020-06-22, from http://www.sciencedirect.com/science/article/pii/S0034425706004949 doi: 10.1016/j.rse.2006.11.021 Webb., E., Pearman, G., & Leuning, R. (1980). Correction of flux measurements for 	1501	variations in energy and carbon exchange over forest and pasture in South
 2020-03-19, from https://doi.org/10.1007/s00704-004-0041-z doi: 10.1007/s00704-004-0041-z Vourlitis, G. L., Nogueira, J. d. S., Lobo, F. d. A., Sendall, K. M., Paulo, S. R. d., Dias, C. A. A., Andrade, N. L. R. d. (2008). Energy balance and canopy conductance of a tropical semi-deciduous forest of the southern Amazon Basin. Water Resources Research, 44 (3). Retrieved 2020-05-12, from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2006WR005526 (.eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2006WR005526) Wang, X., Huo, Z., Shukla, M. K., Wang, X., Guo, P., Xu, X., & Huang, G. (2020, February). Energy fluxes and evapotranspiration over irrigated maize field in an arid area with shallow groundwater. Agricultural Water Management, 228, 105922. Retrieved 2021-04-15, from https://www.sciencedirect.com/science/article/pii/S0378377419311023 Wang, Z., Schaaf, C. B., Strahler, A. H., Chopping, M. J., Román, M. O., Shuai, Y., Fitzjarrald, D. R. (2014, January). Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods. Remote Sensing of Environment, 140, 60-77. Retrieved 2019-06-14, from http://www.sciencedirect.com/science/article/pii/S034425713002836 doi: 10.1016/j.rse.2013.08.025 Wardlow, B. D., Egbert, S. L., & Kastens, J. H. (2007, June). Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains. Remote Sensing of Environment, 108(3), 290-310. Retrieved 2020-06-22, from http://www.sciencedirect.com/science/article/pii/S034425706004949 doi: 10.1016/j.rse.2006.11.021 Webb, E., Pearman, G., & Leuning, R. (1980). Correction of flux measurements for 	1502	West Amazonia Theoretical and Applied Climatology 78(1) 5–26 Retrieved
 10.1007/s00704-004-0041-z Vourlitis, G. L., Nogueira, J. d. S., Lobo, F. d. A., Sendall, K. M., Paulo, S. R. d., Dias, C. A. A., Andrade, N. L. R. d. (2008). Energy balance and canopy conductance of a tropical semi-deciduous forest of the southern Amazon Basin. Water Resources Research, 44 (3). Retrieved 2020-05-12, from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2006WR005526 (.eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2006WR005526) doi: 10.1029/2006WR005526 Wang, X., Huo, Z., Shukla, M. K., Wang, X., Guo, P., Xu, X., & Huang, G. (2020, February). Energy fluxes and evapotranspiration over irrigated maize field in an arid area with shallow groundwater. Agricultural Water Management, 228, 105922. Retrieved 2021-04-15, from https://www.sciencedirect.com/science/article/pii/S0378377419311023 doi: 10.1016/j.agwat.2019.105922 Wang, Z., Schaaf, C. B., Strahler, A. H., Chopping, M. J., Román, M. O., Shuai, Y., Fitzjarrald, D. R. (2014, January). Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods. Remote Sensing of Environment, 140, 60-77. Retrieved 2019-06-14, from http://www.sciencedirect.com/science/article/pii/S034425713002836 doi: 10.1016/j.rse.2013.08.025 Wardlow, B. D., Egbert, S. L., & Kastens, J. H. (2007, June). Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains. Remote Sensing of Environment, 108(3), 290-310. Retrieved 2020-06-22, from http://www.sciencedirect.com/science/article/pii/S0034425706004949 doi: 10.1016/j.rse.2006.11.021 Webb., E., Pearman, G., & Leuning, R. (1980). Correction of flux measurements for 	1593	2020-03-19. from https://doi.org/10.1007/s00704-004-0041-z doi:
 Vourlitis, G. L., Nogueira, J. d. S., Lobo, F. d. A., Sendall, K. M., Paulo, S. R. d., Dias, C. A. A., Andrade, N. L. R. d. (2008). Energy balance and canopy conductance of a tropical semi-deciduous forest of the southern Amazon Basin. Water Resources Research, 44(3). Retrieved 2020-05-12, from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2006WR005526 (.eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2006WR005526) doi: 10.1029/2006WR005526 Wang, X., Huo, Z., Shukla, M. K., Wang, X., Guo, P., Xu, X., & Huang, G. (2020, February). Energy fluxes and evapotranspiration over irrigated maize field in an arid area with shallow groundwater. Agricultural Water Management, 228, 105922. Retrieved 2021-04-15, from https://www.sciencedirect.com/science/article/pii/S0378377419311023 doi: 10.1016/j.agwat.2019.105922 Wang, Z., Schaaf, C. B., Strahler, A. H., Chopping, M. J., Román, M. O., Shuai, Y., Fitzjarrald, D. R. (2014, January). Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods. Remote Sensing of Environment, 140, 60-77. Retrieved 2019-06-14, from http://www.sciencedirect.com/science/article/pii/S0034425713002836 doi: 10.1016/j.rse.2013.08.025 Wardlow, B. D., Egbert, S. L., & Kastens, J. H. (2007, June). Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains. Remote Sensing of Environment, 108(3), 290-310. Retrieved 2020-06-22, from http://www.sciencedirect.com/science/article/pii/S0034425706004949 doi: 10.1016/j.rse.2006.11.021 Webb., E., Pearman, G., & Leuning, R. (1980). Correction of flux measurements for 	1594	10.1007/s00704-004-0041-z
 Volmus, G. E., Hogacha, S. d. S., Bobs, F. d. R., Both, R. M., Fands, S. R. d., Dias, C. A. A., Andrade, N. L. R. d. (2008). Energy balance and canopy conductance of a tropical semi-deciduous forest of the southern Amazon Basin. Water Resources Research, 44 (3). Retrieved 2020-05-12, from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2006WR005526 (.eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2006WR005526) doi: 10.1029/2006WR005526 Wang, X., Huo, Z., Shukla, M. K., Wang, X., Guo, P., Xu, X., & Huang, G. (2020, February). Energy fluxes and evapotranspiration over irrigated maize field in an arid area with shallow groundwater. Agricultural Water Management, 228, 105922. Retrieved 2021-04-15, from https://www.sciencedirect.com/science/article/pii/S0378377419311023 doi: 10.1016/j.agwat.2019.105922 Wang, Z., Schaaf, C. B., Strahler, A. H., Chopping, M. J., Román, M. O., Shuai, Y., Fitzjarrald, D. R. (2014, January). Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods. Remote Sensing of Environment, 140, 60-77. Retrieved 2019-06-14, from http://www.sciencedirect.com/science/article/pii/S033425713002836 doi: 10.1016/j.rse.2013.08.025 Wardlow, B. D., Egbert, S. L., & Kastens, J. H. (2007, June). Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains. Remote Sensing of Environment, 108(3), 290-310. Retrieved 2020-06-22, from http://www.sciencedirect.com/science/article/pii/S034425706004949 doi: 10.1016/j.rse.2006.11.021 Webb., E., Pearman, G., & Leuning, R. (1980). Correction of flux measurements for 	1505	Vourlitis G. L. Nogueira, I. d. S. Lobo, F. d. A. Sendall, K. M. Paulo
 argy balance and canopy conductance of a tropical semi-deciduous forest of the southern Amazon Basin. Water Resources Research, 44 (3). Retrieved 2020-05-12, from https://agupubs .onlinelibrary.wiley.com/doi/abs/10.1029/2006WR005526 (_eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2006WR005526) Wang, X., Huo, Z., Shukla, M. K., Wang, X., Guo, P., Xu, X., & Huang, G. (2020, February). Energy fluxes and evapotranspiration over irrigated maize field in an arid area with shallow groundwater. Agricultural Water Management, 228, 105922. Wang, Z., Schaaf, C. B., Strahler, A. H., Chopping, M. J., Román, M. O., Shuai, Y., Fitzjarrald, D. R. (2014, January). Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods. Remote Sensing of Environment, 140, 60-77. Retrieved 2019-06-14, from http://www.sciencedirect.com/science/article/ pii/S0034425713002836 doi: 10.1016/j.rse.2013.08.025 Wardlow, B. D., Egbert, S. L., & Kastens, J. H. (2007, June). MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains. Remote Sensing of Environment, 108(3), 290-310. Retrieved 2020-06-22, from http://www.sciencedirect.com/science/article/pii/ S0034425706004949 doi: 10.1016/j.rse.2006.11.021 Webb., E., Pearman, G., & Leuning, R. (1980). Correction of flux measurements for 	1595	S R d Dias C A A Andrade N L R d (2008) En-
