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Abstract

This thesis contributes to the literature on volatility forecasting, focusing on the
VIX index, the VIX futures and the VVIX. It consists of three main chapters.

The first contribution is the introduction of a new VIX forecasting method-
ology employing both filtered historical simulations and four well-established in-
dices. We examine the forecasting performance of three different GARCH models
from 2011-2017. Our empirical results show that this new method outperforms
the benchmark model which only uses the VIX index and assumes a normal dis-
tribution. Also, our proposed methodology is found to reduce the computational
time significantly, compared to the traditional model which uses cross-sectional
options prices.

The second contribution is studying the role of the VIX term structure in
predicting VIX futures prices. The estimation is carried out under the GJR
model, assuming the empirical innovation density under the risk-neutral measure.
Several models are employed differing in the data set used, i.e., futures data, or

the VIX term structure, or their combinations. We find that the use of the VIX
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term structure improves the VIX futures forecasts, especially for the long-term
VIX futures or when the VIX level is high. Also, the evidence from the 2020
COVID-19 crisis shows that using both the VIX term structure and the VIX
futures provides lower pricing errors compared to using futures data only.

The third contribution is an investigation on the optimal forecasts of the
VVIX. This thesis presents a comparison of VVIX forecasts based on three indi-
vidual models, eight combining methods and two LASSO-type regressions. Our
finding is that the simple median combining method gives the lowest forecasting
errors across the years among all the methods considered. Moreover, the model
selection results of LASSO suggest that instead of daily changes in the VVIX,

the changes in monthly VVIX are essential to predict the VVIX.
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Chapter 1

Introduction

1.1 Motivations

Stock market volatility plays a critical role in portfolio optimization, asset pricing
and risk management. In 1993, the Chicago Board Options Exchange (CBOE)
introduced the first volatility index, VIX, which offers a theoretical estimate of the
market’s future volatility. The VIX index reflects the expected volatility of the
S& P 500 index over the coming 30 days and is calculated from a panel of option
prices. The VIX index is often referred as the 'fear gauge’ (see Whaleyl, [2009)). In
general, high VIX levels reflect the fear that the equity prices will decrease in the
future, while low VIX levels mirror greed among the investors and thus increasing
the likelihood of a market correction. In addition to the VIX, the CBOE also
established a set of volatility indices across different maturities to measure the

implied volatility term structure: the CBOE S&P 500 9-day Volatility Index
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(VIX9D), the CBOE S&P 500 3-month Volatility Index (VIX3M), the CBOE
S&P 500 6-month Volatility Index (VIX6M) and the CBOE S&P 500 1-year
Volatility Index (VIX1Y).

Notably, the VIX and the other volatility indices are not easily traded, al-
though theoretically it is possible to replicate a portfolio of the S& P 500 options
in the indices. To enable trading and hedging against changes in volatility, CBOE
launched VIX futures on March 26, 2004. Since its creation, VIX futures have
attracted a considerable amount of attention in past years given the fact that they
are very liquid in the market. The daily trading volume exceeds 200,000 contracts
in 2020 and corresponds roughly to 6 billion USD in market valud’] Also, the
VIX futures is a much more convenient hedging tool than S&P500 index options
(see [Szadol, [2009).

To guide and inform the increasing number of investors in VIX derivatives,
CBOE published the volatility-of-volatility index, VVIX, on 14 March, 2012. The
VVIX reflects the risk-neutral volatility of volatility (vol-of-vol) using the same
methodology as the VIX, implied from VIX options instead of S&P 500 options.
It measures how market volatility varies in the future rather than measures the
volatility itself. The VVIX index has separate dynamics from the VIX and is an
important risk factor that affects the level of the VIX and VIX option returns

(see Huang et al., 2019a). Moreover, it conveys information to the VIX trading

IThe data can be found from the CBOE website.
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community about the fair values of VIX futuref].

The focus of this thesis is on forecasting volatility, as an index or a derivative
instrument, using several well-established volatility indices. A number of studies
suggest that the predictive ability of the option implied volatility, such as the
VIX, outperforms traditional time-series volatility models based on historical ob-
servations, see, for example, Corrado and Miller| (2005), (Carr and Wu (2006),
Bandi and Perron (2006), etc. Also, forecasting the VIX index is essential for
trading strategies based on VIX futures and options either for trading volatility
or for hedging purposes (Konstantinidi et al., 2008; Carr and Lee, 2009; Fernan-
des et al., [2014). The traditional volatility forecasting literature is based on the
assumption of normality for return innovations and extracts information from
extensive options data. Alternatively, Chapter [2| proposes a faster VIX forecast-
ing method that assumes filtered historical density and uses different volatility
indices.

Given the fact that the VIX futures are the most liquid in the volatility fu-
tures market as discussed by |[Konstantinidi and Skiadopoulos| (2011al), there are
numerous studies examining the VIX futures. Most studies concentrate on de-
veloping VIX futures pricing models: either with the underlying, i.e, the VIX
index, see, for example, [Zhang and Zhu| (2006), |Zhu and Lian (2012), Xie et al.

(2020)), etc; or using both the volatility indices and historical futures data, see,

2See CBOE VVIX whitepaper for more details. https://ww2.cboe.com/index/dashboard /vvix#vvix-
overview
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for example, |Wang et al. (2017, Huang et al.| (2019b). Chapter [3|investigates to
what extent the VIX term structure can help to predict the VIX futures prices.
More importantly, as in Chapter [2 we assume non-normal return innovations
using filtered historical simulation in volatility forecasting.

Furthermore, the accuracy in forecasting the VVIX index is critical to capture
the future tendency of both the VIX index and the VIX futures prices (Lin} 2007).
Also, incorporating the VVIX into models can significantly enhance the predictive
power compared to traditional volatility models (Jeon et al., 2020)). However, the
existing literature mainly employs the VVIX as a proxy to study the characteris-
tic of the implied volatility-of-volatility, see, for example, [Park (2015, Hollstein
and Prokopczuk| (2018), [Huang et al| (2019a)). In Chapter [} we seek to answer a
simple question: is there an optimal forecasting method for the VVIX index? It
is well-known in the forecasting literature that forecast combinations often out-
perform individual models (Becker and Clements, 2008; Patton and Sheppard,
2009; Wang et al., 2016). On the other hand, the least absolute shrinkage and
selection operator (LASSO) of [Tibshirani (1996) is a desirable model when gen-
erating financial forecasts as argued by |Audrino and Knaus (2016)) and [Zhang
et al.| (2019a)). Therefore, to answer the above question, we compare the VVIX
forecasting performance of thirteen different models across three categories, i.e.,
individual models, models combinations and LASSO-type models.

Overall, the evolution of the VIX in recent years, alongside the following
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launched VIX futures and the VVIX index, indicate a strong demand by financial
participants for volatility-related products. Therefore, forecasting VIX and its
related instruments are of great interest to both academic researchers and financial
practitioners. To the best of our knowledge, the literature on forecasting volatility,
which employs the volatility indices and assumes filtered historical returns, is
limited. The ultimate goal of this thesis is to analyse the forecasting models for

the VIX and its related products using the volatility indices.

1.2 Overview of the Thesis

This thesis discusses forecasting models for the VIX, the VIX futures and the
VVIX.

Firstly, this thesis proposes a new method to forecast the VIX which uses
filtered historical simulation (FHS) proposed by |Barone-Adesi et al.| (2008)). The
non-normality of financial returns is well documented in the literature since Man-
delbrot| (1963)). On the other hand, in a discrete-time setting, the Generalized
Autoregressive Conditional Heteroscedasticity (GARCH) model introduced by
Engle| (1982) and Bollerslev, (1986 and its various extensions are very popular
in modelling volatility, as they can explain the volatility clustering and are easy
to estimate. |Barone-Adesi et al. (2008) propose a new method to model the
future volatility which captures the non-normality of returns using FHS under

the GARCH framework of |Glosten et al. (1993) (GJR). However, the estimation
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of such models uses a large number of cross-sections of option data and thus
is computationally intensive. Alternatively, recent papers show that estimating
GARCH models using VIX index information improves model performance and
saves computational time (e.g. Kanniainen et al., 2014).

In this thesis, we propose a new volatility forecasting approach using the fil-
tered historical simulation and four well-established volatility indices, i.e., VIX9D,
VIX, VIX3M and VIX6M. We estimate three different GARCH models: the clas-
sic GARCH(1,1) model of Bollerslev| (1986), the non-linear asymmetric GARCH
model of |[Engle and Ng| (1993) (NAGARCH) and the GJR model by Glosten et al.
(1993) in order to capture the leverage effect. Also, we choose the model of Hao
and Zhang| (2013)) as the benchmark, which assumes normal returns and only in-
cludes information on the 1-month VIX index. As robustness checks, we perform
the following: 1) examine our results across different forecasting horizons; 2) con-
sider alternative weights in the optimisation function; 3) calculate pricing error
statistics using different weighting approaches; and 4) extend the sample period
to include the 2008 financial crisis. In addition, we compare the computational
time of the proposed approach with options-based calibration as in |Barone-Adesi
et al. (2008).

Our empirical analysis shows that the proposed estimation method outper-
forms the model of Hao and Zhang| (2013) both in-sample and out-of-sample.

The NAGARCH model under the new method is superior to all the other mod-
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els for both one-week-ahead and four-week-ahead VIX forecasts, while the GJR
model based on the new method dominates for one-day-ahead forecasts. Ad-
ditionally, the use of volatility indices significantly reduces the computational
burden compared to the option-based pricing method.

Secondly, this thesis develops a VIX futures evaluation model using volatility
indices that fills the gap between the VIX futures pricing literature and the VIX
term structure literature. We employ the GJR model, which is calibrated from the
data using filtered historical simulation, to model the daily volatility. To explore
the effects of the VIX term structure on the performance of VIX futures pricing
models, we examine the forecasting performance of including data on the VIX
term structure. Given the two sources of information, i.e., the VIX futures data
and the VIX term structure (VIX9D, VIX, VIX3M, VIX6M and VIX1Y), seven
estimation methods are presented that differ in terms of the data used. We find
that the out-of-sample performance of the models that use the VIX term structure
and the VIX futures is not significantly different from the model that uses futures
data, but provides significant outperformance compared to the models which are
based on the VIX term structure.

Also, we perform the model confidence set procedure of [Hansen et al.| (2011])
for a detailed comparison of the pricing performance based on different time to
maturity and the levels of the VIX index. An impressive finding is that the use

of the VIX term structure improves the VIX futures forecasting when the VIX
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level is higher than 15 or with a maturity longer than 120 days. Meanwhile, the
evidence of the 2020 COVID-19 pandemic confirms that the addition of the VIX
term structure lowers the pricing errors when the market is volatile.

Furthermore, we apply the model of Xie et al.| (2020) as the benchmark which
employs the GJR model assuming normally distributed innovations and is es-
timated using the VIX index. Our empirical results suggest that the proposed
pricing models based on the filtered historical simulations significantly outperform
the benchmark both in-sample and out-of-sample.

Thirdly, given the importance of the VVIX, this thesis endeavours to answer
the following question: is there an optimal forecasting method for the VVIX? To
answer this question, we employ three common models used in volatility forecast-
ing: the linear regression, autoregressive-moving-average (ARMA) model and the
heterogeneous autoregressive (HAR) model of (Corsi| (2009). Then eight popular
combining methods are implemented based on these three individual models to
generate the VVIX forecasts (see Rapach et al., [2010; Hsiao and Wan|, 2014).
Also, we consider the original LASSO proposed by [Tibshirani| (1996) and the
elastic net of Zou and Hastie| (2005)) in the comparison, which results in thirteen
forecasting models in total.

Among all the models we consider, our empirical analysis shows that the
median combining method performs the best by providing the lowest squared

errors of the forecasts over the full sample period. Importantly, the results on
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LASSO-type models reveal that the daily changes in average monthly VVIX play

an important role in the forecasting of VVIX .

1.3 Original Contributions

The forecasting of the volatility of financial time series plays a critical role in asset
allocation and risk management. With the growing uses of the VIX and its related
products, forecasting the volatility indices becomes essential but challenging. This
thesis, which contains three main chapters, contributes to forecasting the VIX
index, the VIX futures and the VVIX, respectively.

(1) Our original contributions in forecasting the VIX index include:

e We propose the use of GARCH models with filtered historical simulations in
the VIX forecasting literature to capture the non-normal features of returns

data.

e We allow for flexible change of measure in the model, i.e., different param-

eters under the physical and risk-neutral volatility process.

e We compare three different models based on GARCH specifications: original

GARCH, GJR GARCH and NAGARCH.

e Instead of using cross-sectional options data, we consider another forward-

looking information in our estimation, which are the CBOE volatility in-

dices, i.e., VIX9D, VIX, VIX3M and VIX6M.
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e We demonstrate that the computational time of proposed method is reduced

significantly compared to option-based models.

(2) Secondly, our original contributions to the literature on forecasting the

VIX futures prices include:

We develop a model estimation method for VIX futures prices by incorpo-

rating the volatility indices.

e We show that the addition of the VIX term structure improves the fore-
casting performance, especially for the long-term VIX futures or when the

level of the VIX is high.

e Differently from the majority of literature which assumes a normal distri-
bution for the returns, we apply the empirical innovation density extracted

from historical returns.

e We take the VVIX term structure into account when modelling the VIX

futures prices.

(3) Thirdly, our original contributions to the literature on forecasting the

VVIX include:
e We examine the daily behaviour of the VVIX time series.
e We compare thirteen different forecasting models/methods, which belong to

three categories: individual models, forecast combinations and LASSO-type

models.
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e We analyse the model selection results of LASSO-type models.

1.4 Outline of the Thesis

The rest of this thesis is organized as follows: Chapter [2] introduces a new VIX
forecast method using GARCH models based on the filtered historical simulation;
Chapter |3] investigates the effects of the VIX term structure on the performance
of VIX futures pricing models; Chapter [4] presents the forecasting performance
across several different forecasting methods/models. Chapter 5| summarises our
main findings and discusses further research that builds on the findings presented
in this thesis.

For a better reading experience, we make each chapter self-contained. As
such, we (re)introduce variables and abbreviations in each chapter. Whenever

possible, we attempt to follow consistent notations throughout this thesis.

Notes

Please see|Clemen| (1989), Clements and Hendry| (2004) and |Timmermann|(2006) for reviews
of forecast combinations.

2Konstantinidi and Skiadopoulos| (2011b)) suggest that the slope of yield curve has predicative
power for the VIX futures market, hence we also take this variable into consideration. We
examine the yield curve slope within different maturities; however, the estimated regression
shows that the information on the yield curve does not explain the daily changes in the VVIX

index.
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3We compare the two regressions, i.e, the regression using VVIX and the regression using
the changes. Interestingly, all the coefficients in the regression using changes are significantly
different from zero at 5%, while only the coefficient of lagged daily VVIX is significant in the
regression using the VVIX index.

