Search from over 60,000 research works

Advanced Search

Realizability of Point Processes

Full text not archived in this repository.
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Kuna, T., Lebowitz, J.L. and Speer, E.R. (2007) Realizability of Point Processes. Journal of Statistical Physics, 129 (3). pp. 417-439. ISSN 0022-4715 doi: 10.1007/s10955-007-9393-y

Abstract/Summary

There are various situations in which it is natural to ask whether a given collection of k functions, ρ j (r 1,…,r j ), j=1,…,k, defined on a set X, are the first k correlation functions of a point process on X. Here we describe some necessary and sufficient conditions on the ρ j ’s for this to be true. Our primary examples are X=ℝ d , X=ℤ d , and X an arbitrary finite set. In particular, we extend a result by Ambartzumian and Sukiasian showing realizability at sufficiently small densities ρ 1(r). Typically if any realizing process exists there will be many (even an uncountable number); in this case we prove, when X is a finite set, the existence of a realizing Gibbs measure with k body potentials which maximizes the entropy among all realizing measures. We also investigate in detail a simple example in which a uniform density ρ and translation invariant ρ 2 are specified on ℤ; there is a gap between our best upper bound on possible values of ρ and the largest ρ for which realizability can be established.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/1012
Item Type Article
Refereed Yes
Divisions Interdisciplinary Research Centres (IDRCs) > Centre for the Mathematics of Planet Earth (CMPE)
Science > School of Mathematical, Physical and Computational Sciences > Department of Mathematics and Statistics
Publisher Springer
Download/View statistics View download statistics for this item

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar