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Climate model parametrization relies strongly on the prediction of snow precipitation, which in
turn depends upon the snowflakes falling motion in air. The falling attitudes of such particles are
elaborate because of the particles’ irregular shapes, which produce meandering and turbulent wakes
and give rise to convoluted trajectories. This has also an impact on the drag experienced by the particle.
Especially for large snow particles falling close to the ground, Stokesian dynamics is not applicable
and the dependency of drag coefficient on Reynolds number becomes non-linear. This trend arises
from the complex interaction between snowflakes and the surrounding air. We investigate the wake of
complex-shaped snow particles using a validated Delayed-Detached Eddy Simulation (DDES)model of
airflow around a fixed snowflake, combined with experimental observations of free-falling, 3D-printed
snowflakes analogs. This novel approach allows us to analyze the wake topology and decompose its
momentum flux to investigate the influence of shape and wake flow on the drag coefficient and its
implications on falling attitudes by comparison with experiments. At low Re, the presence of separated
vortex rings is connected to particle porosity and produces an increase of the drag coefficient. At
moderate flow regimes, the particle flatness impacts the shear layers separation and the momentum
loss in the wake, while at high Re the drag coefficient has almost the same value among the tested
geometries, although the contribution of different momentum flux terms differs. These results represent
a further step towards a deeper understanding the drag of complex-shaped particles.

I. INTRODUCTION

An accurate prediction of snow precipitation is
crucial to constrain climate models parametrization.
The orientation of ice particles is critical to our un-
derstanding of polarimetric radar measurements (for
weather prediction, monitoring of clouds and precip-
itation, and for investigating ice properties) [Lemke
and Quante 1999; Geier and Arienti 2014], while
their wake structure influences particles growth rates
[Libbrecht 2009]. Snowflakes exhibit a wide range
of sizes and shapes in nature [Kikuchi et al. 2013],
from tiny snow crystal with a maximum dimension
of few micrometers to large aggregates of snow crys-
tals that reaches several centimeters in size. For large
snow particles (Dmax > 100 µm), the CD − Re re-
lation becomes non-linear, resulting from a complex
interaction between the particle and the surrounding
air (Re � 1, where Re = utDmax/ν is the particle
Reynolds number, Dmax is the particle maximum ex-
tension orthogonal to the flow direction [m], ut the
snowflake terminal velocity [m/s] and ν the kinematic
viscosity of air [m2/s]), and one cannot rely on Stoke-
sian dynamics (valid for Re < 1) [Happel and Brenner

1983; Westbrook 2008; Zeugin et al. 2020]. Further
complexity is added to snow particle falling motion
because of their irregular shapes, which produce un-
steady wake flow, and intricate falling trajectories,
such as tumbling, oscillations and fluttering [Gunn
and Marshall 1957; Nemes et al. 2017; McCorquo-
dale and Westbrook 2021b; Zeugin et al. 2020].

To understand the complex free-falling behavior of
snowflakes, the mutual influence of wake flow, parti-
cles shape, and drag needs to be investigated. Many
numerical and experimental studies have investigated
aerodynamic coefficients of complex-shaped parti-
cles [Magono and Nakamura 1965; Dietrich 1982;
Mitchell and Heymsfield 2005; Westbrook and Seph-
ton 2017]. In the atmospheric sciences community,
experimentalworks have presented empirical relations
to predict the drag coefficient and the terminal veloc-
ity of snow particles, both from field and laboratory
measurement. Recently, McCorquodale and West-
brook 2021b performed laboratory measurement with
3D-printed snowflakes free-falling vertically in water-
glycerol mixtures. They investigated different particle
geometries (from plate-like crystals to aggregates) and
their aerodynamic response, together with their falling

mailto:tagliavini@ifu.baug.ethz.ch


2

attitudes. The study also discussed and improved the
parametrization proposed by Heymsfield and West-
brook 2010 to predict snow particles terminal veloc-
ity, which includes parameters to quantify the parti-
cle shape (i.e., area ratio) and building on the work
of Khvorostyanov and Curry 2005 and Mitchell and
Heymsfield 2005. The accuracy of these parametrized
models are generally dependent on the measurements
resolution and on the chosen parameters and empirical
constants, often leading to large error in the prediction
of the terminal velocity, as shown by McCorquodale
andWestbrook 2021b. Moreover, for suchmodels, the
performance at high Reynolds numbers (Re � 100)
is generally poor due to the difficulty of introducing a
suitable turbulence correction. On the numerical side,
the research of Zastawny et al. 2012, Ouchene et al.
2016, and Sanjeevi et al. 2018 illustrated the aerody-
namic coefficient prediction for non-spherical parti-
cles, such as disks, ellipsoids and fibers, starting from
the work of Leith 1987. Tran-Cong et al. 2004, Binder
et al. 2006, and Dioguardi et al. 2018 introduced new
relations for much more complex geometries, based
on sphericity or specific shape factors. The proposed
relations, although well performing within the tested
parameter range, are built on the specific models or
experimental set-ups and are therefore difficult to gen-
eralize. Furthermore, these works focused on how the
drag coefficient changes according to variations of
the Reynolds number or particle orientations, without
looking at particle’s wake influence on drag. Var-
ious numerical models of free-falling non-spherical
particles, such as disks and plate-like geometries [Au-
guste et al. 2013; Yang et al. 2014; Cheng et al. 2015;
Nettesheim andWang 2018], or columnar crystals and
hexagonal plates [Hashino et al. 2016], were also em-
ployed to predict the drag coefficient and to investigate
the particle falling attitude. Nonetheless, they focus
mainly on investigating geometric shapes representa-
tive of "pristine" ice crystals, with falling trajectories
limited to Re . 1000 and a simpler wake than the one
of irregular particles, such snowflakes.
Very few studies have been published so far on

more irregularly shaped snow crystals or aggregates
and their interaction with the environmental airflow.
Continuing the research of Garrett et al. 2015 on the
influence of turbulence on snow particle fall speed
and orientations, the field observations performed by
Li et al. 2021 showed that when snow vertical ve-
locity is large compared to the characteristic turbu-
lent velocity, strong accelerations are found among
snow particles. Furthermore, preferential sweeping
caused by turbulence enhances settling by bringing
snowflakes in downward regions of the airflow. The
recent numerical work of Zeugin et al. 2020 inves-
tigated realistic snow particles in the Stokes regime
and proposed sphericity-based relations to estimate

aerodynamic coefficients and the settling velocity of
such particles up to Re < 10. Tagliavini et al. 2021
proposed a new method to evaluate the time-averaged
drag coefficient of complex-shaped snowflakes based
upon a Delayed-Detached Eddy Simulation (DDES)
model of flow around a fixed particle and its inertia
tensor for Reynolds number up to ≈ 4000. However,
to the authors’ knowledge, no studies so far have in-
vestigated in detail the wake flow of such complex
geometries.