4Tn this study, we use the trading day count convention. Hence the weekly and monthly
VVIX levels are calculated as the average values over the past 5 and 22 days, respectively.

5We also perform the max-min normalisation to scale the features; the results are similar
and available on request.

6See [Patton (2011al) for a range of loss functions which are employed in the literature of
volatility forecast evaluation.

TPatton| (2011a)) shows that, among all the loss functions, only MSE and QLIKE are robust

to the noise in the volatility proxy.



Chapter 2

Forecasting VIX using filtered

historical simulation

2.1 Introduction

There is substantial empirical research showing that volatility clustering plays
an important role in modelling financial time series, such as equity returns. The
Generalized Autoregressive Conditional Heteroscedasticity (GARCH) framework
introduced by Engle (1982) and Bollerslev (1986) allows the volatility to be time-
varying — initially assuming normally distributed innovations. However, the non-
normality of the return innovations is well documented in the finance literature
since [Mandelbrot| (1963). Consequently, GARCH models with non-normal in-

novations (assuming more flexible distributions such as the student’s ¢ or the

13
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generalised error distribution) gained popularity - see, for example, Bollerslev
(1987) and Nelson| (1991). Other approaches can be found in (Christoffersen et al.
(2006)), |Stentoft| (2008) and (Christoffersen et al.| (2009). The recent option pricing
literature captures the non-normality of returns by employing filtered historical
simulation (FHS) as in |Barone-Adesi et al. (2008), where the empirical innova-
tion density is extracted from historical index returns, and these methods can be
used in volatility forecasting. Nonetheless, the estimation of such models uses
cross-sectional option prices and is computationally intensive.

In this chapter, we propose an alternative, faster approach to forecast volatil-
ity, which uses volatility indices information. However, our approach is based on
not only the 1-month VIX index, but the VIX indices at all available maturities (9
days, 1 month, 3 months and 6 months)[], and employs filtered historical returns.
VIX9D, VIX3M and VIX6M measure the expected annualised volatility in the
coming days as well as the VIX index, although with different maturities, they are
informative for future VIX values. We provide evidence that our approach out-
performs the Normal-VIX model of [Hao and Zhang (2013)) both in-sample and
out-of-sample and leads to a significant reduction of computational time when
compared with the model of Barone-Adesi et al.| (2008).

The traditional way to estimate GARCH parameters is via maximum like-

!The new indices (VIX9D, VIX3M and VIX6M) are derived by applying the VIX algorithm
to options on the S & P 500 Index, and use SPX options with expiration dates that bracket a
different period of time, e.g., the VIX9D is calculated using two ‘near-term’ option contracts in
which one has maturity less than 9 days and the other has maturity more than 9 days.
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lihood estimation (MLE) using equity returns which produces estimates under
the physical measure. In order to price options, non-linear least-squares (NLS),
based on option prices, are more desirable than using historical returns (see, for
example, |Christoffersen and Jacobs| 2004; Christoffersen et al., 2013) since option
prices contain forward-looking information. However, as pointed out by |Duan and
Yeh (2010) and Kanniainen et al.| (2014)), estimating GARCH models using a large
amount of cross-sections of option data increases the computational burden.
Several recent papers focus on using VIX index information to estimate GARCH

models. The VIX index, introduced by the Chicago Board Options Exchange
(CBOE) in 1993, reflects investor fear levels and market sentiment on a day-by-
day basis, showing the risk-neutral expected annualised volatility of the S&P 500
over the next 30 days. Therefore, the risk-neutral GARCH parameters are esti-
mated based on the information provided by the VIX index. For example, |Hao
and Zhang (2013) estimate GARCH models by proposing a joint likelihood func-
tion using both returns and the VIX. Their work is carried out under the locally
risk-neutral valuation relationship proposed by |[Duan/ (1995). [Kanniainen et al.
(2014)) suggest that calculating spot volatilities with VIX data, rather than from
returns, improves the performance of GARCH option pricing. Also, they point
out that a joint maximum likelihood function using returns and the VIX gener-
ates better estimates than a maximum likelihood function based on returns only

in terms of option pricing errors. |Liu et al.| (2015 calibrate three different types
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of GARCH models on the VIX index of the previous trading day. They show that
their estimates produce reasonable one-day out-of-sample VIX forecasts. |Wang
et al.| (2017) propose a closed-form formula for pricing VIX futures based on the
Heston and Nandi (2000) GARCH model, where the parameters are estimated
using both the VIX and VIX futures prices. Also, several studies use GARCH
estimates to forecast VIX as an extended application of GARCH pricing models;
see, for instance, Barone-Adesi et al.| (2008) and Byun and Min| (2013). Other
related articles include Kambouroudis and McMillan (2016]) who consider VIX
as an exogenous variable within a selection of GARCH models, and [Huang et al.
(2019b)) who estimate the extended leverage heterogeneous autoregressive gamma
(LHARG) model of Majewski et al. (2015)) using both the VIX term structure
and the VIX futures.

However, the current literature on GARCH option pricing using CBOE VIX
considers only normally distributed returns. In the approach presented in this
chapter we not only use filtered historical innovations, but also four volatility
indices to estimate GARCH models. Following Barone-Adesi et al. (2008), we
allow the volatility parameters to be different under the physical and the risk-
neutral measures. Byun and Min (2013) point out that using the same values
for the one-day-ahead conditional volatility under both measures, as in |Barone-
Adesi et al.| (2008)), will lead to unstable estimated parameters. Therefore, in this

chapter, following Byun and Min| (2013), we consider the one-day-ahead volatility
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to be different under the two measures. Instead of using cross-sectional option
prices leading to time-consuming estimations, our estimation is based on VIX
data that reduces estimation time significantly. This is in line with Kanniainen
et al. (2014)) who point out that the joint estimation with returns and VIX saves
computational time, especially for non-affine GARCH models, which do not have
closed-form solutions of option prices. We compare the forecasting performance
of our proposed model with the Normal-VIX model of [Hao and Zhang (2013).
Also, we compare our model with the FHS-options model of [Barone-Adesi et al.
(2008)) from a computational burden perspective.

To our knowledge, this is the first study in which the four well-established
VIX indices are used in volatility modelling based on GARCH. As such, from
a VIX forecasting perspective, our method improves on the traditional GARCH
models in three different ways. First, the empirical distribution of innovations
captures excess skewness, kurtosis, and other non-normal features of return data.
Second, the flexible change of measure (different parameters for the risk-neutral
and physical volatility processes) induces better pricing performance both in-
sample and out-of-sample. Third, we consider forward-looking information in
our estimation, but instead of option prices we use the CBOE volatility indices
(VIX9D, VIX, VIX3M and VIX6M) in order to significantly reduce computational
time when compared to the FHS-options method of Barone-Adesi et al.| (2008).

The remainder of this chapter is organized as follows. Section presents the
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new estimation method that uses the filtered historical simulation and the CBOE
volatility indices. Section provides the empirical results and analysis, Section

details a series of robustness checks, and Section [2.5 concludes the study.

2.2 The models

In this section, we introduce the different GARCH model estimations we inves-
tigate in this chapter. We first discuss two competing approaches: the model of
Barone-Adesi et al.| (2008) (the FHS-options method, hereafter) and the one of
Hao and Zhang (2013) (the Normal-VIX method, hereafter). The FHS-options
method is used to estimate model parameters assuming non-normal innovations
and uses option prices, while the Normal-VIX method combines normal innova-
tions with the CBOE VIX information. Subsequently, motivated by the bench-
mark models, we propose a new approach to estimate GARCH models using
non-normal innovations and volatility indices. To show the relationship between
the daily conditional variance and the volatility indices, we explain the CBOE

volatility indices in a discrete-time setting.

2.2.1 The FHS-options method

It is a well-established fact that returns have fat left tails, which refers to nega-

tive skewness and leptokurtosis. Barone-Adesi et al. (2008)) employ the filtered
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historical simulation to accommodate for these nonstandard features of the re-
turn innovations by using the empirical innovation density. Also, they use the
GJR GARCH model of |Glosten et al.| (1993)) (GJR, hereafter) to account for the
leverage effect, i.e., negative returns having more impact on the volatility than
positive returns.

Barone-Adesi et al.| (2008|) assume that in each period under the physical
measure the asset return is assumed to follow the asymmetric GJR model below:

hl(St/St,l) = U + Et, Et = Ot
(2.2.1)

2 _ 2 2 2
o, =w+ac;,_,+ Po,_ +vli—1g;_,

where

1, 1 < 0
Iy =

0, &-12>20.

S; is the stock price at time t, p is the expected return, and o2 is the conditional
variance of the log returns In(S;/S;-1), where z; | Fr_1 ~ F(0,1), and F; is
the information set up to time ¢. F' is some unknown distribution function with
zero mean and unit variance, which we estimate using the empirical distribution
function. v > 0 captures the asymmetric response of volatility to positive and
negative returns.

On the other hand, under the risk-neutral measure the stock process is as-

sumed to follow:
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In(S;/Si—1) = p* +ei, & =0z
(2.2.2)

ol =w* +a'el |+ Bor + Y g,
The notation used is the same as in Barone-Adesi et al.| (2008): p* is the risk-
neutral drift which ensures that the expected stock return equals the risk-free rate,
and z; is assumed to follow the same distribution function F(0,1) as under the
physical measure for ¢ > t. Under the risk-neutral measure the volatility dynamics
also follow an asymmetric GJR process. Differently from the traditional GARCH
estimation procedure which specifies the change of probability measure from P

to Q, this method directly calibrates a new set of risk-neutral parameters using

S&P 500 index options.

2.2.2 The Normal-VIX method

Hao and Zhang (2013 use the information of CBOE VIX to GARCH model
estimation. They calculate the squared VIX as a risk-neutral expectation of the
arithmetic average variance over the next 21 trading days under Duanl (1995)’s
locally risk-neutral valuation relationship (LRNVR) frameworkﬂ The estimation

is then carried out within a set of GARCH model specifications using both the

2More details about the relationship between CBOE VIX and the daily conditional variance
are discussed in Section [2.2.3]
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returns and the VIX. The GJR model defined under the LRNVR i

1
Physical measure:  In(S;/S;_1) = ri + Aoy — 50? +e, & =01z

2 2 2 2
oy =w+ag;_ | + fo; +vligp

1
Risk-neutral measure: In(S;/S;_1) =1 — 50? +&, & =0z

Uf =w+o(§o1 — )\Ut—1)2 + 5%2_1 + L1 (§-1 — /\Ut—1)2

(2.2.3)

where 7, is the risk-free rate at time ¢, A is the risk premium, z, | 7;_1 ~ N(0,1),
and {w, a, 5,7} are the GJR parameters.
The implied VIX at time ¢ is a linear function of the conditional variance in

the next period under the LRNVR:
Viz, = A+ Boj,,, (2.2.4)

where

Viz, = (VIX,/100)?/252,

w

1 (2.2.5)
I
-~ n(l—mn)

n=oa(l+ )+ B+~S.

3See Hao and Zhang| (2013) for other GARCH specifications under the LRNVR.
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2
If z; = & /oy follows 1.i.d.N(0,1), then S = [\/%e_% + (1 + A*)N())]. Hao and
Zhang (2013)) propose a joint log-likelihood estimation using the CBOE VIX and

the returns.

2.2.3 CBOE volatility indices

In this section, we briefly describe the CBOE volatility indices which measure the
market expectation of volatility implied by option prices. The CBOE VIX, the
first introduced volatility index, is often referred to as the "market fear gauge”
(see [Whaley, 2009). Since its creation, it has become the standard measure
of volatility risk for practitioners. Nowadays, the investors are able to trade
volatility via VIX derivatives as the VIX itself is not a tradable asset (see |Mencia
and Sentana) 2013|). This chapter focuses on volatility indices calculated from
S&P 500 options data, i.e., VIX, the CBOE short-term volatility index (VIX9D),
the CBOE 3-month volatility index (VIX3M) and the CBOE mid-term volatility
index (VIX6M).

According to (Carr and Madan (1998) and |Demeterfi et al.| (1999), the VIX

index is calculated from out-of-the-money (OTM) S&P 500 index options (put
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and call) using the formulgfl]

== Z Ki SefTQ(K;) — T[?o — 13 (2.2.6)

where T is 30 days, I’ denotes the implied forward index level derived from index
option prices by using the put-call parity. K; is the strike price of the ith OTM
option, AK; is the interval between strike prices, and K| is the first strike that is
below the forward index level F'. Q(K;) is the midpoint of the bid-ask spread of
each option with strike K;. Then VIX is defined as o x 100. VIX? represents the
S&P 500 30-day variance swap rate. This can be interpreted as the expectation
of the integrated variance of the following 30 days under the risk-neutral measure.

Formally, in a discrete-time setting, at time ¢t we have:

30
.
VIX; =100 % | 7+ > EQe?, | Fi. (2.2.7)

k=1

where E9[] is the expectation under the risk-neutral measure. When applying
the calendar day count convention, 7 = 365 is the annualising parameter and
T = 30 is the number of calendar days in a month.ﬂ Then, VIX9D, VIX3M and
VIX6M are calculated in a similar way to VIX, except that the VIX represents a

constant 30 calendar days ahead volatility, whereas VIX9D, VIX3M and VIX6M

4The original VIX index, proposed by Whaley| (1993), was the implied volatility of the at-
the-money (ATM) S&P 100 options. In 2003, CBOE introduces the new VIX index which is
based on the S&P 500 options, and the old VIX is then renamed as VXO.

5When trading day count convention is used, 7 = 252 and T = 22.
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measure the implied volatility of the S&P 500 options for the next nine days,

three months and six months, respectively.

2.2.4 The FHS-VI method

In this section, we propose a new approach to estimate GARCH models using
the filtered historical returns and volatility indices; we investigate three different
GARCH models. We employ the classic GARCH(1,1) model of |Bollerslev| (1986)
(GARCH, hereafter), the nonlinear asymmetric GARCH model of [Engle and Ng
(1993) (NAGARCH, hereafter) and the GJR model by |Glosten et al.| (1993) in
order to capture the leverage effect.

The specification of asset returns is the same in all three models we investigate.

Under the physical measure P, the logarithm of returns follows the dynamic:

ln(St/St_l) = WUt — Ry + &¢, Et = Oz (228)

where S; is the stock price at time t, u; is the expected return, oy is the conditional
volatility of the log return In(S;/S;_1), z; | Fi—1 ~ F(0,1), F;_; is the information
set up to time t — 1. F' is some unknown distribution function with zero mean
and unit variance, which we estimate using the empirical distribution function.

k; 1s the mean correction factor defined as:

ke = In(Fy_q[exp{e:}]) (2.2.9)
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We have:

Ey 1[S1/Si-1] = Ei_q]exp{ps — ki + &1 }] = exp{p}- (2.2.10)

Motivated by (Christoffersen and Jacobs (2004), the conditional variance dy-

namics of the three GARCH models are nested in the general form below:

ol =w+ Bol +gle 1) (2.2.11)

The different GARCH models have different expressions for the innovation func-

tion g¢:

GARCH:  g(g_1) = ag? |
NAGARCH: g¢g(g1) = aleiq — Qat_1)2 (2.2.12)

GIR:  g(er—1) = [a+7I(e1-1 < 0)le,

For the NAGARCH and GJR models, a positive § and ~ ensure an asymmetric
response of the volatility to positive and negative returns, i.e., negative returns
increase future volatility by a larger amount than positive returns of the same
magnitude.

When assuming that the return innovations are normally distributed, the
GARCH models are often estimated by the maximum likelihood estimation (MLE)

method. Bollerslev and Wooldridge| (1992)) demonstrate that this method yields
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consistent estimates, even when the normality assumption is violated. The esti-
mation procedure is then called quasi-maximum likelihood estimation (QMLE).
Under the physical measure, we perform QMLE using the historical log-returns
{R; = In(S;/S;_1);t = 1,2,...,n}. The estimates are obtained by maximising the

following log-likelihood function for the GARCH models in equation (2.2.11)):

InLpr= —g In(27) — = z": {ln(af) + (R — Mt2+ Fit)” } (2.2.13)

Given the estimates, the spot variance o? is updated according to the return

dynamics.

Under the risk-neutral measure we have that:
ln(St/St_1> =Tt — Ii: + 5:, 8: = 0':2: (2214)

where r, is the risk-free rate at time ¢ which is same as in the LRNVR framework
of equation ([2.2.3)), and x; is the mean correction factor under the risk-neutral

measure:

Ry = ln(Egl[eXp{ej}]) (2.2.15)

so that

Ey1[Si/Si-1] = Ei_1[exp{r: — k; + & }] = exp{r}. (2.2.16)
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The conditional variance dynamics are as follows:

o =w'+ B2 + g (e,) (2.2.17)

where for the different models we have:

GARCH: g*(ef ,) = a*e?,
NAGARCH: g¢*(e] ,) = a*(e] , — 070 )’ (2.2.18)

GIR:  g*(e;y) =[a"+71(e]_, < 0)]5;*31.

To distinguish from the spot variance under the physical measure o7, the risk-
neutral variance is denoted by o7?. Whilst Barone-Adesi et al.|(2008) assume that
the spot variance is the same under the physical and risk-neutral measures, Byun
and Min| (2013) show that a model provides more accurate pricing performance
by allowing the risk-neutral spot variance to be different from the physical one.
Also, Kanniainen et al| (2014) demonstrate that extracting the spot volatility
from the VIX index can improve on the model’s performance compared with
calculating spot volatility using the series of the underlying asset returns. The
difference is driven by the conditional skewness and excess kurtosis as shown in

Christoffersen et al.| (2009)). For a given predetermined sequence {14}, they define
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the Radon-Nikodym derivative as follows:

Eil_g | Fi = exp ( - Z(Vﬁi + ‘I’z’(w))) (2.2.19)

=1

where F; is the information set up to time ¢, W;(u) is the logarithm of the moment
generating function:

Ei_1[exp(—uey)] = exp(We(u)). (2.2.20)

The mean correction factor x; in equation (2.2.8)) thus can be viewed as W, (—1).
The authors then demonstrate the existence of an equivalent martingale measure

and show that:

kurt
U0 a2 (2.2.21)

*2 o 2 3
0,° = o0, — skew,o; v +

where v; is an approximation of the modified Sharpe ratio:

pe—re 1 Kt
~~ - — = 2.2.22
% af + 2 af ( )

Therefore, with a negative skewness and positive excess kurtosis, the risk-neutral
conditional variance is greater than the conditional variance under the physical
measurel} In this chapter, we allow ;2 to be different from o} by estimating the
risk-neutral spot variance o2 from the information on the volatility index.

Specifically, following Byun and Min (2013)), we allow the risk-neutral spot

6See |Christoffersen et al.| (2009) for more details.
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variance to be different from the physical one. In addition, a new set of risk-
neutral parameters are calibrated by using information on the CBOE volatility
indices directly[] Since the distribution of the future return innovations cannot
be derived analytically, Monte Carlo simulations are used in the computation of
the GARCH conditional variance. Estimates are then found by minimising the
mean squared error between the prices given by the model and the market prices.

The estimation process is discussed in the next section.

2.2.5 Estimation using the FHS-VI method

This section introduces a new approach to calibrate the GARCH models to the
information provided by the volatility indices. The calibration is based on the
filtered historical simulation method introduced by |[Barone-Adesi et al.| (2008)).
They estimate the GJR model by minimising the errors between the simulated
option prices and the S&P 500 option prices. To ensure better pricing perfor-
mance, they calibrate the GJR model to option prices of a large sample size of
three years, i.e., 29,211 OTM call and put options in total. This requires inten-
sive computation and is time-consuming. Hao and Zhang| (2013) and Kanniainen
et al.| (2014) show that using information on CBOE VIX can improve the pricing

performance of GARCH models whilst avoiding costly computations. Here we

"Barone-Adesi et al. (2008) show that the flexible change of measure achieves a better pricing
performance than other competing GARCH option pricing models, such as the ad hoc Black-
Scholes model introduced by [Dumas et al.| (1998)), the Heston and Nandi (2000) GARCH model,
and the GARCH model with inverse Gaussian innovations of |Christoffersen et al.| (2006).
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propose a new extension, calibrating model parameters assuming filtered histori-
cal returns and using CBOE volatility indices, which reduces the computational
burden significantly.

The estimation procedure is:

1. Under the physical measure, the GARCH models are estimated on each
Wednesday which is least likely to be a holiday or affected by the weekend
effect. The GARCH parameters {w, a, 3, (7), (#)} are estimated by max-
imising the log-likelihood function in equation ([2.2.13)) with 3,500 historical
returns (dailyfff} Thus, the return innovations {2, } are acquired. We repeat

this estimation every week.

2. Under the risk-neutral measure, a daily variance series is simulated for the
next 6 months using the variance dynamics of equation H The
GARCH parameters are initialized with {&, &, 3, (5), (0)} which are the
model estimates obtained under the physical measure in the step 1. The spot
variance here is an unknown parameter in the calibration procedurdﬂ. The

conditional variance of the following 6 months {072, 07%,..., 0771, )] are

8To be aligned with the model of [Barone-Adesi et al.| (2008), we also use 3,500 historical
returns to estimate the GJR GARCH model under the physical measure. Moreover, [Bollerslev
and Wooldridge| (1992) point out that a large sample size will ensure the consistency of the
quasi-maximum likelihood estimation.

9We use the unconditional variance as the initial variance in the estimation. p; — k; is also
estimated in this step.

10Liu et al.| (2015) propose a closed-form solution under this framework.

Byun and Min| (2013) show that, instead of just simply improving the goodness of fit, the
estimated spot variance can be treated as the true spot variance under the risk-neutral measure.

12In this study, we use the trading day count convention, as the innovation distribution is
estimated with trading days returns.



2.2. The models 31

then updated by each day drawing an observation from the past innovations

of {2}

3. N simulated sample paths are generated by repeating the procedure in step
2. The expectation of the risk-neutral conditional variance for the following
ith day can be computed as: EZ[o} 2l =% Ly, O’t +Z , where J;(ﬁ) is the

simulated conditional variance at time ¢ + ¢ in the nth sample path and N

is the total number of simulated paths. In this chapter, we use N = 50, 000

pathﬁ.

4. According to the definition of VIX and equation (2.2.7)), the GARCH model
implied VIX (model VIX, hereafter) under the trading day count convention

can be calculated as:

252 =
VIX [ =100 * Z E2(07%)] (2.2.23)
Similarly:
252 !
VIX9D™o%! = 100 * Z EP[072)] (2.2.24)
model 252 Q
VIX3Mo%! = 100 * Z EP[072)] (2.2.25)

13Both Barone-Adesi et al|(2008) and Byun and Min| (2013)) calibrate risk-neutral GARCH
parameters using a cross-section of option prices, producing 20,000 and 50,000 simulation paths,
respectively. More simulation paths could also be considered.
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126

252
VIX6M — 100 196 * > EP[o2)] (2.2.26)
=1

5. The optimisation is then achieved by minimising the root mean square er-
ror (RMSE) between the model volatility index and the market volatility

index™

4 2
Z |:wk * (Vl(k)markzet _ V[(k)model) :| (2227)
k=1
with VI®)market: denoting the market prices of VIX, VIX9D, VIX3M and
VIX6M, respectively, VI#)model standing for the GARCH model implied

volatility index produced in step 4, and here we use wy, = 0.25 representing

equal weights for each index.

2.2.6 Model evaluation

To measure the quality of fit for the pricing models in-sample, we calculate several
measures: the mean of absolute errors (MAE) and the root mean squared error

(RMSE). These are defined as:

4
1 (k)market (k)model
MAE = — ;1 ;—1 [wk « VT — ypmodel (2.2.28)

4The alternative function, e.g., the relative measure, also could be considered in the opti-
mization.
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M 4 2
RMSE = | ~ » [wk % (V[i(k)ma’“’“ft - w}’“)m"d@’> } (2.2.29)

where wy = 0.25 is the weight of each index assuming equal weighting, M is
the number of total observations in a year, VI and VI®™ refer to the
market price and the model price of different volatility indices, respectively.

We use four different volatility indices to estimate the models, while the bench-
mark model only uses the VIX index. Minimising the errors between the market
prices and model prices will place a greater weight on the volatility index with a
higher value. Therefore, we also report the MAE in relative terms (MAE%), i.e.,
the percentage of MAE compared to the average market price; and the RMSE in
relative terms (RMSE%), i.e., the percentage of RMSE compared to the average
market price.

Patton| (2011b) recommends the use of two loss functions, i.e., MSE and
QLIKE, as these are the only ones that are robust to noise in the volatility proxy.

Hence, we also report QLIKE values, which are defined as (we use wy, = 0.25):

4

M (k)ymarket? (k)ymarket?
1 VI VI
QL[KE = M '_El kg_l |:wk; * (W - 10g(W} - 1>:| . (2230)

To compare our approach with the Normal-VIX model, we also assess the

out-of-sample pricing performance in the following way: for each Wednesday in
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our sample period, the in-sample parameter estimates from Section [2.3.2] are
used to forecast the VIX index for the following Wednesday. For out-of-sample
comparison, we use the mean squared error (MSE) to evaluate the forecasting
accuracy of six GARCH models, as follows:
MSE = — i (VIXmodel - VIX?"“’"’““> 2 (2.2.31)
M= Z Z

where VIX %! is the one week ahead VIX produced by the models, and VIXmarket
is the corresponding market price of the CBOE VIX.

Smaller forecasting errors indicate the predictive superiority of a given model.
However, one may want to know whether a model has statistically significant
superior forecasting ability. To address this, we use the approach proposed by
Diebold and Mariano| (1995)) to test the equal accuracy of two different forecasting
models. Since we estimate our models on a finite window of data, in our case, the
DM test coincides with the test of |(Giacomini and White (2006), which applies
to nested models. The two sets of forecast errors are defined as e;; and esy,
respectively. The function g(-) is a loss function which typically is the squared
error loss, i.e., i, and €3, or absolute error loss |e1,| and |egy|. Then the loss
differential between the two forecasts is d; = g(e1+) — g(ea). Therefore, the null
hypothesis of equal forecast accuracy can be expressed as on expectation of zero

for the loss differential E[d;] = 0. Under fairly weak conditions, the DM test
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statistic:

DM = + (2.2.32)

27 fa(0)/T

has an asymptotic standard normal distribution under the null hypothesis, where
T is the number of total observations; d is the sample mean of the loss differential
d = %23:1 d, and 27 f4(0) is a consistent estimator of the asymptotic variance.
In this chapter, the DM test is calculated based on the MSE of the different
GARCH models.

The DM test is only used for pairwise testing of two models. In order to
test whether a particular forecasting model significantly outperforms a set of
competing models, we employ the superior predictive ability (SPA) test proposed
by Hansen| (2005). This test uses the loss differential defined as dy; = g(eor) —
g(ext), where g(ep) and g(e,) are the values of the loss function g(-) at time ¢ for
the base model and m competing models, for kK = 1,2, ..., m. The null hypothesis

that the base model is not outperformed by its competitors can be written as

| nax Eldy] < 0. Then the statistic for the SPA test is calculated as:

(2.2.33)

where d}, is the sample mean of the loss function for model k, dj, = % Zthl di+ and
@2 is a consistent estimator of w? = var(T%/?dy). The distribution and the p-value

of T5P4 can be obtained by using a stationary bootstrap procedure as in [Hansen
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(2005). The higher the p-value, the less likely that the null hypothesis is rejected,
which means that the base model has superior forecasting ability compared to

the set of competing models.

2.3 Empirical analysis

2.3.1 Data

The CBOE volatility indices used in this chapter are the VIX, VIX9D, VIX3M
and VIX6M, downloaded from the CBOE website. Since the VIX9D data is
available from 2 January 2011, our sample data is from 2 January 2011 to 29
December 2017/ The VIX information for the same period is also used to
estimate the Normal-VIX model. The three months Treasury bill rate is used
as the risk-free rate which is downloaded from the U.S. Department of Treasury
website. In addition, to compare our approach with the FHS-options method, we
use European options on the S&P 500 index from 2 January 2002 to 30 December

2017, downloaded from OptionMetrics.[l;G]

5The starting dates of VIX, VIX3M and VIX6M are 2 January 2004, 4 December 2007 and
7 January 2008, respectively.

16We follow the same criteria of Barone-Adesi et al.| (2008) to sort data: (1) only use the out-
of-the-money European options since they are more actively traded than in-the-money options.
(2) choose options which mature in more than 10 days and less than 360 days. (3) only include
options which cost more than $0.05. (4) options with implied volatility value larger than 70%
are excluded. This yields a sample of 882,009 observations in total. To compare with the
FHS-options model, we choose the same start date as in |Barone-Adesi et al.| (2008).
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Figure 2.3.1: The dynamics of the CBOE volatility indices between 03 Jan-
uary, 2011 and 29 December, 2017
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Figure [2.3.1| shows the dynamics of the four CBOE volatility indices during
the sample period. We observe that the four indices experience the same pattern
of fluctuations, i.e., a sharp increase and then drop in 2011-2012 and 2015-2016.
Furthermore, for most of the days in the sample, VIX6M has the highest values
while VIX9D has the lowest values among the indices. The difference in the price
pattern can be explained as longer maturity means more volatility due to the

uncertainty in the future.

2.3.2 In-sample model comparison

In this section, we carry out the estimation of the different GARCH models
using different methods described in Section[2.2] Then we compare the in-sample
performance of the GARCH, GJR and NAGARCH models under the FHS-VI
and the Normal-VIX frameworks.

We first discuss the estimation results of the GARCH models using different
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methods. Table reports the statistics (mean and standard deviation) of the
parameter estimates obtained using volatility indices-, options- and VIX-based
estimation procedures, i.e., FHS-VI, FHS-options and Normal-VIX, for the year
2017. For the GJR and NAGARCH models, estimates of v and 6 larger than zero
show that negative returns affect the conditional variance more than positive re-
turns, i.e. evidence of leverage effect. The table also presents the annualised
volatilities implied by the models. The difference between the annualised condi-
tional volatilities under physical and risk-neutral measures captures the volatility
risk premium (VRP). When VRP is negative, i.e., the risk-neutral volatility is
higher than the physical volatility as shown in Table , then investors de-
mand a premium to bear the risks in future realised volatilities. This finding is in
line with a number of empirical studies documenting a negative VRP, including
Carr and Wu (2009)), Bollerslev et al.| (2011]) and Bekaert and Hoeroval (2014)).
To evaluate how well the different models estimate the volatility process, Table
reports the in-sample pricing errors. By looking at the pricing errors by
years, the FHS-VI method outperforms the Normal-VIX method in fitting the
volatility indices, regardless of the model or the measurement of fit. This is not
surprising as the FHS-VI method employs the empirical innovation distribution
and the flexible change of measure, which enhance the model’s flexibility to fit the

volatility indices. Notably, the GJR model under the FHS-VI framework yields

1"In this thesis, the VRP is calculated as the annualised volatility under the physical measure
minus the annualised volatility under the risk-neutral measure, thus a constant.
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the best results across the models considering the pricing errors over the years.
Following Hao and Zhang| (2013), we test whether the pricing errors have zero
mean and in the last column for each model of Table 2 we present the p-values
of this t-test. Consistent with |Hao and Zhang| (2013), the model prices implied
by the Normal-VIX method are significantly different from the market prices for
all three GARCH models we investigate. A visual presentation of the fit of the
different GARCH models to the CBOE VIX, using different estimation methods,
can be found in the Supplementary Appendix. This is largely similar to Figure

2.3.2| which shows the out-of-sample VIX forecasts for different models.

2.3.3 Out-of-sample model comparison

To test how the FHS-VI method fits the volatility indices out-of-sample, we gen-
erate one-week-ahead volatility forecasts of the GARCH models using different
estimation methods. Table shows the out-of-sample pricing errors using
the various measures. Importantly, the out-of-sample results confirm that across
the years the FHS-VI method has smaller pricing errors than the Normal-VIX
method.

To offer a fair comparison of the two methods (FHS-VI and Normal-VIX), Ta-
ble summarises the forecast mean squared errors based only on the CBOE
VIX. In all the years considered, the NAGARCH model estimated using the FHS-

VI method dominates. To determine whether the forecasts produced by the two
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different methods have a statistically significant difference, we also present the
values of the DM test statistics in Panel A of Table [2.3.4] (denoted by DM1 in
the table). In 5 out of 7 years, the GARCH model based on the FHS-VI method
has negative DM statistics, which indicates that it generate smaller average MSE
than the GARCH model based on the Normal-VIX method. Both the GJR and
NAGARCH models that use FHS-VI produce lower average MSE than the corre-
sponding models based on the Normal-VIX method for all the years. Surprisingly,
for the year 2014, none of the models that use the FHS-VI method produces more
accurate forecasts than those based on the Normal-VIX method. For the year
2017, only the NAGARCH model based on the FHS-VI outperforms its counter-
part.

Interestingly, instead of the GJR model that proved superior in the in-sample
period, the NAGARCH model has in general the smallest out-of-sample pricing
errors. One possible reason is that the GJR model overfits the data in-sample.
Panel A of Table 2.3.4] also considers the NAGARCH model based on the FHS-VI
method as the benchmark model (denoted by DM2). All the DM2 statistics re-
ported in Panel A are positive, indicating that the benchmark model has smaller
average MSE values than the other models for all the years. Under the FHS-
VI framework, the other two models, i.e., the GARCH and the GJR models,
are not significantly different from the NAGARCH in their ability to produce

VIX forecasts considering the yearly results. However, when comparing differ-
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ent estimation methods, the NAGARCH model that uses the FHS-VI method
outperforms the models that use the Normal-VIX method.

In Table[2.3.5] we report the p-values of the SPA test with the null hypothesis
that the benchmark model is not inferior to the other models. We consider each
model as a benchmark model whilst the other five models are the competing
models. The results in Panel A and Panel B of Table 2.3.5 show that for both
MSE and QLIKE loss functions, the NAGARCH model has p-values equal to
1 for all the years. Therefore, we can not reject the null hypothesis that the
NAGARCH model based on FHS-VI is superior to any of the alternatives. This
is in line with our conclusions drawing from the DM test.

As shown in Figure[2.3.2] the models that use the FHS-VI method outperform
the models based on the Normal-VIX method, especially when there is a big
change in prices. Importantly, in terms of the VIX forecast performance, the
NAGARCH model that uses the FHS-VI method is superior to all the other

models[™]

2.3.4 Computational time

The estimation is performed on a desktop with Intel i7 processor with a frequency

of 3.2GHz and 16 GB of RAM. For the year 2017, which means estimation over 52

8Similarly, Kanniainen et al. (2014) also obtain that the NAGARCH model is better than
the GJR model for option pricing when using joint information on the VIX index and the S&P
500 returns.
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Table 2.3.5: Out-of-sample comparison of the VIX forecasts: SPA test

Year FHS-VI Normal-VIX
GARCH GJR NAGARCH GARCH GJR NAGARCH
Panel A: Evaluation by MSE
2011 0.081 0.066 1.000 0.002 0.003 0.008
2012 0.018 0.046 1.000 0.052 0.066 0.065
2013 0.235 0.249 1.000 0.000 0.019 0.032
2014 0.098 0.077 1.000 0.596 0.000 0.421
2015 0.002 0.005 1.000 0.012 0.000 0.000
2016 0.001 0.004 1.000 0.003 0.010 0.096
2017 0.026 0.064 1.000 0.329 0.076 0.000
Panel B: Evaluation by QLIKE
2011 0.425 0.306 1.000 0.000 0.000 0.000
2012 0.230 0.238 1.000 0.024 0.016 0.011
2013 0.275 0.377 1.000 0.000 0.001 0.001
2014 0.055 0.098 1.000 0.012 0.000 0.161
2015 0.243 0.302 1.000 0.020 0.003 0.000
2016 0.002 0.009 1.000 0.001 0.010 0.057
2017 0.018 0.072 1.000 0.331 0.094 0.001
Panel C. Overall 2011-2017, evaluation by MSE for different horizons
h=1 0.028 1.000 0.073 0.000 0.000 0.000
h=5 0.000 0.000 1.000 0.008 0.000 0.020
h=20 0.000 0.001 1.000 0.000 0.591 0.358
Panel D. Overall 2011-2017, evaluation by QLIKE for different horizons
h=1 0.263 1.000 0.011 0.000 0.000 0.020
h=5 0.003 0.005 1.000 0.000 0.000 0.001
h=20 0.000 0.000 1.000 0.000 0.080 0.205

This table presents the SPA test results for out-of-sample VIX forecasts under two different loss
functions. The SPA test statistic is used to test the null hypothesis that the benchmark model
is not outperformed by the competing models. Each column is considered as a benchmark
model whilst the other five models are the competitors. The values in bold are the highest SPA
p-value for the given year. The number of bootstrap replications to calculate the p-values is
10,000.
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Figure 2.3.2: Out-of-sample comparison of the model VIX and the CBOE
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weeks’ estimation (with weekly re-estimations), the running time to calibrate once
based on 373,377 option prices; this number of observation is roughly 50 times
higher than the number of the volatility index prices, and this contributes to the
large processing time needed for the options data. The estimation time is 149
min when using the FHS-options method. On the other hand, the running time
for estimation over 52 weeks (still with weekly re-estimations) to calibrate once
based on the GJR model is 20.8 min by using the information on VIX indices, i.e.,
the FHS-VI method. The total running time has little difference among GARCH,
GJR and NAGARCH models when using the FHS-VI method, which is consistent
with Kanniainen et al.| (2014)).

During the optimisation procedure, a grid search is performed for the initial
values, which results in as many as 1000 iterations, and the estimation time
depends on the grid size. Therefore, the estimation with the option-price-based
FHS-options method, assuming 100 iterations, takes up to 4.8 h for a single week.
The parameter calibration for the FHS-VI GJR model, based on the volatility
indices, for one week and 100 iterations, is significantly faster at 40 min, which
is a reduction of more than 86% in computational time compared to the FHS-

options method.
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2.4 Robustness checks

This section presents additional results, with respect to four different robustness
checks we perform. First, we extend our analysis by using different forecasting
horizons. Second, we consider alternative weights in the optimisation function
given in equation ([2.2.27)), in order to adjust for the imbalance of the maturity
weights caused by the equal weights given to the volatility indices. Third, we
calculate pricing error statistics using different weighting approaches applied to
the pricing errors of different volatility indices. Fourth, we present the robustness
of our findings when computing the results using three indices only, which allows

us to extend our sample period to include the 2008 financial crisis.

2.4.1 Alternative time horizons

Our previous findings show that the FHS-VI method significantly outperforms
the Normal-VIX method for each model specification when forecasting VIX one-
week-ahead (h = 5). In this section, we extend our analysis and report results for
one-day-ahead (h = 1) and four-week-ahead (h = 20) VIX forecasts. To show the
robustness of our results, we report both the DM test and SPA test implications
for the three forecast horizons given above.

Panel B of Table reports the DM test statistics using MSE for one-
day-ahead, one-week-ahead and four-week-ahead VIX forecasting, respectively.

Instead of the yearly analysis in Section [2.3] we only compare the model perfor-
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mance of the overall sample period, i.e., 2011-2017. The DM1 statistics denote
the DM statistics comparing the GARCH models that use the FHS-VI method
with their counterparts that use the Normal-VIX method. For one-day-ahead and
one-week-ahead forecasts, the difference in forecasting performance is significantly
different from zero when using the two methods. For the longer horizon forecasts,
i.e., four-week-ahead forecasts, we can reject the null hypothesis of equal forecast
accuracy of the two methods only for the NAGARCH model. The negative DM
statistics indicate that all the models based on the FHS-VI approach, except for
four-week-ahead forecasts of the GJR model, generate smaller average MSE than
their counterparts based on the Normal-VIX method. Consistent with the test
criteria in Section the DM2 statistic in Panel B presents the out-of-sample
forecast performance of the models when considering the NAGARCH based on
the FHS-VI method as the benchmark model. The DM test statistics show that
the NAGARCH model based on the FHS-VI method outperforms all the other
models for weekly and monthly forecast horizons. For one-day-ahead forecasts,
the NAGARCH model based on the FHS-VI method is found to have a superior
predictive ability compared with the models that use the Normal-VIX method.
On the other hand, the difference in average MSE loss favours the GJR model
that uses the FHS-VI method for daily forecasts, though the difference is not
statistically significant.

Panel C and Panel D of Table present results on the SPA test based on
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forecasts for different horizons. For each model, the remaining five models are
treated as competing models. As discussed above, p-values close to 1 indicate
that we can not reject the null hypothesis of the benchmark model being superior
to the other models. Both panels show evidence of a similar pattern of forecast
ability: the NAGARCH model based on FHS-VI is found to be superior to all
the other models for long-term volatility forecasts (h =5 and h = 20), while the
GJR model based on the FHS-VI method outperforms all the other models for

short-run volatility forecastd™]

2.4.2 Alternative weights used in the optimisation func-
tion

In Section [2.3) we assume each volatility index has the same weight in the opti-
misation function of equation ([2.2.27)). This weighting, however, places too much
weight on the nearby risk-neutral volatilities. The volatilities of the first 7 days
are included in all four indices, the volatilities of the first 22 days are included in
three indices and so on. In this section, we consider weights in equation
that avoid this increased reliance on nearby maturities, and instead consider a set
of index weights that would align the weights of the different volatility maturi-

ties. The adjusted RMSE is computed as in equation ([2.2.27)), but with modified

9The reason might be because the GJR model and the NAGARCH model use different forms
of parameter to catch the leverage effect, i.e., the GJR model uses an indicator function while
NAGARCH employs a quadratic one.
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weights w;, calculated as follows: the four indices involve the risk-neutral volatil-
ities of the next 126 days; we divide this into four periods according to the time
horizons embedded in the volatility index. Period 1 includes the first 7 days,
period 2 consists of day 8 to 22, period 3 is day 23 to 63, and period 4 is day 64
to day 126. If we use equation ([2.2.27) with equal index weights wy, the actual
weights of the periods are 0.375, 0.25, 0.25 and 0.125, respectively. In this sec-
tion we modify the weights of the volatility indices so that each period has the
same weight; the modified weights of the volatility indices are then w; = 0.125,
wy = 0.25, w3 = 0.125 and w4 = 0.5.

The right panels of Table and Table report the in-sample and out-
of-sample pricing errors using modified weights in the optimisation function. The
results are consistent with our earlier findings: the GJR model has the lowest
pricing errors for most of the years in-sample, and, on the other hand, for the
out-of-sample comparison, the NAGARCH model generates the smallest pricing
errors in most cases. Notably, using the modified weights optimisation, both in-
sample and out-of-sample pricing errors obtained with the FHS-VI method are

lower than the pricing errors based on the Normal-VIX method, reported in Table

2.39 and Table 2.3.3



2.4. Robustness checks 55

2.4.3 Alternative weights used in the loss functions

In this section, we discuss the pricing error statistics based on modified weights for
the volatility index in the loss functions - noting that our earlier results are based
on equal weighting in equations and . First, we modify the weights
in the loss function to remove the increased reliance on the nearby volatilities,
as in the previous section (we call this approach time-weighting). Second, we
consider the loss functions in which the weights are proportional to the value

of the volatility index (value-weighting). The loss functions are computed as in

equation (2.2.28)) and (2.2.29)), but using non-equal weights. As such, we have two

sets of alternative weights: w; can be computed using the calculation detailed in
Section [2.4.2] which equalises the effects of the different volatility maturities; or
the weights can be considered to be proportional with the market values of the
indices. The results based on the modified weights as above are reported in the
left panel of Table for in-sample comparison, and in Table for out-of-
sample comparison. Both sets of results are very similar to our findings based
on the equally-weighted loss functions, i.e., the GJR model based on the FHS-VI
method has the smallest pricing errors in-sample and the NAGARCH model that

uses FHS-VI has the lowest pricing errors out-of-sample.
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Figure 2.4.1: Out-of-sample comparison of VIX forecasts obtained using
Normal-VIX, FHS-VI based on three indices, assuming GARCH, and CBOE
VIX
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2.4.4 Results based on three indices only

As mentioned in Section [2.3.1) our sample starts on 2 January 2011 due to the
data availability of the VIX9D index. In this section, the estimation is carried
out based on three indices only (VIX, VIX3m and VIX6m). This allows us to
extend our sample with 3 additional years, starting on 7 January 2008, which
is the starting date of VIX6M, with the added bonus that the financial crisis of
2008 is now included in the sample. Figure presents the one-week-ahead
VIX forecasts produced using three indices only, for the GARCH model. To be
noted that the VIX reaches very high values during the financial crisis.

In Table[2.4.3]we compare the VIX forecasting performance of different models
by calculating the p-values of the SPA test based on three indices. When fore-
casting one-day-ahead VIX, the p-values computed using the MSE and QLIKE

loss functions for the GJR model based on the FHS-VI method are equal to 1,
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Table 2.4.3: Out-of-sample SPA test results based on three indices

Horizon FHS-VI Normal-VIX

GARCH GJR NAGARCH GARCH GJR NAGARCH

Panel A. Evaluation by MSE

h=1 0.266 1.000 0.002 0.000 0.003 0.001
h=5 1.000 0.479 0.428 0.006 0.006 0.031
h=20 1.000 0.247 0.896 0.000 0.294 0.171
Panel B. Evaluation by QLIKE

h=1 0.032 1.000 0.007 0.000 0.000 0.000
h=5 0.637 1.000 0.178 0.000 0.000 0.005
h=20 0.532 0.036 1.000 0.000 0.049 0.082

This table presents the SPA test statistics for VIX forecasts obtained using two loss
functions for different horizons. The SPA test statistic is used to test the null hypothesis
that the benchmark model is not outperformed by the competing models. The bench-
mark model is given at the top of the table. The number of bootstrap replications to
calculate the p-values is 10,000. The values in bold are the highest SPA p-values for a
given horizon.

indicating that we can not reject the null hypothesis that this model is superior to
the other models for one-day-ahead forecasts. On the other hand, we find mixed
evidence for longer-term forecasts. Using the MSE loss function, the GARCH
models based on the FHS-VI method for weekly and monthly forecasts are found
to be superior to the other models. However, when using the QLIKE loss func-
tion, the GJR model and the NAGARCH model based on the FHS-VI approach
are found to be superior for weekly and monthly forecasts, respectively. It is also
notable that the p-values based on the Normal-VIX method are much smaller
than those based on the FHS-VI. Overall, for longer-term forecasts, the models
based on FHS-VI outperform the models based on the Normal-VIX method, but

it is difficult to differentiate among the FHS-VI based models in terms of superior
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predictive ability.

2.5 Conclusions

In this chapter, we propose to estimate several different GARCH models by us-
ing filtered historical simulations and a set of volatility indices. This approach
produces estimates using the empirical innovation density that can accommodate
for nonstandard features, such as negative skewness and positive excess kurtosis.
To reduce the computational burden of using option prices, we employ four well-
established volatility indices, i.e., the VIX9D, VIX, VIX3M and VIX6M, to do the
calibration. We obtain that this approach dominates the alternative estimation
method which only uses the VIX index and assumes a normal distribution, i.e.,
the Normal-VIX method. This outperformance holds both in-sample and out-of-
sample for most of the years; we perform several robustness checks that confirm
our results. Additionally, the parameter estimates are shown to be very stable
compared to the FHS-options method and significantly reduce the computational
time. An empirical analysis on the performance of our proposed estimation for

option pricing would be a challenging exercise that we leave for future study.
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This supplemental appendix provides additional tables and figures.
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Figure A.1: In-sample comparison of the model VIX and the CBOE VIX
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Figure A.2: Owut-of-sample comparison of VIX forecasts obtained using
Normal-VIX, FHS-VI based on three indices, and CBOE VIX
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Chapter 3

Does VIX term structure help to

predict VIX futures prices:

Evidence from COVID-19 Crisis

3.1 Introduction

The Chicago Board Options Exchange (CBOE) VIX measures the expected volatil-
ity associated with the S&P 500 index over the following 30 days, as implied by
stock index option prices. The VIX index is often referred as the 'fear gauge’ by
investors since it is established in 1993 (see Whaley, 2009). However, since the
VIX index is not a tradable asset, the CBOE introduced VIX futures on March

26, 2004 to broaden hedging opportunities in volatility trading. Since its launch,

68
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the liquidity of the VIX futures market is steadily growing. For example, on
September 8, 2020, the trading volume is 280,180 contracts or 8.9 billion USD
in terms of market valud'} Therefore, forecasting VIX futures prices are of great
interest to academics and practitioners.

Apart from the VIX index which measures the implied volatility over the next
30 days, the CBOE also lists anther four volatility indices with different maturities
to measure the implied volatility term structure of S&P 500 index: the CBOE
S&P 500 9-day Volatility Index (VIX9D), the CBOE S&P 500 3-month Volatility
Index (VIX3M), the CBOE S&P 500 6-month Volatility Index (VIX6M) and the
CBOE S&P 500 1-year Volatility Index (VIX1Y). Moreover, the volatility term
structure is found to be important in VIX futures pricing by [Zhu and Zhang
(2007)). In this chapter, we explore whether combining VIX term structure and
futures prices can improve the futures forecasting performance. In particular, we
investigate how the VIX term structure affects the VIX futures forecasting under
different conditions.

One intuitive determinant of the VIX futures prices is its underlying, i.e.,
the VIX index. However, given that the VIX itself is not easily traded, the no-
arbitrage principle cannot be used to obtain a simple formula between the VIX

futures prices and the spot VIX values as in the stock market’] Various stud-

!The data can be found from 'CBOE Futures Exchange Daily Market Statistics’ via the
following link: https://markets.cboe.com/us/futures/market_statistics/daily/.

2Theoretically, it is possible to trade VIX by replicating a portfolio of S&P 500 options, thus
the VIX futures can be priced using the no-arbitrage principle, for example see |Zhu and Zhang
(2007)
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ies focus on deriving the VIX futures prices through the instantaneous variance

embedded by VIX via different volatility models. For example, [Zhang and Zhul

(2006) study VIX future prices with the (1993) model. (2007) and

Zhu and Lian| (2012) model the variance with simultaneous jumps in both the re-

turns and the volatility process. In the discrete-time setting, (Guo and Liu (2020)

and Xie et al| (2020)) propose new solutions under the model of |Glosten et al.|

(1993) (GJR). A second strand of literature studies empirically the behaviours

of the VIX futures and thus forecasts prices. For example, Dotsis et al.| (2007)

use the VIX futures data to evidence that the addition of jumps to a square root

process improves the pricing performance. Zhang et al. (2010) also calibrate a

mean-reverting variance model with jumps using VIX futures prices. Other re-

lated discussions on VIX futures include Konstantinidi and Skiadopoulos (2011a)),

Mencia and Sentanal (2013), Taylor| (2019), Ballestra et al.| (2019) etc.

Most recently, several studies attempt to evaluate VIX futures prices with

the model parameters estimated from both the underlying, i.e, VIX and the

corresponding futures. Wang et al.| (2017) propose a closed-form pricing formula

based on the [Heston and Nandi| (2000) GARCH model using several data sets.

They show that the joint estimation with VIX and the futures performs the best

in terms of fitting the market VIX and the VIX futures prices simultaneously.

Further, Huang et al| (2019b) calibrate an extended model of Majewski et al.|

(2015)) with mixed information from the S&P 500 returns, the VIX term structure
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and VIX futures prices.

Despite both Wang et al.| (2017) and [Huang et al.| (2019b) use the VIX/VIX
term structure and the VIX futures, neither study shows statistical evidence
whether the VIX term structure can help to predict the VIX futures prices. In this
context, our paper also studies the forecasting accuracy of pricing methods but
differs in terms of the data that it uses. We calibrate the GJR model with the fil-
tered historical simulation (FHS) method proposed by Barone-Adesi et al.| (2008)
using different data. Then the risk-neutral expected value of daily variance can
be updated accordingly, and we also obtain the expectation of the VIX squared
for maturity 7', which is the forward-starting variance swap. The study of (Carr
and Wu| (2006]) suggests that the VIX futures price is the difference between this
forward variance swap and the risk-neutral variance of the VIX futures. Further-
more, [Dupire (2006) and the CBOE white paper show that the fair price of VIX
futures is equal to the price of forward variance minus a concavity adjustment,
which can be expressed using the CBOE VIX volatility index, i.e., the VVIXﬂ
Therefore, in this chapter, we evaluate the in-sample and out-of-sample pricing
performance for the fair value of the VIX futures by using not only the VIX term
structure or/and VIX futures data, but also the VVIX term structure.

The contributions of this chapter are threefold. First, this chapter is among

the first to discuss how the VIX term structure affects the performance of VIX

3For the details of VVIX, please see Section
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futures pricing. We find that the addition of the VIX term structure to the VIX
futures improves the VIX futures forecasting. The improvement is remarkable
for the long-term VIX futures or for periods when the level of VIX is high. More
interestingly, we also find that, during the 2020 COVID-19 pandemic, the joint
estimation with VIX9D, VIX, VIX3M, VIX6M and the VIX futures provides the
lowest pricing errors among all the methods. Additionally, we implement three
statistical tests, i.e., the |Diebold and Mariano| (1995) test, the test of |Giacomini
and White| (2006]) and the Model Confidence Set (MCS) by |Hansen et al.| (2011)),
to evidence our results.

Second, different from the normal distribution assumption of returns used in
the majority of the VIX futures pricing literature, the FHS method utilises the
empirical innovation density extracted from historical returns. Also, Jiang and
Lazar| (2020) demonstrate that the GJR model with FHS provides better VIX
forecasting performance than the traditional local risk-neutral valuation relation-
ship (LRNVR) proposed by Duan| (1995). In addition to the seven methods with
different data sources applied to the GJR models with FHS, we also implement
the model of Xie et al. (2020]), which uses the GJR model under the LRNVR, as
the benchmark model.

Our third contribution is the use of the VVIX term structure for VIX futures
pricing. To our best knowledge, little (if any) literature considers the VVIX term

structure in pricing VIX futures. To predict one-day-ahead VIX future prices,
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we also produce the VVIX forecasts through linear interpolation via the vector
autoregression (VAR) model.

The remainder of this chapter is organized as follows. Section |3.2|describes the
theoretical background of the model. Section |3.3|details the model estimation and
forecasting procedure. Section presents our results and analysis, and Section

[3.5] concludes.

3.2 The model

3.2.1 GJR specifications

Following Barone-Adesi et al. (2008) and [Jiang and Lazar| (2020), we assume that
the logarithm of the asset returns is governed by the GJR process of (Glosten et al.
(1993) with an empirical innovation densityf] Under the physical measure P:

In(S;/Se—1) = pie — ke + &1, € = vz
(3.2.1)

of = w+ foi_ + [a+ (g1 < 0)]efy,

where S; is the S&P 500 index price at time t, u; is the expected rate of re-

turn, z | Fo1 ~ F(0,1), F;_1 is the information set up to time ¢t — 1. F

4Jiang and Lazar (2020)) show that the GJR model is the best to forecast the short-term
volatility. Also, there are existing literature using GJR model to price VIX futures, see [Guo
and Liuf (2020) and [Xie et al.| (2020)).
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follows some unknown distribution with zero mean and unit variance which we
estimate using the empirical distribution, and k; is the mean correction factor
ke = In(Fi_1|exp{e;}]). The dummy variable I; = 1 when 2z, < 0 and I; = 0,
otherwise. The leverage effect is captured by a positive ~.

Under the risk-neutral measure, we assume the following dynamics:

ln(St/St_l) =Tt — Ii: + E:, 8: = O':Z:
(3.2.2)

07 =W+ B2+ [0+ (g7 < 0)]e)
where 7, is the risk-free rate at time ¢, z; is assumed to follow the same distribution
F' as under the physical measure, x; is the mean correction factor under the risk-
neutral measure, and 0* = {w*, a*, *,7v*} are a set of risk-neutral parameters

which are allowed to be different from those under the physical measure.

3.2.2 VIX and VVIX

The volatility index VIX measures the market participants’ risk-neutral expecta-
tion of return volatility implied from options prices. The VIX index is computed

from the out-of-money (OTM) S&P 500 option prices via:

2 AK; 1 F
V = Z e ) 2
IX; = 100 x \/ EZ 2 e Q(K;) [ ; 1%, (3.2.3)

where 7 is 30 days, Q(K;) is the option price for strike K;, AK; is the interval

between strike prices, F' is the forward price of S&P 500, and K| is the first strike
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that is below the forward index level F'.
In a discrete time setting, as described in |[Hao and Zhang| (2013), the VIX can
be obtained by taking the arithmetic average of the expected daily variance for

the following month{’}

252 =
VIX, =100 x | © - EP {;a;ﬁT]. (3.2.4)

Similarly, the model price of the volatility index VIX9D, VIX3M, VIX6M and

VIX1Y can be calculated as:

252 22
VIX9D, = 100 x E?{E:Jﬁ{r (3.2.5)

T

252 o -
VM%Lleb<\E§le{§;QH} (3.2.6)
252 =
_ Q *2
v@mMp_mOX\E%xzz{Z;@M} (3.2.7)
22
VIXLY, = 100 x E?[E:aﬁ%} (3.2.8)
T=1

In February 2006, the CBOE launched VIX options which provides market
participants more flexibility to trade volatility. Since its introduction, the VIX

options market has been growing steadily. Thus, it is natural to study the implied

5We apply the trading day count convention in this chapter.
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volatility of the VIX index, i.e., the VVIX and its term structure. Adapting the
same calculation method for VIX in Equation , the VVIX term structure
over different horizons is obtained by using VIX option prices. The VVIX mea-
sures the annualised expected volatility of the 30-day forward price of the VIX
indexﬁ. Therefore, at time ¢, the squared VVIX term structure with an expiration

date T' can be written as:

252 —
VVIX]y = 100 x = B {Zgﬂ, (3.2.9)

a 7=0

2

2 is the variance of log-returns of the forward prices F; = VIX,. The

where o
CBOE white paper then illustrates that the squared VVIX term structure can

also be approximated by|Z|:

252
T—t

VVIXZ, ~100 x
(3.2.10)

252
=100 x T3 % VARt{ln(FT)}.

