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Abstract

This thesis contributes to the literature on volatility forecasting, focusing on the

VIX index, the VIX futures and the VVIX. It consists of three main chapters.

The first contribution is the introduction of a new VIX forecasting method-

ology employing both filtered historical simulations and four well-established in-

dices. We examine the forecasting performance of three different GARCH models

from 2011-2017. Our empirical results show that this new method outperforms

the benchmark model which only uses the VIX index and assumes a normal dis-

tribution. Also, our proposed methodology is found to reduce the computational

time significantly, compared to the traditional model which uses cross-sectional

options prices.

The second contribution is studying the role of the VIX term structure in

predicting VIX futures prices. The estimation is carried out under the GJR

model, assuming the empirical innovation density under the risk-neutral measure.

Several models are employed differing in the data set used, i.e., futures data, or

the VIX term structure, or their combinations. We find that the use of the VIX

v
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term structure improves the VIX futures forecasts, especially for the long-term

VIX futures or when the VIX level is high. Also, the evidence from the 2020

COVID-19 crisis shows that using both the VIX term structure and the VIX

futures provides lower pricing errors compared to using futures data only.

The third contribution is an investigation on the optimal forecasts of the

VVIX. This thesis presents a comparison of VVIX forecasts based on three indi-

vidual models, eight combining methods and two LASSO-type regressions. Our

finding is that the simple median combining method gives the lowest forecasting

errors across the years among all the methods considered. Moreover, the model

selection results of LASSO suggest that instead of daily changes in the VVIX,

the changes in monthly VVIX are essential to predict the VVIX.
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Chapter 1

Introduction

1.1 Motivations

Stock market volatility plays a critical role in portfolio optimization, asset pricing

and risk management. In 1993, the Chicago Board Options Exchange (CBOE)

introduced the first volatility index, VIX, which offers a theoretical estimate of the

market’s future volatility. The VIX index reflects the expected volatility of the

S&P 500 index over the coming 30 days and is calculated from a panel of option

prices. The VIX index is often referred as the ’fear gauge’ (see Whaley, 2009). In

general, high VIX levels reflect the fear that the equity prices will decrease in the

future, while low VIX levels mirror greed among the investors and thus increasing

the likelihood of a market correction. In addition to the VIX, the CBOE also

established a set of volatility indices across different maturities to measure the

implied volatility term structure: the CBOE S&P 500 9-day Volatility Index

1



1.1. Motivations 2

(VIX9D), the CBOE S&P 500 3-month Volatility Index (VIX3M), the CBOE

S&P 500 6-month Volatility Index (VIX6M) and the CBOE S&P 500 1-year

Volatility Index (VIX1Y).

Notably, the VIX and the other volatility indices are not easily traded, al-

though theoretically it is possible to replicate a portfolio of the S&P 500 options

in the indices. To enable trading and hedging against changes in volatility, CBOE

launched VIX futures on March 26, 2004. Since its creation, VIX futures have

attracted a considerable amount of attention in past years given the fact that they

are very liquid in the market. The daily trading volume exceeds 200,000 contracts

in 2020 and corresponds roughly to 6 billion USD in market value1. Also, the

VIX futures is a much more convenient hedging tool than S&P500 index options

(see Szado, 2009).

To guide and inform the increasing number of investors in VIX derivatives,

CBOE published the volatility-of-volatility index, VVIX, on 14 March, 2012. The

VVIX reflects the risk-neutral volatility of volatility (vol-of-vol) using the same

methodology as the VIX, implied from VIX options instead of S&P 500 options.

It measures how market volatility varies in the future rather than measures the

volatility itself. The VVIX index has separate dynamics from the VIX and is an

important risk factor that affects the level of the VIX and VIX option returns

(see Huang et al., 2019a). Moreover, it conveys information to the VIX trading

1The data can be found from the CBOE website.
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community about the fair values of VIX futures2.

The focus of this thesis is on forecasting volatility, as an index or a derivative

instrument, using several well-established volatility indices. A number of studies

suggest that the predictive ability of the option implied volatility, such as the

VIX, outperforms traditional time-series volatility models based on historical ob-

servations, see, for example, Corrado and Miller (2005), Carr and Wu (2006),

Bandi and Perron (2006), etc. Also, forecasting the VIX index is essential for

trading strategies based on VIX futures and options either for trading volatility

or for hedging purposes (Konstantinidi et al., 2008; Carr and Lee, 2009; Fernan-

des et al., 2014). The traditional volatility forecasting literature is based on the

assumption of normality for return innovations and extracts information from

extensive options data. Alternatively, Chapter 2 proposes a faster VIX forecast-

ing method that assumes filtered historical density and uses different volatility

indices.

Given the fact that the VIX futures are the most liquid in the volatility fu-

tures market as discussed by Konstantinidi and Skiadopoulos (2011a), there are

numerous studies examining the VIX futures. Most studies concentrate on de-

veloping VIX futures pricing models: either with the underlying, i.e, the VIX

index, see, for example, Zhang and Zhu (2006), Zhu and Lian (2012), Xie et al.

(2020), etc; or using both the volatility indices and historical futures data, see,

2See CBOE VVIX whitepaper for more details. https://ww2.cboe.com/index/dashboard/vvix#vvix-
overview
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for example, Wang et al. (2017), Huang et al. (2019b). Chapter 3 investigates to

what extent the VIX term structure can help to predict the VIX futures prices.

More importantly, as in Chapter 2, we assume non-normal return innovations

using filtered historical simulation in volatility forecasting.

Furthermore, the accuracy in forecasting the VVIX index is critical to capture

the future tendency of both the VIX index and the VIX futures prices (Lin, 2007).

Also, incorporating the VVIX into models can significantly enhance the predictive

power compared to traditional volatility models (Jeon et al., 2020). However, the

existing literature mainly employs the VVIX as a proxy to study the characteris-

tic of the implied volatility-of-volatility, see, for example, Park (2015), Hollstein

and Prokopczuk (2018), Huang et al. (2019a). In Chapter 4, we seek to answer a

simple question: is there an optimal forecasting method for the VVIX index? It

is well-known in the forecasting literature that forecast combinations often out-

perform individual models (Becker and Clements, 2008; Patton and Sheppard,

2009; Wang et al., 2016). On the other hand, the least absolute shrinkage and

selection operator (LASSO) of Tibshirani (1996) is a desirable model when gen-

erating financial forecasts as argued by Audrino and Knaus (2016) and Zhang

et al. (2019a). Therefore, to answer the above question, we compare the VVIX

forecasting performance of thirteen different models across three categories, i.e.,

individual models, models combinations and LASSO-type models.

Overall, the evolution of the VIX in recent years, alongside the following
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launched VIX futures and the VVIX index, indicate a strong demand by financial

participants for volatility-related products. Therefore, forecasting VIX and its

related instruments are of great interest to both academic researchers and financial

practitioners. To the best of our knowledge, the literature on forecasting volatility,

which employs the volatility indices and assumes filtered historical returns, is

limited. The ultimate goal of this thesis is to analyse the forecasting models for

the VIX and its related products using the volatility indices.

1.2 Overview of the Thesis

This thesis discusses forecasting models for the VIX, the VIX futures and the

VVIX.

Firstly, this thesis proposes a new method to forecast the VIX which uses

filtered historical simulation (FHS) proposed by Barone-Adesi et al. (2008). The

non-normality of financial returns is well documented in the literature since Man-

delbrot (1963). On the other hand, in a discrete-time setting, the Generalized

Autoregressive Conditional Heteroscedasticity (GARCH) model introduced by

Engle (1982) and Bollerslev (1986) and its various extensions are very popular

in modelling volatility, as they can explain the volatility clustering and are easy

to estimate. Barone-Adesi et al. (2008) propose a new method to model the

future volatility which captures the non-normality of returns using FHS under

the GARCH framework of Glosten et al. (1993) (GJR). However, the estimation
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of such models uses a large number of cross-sections of option data and thus

is computationally intensive. Alternatively, recent papers show that estimating

GARCH models using VIX index information improves model performance and

saves computational time (e.g. Kanniainen et al., 2014).

In this thesis, we propose a new volatility forecasting approach using the fil-

tered historical simulation and four well-established volatility indices, i.e., VIX9D,

VIX, VIX3M and VIX6M. We estimate three different GARCH models: the clas-

sic GARCH(1,1) model of Bollerslev (1986), the non-linear asymmetric GARCH

model of Engle and Ng (1993) (NAGARCH) and the GJR model by Glosten et al.

(1993) in order to capture the leverage effect. Also, we choose the model of Hao

and Zhang (2013) as the benchmark, which assumes normal returns and only in-

cludes information on the 1-month VIX index. As robustness checks, we perform

the following: 1) examine our results across different forecasting horizons; 2) con-

sider alternative weights in the optimisation function; 3) calculate pricing error

statistics using different weighting approaches; and 4) extend the sample period

to include the 2008 financial crisis. In addition, we compare the computational

time of the proposed approach with options-based calibration as in Barone-Adesi

et al. (2008).

Our empirical analysis shows that the proposed estimation method outper-

forms the model of Hao and Zhang (2013) both in-sample and out-of-sample.

The NAGARCH model under the new method is superior to all the other mod-
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els for both one-week-ahead and four-week-ahead VIX forecasts, while the GJR

model based on the new method dominates for one-day-ahead forecasts. Ad-

ditionally, the use of volatility indices significantly reduces the computational

burden compared to the option-based pricing method.

Secondly, this thesis develops a VIX futures evaluation model using volatility

indices that fills the gap between the VIX futures pricing literature and the VIX

term structure literature. We employ the GJR model, which is calibrated from the

data using filtered historical simulation, to model the daily volatility. To explore

the effects of the VIX term structure on the performance of VIX futures pricing

models, we examine the forecasting performance of including data on the VIX

term structure. Given the two sources of information, i.e., the VIX futures data

and the VIX term structure (VIX9D, VIX, VIX3M, VIX6M and VIX1Y), seven

estimation methods are presented that differ in terms of the data used. We find

that the out-of-sample performance of the models that use the VIX term structure

and the VIX futures is not significantly different from the model that uses futures

data, but provides significant outperformance compared to the models which are

based on the VIX term structure.

Also, we perform the model confidence set procedure of Hansen et al. (2011)

for a detailed comparison of the pricing performance based on different time to

maturity and the levels of the VIX index. An impressive finding is that the use

of the VIX term structure improves the VIX futures forecasting when the VIX
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level is higher than 15 or with a maturity longer than 120 days. Meanwhile, the

evidence of the 2020 COVID-19 pandemic confirms that the addition of the VIX

term structure lowers the pricing errors when the market is volatile.

Furthermore, we apply the model of Xie et al. (2020) as the benchmark which

employs the GJR model assuming normally distributed innovations and is es-

timated using the VIX index. Our empirical results suggest that the proposed

pricing models based on the filtered historical simulations significantly outperform

the benchmark both in-sample and out-of-sample.

Thirdly, given the importance of the VVIX, this thesis endeavours to answer

the following question: is there an optimal forecasting method for the VVIX? To

answer this question, we employ three common models used in volatility forecast-

ing: the linear regression, autoregressive–moving-average (ARMA) model and the

heterogeneous autoregressive (HAR) model of Corsi (2009). Then eight popular

combining methods are implemented based on these three individual models to

generate the VVIX forecasts (see Rapach et al., 2010; Hsiao and Wan, 2014).

Also, we consider the original LASSO proposed by Tibshirani (1996) and the

elastic net of Zou and Hastie (2005) in the comparison, which results in thirteen

forecasting models in total.

Among all the models we consider, our empirical analysis shows that the

median combining method performs the best by providing the lowest squared

errors of the forecasts over the full sample period. Importantly, the results on
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LASSO-type models reveal that the daily changes in average monthly VVIX play

an important role in the forecasting of VVIX .

1.3 Original Contributions

The forecasting of the volatility of financial time series plays a critical role in asset

allocation and risk management. With the growing uses of the VIX and its related

products, forecasting the volatility indices becomes essential but challenging. This

thesis, which contains three main chapters, contributes to forecasting the VIX

index, the VIX futures and the VVIX, respectively.

(1) Our original contributions in forecasting the VIX index include:

• We propose the use of GARCH models with filtered historical simulations in

the VIX forecasting literature to capture the non-normal features of returns

data.

• We allow for flexible change of measure in the model, i.e., different param-

eters under the physical and risk-neutral volatility process.

• We compare three different models based on GARCH specifications: original

GARCH, GJR GARCH and NAGARCH.

• Instead of using cross-sectional options data, we consider another forward-

looking information in our estimation, which are the CBOE volatility in-

dices, i.e., VIX9D, VIX, VIX3M and VIX6M.
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• We demonstrate that the computational time of proposed method is reduced

significantly compared to option-based models.

(2) Secondly, our original contributions to the literature on forecasting the

VIX futures prices include:

• We develop a model estimation method for VIX futures prices by incorpo-

rating the volatility indices.

• We show that the addition of the VIX term structure improves the fore-

casting performance, especially for the long-term VIX futures or when the

level of the VIX is high.

• Differently from the majority of literature which assumes a normal distri-

bution for the returns, we apply the empirical innovation density extracted

from historical returns.

• We take the VVIX term structure into account when modelling the VIX

futures prices.

(3) Thirdly, our original contributions to the literature on forecasting the

VVIX include:

• We examine the daily behaviour of the VVIX time series.

• We compare thirteen different forecasting models/methods, which belong to

three categories: individual models, forecast combinations and LASSO-type

models.
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• We analyse the model selection results of LASSO-type models.

1.4 Outline of the Thesis

The rest of this thesis is organized as follows: Chapter 2 introduces a new VIX

forecast method using GARCH models based on the filtered historical simulation;

Chapter 3 investigates the effects of the VIX term structure on the performance

of VIX futures pricing models; Chapter 4 presents the forecasting performance

across several different forecasting methods/models. Chapter 5 summarises our

main findings and discusses further research that builds on the findings presented

in this thesis.

For a better reading experience, we make each chapter self-contained. As

such, we (re)introduce variables and abbreviations in each chapter. Whenever

possible, we attempt to follow consistent notations throughout this thesis.

Notes

1Please see Clemen (1989), Clements and Hendry (2004) and Timmermann (2006) for reviews

of forecast combinations.

2Konstantinidi and Skiadopoulos (2011b) suggest that the slope of yield curve has predicative

power for the VIX futures market, hence we also take this variable into consideration. We

examine the yield curve slope within different maturities; however, the estimated regression

shows that the information on the yield curve does not explain the daily changes in the VVIX

index.
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3We compare the two regressions, i.e, the regression using VVIX and the regression using

the changes. Interestingly, all the coefficients in the regression using changes are significantly

different from zero at 5%, while only the coefficient of lagged daily VVIX is significant in the

regression using the VVIX index.

4In this study, we use the trading day count convention. Hence the weekly and monthly

VVIX levels are calculated as the average values over the past 5 and 22 days, respectively.

5We also perform the max-min normalisation to scale the features; the results are similar

and available on request.

6See Patton (2011a) for a range of loss functions which are employed in the literature of

volatility forecast evaluation.

7Patton (2011a) shows that, among all the loss functions, only MSE and QLIKE are robust

to the noise in the volatility proxy.



Chapter 2

Forecasting VIX using filtered

historical simulation

2.1 Introduction

There is substantial empirical research showing that volatility clustering plays

an important role in modelling financial time series, such as equity returns. The

Generalized Autoregressive Conditional Heteroscedasticity (GARCH) framework

introduced by Engle (1982) and Bollerslev (1986) allows the volatility to be time-

varying – initially assuming normally distributed innovations. However, the non-

normality of the return innovations is well documented in the finance literature

since Mandelbrot (1963). Consequently, GARCH models with non-normal in-

novations (assuming more flexible distributions such as the student’s t or the

13



2.1. Introduction 14

generalised error distribution) gained popularity - see, for example, Bollerslev

(1987) and Nelson (1991). Other approaches can be found in Christoffersen et al.

(2006), Stentoft (2008) and Christoffersen et al. (2009). The recent option pricing

literature captures the non-normality of returns by employing filtered historical

simulation (FHS) as in Barone-Adesi et al. (2008), where the empirical innova-

tion density is extracted from historical index returns, and these methods can be

used in volatility forecasting. Nonetheless, the estimation of such models uses

cross-sectional option prices and is computationally intensive.

In this chapter, we propose an alternative, faster approach to forecast volatil-

ity, which uses volatility indices information. However, our approach is based on

not only the 1-month VIX index, but the VIX indices at all available maturities (9

days, 1 month, 3 months and 6 months)1, and employs filtered historical returns.

VIX9D, VIX3M and VIX6M measure the expected annualised volatility in the

coming days as well as the VIX index, although with different maturities, they are

informative for future VIX values. We provide evidence that our approach out-

performs the Normal-VIX model of Hao and Zhang (2013) both in-sample and

out-of-sample and leads to a significant reduction of computational time when

compared with the model of Barone-Adesi et al. (2008).

The traditional way to estimate GARCH parameters is via maximum like-

1The new indices (VIX9D, VIX3M and VIX6M) are derived by applying the VIX algorithm
to options on the S & P 500 Index, and use SPX options with expiration dates that bracket a
different period of time, e.g., the VIX9D is calculated using two ‘near-term’ option contracts in
which one has maturity less than 9 days and the other has maturity more than 9 days.



2.1. Introduction 15

lihood estimation (MLE) using equity returns which produces estimates under

the physical measure. In order to price options, non-linear least-squares (NLS),

based on option prices, are more desirable than using historical returns (see, for

example, Christoffersen and Jacobs, 2004; Christoffersen et al., 2013) since option

prices contain forward-looking information. However, as pointed out by Duan and

Yeh (2010) and Kanniainen et al. (2014), estimating GARCH models using a large

amount of cross-sections of option data increases the computational burden.

Several recent papers focus on using VIX index information to estimate GARCH

models. The VIX index, introduced by the Chicago Board Options Exchange

(CBOE) in 1993, reflects investor fear levels and market sentiment on a day-by-

day basis, showing the risk-neutral expected annualised volatility of the S&P 500

over the next 30 days. Therefore, the risk-neutral GARCH parameters are esti-

mated based on the information provided by the VIX index. For example, Hao

and Zhang (2013) estimate GARCH models by proposing a joint likelihood func-

tion using both returns and the VIX. Their work is carried out under the locally

risk-neutral valuation relationship proposed by Duan (1995). Kanniainen et al.

(2014) suggest that calculating spot volatilities with VIX data, rather than from

returns, improves the performance of GARCH option pricing. Also, they point

out that a joint maximum likelihood function using returns and the VIX gener-

ates better estimates than a maximum likelihood function based on returns only

in terms of option pricing errors. Liu et al. (2015) calibrate three different types
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of GARCH models on the VIX index of the previous trading day. They show that

their estimates produce reasonable one-day out-of-sample VIX forecasts. Wang

et al. (2017) propose a closed-form formula for pricing VIX futures based on the

Heston and Nandi (2000) GARCH model, where the parameters are estimated

using both the VIX and VIX futures prices. Also, several studies use GARCH

estimates to forecast VIX as an extended application of GARCH pricing models;

see, for instance, Barone-Adesi et al. (2008) and Byun and Min (2013). Other

related articles include Kambouroudis and McMillan (2016) who consider VIX

as an exogenous variable within a selection of GARCH models, and Huang et al.

(2019b) who estimate the extended leverage heterogeneous autoregressive gamma

(LHARG) model of Majewski et al. (2015) using both the VIX term structure

and the VIX futures.

However, the current literature on GARCH option pricing using CBOE VIX

considers only normally distributed returns. In the approach presented in this

chapter we not only use filtered historical innovations, but also four volatility

indices to estimate GARCH models. Following Barone-Adesi et al. (2008), we

allow the volatility parameters to be different under the physical and the risk-

neutral measures. Byun and Min (2013) point out that using the same values

for the one-day-ahead conditional volatility under both measures, as in Barone-

Adesi et al. (2008), will lead to unstable estimated parameters. Therefore, in this

chapter, following Byun and Min (2013), we consider the one-day-ahead volatility
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to be different under the two measures. Instead of using cross-sectional option

prices leading to time-consuming estimations, our estimation is based on VIX

data that reduces estimation time significantly. This is in line with Kanniainen

et al. (2014) who point out that the joint estimation with returns and VIX saves

computational time, especially for non-affine GARCH models, which do not have

closed-form solutions of option prices. We compare the forecasting performance

of our proposed model with the Normal-VIX model of Hao and Zhang (2013).

Also, we compare our model with the FHS-options model of Barone-Adesi et al.

(2008) from a computational burden perspective.

To our knowledge, this is the first study in which the four well-established

VIX indices are used in volatility modelling based on GARCH. As such, from

a VIX forecasting perspective, our method improves on the traditional GARCH

models in three different ways. First, the empirical distribution of innovations

captures excess skewness, kurtosis, and other non-normal features of return data.

Second, the flexible change of measure (different parameters for the risk-neutral

and physical volatility processes) induces better pricing performance both in-

sample and out-of-sample. Third, we consider forward-looking information in

our estimation, but instead of option prices we use the CBOE volatility indices

(VIX9D, VIX, VIX3M and VIX6M) in order to significantly reduce computational

time when compared to the FHS-options method of Barone-Adesi et al. (2008).

The remainder of this chapter is organized as follows. Section 2.2 presents the
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new estimation method that uses the filtered historical simulation and the CBOE

volatility indices. Section 2.3 provides the empirical results and analysis, Section

2.4 details a series of robustness checks, and Section 2.5 concludes the study.

2.2 The models

In this section, we introduce the different GARCH model estimations we inves-

tigate in this chapter. We first discuss two competing approaches: the model of

Barone-Adesi et al. (2008) (the FHS-options method, hereafter) and the one of

Hao and Zhang (2013) (the Normal-VIX method, hereafter). The FHS-options

method is used to estimate model parameters assuming non-normal innovations

and uses option prices, while the Normal-VIX method combines normal innova-

tions with the CBOE VIX information. Subsequently, motivated by the bench-

mark models, we propose a new approach to estimate GARCH models using

non-normal innovations and volatility indices. To show the relationship between

the daily conditional variance and the volatility indices, we explain the CBOE

volatility indices in a discrete-time setting.

2.2.1 The FHS-options method

It is a well-established fact that returns have fat left tails, which refers to nega-

tive skewness and leptokurtosis. Barone-Adesi et al. (2008) employ the filtered
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historical simulation to accommodate for these nonstandard features of the re-

turn innovations by using the empirical innovation density. Also, they use the

GJR GARCH model of Glosten et al. (1993) (GJR, hereafter) to account for the

leverage effect, i.e., negative returns having more impact on the volatility than

positive returns.

Barone-Adesi et al. (2008) assume that in each period under the physical

measure the asset return is assumed to follow the asymmetric GJR model below:

ln(St/St−1) = µ+ εt, εt = σtzt

σ2
t = ω + αε2t−1 + βσ2

t−1 + γIt−1ε
2
t−1,

(2.2.1)

where

It−1 =


1, εt−1 < 0

0, εt−1 ≥ 0.

St is the stock price at time t, µ is the expected return, and σ2
t is the conditional

variance of the log returns ln(St/St−1), where zt | Ft−1 ∼ F (0, 1), and Ft is

the information set up to time t. F is some unknown distribution function with

zero mean and unit variance, which we estimate using the empirical distribution

function. γ > 0 captures the asymmetric response of volatility to positive and

negative returns.

On the other hand, under the risk-neutral measure the stock process is as-

sumed to follow:
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ln(Si/Si−1) = µ∗ + εi, εi = σizi

σ2
i = ω∗ + α∗ε2i−1 + β∗σ2

i−1 + γ∗Ii−1ε
2
i−1,

(2.2.2)

The notation used is the same as in Barone-Adesi et al. (2008): µ∗ is the risk-

neutral drift which ensures that the expected stock return equals the risk-free rate,

and zi is assumed to follow the same distribution function F (0, 1) as under the

physical measure for i > t. Under the risk-neutral measure the volatility dynamics

also follow an asymmetric GJR process. Differently from the traditional GARCH

estimation procedure which specifies the change of probability measure from P

to Q, this method directly calibrates a new set of risk-neutral parameters using

S&P 500 index options.

2.2.2 The Normal-VIX method

Hao and Zhang (2013) use the information of CBOE VIX to GARCH model

estimation. They calculate the squared VIX as a risk-neutral expectation of the

arithmetic average variance over the next 21 trading days under Duan (1995)’s

locally risk-neutral valuation relationship (LRNVR) framework2. The estimation

is then carried out within a set of GARCH model specifications using both the

2More details about the relationship between CBOE VIX and the daily conditional variance
are discussed in Section 2.2.3.
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returns and the VIX. The GJR model defined under the LRNVR is3

Physical measure: ln(St/St−1) = rt + λσt −
1

2
σ2
t + εt, εt = σtzt

σ2
t = ω + αε2t−1 + βσ2

t−1 + γIt−1ε
2
t−1

Risk-neutral measure: ln(St/St−1) = rt −
1

2
σ2
t + ξt, ξt = σtzt

σ2
t = ω + α(ξt−1 − λσt−1)2 + βσ2

t−1 + γIt−1(ξt−1 − λσt−1)2

(2.2.3)

where rt is the risk-free rate at time t, λ is the risk premium, zt | Ft−1 ∼ N(0, 1),

and {ω, α, β, γ} are the GJR parameters.

The implied VIX at time t is a linear function of the conditional variance in

the next period under the LRNVR:

V ixt = A+Bσ2
t+1, (2.2.4)

where

V ixt = (VIXt/100)2/252,

A =
ω

1− η
(1−B),

B =
1− ηn

n(1− η)
,

η = α(1 + λ2) + β + γS.

(2.2.5)

3See Hao and Zhang (2013) for other GARCH specifications under the LRNVR.
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If zt = ξt/σt follows i.i.d.N(0, 1), then S = [ λ√
2π
e−

λ2

2 + (1 + λ2)N(λ)]. Hao and

Zhang (2013) propose a joint log-likelihood estimation using the CBOE VIX and

the returns.

2.2.3 CBOE volatility indices

In this section, we briefly describe the CBOE volatility indices which measure the

market expectation of volatility implied by option prices. The CBOE VIX, the

first introduced volatility index, is often referred to as the ”market fear gauge”

(see Whaley, 2009). Since its creation, it has become the standard measure

of volatility risk for practitioners. Nowadays, the investors are able to trade

volatility via VIX derivatives as the VIX itself is not a tradable asset (see Menćıa

and Sentana, 2013). This chapter focuses on volatility indices calculated from

S&P 500 options data, i.e., VIX, the CBOE short-term volatility index (VIX9D),

the CBOE 3-month volatility index (VIX3M) and the CBOE mid-term volatility

index (VIX6M).

According to Carr and Madan (1998) and Demeterfi et al. (1999), the VIX

index is calculated from out-of-the-money (OTM) S&P 500 index options (put
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and call) using the formula4,

σ2 =
2

T

∑
i

4Ki

K2
i

eRTQ(Ki)−
1

T
[
F

K0

− 1]2, (2.2.6)

where T is 30 days, F denotes the implied forward index level derived from index

option prices by using the put-call parity. Ki is the strike price of the ith OTM

option, 4Ki is the interval between strike prices, and K0 is the first strike that is

below the forward index level F . Q(Ki) is the midpoint of the bid-ask spread of

each option with strike Ki. Then VIX is defined as σ× 100. VIX2 represents the

S&P 500 30-day variance swap rate. This can be interpreted as the expectation

of the integrated variance of the following 30 days under the risk-neutral measure.

Formally, in a discrete-time setting, at time t we have:

VIXt = 100 ∗

√√√√ τ

T
∗

30∑
k=1

EQ[σ2
t+k | Ft]. (2.2.7)

where EQ[·] is the expectation under the risk-neutral measure. When applying

the calendar day count convention, τ = 365 is the annualising parameter and

T = 30 is the number of calendar days in a month.5 Then, VIX9D, VIX3M and

VIX6M are calculated in a similar way to VIX, except that the VIX represents a

constant 30 calendar days ahead volatility, whereas VIX9D, VIX3M and VIX6M

4The original VIX index, proposed by Whaley (1993), was the implied volatility of the at-
the-money (ATM) S&P 100 options. In 2003, CBOE introduces the new VIX index which is
based on the S&P 500 options, and the old VIX is then renamed as VXO.

5When trading day count convention is used, τ = 252 and T = 22.
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measure the implied volatility of the S&P 500 options for the next nine days,

three months and six months, respectively.

2.2.4 The FHS-VI method

In this section, we propose a new approach to estimate GARCH models using

the filtered historical returns and volatility indices; we investigate three different

GARCH models. We employ the classic GARCH(1,1) model of Bollerslev (1986)

(GARCH, hereafter), the nonlinear asymmetric GARCH model of Engle and Ng

(1993) (NAGARCH, hereafter) and the GJR model by Glosten et al. (1993) in

order to capture the leverage effect.

The specification of asset returns is the same in all three models we investigate.

Under the physical measure P, the logarithm of returns follows the dynamic:

ln(St/St−1) = µt − κt + εt, εt = σtzt (2.2.8)

where St is the stock price at time t, µt is the expected return, σt is the conditional

volatility of the log return ln(St/St−1), zt | Ft−1 ∼ F (0, 1), Ft−1 is the information

set up to time t − 1. F is some unknown distribution function with zero mean

and unit variance, which we estimate using the empirical distribution function.

κt is the mean correction factor defined as:

κt = ln(Et−1[exp{εt}]) (2.2.9)
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We have:

Et−1[St/St−1] = Et−1[exp{µt − κt + εt}] = exp{µt}. (2.2.10)

Motivated by Christoffersen and Jacobs (2004), the conditional variance dy-

namics of the three GARCH models are nested in the general form below:

σ2
t = ω + βσ2

t−1 + g(εt−1) (2.2.11)

The different GARCH models have different expressions for the innovation func-

tion g :

GARCH: g(εt−1) = αε2t−1

NAGARCH: g(εt−1) = α(εt−1 − θσt−1)2

GJR: g(εt−1) = [α + γI(εt−1 < 0)]ε2t−1

(2.2.12)

For the NAGARCH and GJR models, a positive θ and γ ensure an asymmetric

response of the volatility to positive and negative returns, i.e., negative returns

increase future volatility by a larger amount than positive returns of the same

magnitude.

When assuming that the return innovations are normally distributed, the

GARCH models are often estimated by the maximum likelihood estimation (MLE)

method. Bollerslev and Wooldridge (1992) demonstrate that this method yields
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consistent estimates, even when the normality assumption is violated. The esti-

mation procedure is then called quasi-maximum likelihood estimation (QMLE).

Under the physical measure, we perform QMLE using the historical log-returns

{Rt = ln(St/St−1); t = 1, 2, ..., n}. The estimates are obtained by maximising the

following log-likelihood function for the GARCH models in equation (2.2.11):

lnLR = −n
2

ln(2π)− 1

2

n∑
t=1

{
ln(σ2

t ) +
(Rt − µt + κt)

2

σ2
t

}
(2.2.13)

Given the estimates, the spot variance σ2
t is updated according to the return

dynamics.

Under the risk-neutral measure we have that:

ln(St/St−1) = rt − κ∗t + ε∗t , ε∗t = σ∗t z
∗
t (2.2.14)

where rt is the risk-free rate at time t which is same as in the LRNVR framework

of equation (2.2.3), and κ∗t is the mean correction factor under the risk-neutral

measure:

κ∗t = ln(EQ
t−1[exp{ε∗t}]) (2.2.15)

so that

Et−1[St/St−1] = Et−1[exp{rt − κ∗t + ε∗t}] = exp{rt}. (2.2.16)



2.2. The models 27

The conditional variance dynamics are as follows:

σ∗2t = ω∗ + β∗σ∗2t−1 + g∗(ε∗t−1) (2.2.17)

where for the different models we have:

GARCH: g∗(ε∗t−1) = α∗ε∗2t−1

NAGARCH: g∗(ε∗t−1) = α∗(ε∗t−1 − θ∗σ∗t−1)2

GJR: g∗(ε∗t−1) = [α∗ + γ∗I(ε∗t−1 < 0)]ε∗2t−1.

(2.2.18)

To distinguish from the spot variance under the physical measure σ2
t , the risk-

neutral variance is denoted by σ∗2t . Whilst Barone-Adesi et al. (2008) assume that

the spot variance is the same under the physical and risk-neutral measures, Byun

and Min (2013) show that a model provides more accurate pricing performance

by allowing the risk-neutral spot variance to be different from the physical one.

Also, Kanniainen et al. (2014) demonstrate that extracting the spot volatility

from the VIX index can improve on the model’s performance compared with

calculating spot volatility using the series of the underlying asset returns. The

difference is driven by the conditional skewness and excess kurtosis as shown in

Christoffersen et al. (2009). For a given predetermined sequence {νt}, they define
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the Radon-Nikodym derivative as follows:

dQ

dP
| Ft = exp

(
−

t∑
i=1

(νiεi + Ψi(νi))

)
(2.2.19)

where Ft is the information set up to time t, Ψt(u) is the logarithm of the moment

generating function:

Et−1[exp(−uεt)] ≡ exp(Ψt(u)). (2.2.20)

The mean correction factor κt in equation (2.2.8) thus can be viewed as Ψt(−1).

The authors then demonstrate the existence of an equivalent martingale measure

and show that:

σ∗2t ≈ σ2
t − skewtσ3

t νt +
kurtt

2
σ4
t ν

2
t (2.2.21)

where νt is an approximation of the modified Sharpe ratio:

νt ≈
µt − rt
σ2
t

+
1

2
− κt
σ2
t

(2.2.22)

Therefore, with a negative skewness and positive excess kurtosis, the risk-neutral

conditional variance is greater than the conditional variance under the physical

measure6. In this chapter, we allow σ∗2t to be different from σ2
t by estimating the

risk-neutral spot variance σ∗2t from the information on the volatility index.

Specifically, following Byun and Min (2013), we allow the risk-neutral spot

6See Christoffersen et al. (2009) for more details.
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variance to be different from the physical one. In addition, a new set of risk-

neutral parameters are calibrated by using information on the CBOE volatility

indices directly.7 Since the distribution of the future return innovations cannot

be derived analytically, Monte Carlo simulations are used in the computation of

the GARCH conditional variance. Estimates are then found by minimising the

mean squared error between the prices given by the model and the market prices.

The estimation process is discussed in the next section.

2.2.5 Estimation using the FHS-VI method

This section introduces a new approach to calibrate the GARCH models to the

information provided by the volatility indices. The calibration is based on the

filtered historical simulation method introduced by Barone-Adesi et al. (2008).

They estimate the GJR model by minimising the errors between the simulated

option prices and the S&P 500 option prices. To ensure better pricing perfor-

mance, they calibrate the GJR model to option prices of a large sample size of

three years, i.e., 29,211 OTM call and put options in total. This requires inten-

sive computation and is time-consuming. Hao and Zhang (2013) and Kanniainen

et al. (2014) show that using information on CBOE VIX can improve the pricing

performance of GARCH models whilst avoiding costly computations. Here we

7Barone-Adesi et al. (2008) show that the flexible change of measure achieves a better pricing
performance than other competing GARCH option pricing models, such as the ad hoc Black-
Scholes model introduced by Dumas et al. (1998), the Heston and Nandi (2000) GARCH model,
and the GARCH model with inverse Gaussian innovations of Christoffersen et al. (2006).
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propose a new extension, calibrating model parameters assuming filtered histori-

cal returns and using CBOE volatility indices, which reduces the computational

burden significantly.

The estimation procedure is:

1. Under the physical measure, the GARCH models are estimated on each

Wednesday which is least likely to be a holiday or affected by the weekend

effect. The GARCH parameters {ω, α, β, (γ), (θ)} are estimated by max-

imising the log-likelihood function in equation (2.2.13) with 3,500 historical

returns (daily)89. Thus, the return innovations {ẑt} are acquired. We repeat

this estimation every week.

2. Under the risk-neutral measure, a daily variance series is simulated for the

next 6 months using the variance dynamics of equation (2.2.17)10. The

GARCH parameters are initialized with {ω̂, α̂, β̂, (γ̂), (θ̂)} which are the

model estimates obtained under the physical measure in the step 1. The spot

variance here is an unknown parameter in the calibration procedure11. The

conditional variance of the following 6 months {σ∗2t+1, σ
∗2
t+2..., σ

∗2
t+126}12 are

8To be aligned with the model of Barone-Adesi et al. (2008), we also use 3,500 historical
returns to estimate the GJR GARCH model under the physical measure. Moreover, Bollerslev
and Wooldridge (1992) point out that a large sample size will ensure the consistency of the
quasi-maximum likelihood estimation.

9We use the unconditional variance as the initial variance in the estimation. µt − κt is also
estimated in this step.

10Liu et al. (2015) propose a closed-form solution under this framework.
11Byun and Min (2013) show that, instead of just simply improving the goodness of fit, the

estimated spot variance can be treated as the true spot variance under the risk-neutral measure.
12In this study, we use the trading day count convention, as the innovation distribution is

estimated with trading days returns.
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then updated by each day drawing an observation from the past innovations

of {ẑt}.

3. N simulated sample paths are generated by repeating the procedure in step

2. The expectation of the risk-neutral conditional variance for the following

ith day can be computed as: EQ
t [σ∗2t+i] = 1

N

∑N
n=1 σ

∗(n)
t+i , where σ

∗(n)
t+i is the

simulated conditional variance at time t+ i in the nth sample path and N

is the total number of simulated paths. In this chapter, we use N = 50, 000

paths13.

4. According to the definition of VIX and equation (2.2.7), the GARCH model

implied VIX (model VIX, hereafter) under the trading day count convention

can be calculated as:

VIXmodel
t = 100 ∗

√√√√252

22
∗

22∑
i=1

EQ
t [σ∗2t+i] (2.2.23)

Similarly:

VIX9Dmodel
t = 100 ∗

√√√√252

7
∗

7∑
i=1

EQ
t [σ∗2t+i] (2.2.24)

VIX3Mmodel
t = 100 ∗

√√√√252

63
∗

63∑
i=1

EQ
t [σ∗2t+i] (2.2.25)

13Both Barone-Adesi et al. (2008) and Byun and Min (2013) calibrate risk-neutral GARCH
parameters using a cross-section of option prices, producing 20,000 and 50,000 simulation paths,
respectively. More simulation paths could also be considered.
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VIX6Mmodel
t = 100 ∗

√√√√252

126
∗

126∑
i=1

EQ
t [σ∗2t+i] (2.2.26)

5. The optimisation is then achieved by minimising the root mean square er-

ror (RMSE) between the model volatility index and the market volatility

index14: √√√√ 4∑
k=1

[
wk ∗

(
VI(k)market − VI(k)model

)2]
(2.2.27)

with VI(k)market denoting the market prices of VIX, VIX9D, VIX3M and

VIX6M, respectively, VI(k)model standing for the GARCH model implied

volatility index produced in step 4, and here we use wk = 0.25 representing

equal weights for each index.