 forest of the southern Amazon Basin. Water Resources Research, 44 (3). Retrieved 2020-05-12, from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2006WR005526 (_eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2006WR005526) doi: 10.1029/2006WR005526 Wang, X., Huo, Z., Shukla, M. K., Wang, X., Guo, P., Xu, X., & Huang, G. (2020, February). Energy fluxes and evapotranspiration over irrigated maize field in an arid area with shallow groundwater. Agricultural Water Ranagement, 228, 105922. Retrieved 2021-04-15, from https://www.sciencedirect.com/science/article/pii/S0378377419311023 doi: 10.1016/j.agwat.2019.105922 Wang, Z., Schaaf, C. B., Strahler, A. H., Chopping, M. J., Román, M. O., Shuai, Y., Fitzjarrald, D. R. (2014, January). Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods. Remote Sensing of Environment, 140, 60-77. Retrieved 2019-06-14, from http://www.sciencedirect.com/science/article/pii/S0034425713002836 doi: 10.1016/j.rse.2013.08.025 Wardlow, B. D., Egbert, S. L., & Kastens, J. H. (2007, June). Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains. Remote Sensing of Environment, 108(3), 290-310. Retrieved 2020-06-22, from http://www.sciencedirect.com/science/article/pii/S0034425706004949 doi: 10.1016/j.rse.2006.11.021 Webb., E., Pearman, G., & Leuning, R. (1980). Correction of flux measurements for 	1597	ergy balance and canopy conductance of a tropical semi-deciduous
 search, 44 (3). Retrieved 2020-05-12, from https://agupubs .onlinelibrary.wiley.com/doi/abs/10.1029/2006WR005526 (_eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2006WR005526) doi: 10.1029/2006WR005526 Wang, X., Huo, Z., Shukla, M. K., Wang, X., Guo, P., Xu, X., & Huang, G. (2020, February). Energy fluxes and evapotranspiration over irrigated maize field in an arid area with shallow groundwater. Agricultural Wa- ter Management, 228, 105922. Retrieved 2021-04-15, from https:// www.sciencedirect.com/science/article/pii/S0378377419311023 doi: 10.1016/j.agwat.2019.105922 Wang, Z., Schaaf, C. B., Strahler, A. H., Chopping, M. J., Román, M. O., Shuai, Y., Fitzjarrald, D. R. (2014, January). Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods. Remote Sensing of Environment, 140, 60–77. Re- trieved 2019-06-14, from http://www.sciencedirect.com/science/article/ pii/S0034425713002836 doi: 10.1016/j.rse.2013.08.025 Wardlow, B. D., Egbert, S. L., & Kastens, J. H. (2007, June). Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains. Remote Sensing of Environment, 108(3), 290–310. Retrieved 2020-06-22, from http://www.sciencedirect.com/science/article/pii/ S0034425706004949 doi: 10.1016/j.rse.2006.11.021 Webb., E., Pearman, G., & Leuning, R. (1980). Correction of flux measurements for 	1598	forest of the southern Amazon Basin. Water Resources Re-
 .onlinelibrary.wiley.com/doi/abs/10.1029/2006WR005526 (.eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2006WR005526) doi: 10.1029/2006WR005526 Wang, X., Huo, Z., Shukla, M. K., Wang, X., Guo, P., Xu, X., & Huang, G. (2020, February). Energy fluxes and evapotranspiration over irrigated maize field in an arid area with shallow groundwater. Agricultural Wa- ter Management, 228, 105922. Retrieved 2021-04-15, from https:// www.sciencedirect.com/science/article/pii/S0378377419311023 doi: 10.1016/j.agwat.2019.105922 Wang, Z., Schaaf, C. B., Strahler, A. H., Chopping, M. J., Román, M. O., Shuai, Y., Fitzjarrald, D. R. (2014, January). Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods. Remote Sensing of Environment, 140, 60-77. Re- trieved 2019-06-14, from http://www.sciencedirect.com/science/article/ pii/S0034425713002836 doi: 10.1016/j.rse.2013.08.025 Wardlow, B. D., Egbert, S. L., & Kastens, J. H. (2007, June). Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains. Remote Sensing of Environment, 108(3), 290-310. Retrieved 2020-06-22, from http://www.sciencedirect.com/science/article/pii/ S0034425706004949 doi: 10.1016/j.rse.2006.11.021 Webb., E., Pearman, G., & Leuning, R. (1980). Correction of flux measurements for 	1599	search, 44(3). Retrieved 2020-05-12, from https://agupubs
 https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2006WR005526) doi: 10.1029/2006WR005526 Wang, X., Huo, Z., Shukla, M. K., Wang, X., Guo, P., Xu, X., & Huang, G. (2020, February). Energy fluxes and evapotranspiration over irrigated maize field in an arid area with shallow groundwater. Agricultural Wa- ter Management, 228, 105922. Retrieved 2021-04-15, from https:// www.sciencedirect.com/science/article/pii/S0378377419311023 doi: 10.1016/j.agwat.2019.105922 Wang, Z., Schaaf, C. B., Strahler, A. H., Chopping, M. J., Román, M. O., Shuai, Y., Fitzjarrald, D. R. (2014, January). Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods. Remote Sensing of Environment, 140, 60–77. Re- trieved 2019-06-14, from http://www.sciencedirect.com/science/article/ pii/S0034425713002836 doi: 10.1016/j.rse.2013.08.025 Wardlow, B. D., Egbert, S. L., & Kastens, J. H. (2007, June). Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains. Remote Sensing of Environment, 108(3), 290–310. Retrieved 2020-06-22, from http://www.sciencedirect.com/science/article/pii/ S0034425706004949 doi: 10.1016/j.rse.2006.11.021 Webb., E., Pearman, G., & Leuning, R. (1980). Correction of flux measurements for 	1600	.onlinelibrarv.wilev.com/doi/abs/10.1029/2006WR005526 (_eprint:
 10.1029/2006WR005526 Wang, X., Huo, Z., Shukla, M. K., Wang, X., Guo, P., Xu, X., & Huang, G. (2020, February). Energy fluxes and evapotranspiration over irrigated maize field in an arid area with shallow groundwater. Agricultural Wa- ter Management, 228, 105922. Retrieved 2021-04-15, from https:// www.sciencedirect.com/science/article/pii/S0378377419311023 doi: 10.1016/j.agwat.2019.105922 Wang, Z., Schaaf, C. B., Strahler, A. H., Chopping, M. J., Román, M. O., Shuai, Y., Fitzjarrald, D. R. (2014, January). Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods. Remote Sensing of Environment, 140, 60–77. Re- trieved 2019-06-14, from http://www.sciencedirect.com/science/article/ pii/S0034425713002836 doi: 10.1016/j.rse.2013.08.025 Wardlow, B. D., Egbert, S. L., & Kastens, J. H. (2007, June). Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains. Remote Sensing of Environment, 108(3), 290–310. Retrieved 2020-06-22, from http://www.sciencedirect.com/science/article/pii/ S0034425706004949 doi: 10.1016/j.rse.2006.11.021 Webb., E., Pearman, G., & Leuning, R. (1980). Correction of flux measurements for 	1601	https://agupubs.onlinelibrary.wilev.com/doi/pdf/10.1029/2006WR005526) doi:
 Wang, X., Huo, Z., Shukla, M. K., Wang, X., Guo, P., Xu, X., & Huang, G. (2020, February). Energy fluxes and evapotranspiration over irrigated maize field in an arid area with shallow groundwater. Agricultural Wa- ter Management, 228, 105922. Retrieved 2021-04-15, from https:// www.sciencedirect.com/science/article/pii/S0378377419311023 doi: 10.1016/j.agwat.2019.105922 Wang, Z., Schaaf, C. B., Strahler, A. H., Chopping, M. J., Román, M. O., Shuai, Y., Fitzjarrald, D. R. (2014, January). Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods. Remote Sensing of Environment, 140, 60–77. Re- trieved 2019-06-14, from http://www.sciencedirect.com/science/article/ pii/S0034425713002836 doi: 10.1016/j.rse.2013.08.025 Wardlow, B. D., Egbert, S. L., & Kastens, J. H. (2007, June). Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains. Remote Sensing of Environment, 108(3), 290–310. Retrieved 2020-06-22, from http://www.sciencedirect.com/science/article/pii/ S0034425706004949 doi: 10.1016/j.rse.2006.11.021 Webb., E., Pearman, G., & Leuning, R. (1980). Correction of flux measurements for 	1602	10.1029/2006WR005526
 (2020, February). Energy fluxes and evapotranspiration over irrigated maize field in an arid area with shallow groundwater. Agricultural Wa- ter Management, 228, 105922. Retrieved 2021-04-15, from https:// www.sciencedirect.com/science/article/pii/S0378377419311023 doi: 10.1016/j.agwat.2019.105922 Wang, Z., Schaaf, C. B., Strahler, A. H., Chopping, M. J., Román, M. O., Shuai, Y., Fitzjarrald, D. R. (2014, January). Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods. Remote Sensing of Environment, 140, 60–77. Re- trieved 2019-06-14, from http://www.sciencedirect.com/science/article/ pii/S0034425713002836 doi: 10.1016/j.rse.2013.08.025 Wardlow, B. D., Egbert, S. L., & Kastens, J. H. (2007, June). Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains. Remote Sensing of Environment, 108(3), 290–310. Retrieved 2020-06-22, from http://www.sciencedirect.com/science/article/pii/ S0034425706004949 doi: 10.1016/j.rse.2006.11.021 Webb., E., Pearman, G., & Leuning, R. (1980). Correction of flux measurements for 	1603	Wang, X., Huo, Z., Shukla, M. K., Wang, X., Guo, P., Xu, X., & Huang, G.
 maize field in an arid area with shallow groundwater. Agricultural Wa- ter Management, 228, 105922. Retrieved 2021-04-15, from https:// www.sciencedirect.com/science/article/pii/S0378377419311023 ul.1016/j.agwat.2019.105922 Wang, Z., Schaaf, C. B., Strahler, A. H., Chopping, M. J., Román, M. O., Shuai, Y., Fitzjarrald, D. R. (2014, January). Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods. Remote Sensing of Environment, 140, 60-77. Re- trieved 2019-06-14, from http://www.sciencedirect.com/science/article/ pii/S0034425713002836 doi: 10.1016/j.rse.2013.08.025 Wardlow, B. D., Egbert, S. L., & Kastens, J. H. (2007, June). Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains. Remote Sensing of Environment, 108(3), 290-310. Retrieved 2020-06-22, from http://www.sciencedirect.com/science/article/pii/ S0034425706004949 doi: 10.1016/j.rse.2006.11.021 Webb., E., Pearman, G., & Leuning, R. (1980). Correction of flux measurements for 	1604	(2020, February). Energy fluxes and evapotranspiration over irrigated
 ter Management, 228, 105922. Retrieved 2021-04-15, from https:// www.sciencedirect.com/science/article/pii/S0378377419311023 doi: 10.1016/j.agwat.2019.105922 Wang, Z., Schaaf, C. B., Strahler, A. H., Chopping, M. J., Román, M. O., Shuai, Y., Fitzjarrald, D. R. (2014, January). Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods. Remote Sensing of Environment, 140, 60–77. Re- trieved 2019-06-14, from http://www.sciencedirect.com/science/article/ pii/S0034425713002836 doi: 10.1016/j.rse.2013.08.025 Wardlow, B. D., Egbert, S. L., & Kastens, J. H. (2007, June). Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains. Remote Sensing of Environment, 108(3), 290–310. Retrieved 2020-06-22, from http://www.sciencedirect.com/science/article/pii/ S0034425706004949 doi: 10.1016/j.rse.2006.11.021 Webb., E., Pearman, G., & Leuning, R. (1980). Correction of flux measurements for 	1605	maize field in an arid area with shallow groundwater. Aqricultural Wa-