The wake that forms behind a particle influences
both the particle drag and its falling motion. The
most closely related studies have investigated thewake
structure that forms behind simple, idealized particle
geometries. In these studies, the wake that forms be-
hind a particle influences both the particle drag and
its falling motion. Uhlmann and Dusek 2014 nu-
merically investigated a falling sphere in a viscous
fluid at rest and identified different patterns of mo-
tion (from steady to chaotic) according to different
flow regimes. They classified the sphere falling be-
havior by analyzing diverse structures in the wake.
Liu et al. 2021 examined the settling behavior of dual
spheres both experimentally and numerically. Their
study reveals that particles terminal velocity and fi-
nal separation distance is strongly influenced by the
Reynolds number and their initial distance, whilst the
repulsion between particles depends on the intensity
and type of vortices formed by both particles while
falling. Hashino et al. 2016 and Toupoint et al. 2019
found a strong dependence of their motion on the as-
pect ratio of columnar crystals and disks, respectively,
and discussed in detail the varying forces and torques
in relation to the falling behavior. Recent experimen-
tal studies by Nedic et al. 2013 and Nedic et al. 2015
investigated the drag coefficient of fractal, plate-like
geometries and the influence of the fractal dimension
on wake size and vortex shedding. The increase of
the fractal dimension, i.e. longer particle perimeter,
caused an increment in the drag coefficient (up to 7%)
and in the shedding intensity. Cummins et al. 2018
looked at the separated vortex ring in the wake of
a dandelion pappus to shed light on its uncondition-
ally stable falling motion, showing that the pappus
filaments produce separated vortex rings that cause
the particle to fall steadily with higher drag coeffi-
cient when compared to a disk. Despite the use of
non-spherical particles, limitations in the Reynolds
number are once more present in these works and the
wake properties of realistic snow particles across flow
regimes are unknown.

Beyond fundamental interest, measurements of the
wake are important as these can be used to accurately
estimate drag force on a particle via analysis of the
momentum flux [Durbin and Medic 2007]. The eval-
uation of the drag force through the integration of the
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wake momentum flux is commonly employed in ex-
perimental studies and computational models of bluff
body flow, in cases when it is difficult to accurately es-
timate the drag force by direct measurements, and fits
in the category of wake integration techniques [Shin
et al. 2010; Terra et al. 2017]. This technique is sen-
sitive to different factors, including grid density, type
of grid, numerical smoothing, and the definition of
the control volume [Giles and Cummings 1999; Zhu
et al. 2007; Shirazi and Manshadi 2020]. Neverthe-
less, if these parameters are correctly set, it delivers
a satisfactory prediction of the drag force and helps
comprehending how different terms of the momen-
tum deficit affect the total drag. To the best of our
knowledge, only few works evaluated separately the
momentum deficit terms to investigate how they indi-
vidually contribute to the drag. In Terra et al. 2017,
the momentum flux was decomposed, whilst experi-
mentally measuring the drag of a sphere moving in
stagnant air at Re = 10000. It was found that the ve-
locity fluctuation term accounts for roughly the 10%
of the momentum exchange in the wake, whereas the
pressure term becomes negligible.
The objective of this paper is to gain a better un-

derstanding on the influence of wake flow and par-
ticle shape on drag and their potential impact on
the falling motion of complex-shaped snow parti-
cles. With this aim, a DDES model, validated for
the drag coefficient prediction with experimental data
of 3D-printed falling snowflakes [McCorquodale and
Westbrook 2021b; Tagliavini et al. 2021], is used. It
solves for the airflow past a fixed, irregular snowflakes
at both low (Re = 50, 75, 100) and moderate/high
Reynolds numbers (Re = 500, 1000, 1500). These
flow regimes are chosen such that they fall within the
range of Reynolds numbers exhibited by falling snow
particle in nature [Heymsfield and Westbrook 2010].
As in Tagliavini et al. 2021, the model is informed
with laboratory data of free-falling 3D-printed snow
particles (McCorquodale andWestbrook 2021b). The
same experimental data are used in the discussion to
relate the model results with empirical observations
of falling behaviors. Firstly, the wake topology is in-
vestigated to identify peculiar flow features that may
have an influence on the drag coefficient. Secondly,
the momentum flux in the wake of each snowflake
is analyzed and decomposed into its different terms
(mean velocity, pressure, and fluctuating velocity) to
assess their influence on the total drag at varying flow
regimes. In the end, a novel approach that combines a
DDESmodel with experiments is exploited to analyze
the wake topology and the momentum flux decompo-
sition to advance in the understanding of complex-
shaped particle drag coefficient and falling attitudes.

II. MATERIALS AND METHODS

In this section, the experimental set-up and the lab-
oratory observations are briefly described. Then, the
DDES model and its main features are introduced.
Following our previous work [Tagliavini et al. 2021],
the numerical model is informed, and its results then
interpreted, by comparison with data from experi-
ments [McCorquodale and Westbrook 2021b].

A. Experimental method

Laboratory experiments, exploiting the principle
of dynamic similarity, were conducted on 3D-printed
snowflake analogs dropped in a tank containing vis-
cous fluid at rest (uniform mixtures of water and glyc-
erol, with the volume fraction of glycerol between
0 and approximately 50%). The trajectory of falling
analogs was recorded using a system of three synchro-
nized cameras positioned to have orthogonal views of
the tank. An algorithm (the Trajectory Reconstruc-
tion Algorithm implemented through Image anaLy-
sis, TRAIL) allowed the reconstruction of the time-
resolved trajectory and orientation of falling analogs
over the recorded region (approximately 200 × 200
× 200 mm in size) [McCorquodale and Westbrook
2021a]. With this approach, it was possible to de-
termine the precise orientation adopted by each par-
ticle in the free-fall and to represent these positions
digitally with a mesh of triangular facets that corre-
spond to the particle surface. Reynolds numbers and
drag coefficients were also evaluated (within an ac-
curacy of approximately 5% and 7%, respectively).
For more details on the algorithm and on the accuracy
of the orientations reconstruction, see McCorquodale
and Westbrook 2021a.

1. Observations from experimental data

Snowflakes exhibit many shapes and sizes in na-
ture [Kikuchi et al. 2013]. The snow particle shapes
incorporated in this work are shown in Fig. 1 and
are chosen such that they span across some key types
of natural ice particles, namely, monocrystals (D1 -
D1007), multi-habit crystals (CC - CC20Hex4), poly-
crystals (MR -MR172) and aggregates (AG -AgSt100)
[McCorquodale andWestbrook 2021b]. The names in
brackets refer to the extensive data reported in the sup-
plemental material of McCorquodale and Westbrook
2021b. They do not refer to any physical property
of the particle and are simply used to facilitate cross-
referencing with data from previous works. Because
of snowflake diverse geometries, a distinct falling be-
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havior is observed for each snow particle and will be
briefly described.
During experiments, described in Section II A,