2.2.6 Model evaluation

To measure the quality of fit for the pricing models in-sample, we calculate several

measures: the mean of absolute errors (MAE) and the root mean squared error

(RMSE). These are defined as:

MAE =
1

M

M∑
i=1

4∑
k=1

[
wk ∗ |VI(k)marketi − VI(k)modeli |

]
(2.2.28)

14The alternative function, e.g., the relative measure, also could be considered in the opti-
mization.
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RMSE =

√√√√ 1

M

M∑
i=1

4∑
k=1

[
wk ∗

(
VI

(k)market
i − VI(k)modeli

)2]
(2.2.29)

where wk = 0.25 is the weight of each index assuming equal weighting, M is

the number of total observations in a year, VI
(k)market
i and VI

(k)model
i refer to the

market price and the model price of different volatility indices, respectively.

We use four different volatility indices to estimate the models, while the bench-

mark model only uses the VIX index. Minimising the errors between the market

prices and model prices will place a greater weight on the volatility index with a

higher value. Therefore, we also report the MAE in relative terms (MAE%), i.e.,

the percentage of MAE compared to the average market price; and the RMSE in

relative terms (RMSE%), i.e., the percentage of RMSE compared to the average

market price.

Patton (2011b) recommends the use of two loss functions, i.e., MSE and

QLIKE, as these are the only ones that are robust to noise in the volatility proxy.

Hence, we also report QLIKE values, which are defined as (we use wk = 0.25):

QLIKE =
1

M

M∑
i=1

4∑
k=1

[
wk ∗

(
VI

(k)market
i

2

VI
(k)model
i

2 − log(
VI

(k)market
i

2

VI
(k)model
i

2 )− 1

)]
. (2.2.30)

To compare our approach with the Normal-VIX model, we also assess the

out-of-sample pricing performance in the following way: for each Wednesday in
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our sample period, the in-sample parameter estimates from Section 2.3.2 are

used to forecast the VIX index for the following Wednesday. For out-of-sample

comparison, we use the mean squared error (MSE) to evaluate the forecasting

accuracy of six GARCH models, as follows:

MSE =
1

M

M∑
i=1

(
VIXmodel

i − VIXmarket
i

)2

(2.2.31)

where VIXmodel
i is the one week ahead VIX produced by the models, and VIXmarket

i

is the corresponding market price of the CBOE VIX.

Smaller forecasting errors indicate the predictive superiority of a given model.

However, one may want to know whether a model has statistically significant

superior forecasting ability. To address this, we use the approach proposed by

Diebold and Mariano (1995) to test the equal accuracy of two different forecasting

models. Since we estimate our models on a finite window of data, in our case, the

DM test coincides with the test of Giacomini and White (2006), which applies

to nested models. The two sets of forecast errors are defined as e1,t and e2,t,

respectively. The function g(·) is a loss function which typically is the squared

error loss, i.e., e21,t and e22,t or absolute error loss |e1,t| and |e2,t|. Then the loss

differential between the two forecasts is dt = g(e1,t)− g(e2,t). Therefore, the null

hypothesis of equal forecast accuracy can be expressed as on expectation of zero

for the loss differential E[dt] = 0. Under fairly weak conditions, the DM test
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statistic:

DM =
d̄√

2πf̂d(0)/T
(2.2.32)

has an asymptotic standard normal distribution under the null hypothesis, where

T is the number of total observations; d̄ is the sample mean of the loss differential

d̄ = 1
T

∑T
t=1 dt and 2πf̂d(0) is a consistent estimator of the asymptotic variance.

In this chapter, the DM test is calculated based on the MSE of the different

GARCH models.

The DM test is only used for pairwise testing of two models. In order to

test whether a particular forecasting model significantly outperforms a set of

competing models, we employ the superior predictive ability (SPA) test proposed

by Hansen (2005). This test uses the loss differential defined as dk,t = g(e0,t) −

g(ek,t), where g(e0,t) and g(ek,t) are the values of the loss function g(·) at time t for

the base model and m competing models, for k = 1, 2, ...,m. The null hypothesis

that the base model is not outperformed by its competitors can be written as

max
k=1,...,m

E[dk,t] ≤ 0. Then the statistic for the SPA test is calculated as:

T SPA = max
k=1,...,m

T 1/2d̄k
ω̂k

(2.2.33)

where d̄k is the sample mean of the loss function for model k, d̄k = 1
T

∑T
t=1 dk,t and

ω̂2
k is a consistent estimator of ω2

k = var(T 1/2d̄k). The distribution and the p-value

of T SPA can be obtained by using a stationary bootstrap procedure as in Hansen
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(2005). The higher the p-value, the less likely that the null hypothesis is rejected,

which means that the base model has superior forecasting ability compared to

the set of competing models.

2.3 Empirical analysis

2.3.1 Data

The CBOE volatility indices used in this chapter are the VIX, VIX9D, VIX3M

and VIX6M, downloaded from the CBOE website. Since the VIX9D data is

available from 2 January 2011, our sample data is from 2 January 2011 to 29

December 2017.15 The VIX information for the same period is also used to

estimate the Normal-VIX model. The three months Treasury bill rate is used

as the risk-free rate which is downloaded from the U.S. Department of Treasury

website. In addition, to compare our approach with the FHS-options method, we

use European options on the S&P 500 index from 2 January 2002 to 30 December

2017, downloaded from OptionMetrics.16

15The starting dates of VIX, VIX3M and VIX6M are 2 January 2004, 4 December 2007 and
7 January 2008, respectively.

16We follow the same criteria of Barone-Adesi et al. (2008) to sort data: (1) only use the out-
of-the-money European options since they are more actively traded than in-the-money options.
(2) choose options which mature in more than 10 days and less than 360 days. (3) only include
options which cost more than $0.05. (4) options with implied volatility value larger than 70%
are excluded. This yields a sample of 882,009 observations in total. To compare with the
FHS-options model, we choose the same start date as in Barone-Adesi et al. (2008).
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Figure 2.3.1: The dynamics of the CBOE volatility indices between 03 Jan-
uary, 2011 and 29 December, 2017
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Figure 2.3.1 shows the dynamics of the four CBOE volatility indices during

the sample period. We observe that the four indices experience the same pattern

of fluctuations, i.e., a sharp increase and then drop in 2011-2012 and 2015-2016.

Furthermore, for most of the days in the sample, VIX6M has the highest values

while VIX9D has the lowest values among the indices. The difference in the price

pattern can be explained as longer maturity means more volatility due to the

uncertainty in the future.

2.3.2 In-sample model comparison

In this section, we carry out the estimation of the different GARCH models

using different methods described in Section 2.2. Then we compare the in-sample

performance of the GARCH, GJR and NAGARCH models under the FHS-VI

and the Normal-VIX frameworks.

We first discuss the estimation results of the GARCH models using different
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methods. Table 2.3.1 reports the statistics (mean and standard deviation) of the

parameter estimates obtained using volatility indices-, options- and VIX-based

estimation procedures, i.e., FHS-VI, FHS-options and Normal-VIX, for the year

2017. For the GJR and NAGARCH models, estimates of γ and θ larger than zero

show that negative returns affect the conditional variance more than positive re-

turns, i.e. evidence of leverage effect. The table also presents the annualised

volatilities implied by the models. The difference between the annualised condi-

tional volatilities under physical and risk-neutral measures captures the volatility

risk premium (VRP). When VRP is negative, i.e., the risk-neutral volatility is

higher than the physical volatility as shown in Table 2.3.117, then investors de-

mand a premium to bear the risks in future realised volatilities. This finding is in

line with a number of empirical studies documenting a negative VRP, including

Carr and Wu (2009), Bollerslev et al. (2011) and Bekaert and Hoerova (2014).

To evaluate how well the different models estimate the volatility process, Table

2.3.2 reports the in-sample pricing errors. By looking at the pricing errors by

years, the FHS-VI method outperforms the Normal-VIX method in fitting the

volatility indices, regardless of the model or the measurement of fit. This is not

surprising as the FHS-VI method employs the empirical innovation distribution

and the flexible change of measure, which enhance the model’s flexibility to fit the

volatility indices. Notably, the GJR model under the FHS-VI framework yields

17In this thesis, the VRP is calculated as the annualised volatility under the physical measure
minus the annualised volatility under the risk-neutral measure, thus a constant.
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the best results across the models considering the pricing errors over the years.

Following Hao and Zhang (2013), we test whether the pricing errors have zero

mean and in the last column for each model of Table 2 we present the p-values

of this t-test. Consistent with Hao and Zhang (2013), the model prices implied

by the Normal-VIX method are significantly different from the market prices for

all three GARCH models we investigate. A visual presentation of the fit of the

different GARCH models to the CBOE VIX, using different estimation methods,

can be found in the Supplementary Appendix. This is largely similar to Figure

2.3.2, which shows the out-of-sample VIX forecasts for different models.

2.3.3 Out-of-sample model comparison

To test how the FHS-VI method fits the volatility indices out-of-sample, we gen-

erate one-week-ahead volatility forecasts of the GARCH models using different

estimation methods. Table 2.3.3 shows the out-of-sample pricing errors using

the various measures. Importantly, the out-of-sample results confirm that across

the years the FHS-VI method has smaller pricing errors than the Normal-VIX

method.

To offer a fair comparison of the two methods (FHS-VI and Normal-VIX), Ta-

ble 2.3.4 summarises the forecast mean squared errors based only on the CBOE

VIX. In all the years considered, the NAGARCH model estimated using the FHS-

VI method dominates. To determine whether the forecasts produced by the two
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different methods have a statistically significant difference, we also present the

values of the DM test statistics in Panel A of Table 2.3.4 (denoted by DM1 in

the table). In 5 out of 7 years, the GARCH model based on the FHS-VI method

has negative DM statistics, which indicates that it generate smaller average MSE

than the GARCH model based on the Normal-VIX method. Both the GJR and

NAGARCH models that use FHS-VI produce lower average MSE than the corre-

sponding models based on the Normal-VIX method for all the years. Surprisingly,

for the year 2014, none of the models that use the FHS-VI method produces more

accurate forecasts than those based on the Normal-VIX method. For the year

2017, only the NAGARCH model based on the FHS-VI outperforms its counter-

part.

Interestingly, instead of the GJR model that proved superior in the in-sample

period, the NAGARCH model has in general the smallest out-of-sample pricing

errors. One possible reason is that the GJR model overfits the data in-sample.

Panel A of Table 2.3.4 also considers the NAGARCH model based on the FHS-VI

method as the benchmark model (denoted by DM2). All the DM2 statistics re-

ported in Panel A are positive, indicating that the benchmark model has smaller

average MSE values than the other models for all the years. Under the FHS-

VI framework, the other two models, i.e., the GARCH and the GJR models,

are not significantly different from the NAGARCH in their ability to produce

VIX forecasts considering the yearly results. However, when comparing differ-
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ent estimation methods, the NAGARCH model that uses the FHS-VI method

outperforms the models that use the Normal-VIX method.

In Table 2.3.5, we report the p-values of the SPA test with the null hypothesis

that the benchmark model is not inferior to the other models. We consider each

model as a benchmark model whilst the other five models are the competing

models. The results in Panel A and Panel B of Table 2.3.5 show that for both

MSE and QLIKE loss functions, the NAGARCH model has p-values equal to

1 for all the years. Therefore, we can not reject the null hypothesis that the

NAGARCH model based on FHS-VI is superior to any of the alternatives. This

is in line with our conclusions drawing from the DM test.

As shown in Figure 2.3.2, the models that use the FHS-VI method outperform

the models based on the Normal-VIX method, especially when there is a big

change in prices. Importantly, in terms of the VIX forecast performance, the

NAGARCH model that uses the FHS-VI method is superior to all the other

models.18

2.3.4 Computational time

The estimation is performed on a desktop with Intel i7 processor with a frequency

of 3.2GHz and 16 GB of RAM. For the year 2017, which means estimation over 52

18Similarly, Kanniainen et al. (2014) also obtain that the NAGARCH model is better than
the GJR model for option pricing when using joint information on the VIX index and the S&P
500 returns.
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Table 2.3.5: Out-of-sample comparison of the VIX forecasts: SPA test

Year FHS-VI Normal-VIX

GARCH GJR NAGARCH GARCH GJR NAGARCH

Panel A: Evaluation by MSE

2011 0.081 0.066 1.000 0.002 0.003 0.008

2012 0.018 0.046 1.000 0.052 0.066 0.065

2013 0.235 0.249 1.000 0.000 0.019 0.032

2014 0.098 0.077 1.000 0.596 0.000 0.421

2015 0.002 0.005 1.000 0.012 0.000 0.000

2016 0.001 0.004 1.000 0.003 0.010 0.096

2017 0.026 0.064 1.000 0.329 0.076 0.000

Panel B: Evaluation by QLIKE

2011 0.425 0.306 1.000 0.000 0.000 0.000

2012 0.230 0.238 1.000 0.024 0.016 0.011

2013 0.275 0.377 1.000 0.000 0.001 0.001

2014 0.055 0.098 1.000 0.012 0.000 0.161

2015 0.243 0.302 1.000 0.020 0.003 0.000

2016 0.002 0.009 1.000 0.001 0.010 0.057

2017 0.018 0.072 1.000 0.331 0.094 0.001

Panel C. Overall 2011-2017, evaluation by MSE for different horizons

h=1 0.028 1.000 0.073 0.000 0.000 0.000

h=5 0.000 0.000 1.000 0.008 0.000 0.020

h=20 0.000 0.001 1.000 0.000 0.591 0.358

Panel D. Overall 2011-2017, evaluation by QLIKE for different horizons

h=1 0.263 1.000 0.011 0.000 0.000 0.020

h=5 0.003 0.005 1.000 0.000 0.000 0.001

h=20 0.000 0.000 1.000 0.000 0.080 0.205

This table presents the SPA test results for out-of-sample VIX forecasts under two different loss
functions. The SPA test statistic is used to test the null hypothesis that the benchmark model
is not outperformed by the competing models. Each column is considered as a benchmark
model whilst the other five models are the competitors. The values in bold are the highest SPA
p-value for the given year. The number of bootstrap replications to calculate the p-values is
10,000.
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Figure 2.3.2: Out-of-sample comparison of the model VIX and the CBOE
VIX
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weeks’ estimation (with weekly re-estimations), the running time to calibrate once

based on 373,377 option prices; this number of observation is roughly 50 times

higher than the number of the volatility index prices, and this contributes to the

large processing time needed for the options data. The estimation time is 149

min when using the FHS-options method. On the other hand, the running time

for estimation over 52 weeks (still with weekly re-estimations) to calibrate once

based on the GJR model is 20.8 min by using the information on VIX indices, i.e.,

the FHS-VI method. The total running time has little difference among GARCH,

GJR and NAGARCH models when using the FHS-VI method, which is consistent

with Kanniainen et al. (2014).

During the optimisation procedure, a grid search is performed for the initial

values, which results in as many as 1000 iterations, and the estimation time

depends on the grid size. Therefore, the estimation with the option-price-based

FHS-options method, assuming 100 iterations, takes up to 4.8 h for a single week.

The parameter calibration for the FHS-VI GJR model, based on the volatility

indices, for one week and 100 iterations, is significantly faster at 40 min, which

is a reduction of more than 86% in computational time compared to the FHS-

options method.
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2.4 Robustness checks

This section presents additional results, with respect to four different robustness

checks we perform. First, we extend our analysis by using different forecasting

horizons. Second, we consider alternative weights in the optimisation function

given in equation (2.2.27), in order to adjust for the imbalance of the maturity

weights caused by the equal weights given to the volatility indices. Third, we

calculate pricing error statistics using different weighting approaches applied to

the pricing errors of different volatility indices. Fourth, we present the robustness

of our findings when computing the results using three indices only, which allows

us to extend our sample period to include the 2008 financial crisis.

2.4.1 Alternative time horizons

Our previous findings show that the FHS-VI method significantly outperforms

the Normal-VIX method for each model specification when forecasting VIX one-

week-ahead (h = 5). In this section, we extend our analysis and report results for

one-day-ahead (h = 1) and four-week-ahead (h = 20) VIX forecasts. To show the

robustness of our results, we report both the DM test and SPA test implications

for the three forecast horizons given above.

Panel B of Table 2.3.4 reports the DM test statistics using MSE for one-

day-ahead, one-week-ahead and four-week-ahead VIX forecasting, respectively.

Instead of the yearly analysis in Section 2.3, we only compare the model perfor-



2.4. Robustness checks 50

mance of the overall sample period, i.e., 2011-2017. The DM1 statistics denote

the DM statistics comparing the GARCH models that use the FHS-VI method

with their counterparts that use the Normal-VIX method. For one-day-ahead and

one-week-ahead forecasts, the difference in forecasting performance is significantly

different from zero when using the two methods. For the longer horizon forecasts,

i.e., four-week-ahead forecasts, we can reject the null hypothesis of equal forecast

accuracy of the two methods only for the NAGARCH model. The negative DM

statistics indicate that all the models based on the FHS-VI approach, except for

four-week-ahead forecasts of the GJR model, generate smaller average MSE than

their counterparts based on the Normal-VIX method. Consistent with the test

criteria in Section 2.3, the DM2 statistic in Panel B presents the out-of-sample

forecast performance of the models when considering the NAGARCH based on

the FHS-VI method as the benchmark model. The DM test statistics show that

the NAGARCH model based on the FHS-VI method outperforms all the other

models for weekly and monthly forecast horizons. For one-day-ahead forecasts,

the NAGARCH model based on the FHS-VI method is found to have a superior

predictive ability compared with the models that use the Normal-VIX method.

On the other hand, the difference in average MSE loss favours the GJR model

that uses the FHS-VI method for daily forecasts, though the difference is not

statistically significant.

Panel C and Panel D of Table 2.3.5 present results on the SPA test based on
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forecasts for different horizons. For each model, the remaining five models are

treated as competing models. As discussed above, p-values close to 1 indicate

that we can not reject the null hypothesis of the benchmark model being superior

to the other models. Both panels show evidence of a similar pattern of forecast

ability: the NAGARCH model based on FHS-VI is found to be superior to all

the other models for long-term volatility forecasts (h = 5 and h = 20), while the

GJR model based on the FHS-VI method outperforms all the other models for

short-run volatility forecasts19.

2.4.2 Alternative weights used in the optimisation func-

tion

In Section 2.3, we assume each volatility index has the same weight in the opti-

misation function of equation (2.2.27). This weighting, however, places too much

weight on the nearby risk-neutral volatilities. The volatilities of the first 7 days

are included in all four indices, the volatilities of the first 22 days are included in

three indices and so on. In this section, we consider weights in equation (2.2.27)

that avoid this increased reliance on nearby maturities, and instead consider a set

of index weights that would align the weights of the different volatility maturi-

ties. The adjusted RMSE is computed as in equation (2.2.27), but with modified

19The reason might be because the GJR model and the NAGARCH model use different forms
of parameter to catch the leverage effect, i.e., the GJR model uses an indicator function while
NAGARCH employs a quadratic one.
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weights wk calculated as follows: the four indices involve the risk-neutral volatil-

ities of the next 126 days; we divide this into four periods according to the time

horizons embedded in the volatility index. Period 1 includes the first 7 days,

period 2 consists of day 8 to 22, period 3 is day 23 to 63, and period 4 is day 64

to day 126. If we use equation (2.2.27) with equal index weights wk, the actual

weights of the periods are 0.375, 0.25, 0.25 and 0.125, respectively. In this sec-

tion we modify the weights of the volatility indices so that each period has the

same weight; the modified weights of the volatility indices are then w1 = 0.125,

w2 = 0.25, w3 = 0.125 and w4 = 0.5.

The right panels of Table 2.4.1 and Table 2.4.2 report the in-sample and out-

of-sample pricing errors using modified weights in the optimisation function. The

results are consistent with our earlier findings: the GJR model has the lowest

pricing errors for most of the years in-sample, and, on the other hand, for the

out-of-sample comparison, the NAGARCH model generates the smallest pricing

errors in most cases. Notably, using the modified weights optimisation, both in-

sample and out-of-sample pricing errors obtained with the FHS-VI method are

lower than the pricing errors based on the Normal-VIX method, reported in Table

2.3.2 and Table 2.3.3.
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2.4.3 Alternative weights used in the loss functions

In this section, we discuss the pricing error statistics based on modified weights for

the volatility index in the loss functions - noting that our earlier results are based

on equal weighting in equations (2.2.28) and (2.2.29). First, we modify the weights

in the loss function to remove the increased reliance on the nearby volatilities,

as in the previous section (we call this approach time-weighting). Second, we

consider the loss functions in which the weights are proportional to the value

of the volatility index (value-weighting). The loss functions are computed as in

equation (2.2.28) and (2.2.29), but using non-equal weights. As such, we have two

sets of alternative weights: wk can be computed using the calculation detailed in

Section 2.4.2, which equalises the effects of the different volatility maturities; or

the weights can be considered to be proportional with the market values of the

indices. The results based on the modified weights as above are reported in the

left panel of Table 2.4.1 for in-sample comparison, and in Table 2.4.2 for out-of-

sample comparison. Both sets of results are very similar to our findings based

on the equally-weighted loss functions, i.e., the GJR model based on the FHS-VI

method has the smallest pricing errors in-sample and the NAGARCH model that

uses FHS-VI has the lowest pricing errors out-of-sample.
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Figure 2.4.1: Out-of-sample comparison of VIX forecasts obtained using
Normal-VIX, FHS-VI based on three indices, assuming GARCH, and CBOE
VIX
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2.4.4 Results based on three indices only

As mentioned in Section 2.3.1, our sample starts on 2 January 2011 due to the

data availability of the VIX9D index. In this section, the estimation is carried

out based on three indices only (VIX, VIX3m and VIX6m). This allows us to

extend our sample with 3 additional years, starting on 7 January 2008, which

is the starting date of VIX6M, with the added bonus that the financial crisis of

2008 is now included in the sample. Figure 2.4.1 presents the one-week-ahead

VIX forecasts produced using three indices only, for the GARCH model. To be

noted that the VIX reaches very high values during the financial crisis.

In Table 2.4.3 we compare the VIX forecasting performance of different models

by calculating the p-values of the SPA test based on three indices. When fore-

casting one-day-ahead VIX, the p-values computed using the MSE and QLIKE

loss functions for the GJR model based on the FHS-VI method are equal to 1,
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Table 2.4.3: Out-of-sample SPA test results based on three indices

Horizon FHS-VI Normal-VIX

GARCH GJR NAGARCH GARCH GJR NAGARCH

Panel A. Evaluation by MSE

h=1 0.266 1.000 0.002 0.000 0.003 0.001

h=5 1.000 0.479 0.428 0.006 0.006 0.031

h=20 1.000 0.247 0.896 0.000 0.294 0.171

Panel B. Evaluation by QLIKE

h=1 0.032 1.000 0.007 0.000 0.000 0.000

h=5 0.637 1.000 0.178 0.000 0.000 0.005

h=20 0.532 0.036 1.000 0.000 0.049 0.082

This table presents the SPA test statistics for VIX forecasts obtained using two loss
functions for different horizons. The SPA test statistic is used to test the null hypothesis
that the benchmark model is not outperformed by the competing models. The bench-
mark model is given at the top of the table. The number of bootstrap replications to
calculate the p-values is 10,000. The values in bold are the highest SPA p-values for a
given horizon.

indicating that we can not reject the null hypothesis that this model is superior to

the other models for one-day-ahead forecasts. On the other hand, we find mixed

evidence for longer-term forecasts. Using the MSE loss function, the GARCH

models based on the FHS-VI method for weekly and monthly forecasts are found

to be superior to the other models. However, when using the QLIKE loss func-

tion, the GJR model and the NAGARCH model based on the FHS-VI approach

are found to be superior for weekly and monthly forecasts, respectively. It is also

notable that the p-values based on the Normal-VIX method are much smaller

than those based on the FHS-VI. Overall, for longer-term forecasts, the models

based on FHS-VI outperform the models based on the Normal-VIX method, but

it is difficult to differentiate among the FHS-VI based models in terms of superior
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predictive ability.

2.5 Conclusions

In this chapter, we propose to estimate several different GARCH models by us-

ing filtered historical simulations and a set of volatility indices. This approach

produces estimates using the empirical innovation density that can accommodate

for nonstandard features, such as negative skewness and positive excess kurtosis.

To reduce the computational burden of using option prices, we employ four well-

established volatility indices, i.e., the VIX9D, VIX, VIX3M and VIX6M, to do the

calibration. We obtain that this approach dominates the alternative estimation

method which only uses the VIX index and assumes a normal distribution, i.e.,

the Normal-VIX method. This outperformance holds both in-sample and out-of-

sample for most of the years; we perform several robustness checks that confirm

our results. Additionally, the parameter estimates are shown to be very stable

compared to the FHS-options method and significantly reduce the computational

time. An empirical analysis on the performance of our proposed estimation for

option pricing would be a challenging exercise that we leave for future study.



Appendices

This supplemental appendix provides additional tables and figures.
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Figure A.1: In-sample comparison of the model VIX and the CBOE VIX

2011 2012 2013 2014 2015 2016 2017 2018

10

20

30

40

50

market VIX

model VIX by FHS-VI

model VIX by Normal-VIX

(a) GARCH

2011 2012 2013 2014 2015 2016 2017 2018

10

20

30

40

50

market VIX

model VIX by FHS-VI

model VIX by Normal-VIX

(b) GJR

2011 2012 2013 2014 2015 2016 2017 2018

10

20

30

40

50

market VIX

model VIX by FHS-VI

model VIX by Normal-VIX

(c) NAGARCH



2.5. Conclusions 67

Figure A.2: Out-of-sample comparison of VIX forecasts obtained using
Normal-VIX, FHS-VI based on three indices, and CBOE VIX
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Chapter 3

Does VIX term structure help to

predict VIX futures prices:

Evidence from COVID-19 Crisis

3.1 Introduction

The Chicago Board Options Exchange (CBOE) VIX measures the expected volatil-

ity associated with the S&P 500 index over the following 30 days, as implied by

stock index option prices. The VIX index is often referred as the ’fear gauge’ by

investors since it is established in 1993 (see Whaley, 2009). However, since the

VIX index is not a tradable asset, the CBOE introduced VIX futures on March

26, 2004 to broaden hedging opportunities in volatility trading. Since its launch,

68
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the liquidity of the VIX futures market is steadily growing. For example, on

September 8, 2020, the trading volume is 280,180 contracts or 8.9 billion USD

in terms of market value1. Therefore, forecasting VIX futures prices are of great

interest to academics and practitioners.

Apart from the VIX index which measures the implied volatility over the next

30 days, the CBOE also lists anther four volatility indices with different maturities

to measure the implied volatility term structure of S&P 500 index: the CBOE

S&P 500 9-day Volatility Index (VIX9D), the CBOE S&P 500 3-month Volatility

Index (VIX3M), the CBOE S&P 500 6-month Volatility Index (VIX6M) and the

CBOE S&P 500 1-year Volatility Index (VIX1Y). Moreover, the volatility term

structure is found to be important in VIX futures pricing by Zhu and Zhang

(2007). In this chapter, we explore whether combining VIX term structure and

futures prices can improve the futures forecasting performance. In particular, we

investigate how the VIX term structure affects the VIX futures forecasting under

different conditions.

One intuitive determinant of the VIX futures prices is its underlying, i.e.,

the VIX index. However, given that the VIX itself is not easily traded, the no-

arbitrage principle cannot be used to obtain a simple formula between the VIX

futures prices and the spot VIX values as in the stock market2. Various stud-

1The data can be found from ’CBOE Futures Exchange Daily Market Statistics’ via the
following link: https://markets.cboe.com/us/futures/market statistics/daily/.

2Theoretically, it is possible to trade VIX by replicating a portfolio of S&P 500 options, thus
the VIX futures can be priced using the no-arbitrage principle, for example see Zhu and Zhang
(2007)
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ies focus on deriving the VIX futures prices through the instantaneous variance

embedded by VIX via different volatility models. For example, Zhang and Zhu

(2006) study VIX future prices with the Heston (1993) model. Lin (2007) and

Zhu and Lian (2012) model the variance with simultaneous jumps in both the re-

turns and the volatility process. In the discrete-time setting, Guo and Liu (2020)

and Xie et al. (2020) propose new solutions under the model of Glosten et al.

(1993) (GJR). A second strand of literature studies empirically the behaviours

of the VIX futures and thus forecasts prices. For example, Dotsis et al. (2007)

use the VIX futures data to evidence that the addition of jumps to a square root

process improves the pricing performance. Zhang et al. (2010) also calibrate a

mean-reverting variance model with jumps using VIX futures prices. Other re-

lated discussions on VIX futures include Konstantinidi and Skiadopoulos (2011a),

Menćıa and Sentana (2013), Taylor (2019), Ballestra et al. (2019) etc.

Most recently, several studies attempt to evaluate VIX futures prices with

the model parameters estimated from both the underlying, i.e, VIX and the

corresponding futures. Wang et al. (2017) propose a closed-form pricing formula

based on the Heston and Nandi (2000) GARCH model using several data sets.

They show that the joint estimation with VIX and the futures performs the best

in terms of fitting the market VIX and the VIX futures prices simultaneously.

Further, Huang et al. (2019b) calibrate an extended model of Majewski et al.

(2015) with mixed information from the S&P 500 returns, the VIX term structure
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and VIX futures prices.

Despite both Wang et al. (2017) and Huang et al. (2019b) use the VIX/VIX

term structure and the VIX futures, neither study shows statistical evidence

whether the VIX term structure can help to predict the VIX futures prices. In this

context, our paper also studies the forecasting accuracy of pricing methods but

differs in terms of the data that it uses. We calibrate the GJR model with the fil-

tered historical simulation (FHS) method proposed by Barone-Adesi et al. (2008)

using different data. Then the risk-neutral expected value of daily variance can

be updated accordingly, and we also obtain the expectation of the VIX squared

for maturity T , which is the forward-starting variance swap. The study of Carr

and Wu (2006) suggests that the VIX futures price is the difference between this

forward variance swap and the risk-neutral variance of the VIX futures. Further-

more, Dupire (2006) and the CBOE white paper show that the fair price of VIX

futures is equal to the price of forward variance minus a concavity adjustment,

which can be expressed using the CBOE VIX volatility index, i.e., the VVIX3.

Therefore, in this chapter, we evaluate the in-sample and out-of-sample pricing

performance for the fair value of the VIX futures by using not only the VIX term

structure or/and VIX futures data, but also the VVIX term structure.

The contributions of this chapter are threefold. First, this chapter is among

the first to discuss how the VIX term structure affects the performance of VIX

3For the details of VVIX, please see Section 3.2.2.
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futures pricing. We find that the addition of the VIX term structure to the VIX

futures improves the VIX futures forecasting. The improvement is remarkable

for the long-term VIX futures or for periods when the level of VIX is high. More

interestingly, we also find that, during the 2020 COVID-19 pandemic, the joint

estimation with VIX9D, VIX, VIX3M, VIX6M and the VIX futures provides the

lowest pricing errors among all the methods. Additionally, we implement three

statistical tests, i.e., the Diebold and Mariano (1995) test, the test of Giacomini

and White (2006) and the Model Confidence Set (MCS) by Hansen et al. (2011),

to evidence our results.

Second, different from the normal distribution assumption of returns used in

the majority of the VIX futures pricing literature, the FHS method utilises the

empirical innovation density extracted from historical returns. Also, Jiang and

Lazar (2020) demonstrate that the GJR model with FHS provides better VIX

forecasting performance than the traditional local risk-neutral valuation relation-

ship (LRNVR) proposed by Duan (1995). In addition to the seven methods with

different data sources applied to the GJR models with FHS, we also implement

the model of Xie et al. (2020), which uses the GJR model under the LRNVR, as

the benchmark model.

Our third contribution is the use of the VVIX term structure for VIX futures

pricing. To our best knowledge, little (if any) literature considers the VVIX term

structure in pricing VIX futures. To predict one-day-ahead VIX future prices,
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we also produce the VVIX forecasts through linear interpolation via the vector

autoregression (VAR) model.

The remainder of this chapter is organized as follows. Section 3.2 describes the

theoretical background of the model. Section 3.3 details the model estimation and

forecasting procedure. Section 3.4 presents our results and analysis, and Section

3.5 concludes.

3.2 The model

3.2.1 GJR specifications

Following Barone-Adesi et al. (2008) and Jiang and Lazar (2020), we assume that

the logarithm of the asset returns is governed by the GJR process of Glosten et al.

(1993) with an empirical innovation density4. Under the physical measure P:

ln(St/St−1) = µt − κt + εt, εt = σtzt

σ2
t = ω + βσ2

t−1 + [α + γI(εt−1 < 0)]ε2t−1,

(3.2.1)

where St is the S&P 500 index price at time t, µt is the expected rate of re-

turn, zt | Ft−1 ∼ F (0, 1), Ft−1 is the information set up to time t − 1. F

4Jiang and Lazar (2020) show that the GJR model is the best to forecast the short-term
volatility. Also, there are existing literature using GJR model to price VIX futures, see Guo
and Liu (2020) and Xie et al. (2020).
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follows some unknown distribution with zero mean and unit variance which we

estimate using the empirical distribution, and κt is the mean correction factor

κt = ln(Et−1[exp{εt}]). The dummy variable It = 1 when zt < 0 and It = 0,

otherwise. The leverage effect is captured by a positive γ.

Under the risk-neutral measure, we assume the following dynamics:

ln(St/St−1) = rt − κ∗t + ε∗t , ε∗t = σ∗t z
∗
t

σ∗2t = ω∗ + β∗σ∗2t−1 + [α∗ + γ∗I(ε∗t−1 < 0)]ε∗2t−1.

(3.2.2)

where rt is the risk-free rate at time t, z∗t is assumed to follow the same distribution

F as under the physical measure, κ∗t is the mean correction factor under the risk-

neutral measure, and θ∗ = {ω∗, α∗, β∗, γ∗} are a set of risk-neutral parameters

which are allowed to be different from those under the physical measure.

3.2.2 VIX and VVIX

The volatility index VIX measures the market participants’ risk-neutral expecta-

tion of return volatility implied from options prices. The VIX index is computed

from the out-of-money (OTM) S&P 500 option prices via:

VIXt = 100×
√

2

τ

∑
i

4Ki

K2
i

erτQ(Ki)−
1

τ
[
F

K0

− 1]2, (3.2.3)

where τ is 30 days, Q(Ki) is the option price for strike Ki, 4Ki is the interval

between strike prices, F is the forward price of S&P 500, and K0 is the first strike
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that is below the forward index level F .

In a discrete time setting, as described in Hao and Zhang (2013), the VIX can

be obtained by taking the arithmetic average of the expected daily variance for

the following month5:

VIXt = 100×

√√√√252

22
× EQ

t

[ 22∑
τ=1

σ∗2t+τ

]
. (3.2.4)

Similarly, the model price of the volatility index VIX9D, VIX3M, VIX6M and

VIX1Y can be calculated as:

VIX9Dt = 100×

√√√√252

7
× EQ

t

[ 22∑
τ=1

σ∗2t+τ

]
, (3.2.5)

VIX3Mt = 100×

√√√√252

63
× EQ

t

[ 22∑
τ=1

σ∗2t+τ

]
, (3.2.6)

VIX6Mt = 100×

√√√√252

126
× EQ

t

[ 22∑
τ=1

σ∗2t+τ

]
, (3.2.7)

VIX1Yt = 100×

√√√√EQ
t

[ 22∑
τ=1

σ∗2t+τ

]
. (3.2.8)

In February 2006, the CBOE launched VIX options which provides market

participants more flexibility to trade volatility. Since its introduction, the VIX

options market has been growing steadily. Thus, it is natural to study the implied

5We apply the trading day count convention in this chapter.
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volatility of the VIX index, i.e., the VVIX and its term structure. Adapting the

same calculation method for VIX in Equation (3.2.3), the VVIX term structure

over different horizons is obtained by using VIX option prices. The VVIX mea-

sures the annualised expected volatility of the 30-day forward price of the VIX

index6. Therefore, at time t, the squared VVIX term structure with an expiration

date T can be written as:

VVIX2
t,T = 100× 252

T − t
× Et

[ T−t∑
τ=0

σ2
τ

]
, (3.2.9)

where σ2
τ is the variance of log-returns of the forward prices Fτ = VIXτ . The

CBOE white paper then illustrates that the squared VVIX term structure can

also be approximated by7:

VVIX2
t,T ≈100× 252

T − t
× VARt

[
ln(

FT
Ft

)

]
=100× 252

T − t
× VARt

[
ln(FT )

]
.

(3.2.10)

By considering Taylor’s expansion for lnFT , Equation (3.2.10) becomes:

VVIX2
t,T ≈100× 252

T − t
× VARt

[
ln(Ft) +

FT − Ft
Ft

]
=100× 252

T − t
×
VARt

[
FT
]

F 2
t

(3.2.11)

6The VVIX represents the implied volatility of the 22-trading-day forward price of VIX.
7The white paper of the VVIX term structure can be found from CBOE website via this

link: https://cdn.cboe.com/resources/indices/documents/vvix-termstructure.pdf.
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3.2.3 Pricing VIX futures

The VIX futures are exchange-traded at the CBOE Futures Exchange (CFE).

Their underlying asset is the VIX index. The contracts are cash settled on the

Wednesday that is 30 days prior to the 3rd Friday of the calendar month following

the expiring month. The primary purpose of VIX futures is to enable investors

to trade and hedge volatility.

The CBOE white paper shows that the fair value of VIX futures at time t

with an expiration date T is:

Futt,T = EQ
t [VIXT ] =

√
EQ
t [VIX2

T ]− VARt[VIXT ] (3.2.12)

where VIXT is the VIX level at time T . VARt[VIXT ] is the variance of the fu-

tures price, and from Equation (3.2.11), its value for expiration FT = VIXT is

approximately equal to:

VARt[VIXT ] ≈ F 2
t ×

T − t
252

×
(
VVIXt,T

100

)2

. (3.2.13)

3.2.4 Benchmark model: XZR approach

For comparison, the model of Xie et al. (2020) (XZR model, hereafter) is used here

as our benchmark model. Xie et al. (2020) propose an analytical approximation

method to price VIX futures based on the information of model implied VIX.
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The pricing formula is obtained assuming the GJR process. Under the physical

measure:

ln(St/St−1) = rt + λσt −
1

2
σ2
t + εt, εt = σtzt

σ2
t = ω + αε2t−1 + βσ2

t−1 + γIt−1ε
2
t−1,

(3.2.14)

where rt is the risk-free rate at time t, λ is the risk premium, zt | Ft−1 ∼ N(0, 1),

and Ft is the information set up to t. It is one when zt is negative and zero other-

wise. Following the local risk-neutral valuation relationship (LRNVR) proposed

by Duan (1995), the GJR process under the risk-neutral measure is:

ln(St/St−1) = rt −
1

2
σ2
t + ξt, ξt = σtzt

σ2
t = ω + α(ξt−1 − λσt−1)2 + βσ2

t−1 + γIt−1(ξt−1 − λσt−1)2,
(3.2.15)

The GJR parameters {ω, α, β, γ, λ} are then calibrated using maximum like-

lihood estimation (MLE) based on the following equations:

VIXmkt
t = VIX imp

t ηt, ηt ∼ LN(−σ2
η/2, σ

2
η)

VIX imp
t = 100(

√
Φ + Ψσ2

t+1)

Φ = 252× ω

1− ρ
(1− Ψ

252
), Ψ = 252

1− ρn

n(1− ρ)

ρ = α(1 + λ2) + β + γ[
λ√
2π
e−

λ2

2 + (1 + λ2)N(λ)]

(3.2.16)

where VIXmkt
t is the market price of VIX and VIX imp

t is the model implied VIX.
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ηt is assumed to be log-normally distributed to make sure VIX imp
t is an unbiased

estimator of VIXmkt
t .