 www.sciencedirect.com/science/article/pii/S0378377419311023 doi: 10.1016/j.agwat.2019.105922 Wang, Z., Schaaf, C. B., Strahler, A. H., Chopping, M. J., Román, M. O., Shuai, Y., Fitzjarrald, D. R. (2014, January). Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods. <i>Remote Sensing of Environment</i>, 140, 60–77. Re- trieved 2019-06-14, from http://www.sciencedirect.com/science/article/ pii/S0034425713002836 Wardlow, B. D., Egbert, S. L., & Kastens, J. H. (2007, June). Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains. <i>Remote Sensing of Environment</i>, 108(3), 290–310. Retrieved 2020-06-22, from http://www.sciencedirect.com/science/article/pii/ S0034425706004949 doi: 10.1016/j.rse.2006.11.021 Webb., E., Pearman, G., & Leuning, R. (1980). Correction of flux measurements for 	1606	ter Management, 228, 105922. Retrieved 2021-04-15, from https://
 10.1016/j.agwat.2019.105922 Wang, Z., Schaaf, C. B., Strahler, A. H., Chopping, M. J., Román, M. O., Shuai, Y., Fitzjarrald, D. R. (2014, January). Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods. <i>Remote Sensing of Environment</i>, 140, 60–77. Re- trieved 2019-06-14, from http://www.sciencedirect.com/science/article/ pii/S0034425713002836 doi: 10.1016/j.rse.2013.08.025 Wardlow, B. D., Egbert, S. L., & Kastens, J. H. (2007, June). Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains. <i>Remote Sensing of Environment</i>, 108(3), 290–310. Retrieved 2020-06-22, from http://www.sciencedirect.com/science/article/pii/ S0034425706004949 doi: 10.1016/j.rse.2006.11.021 Webb., E., Pearman, G., & Leuning, R. (1980). Correction of flux measurements for 	1607	www.sciencedirect.com/science/article/pii/S0378377419311023 doi:
 Wang, Z., Schaaf, C. B., Strahler, A. H., Chopping, M. J., Román, M. O., Shuai, Y., K., Fitzjarrald, D. R. (2014, January). Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods. <i>Remote Sensing of Environment</i>, 140, 60–77. Retrieved 2019-06-14, from http://www.sciencedirect.com/science/article/pii/S0034425713002836 doi: 10.1016/j.rse.2013.08.025 Wardlow, B. D., Egbert, S. L., & Kastens, J. H. (2007, June). Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains. <i>Remote Sensing of Environment</i>, 108(3), 290–310. Retrieved 2020-06-22, from http://www.sciencedirect.com/science/article/pii/S0034425706004949 doi: 10.1016/j.rse.2006.11.021 Webb., E., Pearman, G., & Leuning, R. (1980). Correction of flux measurements for 	1608	10.1016/j.agwat.2019.105922
 Fitzjarrald, D. R. (2014, January). Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods. <i>Remote Sensing of Environment</i>, 140, 60–77. Re- trieved 2019-06-14, from http://www.sciencedirect.com/science/article/ pii/S0034425713002836 doi: 10.1016/j.rse.2013.08.025 Wardlow, B. D., Egbert, S. L., & Kastens, J. H. (2007, June). Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains. <i>Remote Sensing of Environment</i>, 108(3), 290–310. Retrieved 2020-06-22, from http://www.sciencedirect.com/science/article/pii/ S0034425706004949 doi: 10.1016/j.rse.2006.11.021 Webb., E., Pearman, G., & Leuning, R. (1980). Correction of flux measurements for 	1609	Wang, Z., Schaaf, C. B., Strahler, A. H., Chopping, M. J., Román, M. O., Shuai, Y.,
 (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods. <i>Remote Sensing of Environment</i>, 140, 60–77. Re- trieved 2019-06-14, from http://www.sciencedirect.com/science/article/ pii/S0034425713002836 doi: 10.1016/j.rse.2013.08.025 Wardlow, B. D., Egbert, S. L., & Kastens, J. H. (2007, June). Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains. <i>Remote Sensing of Environment</i>, 108(3), 290–310. Retrieved 2020-06-22, from http://www.sciencedirect.com/science/article/pii/ S0034425706004949 doi: 10.1016/j.rse.2006.11.021 Webb., E., Pearman, G., & Leuning, R. (1980). Correction of flux measurements for 	1610	Fitziarrald, D. R. (2014, January). Evaluation of MODIS albedo product
 and snow-covered periods. Remote Sensing of Environment, 140, 60-77. Retrieved 2019-06-14, from http://www.sciencedirect.com/science/article/pii/S0034425713002836 doi: 10.1016/j.rse.2013.08.025 Wardlow, B. D., Egbert, S. L., & Kastens, J. H. (2007, June). Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains. Remote Sensing of Environment, 108(3), 290-310. Retrieved 2020-06-22, from http://www.sciencedirect.com/science/article/pii/S0034425706004949 doi: 10.1016/j.rse.2006.11.021 Webb., E., Pearman, G., & Leuning, R. (1980). Correction of flux measurements for 	1611	(MCD43A) over grassland, agriculture and forest surface types during dormant
 trieved 2019-06-14, from http://www.sciencedirect.com/science/article/ pii/S0034425713002836 doi: 10.1016/j.rse.2013.08.025 Wardlow, B. D., Egbert, S. L., & Kastens, J. H. (2007, June). Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains. Remote Sensing of Environment, 108(3), 290-310. Retrieved 2020-06-22, from http://www.sciencedirect.com/science/article/pii/ S0034425706004949 doi: 10.1016/j.rse.2006.11.021 Webb., E., Pearman, G., & Leuning, R. (1980). Correction of flux measurements for 	1612	and snow-covered periods. Remote Sensing of Environment, 140, 60–77. Re-
 pii/S0034425713002836 doi: 10.1016/j.rse.2013.08.025 Wardlow, B. D., Egbert, S. L., & Kastens, J. H. (2007, June). Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains. Remote Sensing of Environment, 108(3), 290–310. Retrieved 2020-06-22, from http://www.sciencedirect.com/science/article/pii/ S0034425706004949 doi: 10.1016/j.rse.2006.11.021 Webb., E., Pearman, G., & Leuning, R. (1980). Correction of flux measurements for 	1613	trieved 2019-06-14, from http://www.sciencedirect.com/science/article/
 Wardlow, B. D., Egbert, S. L., & Kastens, J. H. (2007, June). Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains. <i>Remote Sensing of Environment</i>, 108(3), 290–310. Retrieved 2020-06-22, from http://www.sciencedirect.com/science/article/pii/ S0034425706004949 doi: 10.1016/j.rse.2006.11.021 Webb., E., Pearman, G., & Leuning, R. (1980). Correction of flux measurements for 	1614	pii/S0034425713002836 doi: 10.1016/j.rse.2013.08.025
MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains. <i>Remote Sensing of Environment</i> , 108(3), 290–310. Retrieved 2020-06-22, from http://www.sciencedirect.com/science/article/pii/ S0034425706004949 doi: 10.1016/j.rse.2006.11.021 Webb., E., Pearman, G., & Leuning, R. (1980). Correction of flux measurements for	1615	Wardlow, B. D., Egbert, S. L., & Kastens, J. H. (2007, June). Analysis of time-series
1617Great Plains.Remote Sensing of Environment, 108(3), 290-310.Retrieved16182020-06-22, from http://www.sciencedirect.com/science/article/pii/1619S00344257060049491620Webb., E., Pearman, G., & Leuning, R. (1980).Correction of flux measurements for	1616	MODIS 250 m vegetation index data for crop classification in the U.S. Central
16182020-06-22, from http://www.sciencedirect.com/science/article/pii/1619S00344257060049491620Webb., E., Pearman, G., & Leuning, R. (1980). Correction of flux measurements for	1617	Great Plains. <i>Remote Sensing of Environment</i> , 108(3), 290–310. Retrieved
1619 S0034425706004949 doi: 10.1016/j.rse.2006.11.021 1620 Webb., E., Pearman, G., & Leuning, R. (1980). Correction of flux measurements for	1618	2020-06-22, from http://www.sciencedirect.com/science/article/pii/
Webb., E., Pearman, G., & Leuning, R. (1980). Correction of flux measurements for	1619	S0034425706004949 doi: 10.1016/j.rse.2006.11.021
	1620	Webb., E., Pearman, G., & Leuning, R. (1980). Correction of flux measurements for

1621	density effects due to heat and water vapour transfer. Quarterly Journal of the $P_{\rm eff}$ due to heat and water vapour transfer.
1622	Royal Meteorological Society, 100, 85-100.
1623	Wei, Z., Yoshimura, K., Wang, L., Miralles, D. G., Jasechko, S., & Lee,
1624	A. (2017). Revisiting the contribution of transpiration to global
1625	terrestrial evapotranspiration. Geophysical Research Letters, $(1/(c)) = 2702$, 2801
1626	44(6), 2792–2801. Retrieved 2021-03-22, from https://agupubs
1627	.onlinelibrary.wiley.com/doi/abs/10.1002/2016GL0/2235 (_eprint:
1628	https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2016GL072235) doi:
1629	$\frac{\text{https://doi.org/10.1002/2016GL072235}}{\text{K}}$
1630	Wilson, K., Goldstein, A., Falge, E., Aubinet, M., Baldocchi, D., Berbigier, P.,
1631	Verma, S. (2002, December). Energy balance closure at FLUXNET sites. Agri-
1632	cultural and Forest Meteorology, $113(1)$, $223-243$. Retrieved 2020-04-21, from
1633	http://www.sciencedirect.com/science/article/pii/S0168192302001090
1634	doi: $10.1016/S0168-1923(02)00109-0$
1635	Xu, T., Guo, Z., Xia, Y., Ferreira, V. G., Liu, S., Wang, K., Zhao, C. (2019,
1636	November). Evaluation of twelve evapotranspiration products from ma-
1637	chine learning, remote sensing and land surface models over contermi-
1638	nous United States. Journal of Hydrology, 578, 124105. Retrieved 2021-
1639	04-15, from https://www.sciencedirect.com/science/article/pii/
1640	S0022169419308406 doi: 10.1016/j.jhydrol.2019.124105
1641	Yang, Y., & Roderick, M. L. (2019). Radiation, surface temperature and evapora-
1642	tion over wet surfaces. Quarterly Journal of the Royal Meteorological Society,
1643	145(720), 1118-1129. Retrieved from https://rmets.onlinelibrary.wiley
1644	.com/doi/abs/10.1002/qj.3481
1645	Zhang, J., Zhang, S., Zhang, W., Liu, B., Gong, C., Jiang, M., Sheng, L. (2018,
1646	August). Partitioning daily evapotranspiration from a marsh wetland using
1647	stable isotopes in a semiarid region. $Hydrology Research, 49(4), 1005-1015.$
1648	Retrieved 2021-04-11, from https://doi.org/10.2166/nh.2017.005 doi:
1649	$10.2166/\mathrm{nh}.2017.005$
1650	Zhang, Y., Chiew, F. H. S., Peña-Arancibia, J., Sun, F., Li, H., & Leuning, R.
1651	(2017). Global variation of transpiration and soil evaporation and the role
1652	of their major climate drivers. Journal of Geophysical Research: Atmo-
1653	spheres, 122(13), 6868-6881. Retrieved 2020-07-11, from https://agupubs
1654	.onlinelibrary.wiley.com/doi/abs/10.1002/2017JD027025 (_eprint:
1655	https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2017JD027025) doi:
1656	10.1002/2017 JD027025
1657	Zhou, S., Yu, B., Zhang, Y., Huang, Y., & Wang, G. (2016). Parti-
1658	tioning evapotranspiration based on the concept of underlying wa-
1659	ter use efficiency. Water Resources Research, 52(2), 1160–1175.
1660	Retrieved 2020-07-11, from https://agupubs.onlinelibrary
1661	.wiley.com/doi/abs/10.1002/2015WR017766 (_eprint:
1662	https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2015WR017766)
1663	doi: 10.1002/2015WR017766