By considering Taylor’s expansion for In Fr, Equation (3.2.10) becomes:

252
T—t
252 VAR,[Fr]

~100
T TR

VVIXZ, ~100 x

x VAR, [ln(Ft) + Fr = Ft}

F,
! (3.2.11)

5The VVIX represents the implied volatility of the 22-trading-day forward price of VIX.
"The white paper of the VVIX term structure can be found from CBOE website via this
link: https://cdn.cboe.com/resources/indices/documents/vvix-termstructure.pdf.
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3.2.3 Pricing VIX futures

The VIX futures are exchange-traded at the CBOE Futures Exchange (CFE).
Their underlying asset is the VIX index. The contracts are cash settled on the
Wednesday that is 30 days prior to the 3rd Friday of the calendar month following
the expiring month. The primary purpose of VIX futures is to enable investors
to trade and hedge volatility.

The CBOE white paper shows that the fair value of VIX futures at time ¢

with an expiration date 7T is:

Fut,p = E2[VIXy] = \/ EP[VIX2] — VAR,[VIXy)] (3.2.12)

where VIXr is the VIX level at time 7. VAR,[VIXr] is the variance of the fu-
tures price, and from Equation (3.2.11]), its value for expiration Fr = VIX7 is

approximately equal to:

T — X, 7\ 2
VARt[V]XT] ~ Ft2 X t X (W t7T) .

2.1
252 100 (32.13)

3.2.4 Benchmark model: XZR approach

For comparison, the model of Xie et al.| (2020) (XZR model, hereafter) is used here
as our benchmark model. Xie et al.| (2020]) propose an analytical approximation

method to price VIX futures based on the information of model implied VIX.
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The pricing formula is obtained assuming the GJR process. Under the physical
measure:

1
1H<St/St_1) =T+ /\O't — §Ut2 + &, € = 042t
(3.2.14)

2 2 2 2
o, =w+ag;_ |+ Po;_ +vli1e;_q,

where 7, is the risk-free rate at time ¢, A is the risk premium, z, | 7,1 ~ N(0,1),
and JF; is the information set up to t. I; is one when z; is negative and zero other-
wise. Following the local risk-neutral valuation relationship (LRNVR) proposed
by Duan| (1995), the GJR process under the risk-neutral measure is:

1
In(Sy/Si—1) =1t — 50152 +&, & =0z
(3.2.15)

UtQ =w+ a1 — Aoy1)? + 503_1 + L1 (61 — )\Utfl)Za

The GJR parameters {w, «, 3,7, A} are then calibrated using maximum like-

lihood estimation (MLE) based on the following equations:

VIX]"™ = VIX;™n,, 1~ LN(—0./2,02)

VIX{™ =100(y/® + Wo?,,)

v 1—p
Y-, w=252— L
1—p 252 n(l—p)

(3.2.16)
d =252 x

p=a(l+\)+B+9] ¥ + (1 +A)N(N)]

A
V2T

where VIX!"™* is the market price of VIX and VIX;"™ is the model implied VIX.
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1, is assumed to be log-normally distributed to make sure VIX;" is an unbiased
estimator of VIX[kt,
The pricing formula of VIX futures is then obtained using the GJR model

estimates based on Taylor’s expansionﬂ:

. ()
Fup = BRIVIXz] = VIXP B[+ 1O (s — hia) + L5 (s — b))

(3.2.17)
To simplify the notation, we use h; to denote o2. f() and f® are the first

two derivatives of f(hgy1|his1):

\II(hT—‘rl - ht+1>
h h =4/1+ . 3.2.18
J(hrialhis) \/ B+ Uhyoy ( )

3.3 Estimation and forecasting

3.3.1 Model estimation

Under the physical measure, we adopt the same estimation procedure as in
Barone-Adesi et al.| (2008)) and |Jiang and Lazar| (2020). In other words, the GJR

model parameters are estimated on each Wednesday using quasi-maximum likeli-

8For more details, please see [Xie et al.| (2020).
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hood function (QML) with 3,500 historical returnﬂ. Under the risk-neutral mea-
sure, the calibration is based on minimising the root mean square error (RMSE)
between the prices given by the model and the market prices. To study whether
the VIX term structure can help predict the VIX futures prices, we propose seven
new methods to calibrate model parameters. Each method differs in term of the

data source it uses in the estimation process:

1. Fut+5VIs (e): VIX futures data and all five volatility indices, i.e, VIX9D,
VIX, VIX3M, VIX6M and VIX1Y. When considering the volatility indices,

we assume equal weighting.

2. Fut+5VIs (t): VIX futures data and all five volatility indices. Follow-
ing |Jiang and Lazar| (2020), we also adjust the index weights by taking
into account the increased reliance on nearby maturities when using equal
weighting. The weights of the volatility indices are then modified based on

equal weights for each time period.

3. Fut+4VIs: VIX futures data and four volatility indices, i.e, VIX9D, VIX,
VIX3M and VIX6M. Since most of VIX futures data in the sample has
a maturity less than six months, we consider excluding the VIX1Y index

because of its long maturity.

4. Fut4+VIX1Y: VIX futures data and VIX1Y index. When imposing equal

9See |Jiang and Lazar| (2020) for more details about the estimation procedure.
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weights on the volatility for each day in a year, we end up with VIX1Y only.

5. Fut: Futures only. It is natural to forecast futures prices using historical

information of itself only.

6. 5VIs: All five indices. Apart from using futures data only and futures
and VIX term structure, we consider using information on the VIX term

structure only.

7. 4VIs: Four volatility indices, i.e, VIX9D, VIX, VIX3M and VIX6M. For
the maturities of VIX futures in the sample, we also consider using the four
indices only; these are the ones which measure the volatility over a period

less than or equal to six months.

In this chapter, we aim to minimise the following expression on each Wednes-

day with respect to #* in Equation Hz

\/’U}F X MSEFM + wy X MSEV] (331)
with
m A . 2
MSEFut _ Z |:w7, % (Fut(z)market . Fut(z)model) :| (332)

i=1

19Q0ther optimisation function could also be considered, for example, the ad-hoc linear model
in Kanniainen et al.| (2014]).



3.3. Estimation and forecasting 82

and

MSEy; = zn: [wk X (w(k)mm“ket — Vﬂ’”model)z] : (3.3.3)
k=1

where wr and wy are the weights of MSEr,; and MSEy;, respectivelyEl m is the
total number of VIX futures that observed in the market on Wednesdays. w; = %
is the weight for the ¢*" VIX future on that day. Fut®™*¢ represents the market
price of the i** VIX futures and Fut(™o%! is the future price calculated matching
the same maturity of Fut®™meet ysing the models described in Section . n is
the number of volatility indices used in the estimation. wj; is the weight of the

volatility index, assuming equal weighting or non-equal weighting to adjust for

the different maturities[™]

3.3.2 VVIX forecasting

According to the VIX futures pricing formula of Equation (3.2.12)) and (3.2.13)),

we also have to model the VVIX value in order to predict VIX futures prices. In
this chapter, we apply the VAR(1) model, which assumes that the VVIX time

series with different maturities affect each other over time, to forecast the VVIX

HThe ratio between the number of VIX futures contact and the number of VIX term structure

is approximately 2 : 1. To better illustrate the usefulness of VIX term structure, we use wp = %

and wy = % when both information of VIX futures and VIX term structure are included in the
estimation; the alternative weights depending on the number of futures and VIX could also be
considered. When only futures data is included, wp = 1 and wy = 0 and wrp = 0 and wy =1
if only the VIX term structure is used.

12\When assuming equal weighting, wy, = +; while using five volatility indices and non-equal

n’

weighting, ie., for method Fut+5VIs (t), wy = 0.1, we = 0.2, wg = 0.1, wy = 0.2 and ws = 0.4.
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term structureﬁ The forecasted VVIX value for each given maturity is obtained

by linear interpolation[}

1. A new coordinate is constructed based on 13 points between 10 and 130
days, i.e., [10, 20,...130], by linearly interpolating the existing VVIX term

structure@.

2. Once we compute the forecasted VVIX values based on the coordinate
points, the second linear interpolation is performed to match the target

forecasting maturity in the sample.

The VAR(1) model is defined as:

AVVIX; = C + AAVVIX,_; + e, (3.3.4)

where AVVIX, is a 13 x 1 vector of daily changes between ¢t — 1 and ¢, C is a
18 x 1 vector of constants, A is a 13 x 13 matrix of coefficients, and e; is a 13 x 1

vector of error terms.

13We also fit the VVIX series by using the ARMA model which presents the similar results
(results are available on request).

4We implement two-step linear interpolations. Since the maturities of VVIX do not have
any patterns, we use the first interpolation to construct a new coordinate in order to forecast
the future values. The forecasted values are then based on new coordinate; therefore, we have
to do the second interpolation to match the forecasts to our target maturities.

15The VAR(1) model is estimated using 1,500 historical observations or the maximum data
available, if this is less than 1,500 observations.
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3.3.3 Model evaluation

The forecasts are generated based on a rolling window of 3,500 observations. After
each model estimation, the one-day-ahead out-of-sample forecasts are obtained
for each Thursday in the sample, i.e., from January 2011 to October 2020. To
measure the pricing VIX futures performance of the different models, we compare

the following loss functions:

N
1 market model
= ; Fut?™ — Fut! (3.3.5)
1 & 2
RMSE = ||+ {(Fut;narket - Fut;fwdel> ] (3.3.6)
j=1
1 Futmark:et
N o F ut}
N market 2
1 F ut
RMSE% = | Z K Futmodel — 1) ] (3.3.8)

where N is the total number of observations in the sample, and F ut;-””ket and
a utgm’del denote the market price and the model price of VIX futures, respectively.

In addition, to test the significant differences of forecasting accuracy among
the models, we employ the DM test proposed by Diebold and Mariano| (1995)),

the conditional predictive ability test proposed by |Giacomini and White (2006)
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(GW test) and the model confidence set (MCS) proposed by Hansen et al.| (2011]).

The DM test is a pairwise test with the null hypothesis of equal forecast
accuracy of two different models. The two sets of estimated forecast errors are
defined as €, and é, 4, respectively. The difference in loss between two forecasting

methods is denoted as: d; = L(é1,) — L(é2,). The DM statistic below:

pv———4 (3.3.9)

27 fa(0)/T
has an asymptotic standard normal distribution under the null, where d is the
sample mean of the loss differential, and 27 fd(O) is a consistent estimator of the
asymptotic variancd™}

Different from the DM test, the GW test considers conditional predictive
ability taking into account estimation uncertainty. The null hypothesis of equal
conditional predictive ability can be written as E(d; | F;_1) = 0, where F; is the
information set up to time ¢. |Giacomini and White (2006) show that the null of

the GW test can be tested using a Wald statistic:

T / T
GW, = T(T—1 Zdt) Q7! (T—1 > dt> ~ x? (3.3.10)

t=1 t=1

where Q}l is a heteroskedasticity and autocorrelation consistent (HAC) estimator

of the asymptotic variance.

16In this chapter, the DM test is calculated based on the MSE of the different pricing methods.
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To compare the forecasting performance among a set of models, we employ
the methodology of MCS which can provide a subset of models that include the

best model at a given confidence level. The semi-quadratic statistic is defined

adlt

(diy)?
Tsq = E ——= (3.3.11)
e d; ;)

where cﬁj is the average loss differentials between model 7 and model j in set M
and its variance var(d; ;) is obtained by using block bootstrap with 12 blocks and

10,000 replications in this chapte™| We consider the 75% confidence level in line

with [Hansen et al.| (2011)[]

3.4 Empirical results

3.4.1 Data

The VIX term structure, i.e., VIX, VIX9D, VIX3M, VIX6M and VIX1Y, and
the VVIX term structure are downloaded from the CBOE website. The VIX9D
data starts in January 2011; therefore, our sample period covers January 2011 to
October 2020. The VIX futures data are also collected from the CBOE website.

Following|Zhu and Lian| (2012)) and Huang et al. (2019b)), to avoid liquidity-related

I7The range statistics are obtained as well with similar results which are available on request.
BMore details about the MCS procudure can be found in [Hansen et al.| (2011).
9The 95% confidence level yields similar results which are available on request.
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bias, the VIX futures prices with time to maturity less than five days, or open
interest less than 200 contracts are discarded. Also, we exclude the VIX futures
data which don’t have a matched VVIX term structure. The VIX futures prices

thus yield 14,990 observations in total.

Table 3.4.1: Summary statistics for VIX futures prices

Obs Mean Std.Dev Skew. Kurt. Min Max
All 14,990 19.348 5.342 1.658 4.369 10.025 70.475
Maturity
< 30 3,528 17.645 5.977 2.386 8.945 10.025 70.475

(30, 60] 3,385 19.171 5.452 1.892 4.726 11.975 59.925
(60, 90] 3,411 19.770 4.953 1.579 2.696 12.975 51.500
(90, 120] 3,421 20.261 4.574 1.265 0.810 13.725 37.475
> 120 1,246 20.992 4.814 1.088 0.010 14.525 35.150
VIX level

VIX <15 7,268 16.003 2.104 0.090 0.923 10.025 26.600
VIX > 15 7,722 22.497 5.549 1.434 3.517 13.875 70.475

This table presents the summary statistics for VIX futures prices from January
2011 to October 2020. The data are summarised by different maturities and VIX
levels.

Summary statistics for the sample period is presented in Table [3.4.1] The
price of VIX futures is on average $19.348 with a standard deviation of $5.234, a
minimum of $10.025 and a maximum of $70.475. The table also shows the VIX
futures term structure. When the time to maturity increases, the VIX futures
prices tend to become more expensive and less volatile. It is also notable that
the extreme value is highly likely in the VIX futures with short maturities. In
addition, the VIX futures are cheaper when the VIX index is lower, i.e., the

average price of VIX futures is 16.003 when the VIX value is smaller than or
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equal to 15, and the average price is 22.497 when the VIX level is higher than 15.
Figure(3.4.1|shows this relationship intuitively by plotting the spot VIX value and
VIX futures curves from 2001 to 2020. Furthermore, we observe that the VIX
futures curve is upward sloping for most of the time, i.e., longer-term VIX futures
are more expensive than near term VIX futures. However, the VIX futures curve
demonstrates a downward sloping pattern when the spot VIX index spikes, for

example, during the 2020 COVID-19 Crisis.