the dendrite plate crystal D1 fell steadily for the
tested Reynolds number range (10 . Re . 1500), and
adopted an orientation with its largest projected area
orthogonal to the falling direction (i.e., with the max-
imum principal moment of inertia aligned parallel to
the fall direction), see Fig. 1. A steady falling be-
havior was also seen for AG at Re . 1000, for MR at
Re . 150, and for CC only at Re . 70. AG displayed
a spiraling trajectory, rotating around a (vertical) axis
aligned with the fall direction, as Re increases. CC
also fell with a periodic trajectory in the range 70
. Re . 400 [McCorquodale and Westbrook 2021a],
similar to a pair of rigidly connected disks [Kuroda
et al. 2007]. For Re & 400, CC and MR exhibited
chaotic motion. The falling behavior of the differ-
ent geometries is summarized in Fig. 2. Here, the
variation (e.g., ∆α = αmax −αmin) of the angles be-
tween the principal axes and the fall direction for each
geometry is illustrated as a function of Re (α: an-
gle between the fall direction and the largest principal
axis, β: angle between the fall direction and the in-
termediate principal axis, and γ: angle between the
fall direction and the smallest principal axis). Large
variations (approximately greater than 5◦) indicate un-
steady falling behavior. More details can be found in
McCorquodale and Westbrook 2021b.
The orientations shown in Fig. 1 represent the fi-

nal orientations employed in the numerical model.
These orientations are the ones observed during ex-
periments when the particle was falling steadily (at
low Reynolds number). They can also be considered
as a good approximation for cases in which particles
were observed to fall unsteadily during the experi-
ments (i.e., at high Reynolds number), since the low
Reynolds number orientation lies within the range of
the orientations exhibited by the particles while falling
unsteadily. Tagliavini et al. 2021 also showed that, at
high Re, for someparticles that undergo chaotic falling
behavior, the drag coefficient in this assumed final ori-
entation can strongly differ to the actual value. For
these cases, they proposed a suitable average of two
orientations with the largest and smallest projected
area (according to the inertia tensor eigenvalues) that
provided a good approximation of the chaotic behav-
ior. Since particles CC and MR displayed chaotic
motion already at moderate Reynolds numbers (Re &
400), for this study, additional orientations observed
during experiments were reconstructed for use within
our numerical model to investigate more in depth the
range of variability of the wake flow in cases of un-
steady falling behavior. In particular, one additional
orientation is chosen for CC at Re = 500, 1000, 1500,
corresponding to the position for which the angle be-

tween the long axis of the particle (i.e., aligned with
the column) and the vertical fall direction is greatest.
For MR (Re = 1500), three additional orientations are
considered, which correspond to instantaneous orien-
tations observed at different time instants as particles
fell across themeasurement region (namely time-steps
t = 13, 94, 129). These orientations are limiting cases
in terms of the angles between the principal axes of
the particles and the vertical fall direction and there-
fore will be called ” extreme” orientations throughout
the paper (see Fig. 1).

B. Numerical model

The computational model presented in this study
is based upon Delayed-Detached Eddy Simulation
(DDES - hybrid LES-RANS approach) [Spalart et al.
2006], solves for the airflow around a realistic snow
particle, and has been already validated for the estima-
tion of the drag coefficient [Tagliavini et al. 2021]. The
particle within the computational domain is scaled
with the same volume-equivalent sphere of deq = 0.01
m. In this way, the computational domain size remains
constant throughout the runs. The DDES model em-
ploys the Spalart-Allmaras turbulence closure model
for ν̃ (modified eddy viscosity) for the RANS calcu-
lation (described in Spalart and Allmaras 1992). Nu-
merical simulations have been performed for different
flow regimes from low (Re = 50, 75, 100) to moder-
ate/high Reynolds numbers (Re = 500, 1000, 1500).
The uniform inflow velocity u∞ [m/s] is calculated as:

u∞ =
Re · ν
Dmax

, (1)

where Re is the desired Reynolds number, ν is the
fluid kinematic viscosity [m2/s] and Dmax is the max-
imum dimension of the snowflake (orthogonal to the
flow direction) [m]. The characteristic length Dmax in
Eq. (1) is chosen as such because it is an easily mea-
surable geometrical feature for ice particles. Thus,
our choice is motivated by this practical reason, rather
than a physical one. For additional information re-
garding the size of the computational model, its grid
features and its initial and boundary conditions, see
Fig. 3 and Tagliavini et al. 2021.

1. Numerical simulations

The DDES model is built with Open source Field
Operation and Manipulation (OpenFOAM 4.1) C++
software based on the finite volume method [Open-
FOAM 2017]. It solves transient Navier-Stokes equa-
tions for the fluid domain:
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∇ ·u = 0,

ρ

(
∂u

∂t
+ (u ·∇)u

)
= −∇p+ µ∇2u+ ρf ,

(2)

in which u is the flow velocity [m/s], ρ is the fluid
density in [kg/m3], p the pressure in [Pa], µ is the
dynamic viscosity of the fluid in [Pa· s] and f are any
external forces per unit mass [N/kg]. The interaction
between the airflow and the snowflake is expressed
through Newton’s second law of motion:

F = Fp +Fν =

∫
A

pndA+
∫
A

τ ·ndA, (3)

where n is the normal and tangential unit vector on
the particle surface A and τ represents the viscous
stresses [Pa]. The transient solver, the discretization
schemes, and the number of iterations are the same of
Tagliavini et al. 2021.
The time-averaged drag force is evaluated from the

integration of the momentum deficit in the wake.
The wake volume is isolated using a threshold of
98% of the total time-averaged velocity deficit and
the momentum flux is calculated at a distance of
x ≈ 4Deq from the snow particle. These crite-
ria are followed according to the guidelines pro-
posed by Zhu et al. 2007 for complex-shaped bod-
ies. Furthermore, they assure the minimum percent-
age error betweenthe time-averaged drag coefficient
computed from the simulations and the drag coeffi-
cient evaluated from the momentum flux integration
(CD,sim−CD,mom)/CD,sim ·100 (for more details, see
Fig. 4). The formula for the momentum deficit is:

FD = ρ

∫
Swake

(u∞− ū)ū dS− ρ
∫
Swake

ū′2 dS

+

∫
Swake

(p0− p̄)dS, (4)

in which FD is the time-averaged drag force [N], ū is
the mean velocity [m/s], u′ is the fluctuating velocity
[m/s], p0 is the ambient pressure [Pa], and p̄ is the
time-averaged pressure [Pa]. The viscous stresses in
the momentum flux, evaluated at Swake account for
(orthogonal to the flow direction), account for 0.5%
or less of the total drag force and are thus not shown.
From the obtained drag force, the time-averaged drag
coefficient is determined, together with the different
drag coefficient components derived from each term
of the momentum deficit:

CD,tot =
FD

1
2 ρu2

∞Ap

, (5)

CD,ū =
FD,ū

1
2 ρu2

∞Ap

, (6)

C
D,ū′

2 =
F
D,ū′

2

1
2 ρu2

∞Ap

, (7)

CD,∆p =
FD,∆p

1
2 ρu2

∞Ap

, (8)

where CD,tot is the total drag coefficient, while CD,ū ,
C
D,ū′

2 , and CD,∆p are the contributions to the total
drag of the first, second, and third term of the right
hand side of Eq. (4), respectively, and Ap is the par-
ticle projected area [m2]. The contribution of each
momentum balance term is then expressed as a per-
centage of the total drag coefficient (e.g.,CD,ū/CD,tot ·

100).
To appraise the influence of the particle shape on the

wake flow and consequently on the drag coefficient,
two geometrical features are considered in Section IV
to characterize the snowflake geometries: the poros-
ity and Corey’s shape factor [Corey 2019]. Porosity
is defined as the ratio between the empty area to the
planar projected area of the enclosing disk:

ε = 1− AR , (9)

in which AR = Ap/Adisk is the area ratio of the par-
ticle and Adisk the area of the enclosing disk [m2]
(McCorquodale andWestbrook 2021b). Porosity goes
from a maximum value of 1 (void) to a minimum of
0 (solid disk). For the case of D1 and AG, porosity
originates from two factors. First, it is due to voids
or pores within individual dendrites of the geometry.
Second, it is also due to the fact that the shape of
the enclosing envelop of the geometry deviates from
a circular shape. For the case of CC and MR there are
no dendrite features and the porosity is entirely due to
the second factor. Corey’s shape factor is defined as:

CSF =
S
√

LI
, (10)

where S, L, and I are the shortest, longest, and in-
termediate particle dimension, respectively. Corey’s
shape factor is equal to 1 for a sphere (or a cube)
and tends to 0 for a thin disk. It does not account
for the particle roundness (cube and sphere have the
same value), but delivers information on the particle
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flatness, which is important for the wake formation,
since it influences the separation point of the shear
layers [Corey 2019]. The values of ε and CSF for
each snowflake are reported in Tab. I and Tab. II and
note that they vary for the extreme orientations.

III. RESULTS

The objective of this work is to better understand
the mutual influence of shape, wake flow, drag co-
efficient and falling motion of snowflakes at varying
flow regimes (50 ≤ Re ≤ 1500). To this end, we first
investigate qualitative aspects of the wake behind the
snowflakes across flow regimes and subsequently we
address the wake contributions to the drag coefficient
by means of Eq (4).
In Fig. 4, the drag coefficient for each snow parti-

cle at different flow regime (Re) is reported. At low
Reynolds numbers (Re = 50, 75, 100), the dendrite
plate (D1) shows the highest drag coefficient, while
MR has the lowest values. As Re increases, the dif-
ference between the drag of each particle becomes
smaller up to Re = 1500, where CD ≈ 1 for all the
particles. In the same plot, the drag coefficients of
the extreme orientations of particle MR and CC are
also reported with empty markers. For CC, the drag
is slightly higher for the extreme orientations in com-
parison to the final one, in particular at Re = 500. MR
displays the lowest drag coefficient for the extreme
position at t = 94 (CD = 0.59), followed by t = 13,
and t = 129, while the highest value is recorded for
the final orientation (CD = 1.32).

The wake topology of the different snowflakes
shapes is presented in Section III A, while the re-
sults from the analysis of the wake momentum flux
are described in Section III B. Finally, Section III C
concerns the results of wake topology and momen-
tum flux decomposition of the extreme orientation of
particle CC and MR.

A. Wake topology of different snow particles at
increasing flow regimes

Fig. 5, 6, and 7 show the wake flow as line integral
convolution (LIC) vector field visualization, which
produces streamline patterns tangential to the veloc-
ity field [Loring et al. 2014]. The time-averaged field
chosen for the color map is the non-dimensional ve-
locity magnitudeU∗ =U/U∞ (whereU is the velocity
vectors [m/s]). The plane in which the wake of each
particle has its maximum lateral extension is selected
in the figures. For conciseness, only Re = 100, 500,
1500 are described in detail here, since they display

distinct qualitative differences.
At Re = 100 (Fig. 5), D1 has the widest recir-

culation region with the highest velocity deficit. A
large, symmetric vortex ring appears separated from
the particle and the high velocity deficit extends fur-
ther downstream. Similar patterns can be found for
Re = 50, 75 with the recirculation region stretching
in the streamwise direction as Reynolds number in-
creases. MR and AG create asymmetric wakes with
recirculation areas attached to the particles. For AG,
the vortex region is present only at one side of the
wake. The asymmetry also reflects in the top part
of the wake, which displays a higher velocity deficit
compared to the bottom part. CC displays two vorti-
cal regions: one between the hexagonal plates and the
other one right after the particle. At low flow regimes,
all the particles present stable falling behavior, except
CC (periodic).

With regards to the flow field at Re = 500 (Fig.
6), the vortex ring of D1 is smaller and closer to the
particle compared to Re = 100, while maintaining its
symmetry and increasing its velocity deficit. The lat-
ter is the highest among all particles also at this flow
regime and expands much further downstream. AG
has a higher velocity deficit compared toMR and both
present an asymmetric wake, tilted at one side (top
part). CC (chaotic motion) presents symmetric recir-
culation zones between the hexagonal plates, while
the previous vortex rings see a decrease in size and
and increase in the velocity. U∗ extends significantly
further downstream also for CC, but much lower val-
ues if compared with D1.

At Re = 1500 (Fig. 7), all snow particles have
small and asymmetric vortex rings mostly attached to
the particle. For AG and D1, the velocity deficit in the
wake is higher and extends much further downstream
(D1 presents the lowest value of U∗ in the far wake)
in comparison to CC and MR (Fig. 7). Both wakes of
AG and MR are tilted at one side, while CC displays
a small velocity deficit at wake sides in the far wake,
while at the center it is close to 0.

To better illustrate the unsteady behavior of the
wake flow and its features, Fig. 8 and Fig. 9 show the
3D (left) and 2D (right) instantaneous wake flow field.
The 3D structures are extracted with the Q-criterion
(Q > 1 for Re = 500 and Q > 50 for Re = 1500) and
colored according to the non-dimensional, streamwise
component of U∗ (u∗x), while a 2D side view of the
wake is depicted using the non-dimensional vorticity
(ω∗ = (Dmaxω)/U∞).

At Re = 500, D1 (Fig. 8a) presents a steady wake
with a central recirculation bubble. Vortex threads
(with lower velocity deficit) extend in the near wake
in correspondence with the branches of the dendrite.
AG (Fig. 8b) displays an unsteady wake flow with
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moderate vortex shedding. The wake structures are
mainly hairpin vortices that origin from the particle
sides, are shed in pairs several Dmax downstream, and
eventually deform, interact, and decay in the far wake.
MR (Fig. 8c) has a stretched, singular hairpin votex
in the near wake that breaks down in smaller vortices
after few Dmax downstream, producing the vertically
extended meandering in the far wake (Fig. 8c, left).
Even though the particle is symmetric and aligned
with flow direction, the wake of CC is now slightly
oscillating (Fig. 8d, right). These small oscillations
can be better seen in the 3D representation of Fig. 8d
(left), which displays an asymmetric vortex pattern.
Fig. 9 illustrates the wake flows at Re = 1500. All

the particles exhibit unsteady wakes and the instan-
taneous fields capture the diverse wake dynamics for
different geometries. D1 is the only shape that does
not exhibit a distinct vortex street at this high Re. Its
wake is compact with small hairpin vortices that orig-
inate from the snowflake branches and become more
fragmented far away from the particle (Fig. 9a). AG
presents the highest values of vorticity downstream,
among the particles that display a meandering wake
(AG, MR, and CC). Horseshoe vortices form at the
side of the particle and move downstream, before dis-
sipating and fragmenting in the far wake (Fig. 9b).
MR displays two stretched vortices in the near wake
that break down a few Dmax downstream in a vor-
tex street (Fig. 9c). CC exhibits an elongated thread
closer to the particle that breaks down into a large
vortex street with smaller structures (Fig. 9d). Beside
D1, we note that all the other snowflakes were ob-
served to fall unsteadily in experiments at Re = 1500
(CC, MR: chaotic, AG: periodic).
Fig. 10 depicts the non-dimensional drag force fluc-

tuations and the wake turbulent intensity as a function
of the Reynolds number for each particle. At Re ≤
100, both drag force and velocity fluctuations (T I)
stay below 0.5%. As Re increases, a sharp increment
can be seen for the two quantities, with the highest
values for MR, followed by CC and AG. D1 exhibits
the lowest values for both std(FD)/FD and T I.