The pricing formula of VIX futures is then obtained using the GJR model

estimates based on Taylor’s expansion8:

Ft,T = EQ
t [VIXT ] = VIX imp

t EQ
t [1 + f (1)(hT+1 − ht+1) +

f (2)

2
(hT+1 − ht+1)

2].

(3.2.17)

To simplify the notation, we use ht to denote σ2
t . f (1) and f (2) are the first

two derivatives of f(hT+1|ht+1):

f(hT+1|ht+1) =

√
1 +

Ψ(hT+1 − ht+1)

Φ + Ψht+1

. (3.2.18)

3.3 Estimation and forecasting

3.3.1 Model estimation

Under the physical measure, we adopt the same estimation procedure as in

Barone-Adesi et al. (2008) and Jiang and Lazar (2020). In other words, the GJR

model parameters are estimated on each Wednesday using quasi-maximum likeli-

8For more details, please see Xie et al. (2020).
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hood function (QML) with 3,500 historical returns9. Under the risk-neutral mea-

sure, the calibration is based on minimising the root mean square error (RMSE)

between the prices given by the model and the market prices. To study whether

the VIX term structure can help predict the VIX futures prices, we propose seven

new methods to calibrate model parameters. Each method differs in term of the

data source it uses in the estimation process:

1. Fut+5VIs (e): VIX futures data and all five volatility indices, i.e, VIX9D,

VIX, VIX3M, VIX6M and VIX1Y. When considering the volatility indices,

we assume equal weighting.

2. Fut+5VIs (t): VIX futures data and all five volatility indices. Follow-

ing Jiang and Lazar (2020), we also adjust the index weights by taking

into account the increased reliance on nearby maturities when using equal

weighting. The weights of the volatility indices are then modified based on

equal weights for each time period.

3. Fut+4VIs: VIX futures data and four volatility indices, i.e, VIX9D, VIX,

VIX3M and VIX6M. Since most of VIX futures data in the sample has

a maturity less than six months, we consider excluding the VIX1Y index

because of its long maturity.

4. Fut+VIX1Y: VIX futures data and VIX1Y index. When imposing equal

9See Jiang and Lazar (2020) for more details about the estimation procedure.
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weights on the volatility for each day in a year, we end up with VIX1Y only.

5. Fut: Futures only. It is natural to forecast futures prices using historical

information of itself only.

6. 5VIs: All five indices. Apart from using futures data only and futures

and VIX term structure, we consider using information on the VIX term

structure only.

7. 4VIs: Four volatility indices, i.e, VIX9D, VIX, VIX3M and VIX6M. For

the maturities of VIX futures in the sample, we also consider using the four

indices only; these are the ones which measure the volatility over a period

less than or equal to six months.

In this chapter, we aim to minimise the following expression on each Wednes-

day with respect to θ∗ in Equation (3.2.2)10:

√
wF ×MSEFut + wV ×MSEVI (3.3.1)

with

MSEFut =
m∑
i=1

[
wi ×

(
Fut(i)market − Fut(i)model

)2]
(3.3.2)

10Other optimisation function could also be considered, for example, the ad-hoc linear model
in Kanniainen et al. (2014).
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and

MSEVI =
n∑
k=1

[
wk ×

(
VI(k)market − VI(k)model

)2]
, (3.3.3)

where wF and wV are the weights of MSEFut and MSEVI , respectively11. m is the

total number of VIX futures that observed in the market on Wednesdays. wi = 1
m

is the weight for the ith VIX future on that day. Fut(i)market represents the market

price of the ith VIX futures and Fut(i)model is the future price calculated matching

the same maturity of Fut(i)market using the models described in Section 3.2. n is

the number of volatility indices used in the estimation. wk is the weight of the

volatility index, assuming equal weighting or non-equal weighting to adjust for

the different maturities.12

3.3.2 VVIX forecasting

According to the VIX futures pricing formula of Equation (3.2.12) and (3.2.13),

we also have to model the VVIX value in order to predict VIX futures prices. In

this chapter, we apply the VAR(1) model, which assumes that the VVIX time

series with different maturities affect each other over time, to forecast the VVIX

11The ratio between the number of VIX futures contact and the number of VIX term structure
is approximately 2 : 1. To better illustrate the usefulness of VIX term structure, we use wF = 1

2
and wV = 1

2 when both information of VIX futures and VIX term structure are included in the
estimation; the alternative weights depending on the number of futures and VIX could also be
considered. When only futures data is included, wF = 1 and wV = 0 and wF = 0 and wV = 1
if only the VIX term structure is used.

12When assuming equal weighting, wk = 1
n ; while using five volatility indices and non-equal

weighting, ie., for method Fut+5VIs (t), w1 = 0.1, w2 = 0.2, w3 = 0.1, w4 = 0.2 and w5 = 0.4.
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term structure.13 The forecasted VVIX value for each given maturity is obtained

by linear interpolation14:

1. A new coordinate is constructed based on 13 points between 10 and 130

days, i.e., [10, 20,...130], by linearly interpolating the existing VVIX term

structure15.

2. Once we compute the forecasted VVIX values based on the coordinate

points, the second linear interpolation is performed to match the target

forecasting maturity in the sample.

The VAR(1) model is defined as:

4VVIXt = C + A4VVIXt−1 + et. (3.3.4)

where 4VVIXt is a 13 × 1 vector of daily changes between t − 1 and t, C is a

13× 1 vector of constants, A is a 13× 13 matrix of coefficients, and et is a 13× 1

vector of error terms.

13We also fit the VVIX series by using the ARMA model which presents the similar results
(results are available on request).

14We implement two-step linear interpolations. Since the maturities of VVIX do not have
any patterns, we use the first interpolation to construct a new coordinate in order to forecast
the future values. The forecasted values are then based on new coordinate; therefore, we have
to do the second interpolation to match the forecasts to our target maturities.

15The VAR(1) model is estimated using 1,500 historical observations or the maximum data
available, if this is less than 1,500 observations.
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3.3.3 Model evaluation

The forecasts are generated based on a rolling window of 3,500 observations. After

each model estimation, the one-day-ahead out-of-sample forecasts are obtained

for each Thursday in the sample, i.e., from January 2011 to October 2020. To

measure the pricing VIX futures performance of the different models, we compare

the following loss functions:

MAE =
1

N

N∑
j=1

∣∣∣∣Futmarketj − Futmodelj

∣∣∣∣ (3.3.5)

RMSE =

√√√√ 1

N

N∑
j=1

[(
Futmarketj − Futmodelj

)2]
(3.3.6)

MAE% =
1

N

N∑
j=1

∣∣∣∣Futmarketj

Futmodelj

− 1

∣∣∣∣ (3.3.7)

RMSE% =

√√√√ 1

N

N∑
j=1

[(
Futmarketj

Futmodelj

− 1

)2]
(3.3.8)

where N is the total number of observations in the sample, and Futmarketj and

Futmodelj denote the market price and the model price of VIX futures, respectively.

In addition, to test the significant differences of forecasting accuracy among

the models, we employ the DM test proposed by Diebold and Mariano (1995),

the conditional predictive ability test proposed by Giacomini and White (2006)
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(GW test) and the model confidence set (MCS) proposed by Hansen et al. (2011).

The DM test is a pairwise test with the null hypothesis of equal forecast

accuracy of two different models. The two sets of estimated forecast errors are

defined as ê1,t and ê2,t, respectively. The difference in loss between two forecasting

methods is denoted as: dt = L(ê1,t)− L(ê2,t). The DM statistic below:

DM =
d̄√

2πf̂d(0)/T
(3.3.9)

has an asymptotic standard normal distribution under the null, where d̄ is the

sample mean of the loss differential, and 2πf̂d(0) is a consistent estimator of the

asymptotic variance16.

Different from the DM test, the GW test considers conditional predictive

ability taking into account estimation uncertainty. The null hypothesis of equal

conditional predictive ability can be written as E(dt | Ft−1) = 0, where Ft is the

information set up to time t. Giacomini and White (2006) show that the null of

the GW test can be tested using a Wald statistic:

GWt = T

(
T−1

T∑
t=1

dt

)′
Ω̂−1T

(
T−1

T∑
t=1

dt

)
∼ χ2

1 (3.3.10)

where Ω̂−1T is a heteroskedasticity and autocorrelation consistent (HAC) estimator

of the asymptotic variance.

16In this chapter, the DM test is calculated based on the MSE of the different pricing methods.
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To compare the forecasting performance among a set of models, we employ

the methodology of MCS which can provide a subset of models that include the

best model at a given confidence level. The semi-quadratic statistic is defined

as17:

TSQ =
∑
i,j∈M

(d̄i,j)
2

v̂ar(d̄i,j)
(3.3.11)

where d̄i,j is the average loss differentials between model i and model j in setM

and its variance v̂ar(d̄i,j) is obtained by using block bootstrap with 12 blocks and

10,000 replications in this chapter18. We consider the 75% confidence level in line

with Hansen et al. (2011)19.

3.4 Empirical results

3.4.1 Data

The VIX term structure, i.e., VIX, VIX9D, VIX3M, VIX6M and VIX1Y, and

the VVIX term structure are downloaded from the CBOE website. The VIX9D

data starts in January 2011; therefore, our sample period covers January 2011 to

October 2020. The VIX futures data are also collected from the CBOE website.

Following Zhu and Lian (2012) and Huang et al. (2019b), to avoid liquidity-related

17The range statistics are obtained as well with similar results which are available on request.
18More details about the MCS procudure can be found in Hansen et al. (2011).
19The 95% confidence level yields similar results which are available on request.



3.4. Empirical results 87

bias, the VIX futures prices with time to maturity less than five days, or open

interest less than 200 contracts are discarded. Also, we exclude the VIX futures

data which don’t have a matched VVIX term structure. The VIX futures prices

thus yield 14,990 observations in total.

Table 3.4.1: Summary statistics for VIX futures prices

Obs Mean Std.Dev Skew. Kurt. Min Max

All 14,990 19.348 5.342 1.658 4.369 10.025 70.475

Maturity

≤ 30 3,528 17.645 5.977 2.386 8.945 10.025 70.475

(30, 60] 3,385 19.171 5.452 1.892 4.726 11.975 59.925

(60, 90] 3,411 19.770 4.953 1.579 2.696 12.975 51.500

(90, 120] 3,421 20.261 4.574 1.265 0.810 13.725 37.475

> 120 1,246 20.992 4.814 1.088 0.010 14.525 35.150

VIX level

VIX ≤ 15 7,268 16.003 2.104 0.090 0.923 10.025 26.600

VIX > 15 7,722 22.497 5.549 1.434 3.517 13.875 70.475

This table presents the summary statistics for VIX futures prices from January
2011 to October 2020. The data are summarised by different maturities and VIX
levels.

Summary statistics for the sample period is presented in Table 3.4.1. The

price of VIX futures is on average $19.348 with a standard deviation of $5.234, a

minimum of $10.025 and a maximum of $70.475. The table also shows the VIX

futures term structure. When the time to maturity increases, the VIX futures

prices tend to become more expensive and less volatile. It is also notable that

the extreme value is highly likely in the VIX futures with short maturities. In

addition, the VIX futures are cheaper when the VIX index is lower, i.e., the

average price of VIX futures is 16.003 when the VIX value is smaller than or



3.4. Empirical results 88

equal to 15, and the average price is 22.497 when the VIX level is higher than 15.

Figure 3.4.1 shows this relationship intuitively by plotting the spot VIX value and

VIX futures curves from 2001 to 2020. Furthermore, we observe that the VIX

futures curve is upward sloping for most of the time, i.e., longer-term VIX futures

are more expensive than near term VIX futures. However, the VIX futures curve

demonstrates a downward sloping pattern when the spot VIX index spikes, for

example, during the 2020 COVID-19 Crisis.

Figure 3.4.1: VIX and VIX futures curves

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

0

20

40

60

80

100

Notes: The black line stands for the spot VIX index value and the colorful dots stand for the
VIX futures prices with different expiration dates.
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Table 3.4.2: In-sample pricing errors of VIX futures models

MAE RMSE MAE% RMSE% Std.Dev Corr.coef.

Panel A: Jan 2011 - Dec 2019

Fut+5VIs(e) 0.276 0.366 1.563 2.086 0.351 0.997

Fut+5VIs(t) 0.294 0.392 1.668 2.244 0.378 0.996

Fut+4VIs 0.223 0.312 1.259 1.764 0.305 0.998

Fut+VIX1Y 0.249 0.377 1.410 2.194 0.376 0.996

Fut 0.093 0.143 0.508 0.754 0.143 0.999

5VIs 0.861 1.339 4.774 7.177 1.277 0.955

4VIs 1.078 1.790 5.928 9.653 1.768 0.917

XZR 2.098 2.712 11.479 14.25 2.708 0.771

Panel B: Jan 2020 - Oct 2020

Fut+5VIs(e) 0.965 1.658 3.127 4.578 1.581 0.982

Fut+5VIs(t) 1.166 1.976 3.717 5.500 1.831 0.975

Fut+4VIs 0.822 1.387 2.735 3.943 1.374 0.985

Fut+VIX1Y 1.580 3.283 4.681 7.753 3.012 0.929

Fut 0.509 0.751 1.824 2.629 0.752 0.995

5VIs 3.021 5.459 9.437 15.361 4.915 0.773

4VIs 2.664 5.159 8.533 14.456 4.783 0.792

XZR 7.235 9.013 24.366 29.040 8.487 0.707

This table presents the in-sample pricing errors of VIX futures models. MAE is
the average absolute error between the market price and the model price; RMSE is
the square root of the average squared pricing error (market price - model price);
MAE% and RMSE% are expressed in relative terms (percentages); Std.Dev is
the standard deviation of pricing errors; Corr.coef. is the correlation coefficient
between the model price and the market price. Numbers in bold are the loss
which are the lowest across different models.
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3.4.2 In-sample pricing performance

To compare which method has better performance to evaluate VIX futures prices

in-sample, Table 3.4.2 presents several pricing errors described in section 3.3.320.

We also report the standard deviation (Std.Dev) of pricing errors, i.e., the dif-

ference between market prices and model prices, and the correlation coefficients

between these two series.

We divide the whole sample period into two subperiods to investigate whether

VIX term structure data can help price VIX futures. Panel A of Table 3.4.2

shows the in-sample pricing errors for the period from January 2011 to Decem-

ber 2019. Not surprisingly, the ’Fut’ method that only uses futures data has the

lowest values of loss functions in fitting VIX futures series. On the contrary, the

benchmark model ’XZR’ approach, which only includes the VIX information and

assumes a normal distribution for the return innovations, displays the highest

pricing errors among all the methods. When we add more volatility indices and

considering filtered historical returns, both the ’4VIs’ and ’5VIs’ provide a sig-

nificant improvement in pricing errors compared with the ’XZR’ method. Most

importantly, after we incorporate the VIX term structure along with the futures

data, i.e., for the ’Fut+5VIs (e)’, ’Fut+5VIs (t)’, ’Fut+4VIs’ and ’Fut+VIX1Y’

models, the pricing errors are slightly higher than those estimated for the ’Fut’

model. However, these four models still provide a good pricing performance in

20The estimated parameters of different models are available upon request.
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terms of correlation coefficients between market prices and model prices, with

correlation values more than 0.995.

Panel B of Table 3.4.2 reports the in-sample pricing performance for the period

January 2020 to October 2020. The pricing errors produced by all eight different

models during 2020 are much higher than those given by the corresponding models

for 2011-2019. Again, the ’Fut’ model delivers the lowest loss values for VIX

futures pricing and the ’XZR’ model gives the highest pricing errors. Among

the other approaches, ’Fut+5VIs (e)’ and ’Fut+4VIs’ report higher pricing errors

than the ’Fut’ method, but still give high correlation coefficients between market

prices and model prices with values of 0.982 and 0.985, respectively.

3.4.3 Out-of-sample pricing performance

To test whether the pricing models overfit the VIX futures prices in-sample, we

also perform one-day ahead out-of-sample forecasting. Table 3.4.3 presents the

out-of-sample pricing errors of different models. Panel A covers the period from

January 2011 to December 2019. Similar to the in-sample comparison for the same

period, the ’Fut’ model shows the best pricing performance out-of-sample. How-

ever, it’s noted that the errors of all the pricing methods increase compared with

the in-sample results, especially for the ’Fut’ and ’Fut+VIX1Y’ model. Thus the

difference between the other models and the ’Fut’ model decrease. For example,

the difference of RMSE provided by ’Fut+4VIs’ and ’Fut’ is 0.034 out-of-sample
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Table 3.4.3: Out-of-sample pricing errors of VIX futures models

MAE RMSE MAE% RMSE% Std.Dev Corr.coef.

Panel A: Jan 2011 - Dec 2019

Fut+5VIs(e) 0.486 0.711 2.659 3.722 0.696 0.986

Fut+5VIs(t) 0.500 0.726 2.735 3.818 0.712 0.986

Fut+4VIs 0.456 0.691 2.478 3.579 0.683 0.987

Fut+VIX1Y 0.603 0.994 3.278 5.311 0.991 0.973

Fut 0.415 0.657 2.196 3.262 0.656 0.988

5VIs 0.975 1.460 5.387 7.779 1.389 0.946

4VIs 1.190 1.895 6.531 10.163 1.866 0.907

XZR 2.119 2.715 11.602 14.299 2.692 0.777

Panel B: Jan 2020 - Oct 2020

Fut+5VIs(e) 1.356 2.498 4.272 6.697 2.390 0.951

Fut+5VIs(t) 1.469 2.680 4.589 7.188 2.491 0.947

Fut+4VIs 1.376 2.464 4.402 6.799 2.427 0.948

Fut+VIX1Y 1.803 3.311 5.668 9.543 3.289 0.907

Fut 1.443 2.567 4.548 7.128 2.553 0.942

5VIs 3.089 5.173 9.808 15.185 4.542 0.804

4VIs 2.733 4.927 8.865 14.495 4.496 0.813

XZR 7.696 9.560 25.691 30.633 8.783 0.643

This table presents the out-of-sample pricing errors of VIX futures forecasts.
MAE is the average absolute error between the market price and the model price;
RMSE is the square root of the average squared pricing error (market price -
model price); MAE% and RMSE% are expressed in relative terms (percentages);
Std.Dev is the standard deviation of pricing errors; Corr.coef. is the correlation
coefficient between the model price and the market price. Numbers in bold are
the loss which are the lowest across different models.
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which is only 5% of the pricing errors given by the ’Fut’ model.