Figure 3.4.1: VIX and VIX futures curves
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Notes: The black line stands for the spot VIX index value and the colorful dots stand for the
VIX futures prices with different expiration dates.
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Table 3.4.2: In-sample pricing errors of VIX futures models

MAE RMSE MAE% RMSE%  Std.Dev  Corr.coef.
Panel A: Jan 2011 - Dec 2019

Fut+5VIs(e) 0.276 0.366 1.563 2.086 0.351 0.997
Fut+5VIs(t) 0.294 0.392 1.668 2.244 0.378 0.996
Fut+4VIs 0.223 0.312 1.259 1.764 0.305 0.998
Fut+VIX1Y 0.249 0.377 1.410 2.194 0.376 0.996
Fut 0.093 0.143 0.508 0.754 0.143 0.999
5VIs 0.861 1.339 4.774 7.177 1.277 0.955
4Vls 1.078 1.790 5.928 9.653 1.768 0.917
XZR 2.098 2.712 11.479 14.25 2.708 0.771
Panel B: Jan 2020 - Oct 2020

Fut+5VIs(e) 0.965 1.658 3.127 4.578 1.581 0.982
Fut+5VIs(t) 1.166 1.976 3.717 5.500 1.831 0.975
Fut+4VlIs 0.822 1.387 2.735 3.943 1.374 0.985
Fut+VIX1Y 1.580 3.283 4.681 7.753 3.012 0.929
Fut 0.509 0.751 1.824 2.629 0.752 0.995
5VIs 3.021 5.459 9.437 15.361 4.915 0.773
4Vls 2.664 5.159 8.533 14.456 4.783 0.792
XZR 7.235 9.013 24.366 29.040 8.487 0.707

This table presents the in-sample pricing errors of VIX futures models. MAE is
the average absolute error between the market price and the model price; RMSE is
the square root of the average squared pricing error (market price - model price);
MAE% and RMSE% are expressed in relative terms (percentages); Std.Dev is
the standard deviation of pricing errors; Corr.coef. is the correlation coefficient
between the model price and the market price. Numbers in bold are the loss
which are the lowest across different models.
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3.4.2 In-sample pricing performance

To compare which method has better performance to evaluate VIX futures prices
in-sample, Table presents several pricing errors described in section
We also report the standard deviation (Std.Dev) of pricing errors, i.e., the dif-
ference between market prices and model prices, and the correlation coefficients
between these two series.

We divide the whole sample period into two subperiods to investigate whether
VIX term structure data can help price VIX futures. Panel A of Table |3.4.2
shows the in-sample pricing errors for the period from January 2011 to Decem-
ber 2019. Not surprisingly, the "Fut” method that only uses futures data has the
lowest values of loss functions in fitting VIX futures series. On the contrary, the
benchmark model "XZR’ approach, which only includes the VIX information and
assumes a normal distribution for the return innovations, displays the highest
pricing errors among all the methods. When we add more volatility indices and
considering filtered historical returns, both the '4VIs’ and '5VIs’ provide a sig-
nificant improvement in pricing errors compared with the "XZR’ method. Most
importantly, after we incorporate the VIX term structure along with the futures
data, i.e., for the 'Fut+5VIs (e)’, 'Fut+5VIs (t)’, 'Fut+4VIs’ and "Fut+VIX1Y’
models, the pricing errors are slightly higher than those estimated for the "Fut’

model. However, these four models still provide a good pricing performance in

20The estimated parameters of different models are available upon request.
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terms of correlation coefficients between market prices and model prices, with
correlation values more than 0.995.

Panel B of Table[3.4.2]reports the in-sample pricing performance for the period
January 2020 to October 2020. The pricing errors produced by all eight different
models during 2020 are much higher than those given by the corresponding models
for 2011-2019. Again, the 'Fut’ model delivers the lowest loss values for VIX
futures pricing and the 'XZR’ model gives the highest pricing errors. Among
the other approaches, 'Fut+5VIs (e)” and 'Fut+4VIs’ report higher pricing errors
than the "Fut’ method, but still give high correlation coefficients between market

prices and model prices with values of 0.982 and 0.985, respectively.

3.4.3 Out-of-sample pricing performance

To test whether the pricing models overfit the VIX futures prices in-sample, we
also perform one-day ahead out-of-sample forecasting. Table presents the
out-of-sample pricing errors of different models. Panel A covers the period from
January 2011 to December 2019. Similar to the in-sample comparison for the same
period, the "Fut’ model shows the best pricing performance out-of-sample. How-
ever, it’s noted that the errors of all the pricing methods increase compared with
the in-sample results, especially for the 'Fut’ and "Fut+VIX1Y’ model. Thus the
difference between the other models and the 'Fut’ model decrease. For example,

the difference of RMSE provided by "Fut+4VIs’ and "Fut’ is 0.034 out-of-sample
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Table 3.4.3: Out-of-sample pricing errors of VIX futures models
MAE RMSE MAE% RMSE%  Std.Dev  Corr.coef.
Panel A: Jan 2011 - Dec 2019
Fut+5VIs(e) 0.486 0.711 2.659 3.722 0.696 0.986
Fut+5VIs(t) 0.500 0.726 2.735 3.818 0.712 0.986
Fut+4VlIs 0.456 0.691 2.478 3.579 0.683 0.987
Fut+VIX1Y 0.603 0.994 3.278 5.311 0.991 0.973
Fut 0.415 0.657 2.196 3.262 0.656 0.988
5VIs 0.975 1.460 5.387 7.779 1.389 0.946
4VIs 1.190 1.895 6.531 10.163 1.866 0.907
XZR 2.119 2.715 11.602 14.299 2.692 0.777
Panel B: Jan 2020 - Oct 2020
Fut+5VIs(e)  1.356 2.498 4.272 6.697 2.390 0.951
Fut+5VIs(t) 1.469 2.680 4.589 7.188 2.491 0.947
Fut+4VlIs 1.376 2.464 4.402 6.799 2.427 0.948
Fut+VIX1Y 1.803 3.311 5.668 9.543 3.289 0.907
Fut 1.443 2.567 4.548 7.128 2.553 0.942
oVIs 3.089 5.173 9.808 15.185 4.542 0.804
4Vs 2.733 4.927 8.865 14.495 4.496 0.813
XZR 7.696 9.560 25.691 30.633 8.783 0.643

This table presents the out-of-sample pricing errors of VIX futures forecasts.
MAE is the average absolute error between the market price and the model price;
RMSE is the square root of the average squared pricing error (market price -
model price); MAE% and RMSE% are expressed in relative terms (percentages);
Std.Dev is the standard deviation of pricing errors; Corr.coef. is the correlation
coefficient between the model price and the market price. Numbers in bold are
the loss which are the lowest across different models.
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which is only 5% of the pricing errors given by the 'Fut’ model.

Figure 3.4.2: Out-of-sample RMSE comparison of VIX futures models

3
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Notes: The logarithm of the RMSE estimates of various models.

Panel B of Table reports the out-of-sample pricing errors for 2020. We
find that the loss values are almost tripled for all the pricing models compared
with those from 2011-2019. Notably, instead of the 'Fut’ model that has the
smallest pricing errors for both in-sample and out-of-sample from 2011 to 2019,
the 'Fut+5VIs’ model offers the lowest errors when considering the MAE, MAE%
and RMSE% loss functions and "Fut+4VIs’ gives the lowest RMSE. Figure [3.4.2]
demonstrates the change of RMSE for different pricing methods and for by yearﬂ
Apparently, the pricing errors from the volatility indices related models, i.e.,
'XZR’, '4VIs’ and '5VIs’, are higher than those from the other models for almost

all the years. On the other hand, when the VIX term structure is combined with

21For better illustration effect, we consider the logarithm of the RMSE for each method.
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futures data, 'Fut+5VIs (e)’, 'Fut+5VIs (t)’, 'Fut+4VIs’ develop similar patterns

and values with the 'Fut’ model.

Diebold and Mariano test

To further answer whether the VIX term structure can help to predict the VIX
futures prices, we also want to know whether the addition of VIX term structure to
the futures data has a statistically significant difference as compared to using the
futures data only. Table provides the DM test statistics by years based on
"Fut’ as the benchmark model. For the year 2011, "Fut+5VlIs (e)’, 'Fut+5VIs (t)’
and "'Fut+4VIs’ report negative DM statistics, which indicates that they generate
lower MSE on average than "Fut’; especially "Fut+5VIs (t)’ proved to outperform
the 'Fut’” method with a significant DM value. For the year 2020, 'Fut+5VIs
(e)” and 'Fut+4VIs’ display smaller MSE than ’Fut’, although not significantly
different. From 2012 to 2019, 'Fut’ gives the lowest MSE. However, the "'Fut’
model is found not significantly better than at least one of the other models for
the years 2012-2013, 2016 and 2018-2019. Interestingly, 'Fut+4VIs’ offers the
lowest MSE for the overall period, i.e., 2011-2020. This finding suggests that
adding the VIX term structure to futures data can provide lower pricing errors

for VIX futures pricing.
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Figure 3.4.3: Out-of-sample GW test results for 2011 - 2020
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Notes: Color map based on the GW test comparing the MSE loss values. The null hypothesis
is that the row model and column model have equal conditional predictive ability. Color 0
means no comparison between two models; color 1 blocks signify that the row model has higher
MSE than the column model at 5% level; color 2 means that there is no difference in the
conditional forecasting ability between the row and column models; color 3 signifies that the
row model has lower MSE than the column model at 5% level. The models are denoted by short
abbreviations in the following order: F5V(e) denotes Fut+5VIs (e), F5V(t) denotes Fut+5VIs
(t), F4V denotes Fut+4VIs, F1V stands for Fut+VIX1Y and the other four models use the
same notations as defined in Section [3.3.1}
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Giacomini and White test

Figure [3.4.3] plots the colour map based on the GW test by years. The dark-red
block (Colour 3) means that the row model has a lower MSE than the column
model at 5% significance level; the pink block (Colour 1) means that the column
model has a lower MSE than the row model at 5% level. For the years 2014-2017,
the "Fut’ model has dark-red blocks for all the vertical comparisons vertically
and pink blocks horizontally, which means that it outperforms all the other ap-
proaches during this period. However, for the rest of the sample period, 'Fut’ is
not significantly different from at least one method which contains both futures
data and the VIX term structure information. It is also notable that for 6 out of
10 years, 'Fut’ is found not to be superior to 'Fut+4VIs’ in the predictive ability

of VIX futures prices.

Model confidence set

The MCS test is carried out for a detailed comparison of the pricing errors based
on different time to maturity and VIX levels, presented in Figure[3.4.4]and Figure
Figure reports the MCS test according to maturity for both 2011-
2019 and 2011-2020. Consistent with our earlier findings, the pricing errors tend
to be larger when we include the 2020 data for all different maturities. Only

for the VIX futures with a maturity between 30 days and 60 days, 'Fut’ is a

22Since we do not have the enough observations for the MCS test for 2020 year only, we then
compare the pricing performance between the period 2011-2019 and 2011-2020.
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Figure 3.4.4: Out-of-sample RMSE of VIX futures models for different ma-

turities
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Notes: The RMSE loss values for different levels of time to maturity (days). Different colors
denote a different sample time period, i.e., pink dots/diamonds indicate outputs obtained over
the sample period Jan 2011- Dec 2019; dark red dots/diamonds are outputs estimated over
Jan 2011- Oct 2020. The models represented by diamonds belong to the MCS at 75% con-
fidence level. The models are denoted by short abbreviations in the following order: F5V(e)
denotes Fut+5VIs (e), F5V(t) denotes Fut+5VIs (t), FAV denotes Fut+4VIs, F1V stands for
Fut+VIX1Y and the other four models use the same notations as defined in Section m
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single best-performing method regardless whether the year 2020 is added to the
estimation or not. When the time to maturity ranges from 60 days to 120 days,
the out-of-sample pricing performance of 'Fut+4VIs’ is not significantly different
from the 'Fut’ model. Importantly, for the long-term VIX futures, i.e., when the
maturity is longer than 120 days, 'Fut+4VIs’ is proved to produce more accurate
forecasts than the 'Fut’ model for both periods. When considering all futures
prices from 2011 to 2020, the MCS ends up with 'Fut+5VIs (e)’, "Fut+5VIs (t)’,
"Fut+4VIs’ and 'Fut’. This finding is consistent with our earlier results from the
DM test and the GW test.

Figure [3.4.5] summarises the RMSE values by different VIX levels. All the
different methods tend to have a higher RMSE when the VIX level is higher.
For low VIX levels, i.e., VIX < 15, only 'Fut’ is included in the MCS for cases,
when the COVID period is included or excluded from the dataset. But when the
VIX level is higher than 15, the MCS contains 'Fut+5VIs (e)’, 'Fut+4VIs’ and
"Fut’ for 2011-2019 and 'Fut+5VIs (e)’, 'Fut+5VIs (t)’, 'Fut+4VIs’ and "Fut’ for
2011-2020.

All the results above provide evidence that the use of VIX term structure im-
proves the VIX futures forecasting, especially when the VIX level is high. More-
over, Table |3.4.5| suggests that combining the volatility indices with futures data

can give close VIX forecasts compared to using the VIX term structure only.
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Figure 3.4.5: Out-of-sample RMSE of VIX futures models for different VIX
levels
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Notes: The RMSE loss values estimated over different VIX levels. Different colors denote a
different sample time period, i.e., pink dots/diamonds indicate outputs for the sample period
Jan 2011- Dec 2019; dark red dots/diamonds are outputs estimated over Jan 2011- Oct 2020.
The models represented by diamonds belong to the MCS at 75% confidence level. The models
are denoted by short abbreviations in the following order: F5V(e) denotes Fut+5VIs (e), F5V(t)
denotes Fut+5VIs (t), F4V denotes Fut+4VIs, F1V stands for Fut+VIX1Y and the other four
models use the same notations as defined in Section m
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Table 3.4.5: Out-of-sample pricing errors of VIX models

MAE RMSE MAE% RMSE%  Std.Dev  Corr.coef.