B. Evaluation of the drag coefficient from the
integration of the momentum deficit

Next, the influence of different terms in Eq. (4) on
the total drag is assessed. To do so, the time-averaged
drag coefficient CD,tot is split into different compo-
nents according to Eq. (6) - (8). Each contribution
is expressed as a percentage over the total drag (e.g.,
CD,ū/CD,tot · 100) and listed in Tab. I. The compar-
ison between different shapes is depicted in Fig. 11
as bar plots, to stress the relative contribution of the

different momentum flux terms. For all the particles,
the viscous term turns out to be negligible and thus
it is not shown, while the mean velocity term pro-
vides the overall largest contribution in comparison
with the other terms. D1 and AG have the highest
values for the mean velocity term contribution (CD,ū)
(above 83% throughout the tested Re), whilst the pres-
sure term (CD,∆p) stays below 7%. D1 also exhibits
the lowest values for both CD,∆p and C

D,ū′
2 (pres-

sure and fluctuating velocity term) for the entire Re
range. The mean velocity contribution accounts for
93.19% for MR at Re = 50 and drops down to 74.22%
at Re = 1500. Above Re = 500, there is an increase
in the contribution of C

D,ū′
2 (up to 18.45% for Re =

1500) and a slightly increase in the pressure term for
MR. CC displays a trend similar to MR, although with
slight higher values for the mean velocity and lower
values of the fluctuating velocity contribution at high
Reynolds numbers. For CC, CD,∆p stays below ≈ 6%
for the simulated flow regimes.

C. Wake topology and momentum flux for extreme
orientations of MR and CC

Previously, Tagliavini et al. 2021 showed that the
fluttering of the particles exhibiting chaotic falling
motions has an appreciable influence on the drag coef-
ficient at moderate/high Re. Therefore, we investigate
additional orientations for CC and MR, since they fell
chaotically at Re & 400 during the experiments. One
extreme orientation is studied for CC at Re = 500,
1000, 1500, corresponding to the configuration where
the angle between the long axis of the particle and
the vertical fall direction is largest. Three additional,
extreme positions are considered instead for MR at
different time instants during free-fall (Re = 1500).
These orientations are limiting cases in terms of angle
variations (see Fig. 1 and Fig. 2). The results of
these additional simulations are reported in Tab. II,
together with their geometrical features (porosity and
CSF).

Fig. 12 depicts the comparison of the time-
averaged, non-dimensional velocity field U∗ between
the final and the extreme orientation of CC at Re =
500 (Fig. 12a) and at Re = 1500 (Fig. 12b). The
extreme orientation displays two large recirculation
zones in correspondence with the particle hexagonal
plates, causing a "bifurcation" of the velocity deficit
which concentrates at these tips and extends further
downstream (the furthest for Re = 500). At Re =
1500, the two vortex regions at the hexagonal extrem-
ities become more asymmetric. The dissimilarity be-
tween the final and the extreme orientation is better
illustrated in Fig. 13. While at Re = 500 the final
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orientation manifests only small structures (fluctua-
tions in a non-turbulent environment) several Dmax

away from the particle (Fig. 8d), the extreme position
forms a fully turbulent wake (Fig. 13a) with a pair
of hairpin vortices rising from the particle extremi-
ties (plates) that become smaller in the far wake. The
same type of structures is present at Re = 1500 (Fig.
13b), but more compressed and fragmented further
away from the snowflake.
In Fig. 14 and Fig. 15, the time-averaged, non-

dimensional velocity field and the 3D wake structures
of different orientation ofMR are shown, respectively.
For what concerns U∗, the distinctness between the
diverse positions is evident from the shape and size
of the recirulation zones of each configuration. The
largest one can be found for t = 129 (Fig. 14c), while
t = 94 has the smallest one (Fig. 14b), but, in this
case, a higher velocity deficit extends much further
downstream. In general, the wake structures of the
extreme orientations look more compact and smaller
than the ones of the final orientation. All configu-
rations present a pair of hairpin vortices that are ad-
vected, deformed, and dissipated downstream (Fig.
15). The configuration at t = 129 appears to have
similar structures compared to the final orientation
that breaks down at approximately the same distance
downstream of the snowflake.
Finally, Fig. 16 reports the comparison between

the final and extreme orientations of CC (a, b) and
MR (c) in relation to the contribution of the terms
of the wake momentum flux. CC shows a small de-
crease in the contribution of CD,ū and CD,∆p . For
this geometry, the case at Re = 500 has the largest dis-
parity regarding C

D,ū′
2 (7.80% (final orientation) and

11.79% (extreme orientation)), while the fluctuating
velocity supply to the total drag stays approximately
the same at higher flow regimes. InMR’s extreme ori-
entations ū and ū′2 (and ∆p) generally contribute to a
greater and lesser extent to the total drag coefficient,
respectively, in comparison to the final orientation.

IV. DISCUSSION

The forces experienced by a falling object are
closely related to the properties of the wake forming
behind that object. Hence, there is an interdependence
between the object shape, the forces and the wake
flow. Many experimental and numerical studies have
investigated the falling behavior and the wake of disks
[Auguste et al. 2013; Vincent et al. 2016], cylinders
[Toupoint et al. 2019], planar polygons [Esteban et al.
2019], and square cylinders [Dutta et al. 2003] to un-
derstand which geometrical feature causes the wake to
oscillate and thus produces unsteady falling behavior

[Vincent et al. 2016]. More complex shapes are taken
into account by Nedic et al. 2015 (fractal plates) and
Cummins et al. 2018 (plumed seed of a dandelion).
In this view, the snowflake shape plays a paramount
role in determining the particle drag, terminal veloc-
ity, falling behavior and wake properties. Simple ge-
ometries such flat plates [Castro 1971; Steiros and
Hultmark 2018] or porous spheres [Emadzadeh and
Chiew 2020] have been investigated and compared to
their solid counterparts. From these studies, increas-
ing porosity seems to cause an increase in the drag
coefficient and to alter wake properties. Moreover,
high porosity combined with sharp edges may pro-
duce changes in the separation point of the shed shear
layers. Dutta et al. 2003 investigated squared cylinder
at different inclinations and found that changes in the
inclination delay the separation point, reducing the
momentum deficit (smaller velocity deficit) and thus
decreasing the drag coefficient. The flatness of an ob-
ject is one of the geometrical features that influence
the separation point and it is taken into account in this
work with Corey’s shape factor [Corey 2019]. The
snowflake geometries investigated in this paper are ir-
regular, 3D shapes, thus their wake are much more
intricate than those of much simpler shapes, such as
ellipsoids, disks, or even polygons. Therefore, more
than one geometrical feature must be taken into ac-
count at the same time. In our study, as mentioned
in Section II B 1, both porosity and flatness (CSF) are
investigated.