Figure 3.4.2: Out-of-sample RMSE comparison of VIX futures models

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
-1

0

1

2

3
Fut+5VIs (e)

Fut+5VIs (t)

Fut+4VIs

Fut+VIX1Y

Fut

5VIs

4VIs

XZR

Notes: The logarithm of the RMSE estimates of various models.

Panel B of Table 3.4.3 reports the out-of-sample pricing errors for 2020. We

find that the loss values are almost tripled for all the pricing models compared

with those from 2011-2019. Notably, instead of the ’Fut’ model that has the

smallest pricing errors for both in-sample and out-of-sample from 2011 to 2019,

the ’Fut+5VIs’ model offers the lowest errors when considering the MAE, MAE%

and RMSE% loss functions and ’Fut+4VIs’ gives the lowest RMSE. Figure 3.4.2

demonstrates the change of RMSE for different pricing methods and for by years21.

Apparently, the pricing errors from the volatility indices related models, i.e.,

’XZR’, ’4VIs’ and ’5VIs’, are higher than those from the other models for almost

all the years. On the other hand, when the VIX term structure is combined with

21For better illustration effect, we consider the logarithm of the RMSE for each method.
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futures data, ’Fut+5VIs (e)’, ’Fut+5VIs (t)’, ’Fut+4VIs’ develop similar patterns

and values with the ’Fut’ model.

Diebold and Mariano test

To further answer whether the VIX term structure can help to predict the VIX

futures prices, we also want to know whether the addition of VIX term structure to

the futures data has a statistically significant difference as compared to using the

futures data only. Table 3.4.4 provides the DM test statistics by years based on

’Fut’ as the benchmark model. For the year 2011, ’Fut+5VIs (e)’, ’Fut+5VIs (t)’

and ’Fut+4VIs’ report negative DM statistics, which indicates that they generate

lower MSE on average than ’Fut’; especially ’Fut+5VIs (t)’ proved to outperform

the ’Fut’ method with a significant DM value. For the year 2020, ’Fut+5VIs

(e)’ and ’Fut+4VIs’ display smaller MSE than ’Fut’, although not significantly

different. From 2012 to 2019, ’Fut’ gives the lowest MSE. However, the ’Fut’

model is found not significantly better than at least one of the other models for

the years 2012-2013, 2016 and 2018-2019. Interestingly, ’Fut+4VIs’ offers the

lowest MSE for the overall period, i.e., 2011-2020. This finding suggests that

adding the VIX term structure to futures data can provide lower pricing errors

for VIX futures pricing.
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Figure 3.4.3: Out-of-sample GW test results for 2011 - 2020
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Notes: Color map based on the GW test comparing the MSE loss values. The null hypothesis
is that the row model and column model have equal conditional predictive ability. Color 0
means no comparison between two models; color 1 blocks signify that the row model has higher
MSE than the column model at 5% level; color 2 means that there is no difference in the
conditional forecasting ability between the row and column models; color 3 signifies that the
row model has lower MSE than the column model at 5% level. The models are denoted by short
abbreviations in the following order: F5V(e) denotes Fut+5VIs (e), F5V(t) denotes Fut+5VIs
(t), F4V denotes Fut+4VIs, F1V stands for Fut+VIX1Y and the other four models use the
same notations as defined in Section 3.3.1.
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Giacomini and White test

Figure 3.4.3 plots the colour map based on the GW test by years. The dark-red

block (Colour 3) means that the row model has a lower MSE than the column

model at 5% significance level; the pink block (Colour 1) means that the column

model has a lower MSE than the row model at 5% level. For the years 2014-2017,

the ’Fut’ model has dark-red blocks for all the vertical comparisons vertically

and pink blocks horizontally, which means that it outperforms all the other ap-

proaches during this period. However, for the rest of the sample period, ’Fut’ is

not significantly different from at least one method which contains both futures

data and the VIX term structure information. It is also notable that for 6 out of

10 years, ’Fut’ is found not to be superior to ’Fut+4VIs’ in the predictive ability

of VIX futures prices.

Model confidence set

The MCS test is carried out for a detailed comparison of the pricing errors based

on different time to maturity and VIX levels, presented in Figure 3.4.4 and Figure

3.4.522. Figure 3.4.4 reports the MCS test according to maturity for both 2011-

2019 and 2011-2020. Consistent with our earlier findings, the pricing errors tend

to be larger when we include the 2020 data for all different maturities. Only

for the VIX futures with a maturity between 30 days and 60 days, ’Fut’ is a

22Since we do not have the enough observations for the MCS test for 2020 year only, we then
compare the pricing performance between the period 2011-2019 and 2011-2020.
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Figure 3.4.4: Out-of-sample RMSE of VIX futures models for different ma-
turities
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Notes: The RMSE loss values for different levels of time to maturity (days). Different colors
denote a different sample time period, i.e., pink dots/diamonds indicate outputs obtained over
the sample period Jan 2011- Dec 2019; dark red dots/diamonds are outputs estimated over
Jan 2011- Oct 2020. The models represented by diamonds belong to the MCS at 75% con-
fidence level. The models are denoted by short abbreviations in the following order: F5V(e)
denotes Fut+5VIs (e), F5V(t) denotes Fut+5VIs (t), F4V denotes Fut+4VIs, F1V stands for
Fut+VIX1Y and the other four models use the same notations as defined in Section 3.3.1.
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single best-performing method regardless whether the year 2020 is added to the

estimation or not. When the time to maturity ranges from 60 days to 120 days,

the out-of-sample pricing performance of ’Fut+4VIs’ is not significantly different

from the ’Fut’ model. Importantly, for the long-term VIX futures, i.e., when the

maturity is longer than 120 days, ’Fut+4VIs’ is proved to produce more accurate

forecasts than the ’Fut’ model for both periods. When considering all futures

prices from 2011 to 2020, the MCS ends up with ’Fut+5VIs (e)’, ’Fut+5VIs (t)’,

’Fut+4VIs’ and ’Fut’. This finding is consistent with our earlier results from the

DM test and the GW test.

Figure 3.4.5 summarises the RMSE values by different VIX levels. All the

different methods tend to have a higher RMSE when the VIX level is higher.

For low VIX levels, i.e., VIX ≤ 15, only ’Fut’ is included in the MCS for cases,

when the COVID period is included or excluded from the dataset. But when the

VIX level is higher than 15, the MCS contains ’Fut+5VIs (e)’, ’Fut+4VIs’ and

’Fut’ for 2011-2019 and ’Fut+5VIs (e)’, ’Fut+5VIs (t)’, ’Fut+4VIs’ and ’Fut’ for

2011-2020.

All the results above provide evidence that the use of VIX term structure im-

proves the VIX futures forecasting, especially when the VIX level is high. More-

over, Table 3.4.5 suggests that combining the volatility indices with futures data

can give close VIX forecasts compared to using the VIX term structure only.



3.4. Empirical results 100

Figure 3.4.5: Out-of-sample RMSE of VIX futures models for different VIX
levels
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Notes: The RMSE loss values estimated over different VIX levels. Different colors denote a
different sample time period, i.e., pink dots/diamonds indicate outputs for the sample period
Jan 2011- Dec 2019; dark red dots/diamonds are outputs estimated over Jan 2011- Oct 2020.
The models represented by diamonds belong to the MCS at 75% confidence level. The models
are denoted by short abbreviations in the following order: F5V(e) denotes Fut+5VIs (e), F5V(t)
denotes Fut+5VIs (t), F4V denotes Fut+4VIs, F1V stands for Fut+VIX1Y and the other four
models use the same notations as defined in Section 3.3.1.
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Table 3.4.5: Out-of-sample pricing errors of VIX models

MAE RMSE MAE% RMSE% Std.Dev Corr.coef.

Fut+5VIs(e) 1.194 2.354 6.097 9.040 2.352 0.952

Fut+5VIs(t) 1.221 2.378 6.267 9.211 2.374 0.951

Fut+4VIs 1.189 2.375 6.066 9.047 2.373 0.951

Fut+VIX1Y 2.568 4.791 14.938 29.089 4.683 0.801

Fut 1.502 2.790 7.660 10.531 2.790 0.934

5VIs 1.081 2.009 5.659 7.778 2.002 0.965

4VIs 1.043 1.983 5.425 7.622 1.978 0.966

XZR 2.542 4.536 13.139 16.831 4.536 0.817

This table presents the out-of-sample pricing errors of CBOE VIX forecasts from
January 2011 to October 2020. MAE is the average absolute error between the
market price and the model price; RMSE is the square root of the average squared
pricing error (market price - model price); MAE% and RMSE% are expressed in
relative terms (percentages); Std.Dev is the standard deviation of pricing errors;
Corr.coef. is the correlation coefficient between the model price and the market
price.

3.5 Conclusions

In this chapter, we examine the efficiency of including the VIX term structure

in the VIX futures pricing model. The GJR model parameters are calibrated

from the data using filtered historical simulation. We also include the VVIX

term structure in the VIX futures pricing model. We find that the out-of-sample

performance of the models that use the VIX term structure and the VIX futures is

not significantly different from the model that use the futures data only for most

of the years, but yields significant outperformance compared to the models based

on the VIX/VIX term structure. Most importantly, the evidence of the 2020

COVID-19 crisis suggests that the addition of the VIX term structure improves
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model performance in terms of achieving lower pricing errors. Meanwhile, the

MCS test shows that the use of the VIX term structure can also deliver better

forecasts for the VIX futures with a maturity longer than 120 days or when the

VIX level is higher than 15.

This chapter has at least two implications. First, the model that uses futures

data only underperforms when it comes to forecasting futures prices, especially for

the extreme observations, i.e., during the 2020 COVID-19 crisis. Second, the GJR

model with filtered historical simulation is a better choice for describing market

volatility compared to the tradition local risk-neutral valuation relationship.



Appendices

This supplemental appendix provides additional tables and figures.
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Chapter 4

Optimal forecasting of VVIX:

forecast combinations vs. LASSO

4.1 Introduction

Volatility plays a significant role in financial markets and risk management prac-

tices. The Chicago Board Options Exchange (CBOE) volatility index (VIX) has

been the most popular barometer of market sentiment since it was launched in

1993. The high VIX level implies ascendancy of fear while a low VIX level signals

dominance of greed. To help investors have an even deeper insight into volatility,

the CBOE introduced VVIX to measures the uncertainty in market sentiment in

2012. The goal of the VVIX index is to capture the expected volatility of the

30-day forward VIX index. Hence it is often called “the volatility-of-volatility”
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or ”the vol-of-vol”. Just as the VIX is calculated from the S&P 500 options, the

VVIX is calculated using the same methodology to a cross-section of the VIX

options. The reliable forecasts of the VVIX index are key to capture the future

changes of the VIX index, thus is of interest to academic researchers and market

participants.

The literature on the VVIX index has primarily focused on the character-

istic of the volatility-of-volatility, as measured by VVIX. For example, Park

(2015)employs the VVIX as a proxy to document a positive correlation between

the volatility-of-volatility and the current prices of tail risk hedging options. Holl-

stein and Prokopczuk (2018) suggest that the volatility-of-volatility is significantly

priced in the market returns and implies a negative risk premium. Huang et al.

(2019a) demonstrate that time-varying volatility-of-volatility is a significant risk

factor that affects VIX option returns. Bu et al. (2019) document that stocks with

higher sensitivities to daily changes in volatility-of-volatility have higher returns

than those with lower sensitivities. Jeon et al. (2020) show that incorporating

VVIX into models significantly increases the predictive power compared to tra-

ditional volatility models. Other related studies on VVIX include Zang et al.

(2017), Krause (2019) etc.

However, only few studies (if any) discuss forecasting the VVIX index. To fill

this gap, we compare several popular volatility forecasting models out-of-sample

and attempt to answer the following simple question: is there an optimal fore-
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casting method for the VVIX index? In the context of volatility forecasting, a

number of studies suggest that the combination of individual forecasts has of-

ten been found to outperform individual forecasts, see, for example, Becker and

Clements (2008), Patton and Sheppard (2009), Wang et al. (2016) etc. There are

three potential explanations: 1) the combination of individual forecasting models

covers the information from each model; 2) they are likely to provide insurance

against structural breaks while the individual model may be very differently af-

fected; 3) there is a possible variance reduction since individual forecasting models

may be differentially mis-specified1. On the other hand, the least absolute shrink-

age and selection operator (LASSO), introduced by Tibshirani (1996), is another

popular predictive tool in financial forecasting, see, for example, Audrino and

Knaus (2016), Zhang et al. (2019a), Zhang et al. (2019b), etc. The advantages of

using the LASSO include: 1) it can select the most important predictors by pro-

ducing zero estimated coefficients; 2) the LASSO can pick one predictor among

several highly correlated ones.

In this chapter, we generate daily VVIX forecasts for the year 2016-2020

using thirteen different models. First, we consider three individual models: a

simple linear regression using a set of lagged variables; the autoregressive moving

average (ARMA) model; and the heterogeneous autoregressive (HAR) model of

Corsi (2009). Second, we implement eight popular combining methods in the

1Please see Clemen (1989), Clements and Hendry (2004) and Timmermann (2006) for reviews
of forecast combinations.
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literature on forecast combination approaches) to produce the VVIX forecasts

(see Rapach et al., 2010; Hsiao and Wan, 2014). Third, we perform two LASSO

type regressions, i.e., the original LASSO proposed by Tibshirani (1996) and the

elastic net of Zou and Hastie (2005), using all the predictors from the individual

models.

To the best of our knowledge, this study is among the first to attempt VVIX

forecasting in the literature. We find that a median combining method outper-

forms all the other models by providing the lowest squared errors of the fore-

casts for the period covering 2016-2020. Furthermore, the model confidence set

(MCS) test shows that both the simple average combining method and the me-

dian method have significantly superior forecasting performance than all the other

models. In addition, our results on LASSO-type models suggest that the daily

changes in average monthly VVIX play an important role for VVIX forecasting.

The remainder of the study is organized as follows. Section 4.2 introduces the

daily behavior of the VVIX index. Section 4.3 describes the different forecasting

models and the evaluation criteria. Section 4.4 presents our results and analysis,

and Section 4.5 concludes.
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4.2 The CBOE VVIX

4.2.1 The background of the VVIX index

The CBOE introduced the futures and options on the VIX in March 2004 and

February 2006, respectively, to trade and hedge against changes in volatility.

Nowadays, VIX options and futures are among the most actively traded contracts

in the financial market. Trading on VIX derivatives enables practitioners to invest

in market volatility regardless of the actual direction of the S&P 500 index, and

further provides more opportunities to diversify their portfolios. Huang et al.

(2019a) report that apart from the VIX index, the VVIX is also a significant risk

factor that affects VIX option returns. Different from the VIX which measures

the implied volatility of the S&P 500 market, the VVIX, on the other hand, shows

how rapidly market volatility changes rather than measures the volatility itself.

Hence, investors should consider the levels of both the VIX and the VVIX index

when trading VIX options and futures. For example, if both the VIX and the

VVIX are observed to have a high level, then they are expected to decrease to

their long-run mean in the future. And thus investors may profit from a bear

call spread which consists of a long call option with a higher strike price and a

short call with a lower strike price. Moreover, Park (2015) demonstrates that the

VVIX index has predictive power for the returns of tail risk hedging options, such

as the S&P 500 puts and VIX calls.
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The model-free formula that CBOE employs to calculate VVIX in a similar

manner to the calculation of the VIX:

VVIXt = 100×
√

2

τ

∑
i

4Ki

K2
i

erτQ(Ki)−
1

τ
[
F

K0

− 1]2, (4.2.1)

where τ is time to expiration, Q(Ki) is the VIX option price with strike Ki, 4Ki

is the interval between strike prices, F is the forward price derived from the VIX

options, and K0 is the first strike that is below the forward index level F .

4.2.2 Daily behavior of VVIX

In this chapter, we investigate the daily VVIX index for the period covering

January 2007 to December 2020, which gives a total sample of 3,522 observa-

tions. Table 4.2.1 shows the summary statistics for the whole sample period.

The VVIX exhibits a long term mean of 91.3 and ranges from 59.74 to 207.59.

Not surprisingly, the VVIX index is right-skewed and leptokurtic. The p-value

of the Jarque-Bera test in the column also demonstrates the nonnormality of the

VVIX index. All these descriptive statistics show variations over the sample pe-

riod. For example, the means and the ranges of the VVIX index increase as the

years go by. Also, the VVIX is more volatile during 2020 than 2007-2015 and

2016-2019 which is evidenced by a high standard deviation of 19.39. Since the

VVIX measures the expected volatility of the VIX index, Table 4.2.1 also reports

the VVIX statistics summarised by different levels of VIX. The VVIX index has
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a higher value on average and is more volatile when the corresponding VIX level

is high.

Table 4.2.1: Summary statistics on VVIX

Obs Mean Std.Dev Skew. Kurt. Min Max JB test

All 3,522 91.300 15.752 1.430 4.571 59.74 207.59 0.000

Periods

2007-2015 2,265 87.079 13.485 0.955 1.600 59.74 168.75 0.000

2016-2019 1,005 94.026 11.607 2.020 9.105 74.98 180.61 0.000

2020 252 118.362 19.390 1.534 3.511 86.87 207.59 0.000

VIX level

VIX≤ 15 1,284 85.000 9.249 -0.047 -0.285 61.76 114.39 0.081

15<VIX≤ 20 958 91.262 10.834 0.324 0.145 63.06 135.32 0.001

20<VIX≤ 351,037 95.502 17.970 0.463 0.040 59.74 180.61 0.000

VIX>35 243 106.807 27.968 0.943 0.692 64.95 207.59 0.000

This table presents the summary statistics for the VVIX index from January
2007 to December 2020. The data are summarised by different periods and VIX
levels. The p-value of Jarque–Bera (JB) test for normality is reported.

Panel A of Figure 4.2.1 plots the time evolution of both the VVIX and the VIX

index over the whole sample period. The level of the volatility of volatility, i.e.,

the VVIX, is much higher than that of the volatility index itself, i.e., the VIX. But

both the VIX and the VVIX demonstrate a mean-reverting property on a long-

run basis. Interestingly, the spikes in the VVIX often tend to be accompanied by

spikes in the VIX. However, it is notable that the VVIX index is more sensitive

(higher spikes) to the economic uncertainty than the VIX, for example, during

August 2007 (the beginning of the subprime crisis), August 2015 (the Chinese
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Figure 4.2.1: The VIX and the VVIX
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the x-axis shows values of the VIX index.
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stock market crash), February 2019 (Donald Trump’s trade war with China), etc.

Figure 4.2.2: Scatter plot of ∆ VIX and ∆ VVIX
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Notes: Scatter plot of the changes in the VVIX and the changes in the VIX from January 3,
2007 to December 31, 2020. For a better illustration, we take the logarithm of VVIX and VIX,
respectively. The grey line is the fitted values from the estimated linear regression.

Panel B of Figure 4.2.1 illustrates the variation of the VVIX when the VIX

is sorted from smallest to largest. It shows little correlation pattern between the

VVIX and the VIX. However, both the magnitude and the variation of the VVIX

are much larger for higher values of the VIX compared to those for a lower level

of the VIX. It is noteworthy that, when we consider the logarithm of the VVIX

and the VIX values, their first differential exhibits a strong correlation as shown

in Figure 4.2.2.
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4.3 The forecasting models

4.3.1 Linear regression model

We perform a linear regression of the daily changes in the VVIX index on a set

of lagged variables. Intuitively, the lagged daily changes in VVIX are included

along with its underlying, i.e., the VIX index and the S&P 500 index returns in

the regression. Additionally, we examine whether the information on the VIX

term structure explains future values of the VVIX index. To assess whether

there is an asymmetric relationship between the daily changes in VVIX and the

explanatory variables, we also consider the absolute values of these variables2. A

mixed selection procedure, i.e., a combination of forward selection and backward

selection, is then employed to decide the number of the predictors. Based on both

the Akaike information criterion (AIC) and the Bayesian information criterion

(BIC), the following regression is estimated:

∆VVIXt = β0 + β1∆VVIXt−1 + β2|∆VVIXt−1|+ β3∆VIXt−1

+ β4|∆VIXt−1|+ β5|VXdiff
t−1 |+ β6rett−1 + εt,

(4.3.1)

2Konstantinidi and Skiadopoulos (2011b) suggest that the slope of yield curve has predicative
power for the VIX futures market, hence we also take this variable into consideration. We
examine the yield curve slope within different maturities; however, the estimated regression
shows that the information on the yield curve does not explain the daily changes in the VVIX
index.
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where β0 is a constant, ∆VVIXt and ∆VIXt denote the daily changes in the VVIX

index and the VIX index from time t − 1 to t, respectively. |∆VVIXt−1| and

|∆VIXt−1| are the absolute values of ∆VVIXt and ∆VIXt, respectively. |VXdiff
t |

is the absolute value of the difference between the CBOE S&P 500 3 Month

Volatility Index (VIX3M) and the VIX index. rett is the log return of S&P 500

at time t.

4.3.2 ARMA model

The Augmented Dickey-Fuller (ADF) test proposed by Dickey and Fuller (1981)

suggests that the VVIX index is non-stationary in the levels but stationary in

first differences. Therefore, by considering both AIC and BIC, we estimate the

following ARMA(1,1) model:

∆VVIXt = c+ ϕ1∆VVIXt−1 + θ2εt−1 + εt. (4.3.2)

4.3.3 HAR model

The third model we amploy is based on the HAR model proposed by Corsi (2009).

Since its origination, the HAR model is attracting increased attention in volatility

modelling because it can approximate long memory processes in a simple way,

is so-called ’parsimonious’, and is easy to estimate using ordinary least squares

(OLS). There are various extensions of the HAR model, for example, Andersen
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et al. (2007) and Corsi et al. (2010) introduce a jump component, Patton and

Sheppard (2015) incorporate a leverage effect, etc. In this chapter, we focus on

the basic HAR model to investigates the extent to which the VVIX information

of the previous day, week, and month can contribute to explaining the current

VVIX value. To align with the two models described in the above sections, we

employ the changes in VVIX instead of the VVIX value itself3. The model is

expressed as:

∆VVIXt = β0 + β1∆VVIXt−1 + β2∆VVIX
w
t−1 + β3∆VVIX

m
t−1 + εt

VVIXw
t−1 =

1

5

5∑
i=1

∆VVIXt−i

VVIXm
t−1 =

1

22

22∑
i=1

∆VVIXt−i,

(4.3.3)

where ∆VVIXt is the daily change in the VVIX index at time t, and ∆VVIXw
t

and ∆VVIXm
t denote the changes in average weekly and monthly VVIX levels at

t, respectively 4.

3We compare the two regressions, i.e, the regression using VVIX and the regression using
the changes. Interestingly, all the coefficients in the regression using changes are significantly
different from zero at 5%, while only the coefficient of lagged daily VVIX is significant in the
regression using the VVIX index.

4In this study, we use the trading day count convention. Hence the weekly and monthly
VVIX levels are calculated as the average values over the past 5 and 22 days, respectively.
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4.3.4 Forecast combinations

So far, we have three models to forecast the VVIX index. However, it has been

well-known that combinations of individual forecasts often outperform the in-

dividual forecasts, see, for example, Becker and Clements (2008), Patton and

Sheppard (2009), Wang et al. (2016), etc. The popular forecast combination

methods include the weighted average approach and the regression approach.

Weighted average approach

The combination forecasts of VVIX using the weighted average method can be

written as:

V̂VIX t+1 =
n∑
i=1

ωi,tV̂VIX i,t+1, (4.3.4)

where V̂VIX t represents the combination forecast of VVIX at time t, n is the

number of individual models and in our case n = 3, ωi,t is the combining weight

for the i-th individual forecast estimated at time t, and V̂VIX i,t is the forecast of

VVIX value which is produced by the i-th model.

Following Rapach et al. (2010), Zhu and Zhu (2013), and Hsiao and Wan

(2014), among others, we consider the following four popular weighting methods:

• Mean combination. The mean combination refers to the simple average of

all forecasting models, i.e., ωi,t = 1
3
.

• Median combination. The median combination employs the median of all
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individual forecasts.

• Discount mean square prediction error (DMSPE) combining method. The

DMSPE method allocates greater weights to the forecasting models which

have better forecasting performance. The combining weight of the i-th

individual predictive model is defined as:

ωi,t =
φ−1i,t∑n
j=1 φ

−1
j,t

, (4.3.5)

where

φi,t =
t∑

s=m+1

θt−s(VVIXs − V̂VIX i,s)
2, (4.3.6)

m is the number of observations in-sample, VVIXs is the market price of

VVIX at time s, V̂VIX i,s is the VVIX forecast from the i-th model at time

s, θ is a discount factor for which we consider two values, 1 and 0.9.

• Bayesian averaging method. In this method, the combining weight is based

on the BIC value of the in-sample period:

ωi,t =
exp (−1

2
∆BICi)∑3

j=1 exp (−1
2
∆BICj)

, (4.3.7)

where BICi is the BIC value for the i-th model and ∆BICi = BICi −

minj(BICj).
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Regression approach

Granger and Ramanathan (1984) propose three regression approaches to combine

forecasts:

VVIXt =
n∑
i=1

wiVFi,t + ut s.t.

3∑
j=1

wj = 1

VVIXt =
n∑
i=1

wiVFi,t + ut

VVIXt = w0 +
n∑
i=1

wiVFi,t + ut,

(4.3.8)

where wi is the unknown parameter for the i-th model, VFi,t is the VVIX forecasts

for time t using the i-th individual model. In this chapter, the three regression

models are referred as REG1, REG2 and REG3, respectively. REG1 and REG2

can be considered as constrained regression models of REG3.

4.3.5 LASSO regressions

The least absolute shrinkage and selection operator (LASSO) regression has been

introduced by Tibshirani (1996). It is a regression analysis that penalizes the

coefficients of the independent variables to shrink some of them to zero. The goal

of LASSO regression is to identify the most important variables associated with

the response variable. The LASSO forecast is defined as:

V̂VIX t+1 = β̂0 +
P∑
i=1

β̂ixi,t, (4.3.9)
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and the LASSO estimate is given by:

β̂ = arg min
β

1

2

t−1∑
j=1

(
VVIXj+1 − β0 −

P∑
i=1

βixi,j

)2

,

s.t.

P∑
i=1

|βi| ≤ ψ,

(4.3.10)

where xi,t is the i-th predictor available at time t, P is the total number of the

predictors which are all the predictors included in the individual models.
∑P

i=1 |βi|

denotes the L1 LASSO penalty which makes the solutions nonlinear in the VVIX

forecasts. ψ is a pre-specified parameter that determines the degree of shrinkage.

When ψ is sufficiently small, some of the coefficients may become zero which leads

to the selection of a subset of the variables.

We can also write the LASSO in the so-called Lagrangian form:

β̂ = arg min
β


t−1∑
j=1

(
V̂VIXj+1 − β0 −

P∑
i=1

βixi,j

)2

+ λ
P∑
i=1

|βi|

 , (4.3.11)

where λ controls the amount of L1 regularization and serves a similar role as ψ.

Apart from the original LASSO method, we also consider another popular

LASSO approach which is the elastic net proposed by Zou and Hastie (2005). The

elastic net forecast is the same as Equation (4.3.9), whereas the corresponding
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estimate is:

β̂ = arg min
β


t−1∑
j=1

(
V̂VIXj+1 − β0 −

P∑
i=1

βixi,j

)2

+ λ
P∑
i=1

(
αβ2

i + (1− α) |βi|
) ,

(4.3.12)

where α ∈ [0, 1], and when α = 0 the elastic net method turns into the original

LASSO.

In order to forecast the VVIX index for time t+1 using the LASSO and elastic

net regressions, we need to decide the optimal value of λ and α ex ante with all

the information up to t. In this chapter, we employ the split cross-validation to

identify the optimal λ and α. The detailed procedure is as follows:

1. To avoid unfair penalty on the predictors with a small range, we standardise

the features before fitting the model, i.e., we subtract the mean of the feature

and then divide it by the standard deviation of the feature5.

2. Determine a minimum number of observations for fitting the model, denoted

as m. In this chapter, we use the number of observations during 2007-2014

as the minimum number. At the first iteration, we train the model on

the data VVIX1, VVIX2, ...VVIXm and forecast the price for the next day,

V̂VIXm+1. Then the forecast error is em+1 = VVIXm+1 − V̂VIXm+1.

3. For the second iteration, fit the model to the data VVIX1, VVIX2, ...VVIXm+1

5We also perform the max-min normalisation to scale the features; the results are similar
and available on request.
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and calculate the forecast error em+2, and so on, up to time t.

4. Compute the MSE as 1
t−m

∑t
i=m+1 e

2
i . Identify the optimal λ and/or α

which yield the lowest MSE.

5. Fit the model to VVIX1, VVIX2, ...VVIXt with the optimal estimates of λ

and/or α from the last step. Then the model parameters β̂ in the equation

(4.3.11) and (4.3.12) can be obtained.

6. Once the model parameters β̂ and shrinkage factors λ and/or α are known,

we can forecast VVIXt+1 with all the predictors up to time t.

4.3.6 Model evaluation

To quantitatively evaluate the forecasting accuracy of different models, we follow

the literature and use the three popular loss functions6:

MAE =
1

N

N∑
i=1

∣∣∣VVIXi − V̂VIX i

∣∣∣ , (4.3.13)

RMSE =

√√√√ 1

N

N∑
i=1

(
VVIXi − V̂VIX i

)2
, (4.3.14)

QLIKE =
1

N

N∑
i=1

(
VVIXi

V̂VIX i

− log
VVIXi

V̂VIXi

− 1

)
, (4.3.15)

6See Patton (2011a) for a range of loss functions which are employed in the literature of
volatility forecast evaluation.
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where N is the number of total observations out-of-sample, VVIXi is the market

value of the VVIX index at time i, and V̂VIX i denotes the VVIX forecast of a

given model. Since the difference between the highest VVIX value and the lowest

one is more than 100, we also report the MAE and RMSE in relative terms, i.e.,

MAE% and RMSE%, respectively.

MAE% =
1

N

N∑
j=1

∣∣∣∣ V̂VIX i

VVIX i

− 1

∣∣∣∣, (4.3.16)

RMSE% =

√√√√ 1

N

N∑
j=1

[(
V̂VIX i

VVIX i

− 1

)2]
. (4.3.17)

Also, to evaluate the statistical forecast accuracy of the models, we consider

both the Diebold and Mariano (1995) (DM) test and the model confidence set

(MCS) test of Hansen et al. (2011). The DM test is employed to examine the

significance of the differences between two series of forecasts. Specifically, the

difference in errors is defined as: dt = L(ê1,t) − L(ê2,t), then the DM statistic is

given by:

DM =
d̄√

2πf̂d(0)/T
, (4.3.18)

where d̄ is the mean of dt, and 2πf̂d(0) is a consistent estimator of the asymptotic

variance.

The MCS is the subset of models which contains the best models at a given

confidence level. In this chapter, we consider the 75% confidence level and two
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methods, which calculate the test statistics using the sums of absolute values (R

method) and the sums of squared loss differentials (SQ method), respectively.

4.4 Empirical results

4.4.1 Data

The VVIX data is downloaded from the CBOE website. With respect to the pre-

dictors for the individual models of linear regression, LASSO and Elastic net mod-

els, the VIX, the VIX3M and the S&P 500 prices are from www.finance.yahoo.com;

the data on the yield curve is from U.S. Department of the Treasury website.

During the process of model estimation, some of the forecasting methods need

a holdout period to estimate the parameters, for example, the weights in the

weighted average combing method (except the Mean and Median combinations),

the parameters in the model combining regression, λ and/or α in LASSO and

Elastic net models. We then consider the 2007-2014 period as the in-sample

period and the year 2015 as the first holdout period. Therefore, for the out-of-

sample evaluation, we examine the pricing performance over 2016-2020 for all

the models on a rolling-window basis. In addition, we divide the whole out-

of-sample period into two sub-periods: 1) a relatively peaceful period covering

2016-2019 which has an overall standard deviation of 11.607; 2) year 2020 which

is more volatile (standard deviation of 19.390) due to the uncertainty related to
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the COVID-19 crisis.

4.4.2 Out-of-sample forecast evaluation

Table 4.4.2: Out-of-sample forecasting errors (1)

Model MAE RMSE QLIKE MAE% RMSE% MCS

Random walk 3.579 5.482 1.263 3.510 5.159 -

Regression 3.551 5.488 1.258 3.477 5.160 -

ARMA 3.486 5.423 1.240 3.441 5.141 -

HAR 3.531 5.453 1.250 3.472 5.144 -

Mean 3.494 5.416 1.235 3.438 5.118 X
Median 3.456 5.409 1.232 3.413 5.130 X
DMSPE1 3.494 5.417 1.235 3.438 5.119 -

DMSPE0.9 3.495 5.418 1.235 3.438 5.119 -

Bayesian 3.531 5.453 1.250 3.472 5.143 -

REG1 3.483 5.459 1.242 3.429 5.147 -

REG2 3.565 5.531 1.271 3.504 5.197 -

REG3 3.570 5.571 1.277 3.503 5.207 -

LASSO 3.518 5.432 1.239 3.457 5.120 -

Elastic net 3.516 5.433 1.241 3.455 5.124 -

This table presents the out-of-sample pricing errors for the full sample period
covering 2016-2020. MAE is the average absolute error between the market price
and the model price; RMSE is the square root of the average squared pricing error;
QLIKE is given in equation (4.3.15). MAE% and RMSE% are in relative terms
expressed in percentages with respect to the VVIX. The last column presents
an indicator whether the model is in the MCS at 75% confidence level based on
MSE.

In Table 4.4.2 we present the out-of-sample forecast errors for the whole period,

i.e, 2016-2020. Among all the models, the ’Median’ combination model exhibits

the lowest errors when considering the MAE, RMSE and MAE%, and the ’Mean’

estimator has the lowest value under RMSE%. The last column of Table 4.4.2
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reports the results of the MCS procedure. Based on MSE, the full sample MCS

contains the ’Mean’ and ’Median’ models at 75% confidence level.

Table 4.4.3 lists the out-of-sample forecasting errors of different models. In

addition to the models described in Section 4.3, we report the errors obtained

from the random walk. Also, the DM statistics are obtained based on the random

walk model as the benchmark. Panel A covers the period from January 2011 to

December 2019. Similar to the results for the whole sample period, the ’Median’

model delivers the lowest values under all the loss functions except for RMSE%,

and the ’Mean’ estimator has the lowest RMSE%. However, when considering the

RMSE and QLIKE only, ’Regression’, ’Mean’, ’Median’, ’DMSP1’, ’DMSP0.9’,

’LASSO’ and ’Elastic net’ give similar errors7. It is notable that the DM statistics

of all the models are negative, which indicates that all the models have smaller

average MSE than the random walk in this period. More importantly, for the

seven models we mentioned above, we can reject the null hypothesis of equal

forecast accuracy at 5% significance level. In other words, these seven models

outperform the random walk model for the period 2011-2019.

Panel B of Table 4.4.3 presents the out-of-sample performance for the year

2020. The RMSE of all the models increases while RMSE% decreases, which

might be induced by the high average level of VVIX during the pandemic. No-

tably, the random walk model has the lowest RMSE among all the forecasting

7Patton (2011a) shows that, among all the loss functions, only MSE and QLIKE are robust
to the noise in the volatility proxy.
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Table 4.4.3: Out-of-sample forecasting errors (2)

Model MAE RMSE QLIKE MAE% RMSE% DM stat

Panel A. Year 2016-2019

Random Walk 3.453 5.331 1.313 3.551 5.263 -

Regression 3.369 5.243 1.278 3.478 5.206 -2.308

ARMA 3.343 5.218 1.274 3.466 5.213 -1.797

HAR 3.379 5.260 1.287 3.491 5.220 -1.738

Mean 3.343 5.219 1.269 3.457 5.192 -2.604

Median 3.315 5.205 1.266 3.438 5.202 -2.017

DMSPE1 3.344 5.219 1.269 3.457 5.192 -2.600

DMSPE0.9 3.344 5.221 1.269 3.458 5.193 -2.596

Bayesian 3.379 5.260 1.286 3.490 5.219 -1.750

REG1 3.324 5.228 1.269 3.444 5.207 -1.918

REG2 3.402 5.292 1.299 3.520 5.260 -0.739

REG3 3.384 5.303 1.301 3.507 5.271 -0.288

LASSO 3.375 5.240 1.276 3.482 5.197 -2.512

Elastic net 3.372 5.241 1.277 3.479 5.201 -2.507

Panel B. Year 2020

Random Walk 4.085 6.048 1.066 3.349 4.722 -

Regression 4.277 6.371 1.181 3.469 4.973 1.574

ARMA 4.055 6.173 1.106 3.342 4.842 0.597

HAR 4.137 6.164 1.104 3.399 4.827 0.745

Mean 4.096 6.137 1.099 3.361 4.813 0.730

Median 4.018 6.156 1.098 3.313 4.830 0.511

DMSPE1 4.096 6.142 1.100 3.361 4.816 0.760

DMSPE0.9 4.096 6.143 1.099 3.361 4.814 0.772

Bayesian 4.137 6.164 1.104 3.399 4.827 0.745

REG1 4.116 6.300 1.133 3.371 4.899 1.304

REG2 4.213 6.395 1.160 3.438 4.940 1.682

REG3 4.315 6.528 1.179 3.483 4.942 2.376

LASSO 4.090 6.140 1.095 3.358 4.805 0.510

Elastic net 4.091 6.141 1.095 3.359 4.805 0.502

This table presents the out-of-sample pricing errors. MAE is the average absolute
error between the market price and the model price; RMSE is the square root of
the average squared pricing error; QLIKE is given in equation (4.3.15). MAE%
and RMSE% are in relative terms expressed in percentages with respect to the
VVIX. DM denotes the Diebold-Mariano test statistic based on the MSE with
the null hypothesis of equal accuracy and follows a N(0,1) distribution. The
benchmark model is the random walk.
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models, although it is not significantly different from all the other models (except

’REG3’) in its ability to generate VVIX forecasts as shown by the DM statistics.

Table 4.4.4: Out-of-sample forecasting errors by VIX levels

VIX≤15 15<VIX≤ 20 20<VIX≤ 35 VIX>35

obs.=667 obs.=257 obs.=282 obs.=51

Model RMSE DM RMSE DM RMSE DM RMSE DM

Random walk 3.727 - 6.106 - 6.273 - 12.394 -

Regression 3.677 -2.781 5.952 -3.421 6.133 -1.301 13.379 2.074

ARMA 3.576 -3.029 5.974 -1.799 6.078 -1.357 13.173 1.454

HAR 3.636 -3.338 6.041 -0.997 6.141 -1.479 12.950 1.422

Mean 3.613 -4.130 5.965 -2.821 6.081 -1.953 12.977 1.789

Median 3.561 -3.488 5.953 -2.224 6.047 -1.565 13.215 1.534

DMSPE1 3.613 -4.131 5.965 -2.815 6.081 -1.950 12.989 1.806

DMSPE0.9 3.614 -4.188 5.965 -2.879 6.080 -1.974 13.002 1.853

Bayesian 3.635 -3.374 6.040 -1.007 6.141 -1.477 12.951 1.424

REG1 3.545 -3.724 5.977 -1.735 6.147 -1.281 13.466 2.143

REG2 3.596 -3.323 6.092 -0.162 6.236 -0.371 13.518 2.158

REG3 3.615 -2.343 5.945 -1.551 6.269 -0.034 14.090 2.237

LASSO 3.651 -3.319 5.970 -3.573 6.093 -2.165 12.965 1.600

Elastic net 3.657 -3.260 5.972 -3.736 6.085 -2.231 12.966 1.613

This table presents the out-of-sample RMSE for different levels of the VIX. DM
denotes the Diebold-Mariano test statistic based on the MSE with the null hy-
pothesis of equal accuracy and follows a N(0,1) distribution. The benchmark
model is the random walk. obs. is the number of observations.

To investigate whether the market volatility affects the VVIX forecasting per-

formance, Table 4.4.4 reports the out-of-sample errors by VIX levels. When the

VIX level is less than or equal to 15, all the models outperform the random

walk with, surprisingly, the ’REG1’ presenting the lowest MSE. When the value

of the VIX is in the range of (15,20], ’Regression’, ’Mean’, ’Median’, ’DMSP1’,
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’DMSP0.9’, ’LASSO’ and ’Elastic net’ models have more accurate forecasts com-

pared with the random walk. We find that these seven models are identical with

the models which outperform the random walk for the period 2016-2019. Further-

more, when the VIX falls into (20,35], only ’LASSO’ and ’Elastic net’ exhibit a

significant outperformance over the random walk. However, if the VIX increases

above 35, which accounts for 4% of the total observations, based on the DM

statistics we can conclude that most of the models are not significantly different

from the random walk in terms of VVIX forecasting. Also noteworthy is the fact

as the level of the VIX index rises, the RMSE increases and the number of models

which are superior to the random walk decreases.
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Table 4.4.5: Out-of-sample forecasting comparison: MCS test

Model MSE based QLIKE based

R method SQ method R method SQ method

Random walk 1 1 1 1

Regression 1 1 2 2

ARMA 3 3 2 2

HAR 1 1 1 1

Mean 2 3 3 5

Median 3 4 5 5

DMSPE1 2 3 2 4

DMSPE0.9 1 2 1 2

Bayesian 1 1 1 1

REG1 3 4 3 4

REG2 0 0 0 1

REG3 1 1 2 2

LASSO 3 3 3 3

Elastic net 2 3 3 3

This table presents the number of out-of-sample years for which each model is
within the MCS at 75% confidence level; the data sample is from 2016 to 2020.
The MCS test employs two methods: the range method (R Method) and semi-
quadratic method (SQ Method). The loss functions considered are MSE and
QLIKE. The MCS test is based on 10,000 bootstraps.

Apart from the discussion on the forecasting errors and DM test, we also

conduct two additional analysis. The first one is the MCS test which identifies

the best subset out of the entire model family. In addition to Table 4.4.2 which

shows the MCS results for the whole period, Figure 4.4.3 illustrates the MCS test

by years. Panel A to Panel D displays the results of MCS using the R method

and SQ method under MSE and QLIKE, respectively. The models selected by

MCS are quite similar across different methods for each year, except that ’REG1’
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dominates in 2017 when considering the MSE-based procedure. Overall, the

’Median’ model is most likely to survive in the MCS when considering all the

methods and loss functions used in the test. Also, Table 4.4.5 confirms this

finding by presenting the number of years in which each model is in the MCS.

Figure 4.4.3: Out-of-sample comparison: MCS test results
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(a) R Method based on MSE
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(b) SQ Method based on MSE
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(c) R Method based on QLIKE
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(d) SQ Method based on QLIKE

Notes: This chart illustrates the MCS test results by years. The bubble signifies that the
corresponding model is within the MCS at 75% confidence level for a given year. The data
ranges from 2016 to 2020. The MCS test employs two methods: the range method (R Method)
and semi-quadratic method (SQ Method). The loss functions considered are MSE and QLIKE.
The MCS test is based on 10,000 bootstraps.

Following Rapach et al. (2010), we plot the time series of the difference be-

tween the cumulative squared error (CSE) of the random walk and the cumulative
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squared error of each model over the whole period, as shown in Figure 4.4.4. This

gives a simple visual impression of how each forecasting model differs from the

random walk during the out-of-sample period. All the models (except ’REG2’

and ’REG3’) display an upward trend before the year 2020, which indicates that

those models consistently outperform the random walk during 2016-2019. How-

ever, the line in each panel drops dramatically in March 2020, which means that

all forecasting models fail to capture the spikes in the VVIX index. Furthermore,

we compare the height of the curve at the end of the period: the high endpoint

in Panel (e) demonstrates that the ’Median’ model has a lower MSE than the

other models. This is consistent with our earlier findings. Also, ’ARMA’, ’Mean’,

’DMSPE1’, ’DMSPE0.9’, ’LASSO’ and ’Elastic net’ are shown to outperform the

random walk over the whole sample.

4.4.3 Variable selection

Although the ’Median’ model combination provides the best out-of-sample per-

formance considering the overall period, ’LASSO’ and ’Elastic net’ also deliver

more accurate forecasts than the random walk. Considering that these models,

i.e., ’LASSO’ and ’Elastic net’, are able to offer model selection among a number

of feasible variables, it is of interest to examine the importance of the various

predictors for VVIX forecasting. We consider the following 17 variables from

the individual models, which also include all the candidates for ’Regression’: the
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Figure 4.4.5: Variable selection for 2016-2020
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Notes: This chart shows the variables selected for forecasting the VVIX index over the period
January 2016 to December 2020. The y-axis is the 17 variables which are potentially related
to the daily changes of VVIX. The dark-red blocks indicate that the variable is selected by the
predictive regression on a given day.
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lagged daily changes in VVIX (∆VVIX), the daily changes in the VIX (∆VIX),

daily changes in the average weekly VVIX (∆VVIXw), the daily changes in the

average monthly VVIX (∆VVIXm), the difference between the VIX3M and the

VIX index (VXdiff ), the log-returns of the S&P 500 index (ret), the squared

returns (ret2), the difference between the 3-month treasury bill rate and the 1-

month treasury bill rate (TBdiff
6m ), the difference between the 6-month treasury

bill rate and the 1-month treasury bill rate (TBdiff
3m ), and their absolute values

(except the squared returns).

Figure 4.4.5 shows the variable selection results of the ’LASSO’ and ’Elas-

tic net’ methods, respectively. An impressive finding is that, compared with

’Elastic net’, the ’LASSO’ method tends to select less variables and thus have

more ’blocks’ predictors over time. In ’LASSO’, the top five variables selected are

∆VIX, ∆VVIXm, |∆VVIXw|, |∆VVIXm| and |VXdiff |, respectively; while the top

five selected by ’Elastic net’ are ∆VVIXm, |∆VVIXm|, ret, ∆VVIX and TBdiff
3m .

It is notable that the changes in the average monthly VVIX and its absolute value

appear more often in the selected predictors of VVIX for both methods.

4.5 Conclusions

In the financial market, VVIX is an important indicator of how rapidly market

volatility changes rather than of the volatility itself. Motivated by the success of
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forecast combinations and LASSO-type shrinkage methods, this chapter seeks to

answer the question: is there an optimal forecasting method for the VVIX index.

In this chapter, we examine the forecasting performance of three individual

models, eight combination methods and two LASSO-type models out-of-sample

over the period 2016-2020. We find that the simple ’Median’ method yields the

lowest MSE across years. Moreover, the results of the MCS procedure shows

that both the ’Mean’ and ’Median’ methods outperform the other models for the

overall period. Furthermore, the model selection results of both ’LASSO’ and

’Elastic net’ methods suggest that, instead of daily changes in the VVIX index,

the changes in the monthly VVIX are of vital importance in predicting the VVIX.



Chapter 5

Conclusions and Further

Research

5.1 Summary of the Findings and Contributions

of the Thesis

This thesis makes original contributions to the volatility forecasting literature,

specifically regarding the uses of volatility indices. Thus, it benefits both academi-

cians and financial practitioners because it provides valuable lessons regarding the

information contained in the volatility indices.

In Chapter 2, we propose a new VIX forecasting method employing the fil-

tered historical simulations put forward in Barone-Adesi et al. (2008) and the

information on the VIX term structure. This approach provides estimates us-

137
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ing the empirical innovation density that can capture the non-normal features of

returns, such as negative skewness and positive excess kurtosis. Different from

the traditional methods that use a cross-section of options data, we calibrate

the model by applying four well-established volatility indices, i.e., VIX9D, VIX,

VIX3M and VIX6M. We find that this method outperforms, both in-sample and

out-of-sample, the benchmark model which only uses the VIX index and assumes

a normal distribution. Additionally, the NAGARCH model based on the new

method is superior to all the other competing models for long-term volatility

forecasts, while the GJR model under the proposed estimation approach outper-

forms all the other models for short-run volatility forecasts. Also, we perform

statistical tests and several robustness checks that confirm our results. More im-

portantly, we provide evidence that our proposed estimation method significantly

reduces the computational time.

In Chapter 3, we explore the usefulness of adding the VIX term structure to

VIX futures pricing models. Similarly to Chapter 2, the estimation assumes the

empirical innovation density to accommodate for the non-normality of returns.

The parameters of the GJR model are then calibrated from the historical futures

data, or the information on the VIX term structure, or their combinations. Our

analysis of the out-of-sample forecasting performance suggests that, for most of

the years, the performance of the models that use both the VIX term structure

and the futures prices is not significantly different from the performance of the
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models that only include data on the futures. Also, we examine the forecasting

performance of different models during the recent 2020 COVID-19 crisis. Our

empirical results show that the use of the VIX term structure leads to the lower

pricing errors. Moreover, we investigate the model performance when using dif-

ferent maturities and VIX levels. Our findings are that, compared to the model

that uses only futures data, models that incorporate information on the VIX term

structure into VIX futures pricing models can provide better forecasts when 1)

the future’s maturity is longer than 120 days; or 2) the VIX level is higher than

15.

In Chapter 4, we analyse VVIX forecasting methods. Motivated by the success

of forecast combinations and the LASSO-type shrinkage methods, we attempt to

answer the following question: is there an optimal VVIX forecasting method? If

yes, then is this based on forecast combinations or LASSO? We find that forecast

combinations perform best. We compare the forecasting performance of three

individual models, eight combining methods and two LASSO-type models out-

of-sample. The results show that the simple median combining method delivers

the lowest forecasting errors across the years. However, we find that both the

mean and median combining methods end up in the model confidence set at

75% confidence level for the full sample period. In addition, we discuss the

model selection results of two shrinkage methods, i.e., LASSO and elastic net.

Interestingly, instead of daily changes in the VVIX, the changes in monthly VVIX
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are key to predict the VVIX.

5.2 Suggestions for Future Research

Although this thesis has important implications for volatility forecasting, there

are still many gaps. In this section, we address future research directions based

on the findings of this thesis.

Forecasting VIX Chapter 2 estimate a volatility model that assumes an

empirical innovation density which captures the non-normality of returns. First,

we briefly discuss the variance risk premium in Section 2.3.2 with a focus on

forecasting the VIX index. As suggested by Bollerslev et al. (2009), an estimate of

the variance risk premium predicts stock returns. Therefore, given the estimated

variance under the physical measure and the risk-neutral estimated variance, our

analysis may be extended to include more details on the variance risk premium.

For example, one can compare the value of variance risk premium captured by the

new methods proposed compared to models introduced in the recent literature.

Second, this model may be extended to include a jump component in order to

capture the spikes of the volatility dynamics. In the table that reports results on

the out-of-sample comparison (Table 2.3.3), the GARCH-type models that use

the proposed method exhibit the highest pricing errors in 2011, the year in which

the VIX is quite volatile, compared to the results for the other years. Therefore,

it is worth to investigate whether a jump component improves the forecasting
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performance during turbulent markets.

Third, the proposed model is calibrated from the VIX term structure, which

are calculated using out-of-the-money options. It would be interesting to examine

the option pricing performance of the new method.

VIX futures Chapter 3 explores the effects of the VIX term structure on the

one-day-ahead VIX futures forecasts. First, a promising extension would be con-

sidering longer forecasting horizons, i.e., one-week-ahead and one-month-ahead

forecasts. Also, it is not rare in the VIX futures pricing literature to evaluate the

model performance by basis, which is defined as the difference between the VIX

level and the VIX futures prices.

Second, inspired by the VVIX forecasting results in Chapter 4, another feasible

extension would enhance the VVIX term structure forecasts using combination

methods in order to improve on the VIX futures pricing model.

VVIX forecasts In Chapter 4, we employ a traditional split cross validation

method for time series to estimate α and λ ex ante in a LASSO-type regression.

However, recent literature, for example, Zhang et al. (2019a), propose a new

algorithm to identify α and λ, which delivers a better forecasting performance.

It may be worth combining LASSO with the new algorithm.

Finally, with respect to the combining methods, one may examine the newly

proposed ’partially egalitarian LASSO’ (peLASSO) method of Diebold and Shin

(2019), which discards some forecasts and shrinks the survivors toward equal-
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ity. The peLASSO, which is shown to outperform simple average and median

forecasts, would be an interesting extension to attempt.
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Corsi, F., Pirino, D., Renò, R., 2010. Threshold bipower variation and the impact

of jumps on volatility forecasting. Journal of Econometrics 159, 276–288.

Demeterfi, K., Derman, E., Kamal, M., Zou, J., 1999. A guide to volatility and

variance swaps. Journal of Derivatives 6, 9–32.

Dickey, D. A., Fuller, W. A., 1981. Likelihood Ratio Statistics for Autoregressive

Time Series with a Unit Root. Econometrica 49, 1057–1072.

Diebold, F. X., Mariano, R. S., 1995. Comparing Predictive Accuracy. Journal of

Business & Economic Statistics 20, 134–144.

Diebold, F. X., Shin, M., 2019. Machine learning for regularized survey fore-



REFERENCES 147

cast combination: Partially-egalitarian lasso and its derivatives. International

Journal of Forecasting 35, 1679–1691.

Dotsis, G., Psychoyios, D., Skiadopoulos, G., 2007. An empirical comparison

of continuous-time models of implied volatility indices. Journal of Banking &

Finance 31, 3584–3603.

Duan, J.-C., 1995. The GARCH option pricing model. Mathematical Finance 5,

13–32.

Duan, J.-C., Yeh, C.-Y., 2010. Jump and volatility risk premiums implied by

VIX. Journal of Economic Dynamics and Control 34, 2232–2244.

Dumas, B., Fleming, J., Whaley, R. E., 1998. Implied volatility functions: Em-

pirical tests. Journal of Finance 53, 2059–2106.

Dupire, B., 2006. Model free results on volatility derivatives (working paper).

SAMSI, Research Triangle Park .

Engle, R. F., 1982. Autoregressive conditional heteroscedasticity with estimates

of the variance of United Kingdom inflation. Econometrica 50, 987–1007.

Engle, R. F., Ng, V. K., 1993. Measuring and testing the impact of news on

volatility. Journal of Finance 48, 1749–1778.

Fernandes, M., Medeiros, M. C., Scharth, M., 2014. Modeling and predicting the

cboe market volatility index. Journal of Banking and Finance 40, 1–10.



REFERENCES 148

Giacomini, R., White, H., 2006. Tests of Conditional Predictive Ability. Econo-

metrica 74, 1545–1578.

Glosten, L. R., Jagannathan, R., Runkle, D. E., 1993. On the Relation between

the Expected Value and the Volatility of the Nominal Excess Return on Stocks.

The Journal of Finance 48, 1779–1801.

Granger, C. W. J., Ramanathan, R., 1984. Improved methods of combining fore-

casts. Journal of Forecasting 3, 197–204.

Guo, S., Liu, Q., 2020. Efficient Out-of-Sample Pricing of VIX Futures. Journal

of Derivatives 27, 126 LP – 139.

Hansen, P. R., 2005. A test for superior predictive ability. Journal of Business &

Economic Statistics 23, 365–380.

Hansen, P. R., Lunde, A., Nason, J. M., 2011. The Model Confidence Set. Econo-

metrica 79, 453–497.

Hao, J., Zhang, J. E., 2013. GARCH option pricing models, the CBOE VIX, and

variance risk premium. Journal of Financial Econometrics 11, 556–580.

Heston, S. L., 1993. A Closed-Form Solution for Options with Stochastic Volatility

with Applications to Bond and Currency Options. The Review of Financial

Studies 6, 327–343.



REFERENCES 149

Heston, S. L., Nandi, S., 2000. A closed-form GARCH option valuation model.

Review of Financial Studies 13, 585–625.

Hollstein, F., Prokopczuk, M., 2018. How Aggregate Volatility-of-Volatility Af-

fects Stock Returns. The Review of Asset Pricing Studies 8, 253–292.

Hsiao, C., Wan, S. K., 2014. Is there an optimal forecast combination? Journal

of Econometrics 178, 294–309.

Huang, D., Schlag, C., Shaliastovich, I., Thimme, J., 2019a. Volatility-of-

Volatility Risk. Journal of Financial and Quantitative Analysis 54, 2423–2452.

Huang, Z., Tong, C., Wang, T., 2019b. VIX term structure and vix futures pricing

with realized volatility. Journal of Futures Markets 39, 72–93.

Jeon, B., Seo, S. W., Kim, J. S., 2020. Uncertainty and the volatility forecasting

power of option-implied volatility. Journal of Futures Markets 40, 1109–1126.

Jiang, Y., Lazar, E., 2020. Forecasting VIX using filtered historical simulation.

Journal of Financial Econometrics Nbaa041.

Kambouroudis, D. S., McMillan, D. G., 2016. Does VIX or volume improve

GARCH volatility forecasts? Applied Economics 48, 1210–1228.

Kanniainen, J., Lin, B., Yang, H., 2014. Estimating and using GARCH models

with VIX data for option valuation. Journal of Banking & Finance 43, 200–211.



REFERENCES 150

Konstantinidi, E., Skiadopoulos, G., 2011a. Are VIX futures prices predictable?

An empirical investigation. International Journal of Forecasting 27, 543–560.

Konstantinidi, E., Skiadopoulos, G., 2011b. Are VIX futures prices predictable?

An empirical investigation. International Journal of Forecasting 27, 543–560.

Konstantinidi, E., Skiadopoulos, G., Tzagkaraki, E., 2008. Can the evolution

of implied volatility be forecasted? evidence from european and us implied

volatility indices. Journal of Banking and Finance 32, 2401–2411.

Krause, T. A., 2019. Hedge fund returns and uncertainty. The North American

Journal of Economics and Finance 47, 597–601.

Lin, Y.-N., 2007. Pricing VIX futures: Evidence from integrated physical and

risk-neutral probability measures. Journal of Futures Markets 27, 1175–1217.

Liu, Q., Guo, S., Qiao, G., 2015. VIX forecasting and variance risk premium: A

new GARCH approach. North American Journal of Economics and Finance 34,

314–322.

Majewski, A. A., Bormetti, G., Corsi, F., 2015. Smile from the past: A general

option pricing framework with multiple volatility and leverage components.

Journal of Econometrics 187, 521–531.

Mandelbrot, B., 1963. The variation of certain speculative prices. Journal of Busi-

ness 36, 394–419.



REFERENCES 151
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