D1 has the highest porosity (ε = 0.62) and at Re 6
100 manifests the highest drag coefficient (Fig. 4).
We highlighted that at low Re the wake of this snow
particle contains a separated vortex ring which influ-
ences the stable fall of D1 and is reminiscent to the
behavior of the dandelion’s pappus investigated by
Cummins et al. 2018. The branches of the dendrite
may act in a similar way as the filament of the dande-
lion’s pappus, thickening the boundary layer between
the branches and reducing the pressure downstream,
hence increasing the drag compared to particles with-
out dendrite features. AG presents a much lower drag
compared to D1. Besides the difference in dendrite
features compared to D1, AG Corey’s shape factor
is much higher (less flat particle). This shifts the
flow separation point further downstream, whilst the
separated shear layers meet and roll up closer to the
particle (Fig. 8), which is generally followed by a
decrease in CD [Dutta et al. 2003]. Furthermore,
the magnitude of the time-averaged, non-dimensional
velocity is slightly higher (U∗ & 0.3, thus smaller ve-
locity deficit) and the lower porosity, compared to D1,
brings the recirculation region closer to the particle
[Steiros and Hultmark 2018]. An analogous condi-
tion can be found for MR, which has a much lower
porosity and the highest CSF (CSF = 0.95, Tab. I).
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The latter may influence the flow separation (further
downstream) and causing a decrease in CD (Fig. 4).
In this case, the symmetric vortex rings may impact
the steady behavior of MR. CC was observed to fall
with spiraling, periodic motion at this flow regime.
Its shape has the lowest porosity (ε = 0.15) and a high
CSF (CSF = 0.72). This snowflake forms four recir-
culation regions attached to the particle, two of which
are found between the hexagonal plates of the colum-
nar crystal. Because of the unsteady free-fall of this
particle, the final orientation used in this model is not
well representative of the wake flow of a freely mov-
ing particle, especially at high Reynolds numbers. At
low Re, all the snowflakes show a dominant contri-
bution of the mean velocity term of the momentum
flux to the total drag (CD,ū ≈ 90%), while CD,∆p and
C
D,ū′

2 stay below 4% and 8%, respectively. Hence the
different way the geometries affect the mean velocity
velocity profile in the wake is the dominant factor for
the resulting CD . D1, AG, and MR displayed a steady
falling behavior during experiments, while CC exhib-
ited a spiraling, periodic motion (Tab. I).
As Re increases (Re = 500), the separated vor-

tex ring in the wake of D1 is now attached to the
particle and significantly smaller, albeit with much
higher U∗ (Fig. 6a). A drop in the magnitude of the
time-averaged, non-dimensional velocity (high veloc-
ity deficit) is seen despite the still large contribution
to the total drag of the mean velocity term (Eq. (4)).
The low U∗ region extends much further downstream
and is very stable (small contribution of CD,∆p and
C
D,ū′

2 ), as seen in Fig. 11. Fig. 8a depicts the 3D
wake of D1 and its vortex threads that originate from
the dendrite branches, a wake feature that may con-
tribute to the particle stable fall. Although AG and
MR display similar wake features, among other things
the presence of a vortex street (Fig. 8b), MR has an
abrupt increase in the fluctuating velocity term forMR
(Tab. I), while this term remains below 10% of the
total drag coefficient for AG. The vortex rings forming
behind AG are small and slightly detached from the
particle, if compared with the ones behind MR. The
separated vortices may promote the stable fall of AG,
notwithstanding the high Re, and this wake character-
istic is also consistent withAGbeingmore porous than
MR. An evidence of the more turbulent wake of MR
can be seen in Fig.8c, in which the instantaneous flow
field of the wake of AG (Fig. 8b) exhibits more regular
patterns of the coherent structures (pairs of horseshoe
vortices advected downstream). MR (Fig. 8c) exhibits
hairpin vortices only in the near wake instead, since
they suddenly dissipate into more chaotic structures
a few Dmax away from the snowflake. This particle
shows a chaotic free-fall at this flow regime, whereas
AG still manifests a steady falling behavior. At Re =

500, for CC a third pair of non-symmetrical, low-
velocity vortices forms between the hexagonal plates
of the capped column (Fig. 6d). In addition, the far
wake presents a slightly oscillating motion (Fig. 8d).
Like MR, CC fell with chaotic motion at this flow
regime during experiments.

At Re = 1500, all tested shapes manifest a simi-
lar drag coefficient (CD ≈ 1, see Fig. 4), although
having different falling behavior. As shown in Fig
11, a notable difference between the diverse shape is
the increasing contribution of C

D,ū′
2 , which is higher

than ≈ 10% for the particles that exhibited unsteady
falling motion (AG, MR, and CC), even though MR
and CC final orientation might not be representative
for their chaotic motion at this flow regime [Tagliavini
et al. 2021]. D1 maintains a steady falling behavior
and the cause may be related to the absence a well-
defined vortex street and to the large and packed co-
herent structures in the wake. The weak vortex street
of D1 is associated with the high porosity of the parti-
cle [Castro 1971], for which the main contribution to
the total drag is still represented by the mean velocity
term of Eq. (4). AG fell with periodic motion at Re =
1500 and that may be inferred by the weak shedding
and the moderate fluctuating velocity supply of Eq.
(4) (slightly higher than the one of D1). The veloc-
ity deficit contribution for D1 is still the largest (see
Tab. I), but the other particles have a higher contribu-
tion from the pressure and fluctuating velocity terms,
which compensate the lower velocity deficit andmatch
the drag of D1 at this high Re (Fig. 4). The lowest
flatness (highest CSF) of MR might be the cause of
the convoluted structures in the wake (Fig. 9c) which
could relate to the largest angles variation (Fig. 2).
All these factors suggest a strong chaotic motion of
this particle. Similar features are also present in CC
with slightly lower values. As for Re = 500, the ori-
entation of MR and CC varies significantly during the
free-fall and therefore additional, extreme orientations
are examined thereafter.

A link between wake turbulence and drag force can
also be inferred from Fig. 10. As the Reynolds num-
ber increases, std(FD)/FD andT I become larger, with
a sharper increment for particles that presented chaotic
falling behavior. Moreover, the upsurge of T I (fluc-
tuation of u′) is consistent with the increase in the
contribution of u′ term in the total drag coefficient
(Tab. I) and angle variations (Fig. 2).

A. Comparison between final and extreme
orientations at moderate and high Reynolds numbers

Regarding the extreme orientations of CC, the con-
sidered configuration (at different Re) marks a signif-
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icant change in the wake structure (Fig. 13) compared
to the final orientation, especially at Re = 500. The
decrease in the contribution of the mean velocity term
and the increase of the pressure and fluctuating ve-
locity contribution may relate to the particle chaotic
falling motion and could not be captured by solely
investigating the final orientation. The increase in CD

can be caused by the higher porosity (Tab. II) of this
extreme position (CSF does not change significantly).
At higher flow regimes (Re > 500), beside a small in-
crease in the drag coefficient (Fig. 4), there are no
meaningful variations of the contribution of Eq. (4)
terms in comparison with the final orientation.
The extreme orientations of MR, at different time

instants (same Re), present a much lower drag coef-
ficient if compared to the final orientation (Tab. II,
Fig. 4). This is consistent with an increase in ū and
decrease in ū′2 (and ∆p) contributions, respectively.
Since these configurations are reconstructed at differ-
ent instants during the particle free-fall, they do not
deliver crucial information on the drag coefficient, but
help to highlight how the wake structures vary (Fig.
15) while MR falls. In fact, the wake structures be-
come more and more similar to the final orientation,
which can be considered as an "averaged" orientation
in case of particle with unsteady behavior like MR
(see Fig. 15c). This also emphasizes the limitation
of taking into account only the final orientation when
studying particles with chaotic falling behavior.
We want to stress that the model concerns a fixed,

complex-shaped particle impinged by airflow and, de-
spite the adoption of DDES as an established and
accurate technique to simulate bluff body flows [Celik
2003], the model presents some limitations in repre-
senting the wake flow of a freely falling particle. The
main one regards the absence of two-way coupling be-
tween the fluid and the particle. For particles that are
not falling chaotically the drag coefficient of a freely
falling particle is well reproduced by our fixed parti-
cle simulations [Tagliavini et al. 2021], which suggests
that wake features in the simulations are representa-
tive of the coupled system. For chaotic behaviors this
is probably less the case, however, the wakes of fixed
particle at their extreme orientations provide insights
on the range of variability that is exhibited by wakes
of particles falling chaotically. The accuracy assess-
ment of the present model in reproducing the wake
of a freely falling particle, by comparison with ve-
locimetry experiments, will be the subject of future
publications.

V. CONCLUSIONS

The objective of this paper was to gain a deeper un-
derstanding of the wake flow behind complex shaped
snow particles, its impact on drag and possible im-
plications for falling behavior. To this end a DDES
model, validatedwith experimental data of 3D-printed
falling snowflakes [McCorquodale and Westbrook
2021b; Tagliavini et al. 2021], was used. From that,
the wake flow is analyzed and the wake contributions
to the drag are quantified.

At low Re, particles with highest drag were the one
with the highest porosity (D1), which also produced a
separated vortex ring, in agreement with the work of
Cummins et al. 2018. LowerCSF (Corey’s shape fac-
tor) is consistent with a delay in the separation point,
thus causing the drag coefficient to drop. For low
Reynolds number cases the mean velocity term in Eq.
(4) contributed to ≈ 90% of the total drag.

For moderate/high flow regimes, porosity seemed
to have a role in suppressing (D1) or reducing (AG)
the vortex shedding. This lowered the fluctuations in
the velocity. As a consequence, particles with higher
porosity still exhibited a large contribution of CD,ū

to the total drag. An increase in the contribution of
the fluctuating term was seen in correspondence with
the appearance of vortex shedding. High vorticity and
fluctuations in the velocity were related to high CSF,
large angle variation (unsteady falling behavior), and
large fluctuations in the drag force.

Additional numerical modeling utilizing a range of
orientations observed during experiments provided a
more realistic representation of the wake flow field
for CC and MR at moderate/high Reynolds number,
at which the particles are known to exhibit unsteady
motions in free fall. They highlighted the limita-
tions of the fixed particle model that considers only
one orientation (final orientation) when investigating
snowflakes that exhibit unsteady falling motion. The
contribution of the different terms of Eq. (4) did not
change significantly for these extremeorientations, de-
spite some differences in CD which might be related
to the changing in projected area due to the diverse
particle orientations.

Our study can serve as a template to shed light on
the influence of shape on the wake flow and on how
the latter affects the drag coefficient and the falling be-
havior of complex-shaped snow particles over a broad
range of geometries.
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FIG. 1: 3D geometries of the different snow particles taken into account in this paper. They are examples of common
particle types observed in nature: aggregates (AG, AgSt100), policrystals (MR, MR172), multi-habit crystals (CC,

CC20Hex4), and monocrystals (D1, D1007). For each particle, the largest principle axis and the angle α are shown in red,
the median principle axis and the angle β are shown in green, and the smallest principle axis and the angle γ are shown in
blue (each angle represents the inclination of the corresponding axis with respect to the falling direction). Beside each
geometry, their projection in the flow direction x (according to the final orientation reconstruction) is shown for different
flow regimes. For particle CC and MR, additional positions displayed by the particles (ext subscript) during their free-fall
are taken into account at specific Reynolds numbers (CCext the same extreme orientation at Re = 500, 1000, 1500, while
MRext one orientation for each different time instant t = 13, 94, 129 s at Re = 1500). The names of the geometries in italic

are mentioned here to facilitate the comparison to the extensive data reported in the supplementary material of M.W.
McCorquodale and C. D.Westbrook. TRAIL part 2: a comprehensive assessment of ice particle fall speed

parametrisations, Quarterly Journal of the Royal Meteorological Society, 147(734): 605–626, 2021b; licensed under a
Creative Commons Attribution (CC BY) license, from which these geometries are taken.



13

FIG. 2: Variations of the angles between the principal axes and the fall direction for particles D1 (a), AG (b), CC (c), and
MR (d). α is the angle between the fall direction and the largest principal axis, β the angle with the intermediate principal
axis, and γ with the smallest principal axis. The measurements uncertainty is ≈ 2.5 °. D1 falls steadily for the entire Re
range considered, AG shows periodic motion for Re & 1000, CC has a stable falling motion up to Re . 70, while for 70
. Re . 400 displays a periodic motion that becomes chaotic at Re & 400. MR falls chaotically from Re & 400, while it is

stable at lower Re.
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TABLE I: Time-averaged drag coefficient (CD,tot ) of each particle at different Reynolds numbers (Re), evaluated from the
numerical model using the momentum flux integration (Eq. (4)). Each value is decomposed according to the momentum
deficit terms to assess the contribution of each specific term, which is expressed as percentage. The falling behavior of the

particle for different Re is also specified (S = stable, P = periodic, and C = chaotic).

Particle Re Falling behavior CD,tot CD,ū (%) CD,∆p (%) C
D,ū′

2 (%)

MR
ε = 0.28

CSF = 0.95

50 S 1.95 93.19 1.34 5.01
75 S 1.54 92.96 1.49 5.11
100 S 1.37 90.04 3.12 6.41
500 C 1.32 78.89 5.50 15.38
1000 C 1.24 76.75 6.37 16.87
1500 C 1.32 74.22 7.29 18.45

AG
ε = 0.56

CSF = 0.52

50 S 2.50 95.83 1.44 2.31
75 S 2.24 93.30 1.71 4.75
100 S 2.03 89.44 2.54 7.70
500 S 1.07 86.25 5.50 8.19
1000 S 0.96 83.75 5.69 10.51
1500 P 0.95 83.02 6.19 10.74

D1
ε = 0.62

CSF = 0.07

50 S 4.26 96.28 0.93 2.28
75 S 3.86 94.84 1.02 3.70
100 S 3.38 91.57 2.73 5.31
500 S 1.92 89.36 4.55 6.05
1000 S 1.59 87.61 5.13 7.23
1500 S 1.43 85.87 5.30 8.80

CC
ε = 0.15

CSF = 0.72

50 S 2.49 94.81 1.83 3.06
75 P 1.93 93.39 1.87 4.44
100 P 1.74 91.19 2.91 5.65
500 C 0.81 88.30 3.87 7.80
1000 C 1.08 79.19 4.77 16.02
1500 C 1.15 77.32 5.04 17.63

TABLE II: Time-averaged drag coefficient of particle CC and MR at their extreme orientations (see Fig. 1). The values for
CC are shown at different Reynolds numbers (Re = 500, 1000, 1500) for the same extreme position, while MR presents three
different orientations at subsequent time instants (namely, time-step t = 13, 94, 129) at the same Re = 1500. Each value is

decomposed according to the momentum deficit terms to assess their contribution, which is expressed as percentage.

Particle ε CSF Re CD,tot CD,ū CD,∆p C
D,ū′

2

CCext

0.51 0.71 500 1.07 83.98 4.11 11.79
0.51 0.71 1000 1.18 76.47 6.60 16.90
0.51 0.71 1500 1.21 73.55 8.96 17.43
ε CSF time-step CD,tot CD,ū CD,∆p C

D,ū′
2

MRext

0.14 0.87 13 0.81 81.93 4.83 13.23
0.27 0.93 94 0.59 83.12 4.86 12.00
0.36 0.85 129 0.93 77.57 5.12 17.29
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FIG. 3: Computational domain of the DDES model. The
size is a function of volume-equivalent sphere diameter
(deq). The initial and boundary conditions are also

depicted, together with the grid refinements. This set-up is
valid for all the simulations performed in this work [for

further information, see G. Tagliavini, M. McCorquodale,
C.Westbrook, P. Corso, Q. Krol, and M. Holzner. Drag
coefficient prediction of complex-shaped snowparticles
falling in air beyond the Stokes regime, International

Journal of Multiphase Flow, 140:103652, 2021; licensed
under a Creative Commons Attribution (CC BY) license.].

FIG. 4: Time-averaged CD values as a function of the
Reynolds number (semi-log scale) for each particle at its
final orientation, as reconstructed from experiments. The

empty markers represent the drag coefficients of the
extreme orientations. For particle CC, the same extreme

orientation is tested at Re = 500, 1000, 1500, while for MR
different extreme positions at different instants during
free-fall are simulated at the same Reynolds number

(Re =1500). The error bars represent the error between the
time-averaged drag coefficient computed from the

simulations and the drag coefficient evaluated from the
momentum flux integration

((CD,sim −CD,mom)/CD,sim ·100). The averaged
percentage error is 6.82%, 7.90%, 9.69%, 8.85%, 6.49%,
and 9.59% for D1, AG, CC, MR, CCext , and MRext ,

respectively.

(a)

(b)

(c)

(d)

FIG. 5: Time-averaged, non-dimensional velocity
magnitude U∗ =U/U∞ for (a) D1, (b) AG, (c) MR, and (d)
CC at Re = 100. The selected plane is chosen according to

the wake maximum width.
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(a)

(b)

(c)

(d)

FIG. 6: Time-averaged, non-dimensional velocity
magnitude U∗ =U/U∞ for (a) D1, (b) AG, (c) MR, and (d)
CC at Re = 500. The selected plane is chosen according to

the wake maximum width.

(a)

(b)

(c)

(d)

FIG. 7: Time-averaged, non-dimensional velocity
magnitude U∗ =U/U∞ for (a) D1, (b) AG, (c) MR, and (d)
CC at Re = 1500. The selected plane is chosen according

to the wake maximum width.
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(a)

(b)

(c)

(d)

FIG. 8: 3D (left) and 2D (right) instantaneous flow fields at Re = 500. The 3D representation is obtained by using the
Q-criterion with Q > 1 and colored according to the streamwise, non-dimensional velocity u∗x . The 2D illustration shows
the non-dimensional vorticity magnitude ω∗ = (Dmaxω)/U∞ for (a) D1, (b) AG, (c) MR, and (d) CC. The selected plane is

chosen according to the wake maximum width.
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(a)

(b)

(c)

(d)

FIG. 9: 3D (left) and 2D (right) instantaneous flow fields at Re =1500. The 3D representation is obtained by using the
Q-criterion with Q > 50 and colored according to the streamwise, non-dimensional velocity u∗x . The 2D illustration shows
the non-dimensional vorticity magnitude ω∗ = (Dmaxω)/U∞ for (a) D1, (b) AG, (c) MR, and (d) CC. The selected plane is

chosen according to the wake maximum width.



19

FIG. 10: Standard deviation of the drag force FD (full
marker), scaled with the time-averaged drag force FD , and
the turbulent intensity T I (hollow marker) for each snow
particle, as a function of Re. T I is evaluated at a wake

cross-section at x ≈ 4Deq .
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FIG. 11: Contribution (%) of each term of the wake momentum flux (Eq. (6)-(8)) to the total drag coefficient of snow
particle D1 (a), AG (b), CC (c), and MR (d) at low (Re = 50, 75, 100) and moderate/high Reynolds numbers (Re = 500,

1000, 1500).
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(a)

(b)

FIG. 12: Time-averaged, non-dimensional velocity
magnitude U∗ =U/U∞ for particle CC at its extreme

orientation for (a) Re = 500 and (b) Re = 1500.

(a)

(b)

FIG. 13: 3D visualization of the wake structures using
Q-criterion for particle CC at its extreme orientation at (a)

Re = 500 (Q > 1) and (b) Re = 1500 (Q > 50).
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(a)

(b)

(c)

FIG. 14: Time-averaged, non-dimensional velocity
magnitude U∗ =U/U∞ for particle MR at its extreme
orientation at different time instants during free-fall at

Re = 1500: (a) t = 13, (b) t = 94, and (c) t = 129.

(a)

(b)

(c)

FIG. 15: 3D visualization of the wake structures using
Q-criterion (Q > 50) for particle MR at its extreme

orientation at different time instants during its free-fall at
Re = 1500: (a) t = 13, (b) t = 94, and (c) t = 129.
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FIG. 16: Comparison between the contribution (%) of each term of the wake momentum deficit (Eq. (6)-(8)) to the total
drag coefficient of particle CC (at Re = 500 (a) and at Re = 1500 (b)) and MR (at different time-steps (c)) and their final and

extreme orientations, respectively.
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