Fut+5VIs(e)  1.194 2.354 6.097 9.040 2.352 0.952
Fut-+5VIs(t) 1.221 2.378 6.267 9.211 2.374 0.951
Fut+4VlIs 1.189 2.375 6.066 9.047 2.373 0.951
Fut+VIX1Y  2.568 4.791 14.938 29.089 4.683 0.801
Fut 1.502 2.790 7.660 10.531 2.790 0.934
5VIs 1.081 2.009 5.659 7.778 2.002 0.965
4VIs 1.043 1.983 5.425 7.622 1.978 0.966
XZR 2.542 4.536 13.139 16.831 4.536 0.817

This table presents the out-of-sample pricing errors of CBOE VIX forecasts from
January 2011 to October 2020. MAE is the average absolute error between the
market price and the model price; RMSE is the square root of the average squared
pricing error (market price - model price); MAE% and RMSE% are expressed in
relative terms (percentages); Std.Dev is the standard deviation of pricing errors;
Corr.coef. is the correlation coefficient between the model price and the market
price.

3.5 Conclusions

In this chapter, we examine the efficiency of including the VIX term structure
in the VIX futures pricing model. The GJR model parameters are calibrated
from the data using filtered historical simulation. We also include the VVIX
term structure in the VIX futures pricing model. We find that the out-of-sample
performance of the models that use the VIX term structure and the VIX futures is
not significantly different from the model that use the futures data only for most
of the years, but yields significant outperformance compared to the models based
on the VIX/VIX term structure. Most importantly, the evidence of the 2020

COVID-19 crisis suggests that the addition of the VIX term structure improves
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model performance in terms of achieving lower pricing errors. Meanwhile, the
MCS test shows that the use of the VIX term structure can also deliver better
forecasts for the VIX futures with a maturity longer than 120 days or when the
VIX level is higher than 15.

This chapter has at least two implications. First, the model that uses futures
data only underperforms when it comes to forecasting futures prices, especially for
the extreme observations, i.e., during the 2020 COVID-19 crisis. Second, the GJR
model with filtered historical simulation is a better choice for describing market

volatility compared to the tradition local risk-neutral valuation relationship.



Appendices

This supplemental appendix provides additional tables and figures.
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3.5. Conclusions
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Chapter 4

Optimal forecasting of VVIX:

forecast combinations vs. LASSO

4.1 Introduction

Volatility plays a significant role in financial markets and risk management prac-
tices. The Chicago Board Options Exchange (CBOE) volatility index (VIX) has
been the most popular barometer of market sentiment since it was launched in
1993. The high VIX level implies ascendancy of fear while a low VIX level signals
dominance of greed. To help investors have an even deeper insight into volatility,
the CBOE introduced VVIX to measures the uncertainty in market sentiment in
2012. The goal of the VVIX index is to capture the expected volatility of the

30-day forward VIX index. Hence it is often called “the volatility-of-volatility”
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or "the vol-of-vol”. Just as the VIX is calculated from the S&P 500 options, the
VVIX is calculated using the same methodology to a cross-section of the VIX
options. The reliable forecasts of the VVIX index are key to capture the future
changes of the VIX index, thus is of interest to academic researchers and market
participants.

The literature on the VVIX index has primarily focused on the character-
istic of the volatility-of-volatility, as measured by VVIX. For example, Park
(2015)employs the VVIX as a proxy to document a positive correlation between
the volatility-of-volatility and the current prices of tail risk hedging options. |Holl-
stein and Prokopczuk! (2018) suggest that the volatility-of-volatility is significantly
priced in the market returns and implies a negative risk premium. Huang et al.
(2019a)) demonstrate that time-varying volatility-of-volatility is a significant risk
factor that affects VIX option returns. |Bu et al.| (2019) document that stocks with
higher sensitivities to daily changes in volatility-of-volatility have higher returns
than those with lower sensitivities. |Jeon et al.| (2020) show that incorporating
VVIX into models significantly increases the predictive power compared to tra-
ditional volatility models. Other related studies on VVIX include Zang et al.
(2017)), Krause| (2019) etc.

However, only few studies (if any) discuss forecasting the VVIX index. To fill
this gap, we compare several popular volatility forecasting models out-of-sample

and attempt to answer the following simple question: is there an optimal fore-
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casting method for the VVIX index? In the context of volatility forecasting, a
number of studies suggest that the combination of individual forecasts has of-
ten been found to outperform individual forecasts, see, for example, Becker and
Clements| (2008)), [Patton and Sheppard| (2009), Wang et al.| (2016)) etc. There are
three potential explanations: 1) the combination of individual forecasting models
covers the information from each model; 2) they are likely to provide insurance
against structural breaks while the individual model may be very differently af-
fected; 3) there is a possible variance reduction since individual forecasting models
may be differentially mis—speciﬁedﬂ On the other hand, the least absolute shrink-
age and selection operator (LASSO), introduced by [Tibshirani (1996), is another
popular predictive tool in financial forecasting, see, for example, Audrino and
Knaus (2016), Zhang et al.| (2019a)), Zhang et al. (2019b), etc. The advantages of
using the LASSO include: 1) it can select the most important predictors by pro-
ducing zero estimated coefficients; 2) the LASSO can pick one predictor among
several highly correlated ones.

In this chapter, we generate daily VVIX forecasts for the year 2016-2020
using thirteen different models. First, we consider three individual models: a
simple linear regression using a set of lagged variables; the autoregressive moving
average (ARMA) model; and the heterogeneous autoregressive (HAR) model of

Corsi| (2009). Second, we implement eight popular combining methods in the

'Please see Clemen| (1989), Clements and Hendry| (2004) and |Timmermann|(2006) for reviews
of forecast combinations.
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literature on forecast combination approaches) to produce the VVIX forecasts
(see Rapach et al., |2010; |[Hsiao and Wan) 2014)). Third, we perform two LASSO
type regressions, i.e., the original LASSO proposed by Tibshirani (1996) and the
elastic net of [Zou and Hastie (2005), using all the predictors from the individual
models.

To the best of our knowledge, this study is among the first to attempt VVIX
forecasting in the literature. We find that a median combining method outper-
forms all the other models by providing the lowest squared errors of the fore-
casts for the period covering 2016-2020. Furthermore, the model confidence set
(MCS) test shows that both the simple average combining method and the me-
dian method have significantly superior forecasting performance than all the other
models. In addition, our results on LASSO-type models suggest that the daily
changes in average monthly VVIX play an important role for VVIX forecasting.

The remainder of the study is organized as follows. Section 4.2|introduces the
daily behavior of the VVIX index. Section describes the different forecasting
models and the evaluation criteria. Section [£.4] presents our results and analysis,

and Section [4.5] concludes.
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4.2 The CBOE VVIX

4.2.1 The background of the VVIX index

The CBOE introduced the futures and options on the VIX in March 2004 and
February 2006, respectively, to trade and hedge against changes in volatility.
Nowadays, VIX options and futures are among the most actively traded contracts
in the financial market. Trading on VIX derivatives enables practitioners to invest
in market volatility regardless of the actual direction of the S&P 500 index, and
further provides more opportunities to diversify their portfolios. Huang et al.
(2019a) report that apart from the VIX index, the VVIX is also a significant risk
factor that affects VIX option returns. Different from the VIX which measures
the implied volatility of the S&P 500 market, the VVIX, on the other hand, shows
how rapidly market volatility changes rather than measures the volatility itself.
Hence, investors should consider the levels of both the VIX and the VVIX index
when trading VIX options and futures. For example, if both the VIX and the
VVIX are observed to have a high level, then they are expected to decrease to
their long-run mean in the future. And thus investors may profit from a bear
call spread which consists of a long call option with a higher strike price and a
short call with a lower strike price. Moreover, |Park| (2015) demonstrates that the
VVIX index has predictive power for the returns of tail risk hedging options, such

as the S&P 500 puts and VIX calls.



4.2. The CBOE VVIX 110

The model-free formula that CBOE employs to calculate VVIX in a similar

manner to the calculation of the VIX:

2 AK; 1 F
VVIX, = 100 x \/; Z e Q(K;) — —[— —1]2, (4.2.1)

where 7 is time to expiration, Q(K;) is the VIX option price with strike K;, AK;
is the interval between strike prices, I is the forward price derived from the VIX

options, and K is the first strike that is below the forward index level F'.

4.2.2 Daily behavior of VVIX

In this chapter, we investigate the daily VVIX index for the period covering
January 2007 to December 2020, which gives a total sample of 3,522 observa-
tions. Table shows the summary statistics for the whole sample period.
The VVIX exhibits a long term mean of 91.3 and ranges from 59.74 to 207.59.
Not surprisingly, the VVIX index is right-skewed and leptokurtic. The p-value
of the Jarque-Bera test in the column also demonstrates the nonnormality of the
VVIX index. All these descriptive statistics show variations over the sample pe-
riod. For example, the means and the ranges of the VVIX index increase as the
years go by. Also, the VVIX is more volatile during 2020 than 2007-2015 and
2016-2019 which is evidenced by a high standard deviation of 19.39. Since the
VVIX measures the expected volatility of the VIX index, Table also reports

the VVIX statistics summarised by different levels of VIX. The VVIX index has
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a higher value on average and is more volatile when the corresponding VIX level

is high.
Table 4.2.1: Summary statistics on VVIX
Obs Mean Std.Dev Skew. Kurt. Min Max JB test
All 3,522 91.300 15.752  1.430 4.571 59.74 207.59 0.000
Periods

2007-2015 2,265 87.079  13.485 0.955 1.600 59.74 168.75 0.000
2016-2019 1,005 94.026  11.607 2.020 9.105 74.98 180.61  0.000
2020 252 118.362  19.390 1.534 3.511 86.87 207.59  0.000

VIX level

VIX< 15 1,284  85.000 9.249 -0.047 -0.285 61.76 114.39 0.081
15<VIX< 20 958  91.262 10.834 0.324 0.145 63.06 135.32 0.001
20<VIX< 351,037 95.502 17.970 0.463 0.040 59.74 180.61  0.000
VIX>35 243 106.807  27.968 0.943 0.692 64.95 207.59 0.000

This table presents the summary statistics for the VVIX index from January
2007 to December 2020. The data are summarised by different periods and VIX
levels. The p-value of Jarque—Bera (JB) test for normality is reported.

Panel A of Figure plots the time evolution of both the VVIX and the VIX
index over the whole sample period. The level of the volatility of volatility, i.e.,
the VVIX, is much higher than that of the volatility index itself, i.e., the VIX. But
both the VIX and the VVIX demonstrate a mean-reverting property on a long-
run basis. Interestingly, the spikes in the VVIX often tend to be accompanied by
spikes in the VIX. However, it is notable that the VVIX index is more sensitive

(higher spikes) to the economic uncertainty than the VIX, for example, during

August 2007 (the beginning of the subprime crisis), August 2015 (the Chinese
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Figure 4.2.1: The VIX and the VVIX
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Notes: Panel (a) shows the evolution of the daily VIX and VVIX index series from January 3,
2007 to December 31, 2020. Panel (b) demonstrates the variation of the VVIX index when the
VIX is sorted in ascending order. The y-axis ticker of Panel (b) is the value of daily VVIX and
the x-axis shows values of the VIX index.
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stock market crash), February 2019 (Donald Trump’s trade war with China), etc.

Figure 4.2.2: Scatter plot of A VIX and A VVIX
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Notes: Scatter plot of the changes in the VVIX and the changes in the VIX from January 3,
2007 to December 31, 2020. For a better illustration, we take the logarithm of VVIX and VIX,
respectively. The grey line is the fitted values from the estimated linear regression.

Panel B of Figure illustrates the variation of the VVIX when the VIX
is sorted from smallest to largest. It shows little correlation pattern between the
VVIX and the VIX. However, both the magnitude and the variation of the VVIX
are much larger for higher values of the VIX compared to those for a lower level
of the VIX. It is noteworthy that, when we consider the logarithm of the VVIX

and the VIX values, their first differential exhibits a strong correlation as shown

in Figure [4.2.2]
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4.3 The forecasting models

4.3.1 Linear regression model

We perform a linear regression of the daily changes in the VVIX index on a set
of lagged variables. Intuitively, the lagged daily changes in VVIX are included
along with its underlying, i.e., the VIX index and the S&P 500 index returns in
the regression. Additionally, we examine whether the information on the VIX
term structure explains future values of the VVIX index. To assess whether
there is an asymmetric relationship between the daily changes in VVIX and the
explanatory variables, we also consider the absolute values of these variablef?] A
mixed selection procedure, i.e., a combination of forward selection and backward
selection, is then employed to decide the number of the predictors. Based on both
the Akaike information criterion (AIC) and the Bayesian information criterion

(BIC), the following regression is estimated:

AWIXt — /BO + ﬁlAW]Xt_l + 62|AW]X75_1| + BgAV]Xt_l
(4.3.1)

+ Bi AVIX, 1| + Bs| VX | + Borety 1 + e,

2Konstantinidi and Skiadopoulos| (2011b) suggest that the slope of yield curve has predicative
power for the VIX futures market, hence we also take this variable into consideration. We
examine the yield curve slope within different maturities; however, the estimated regression
shows that the information on the yield curve does not explain the daily changes in the VVIX
index.
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where [ is a constant, AVVIX,; and AVIX; denote the daily changes in the VVIX
index and the VIX index from time ¢t — 1 to ¢, respectively. |AVVIX; | and
|AVIX, 1| are the absolute values of AVVIX; and AVIX}, respectively. |VX;1 s |
is the absolute value of the difference between the CBOE S&P 500 3 Month
Volatility Index (VIX3M) and the VIX index. ret; is the log return of S&P 500

at time ¢.

4.3.2 ARMA model

The Augmented Dickey-Fuller (ADF) test proposed by Dickey and Fuller| (1981)
suggests that the VVIX index is non-stationary in the levels but stationary in
first differences. Therefore, by considering both AIC and BIC, we estimate the

following ARMA(1,1) model:

AW[Xt =c+ gOlAWIXt_l + 928,5_1 + &;. (432)

4.3.3 HAR model

The third model we amploy is based on the HAR model proposed by |Corsi (2009).
Since its origination, the HAR model is attracting increased attention in volatility
modelling because it can approximate long memory processes in a simple way,
is so-called ’parsimonious’, and is easy to estimate using ordinary least squares

(OLS). There are various extensions of the HAR model, for example, |Andersen
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et al| (2007) and |Corsi et al. (2010)) introduce a jump component, Patton and
Sheppard (2015) incorporate a leverage effect, etc. In this chapter, we focus on
the basic HAR model to investigates the extent to which the VVIX information
of the previous day, week, and month can contribute to explaining the current
VVIX value. To align with the two models described in the above sections, we
employ the changes in VVIX instead of the VVIX value itsehﬁ The model is

expressed as:

AW[Xt = BU + ﬁlAWIXt,1 + 62AW[Xtuil + ﬁ?’AW[Xﬁl + Et

5
w 1
WIX{ ) = 2> AVIX, (4.3.3)
i=1

22

1
WIX!, = o > AWIX,;,
i=1

where AVVIX, is the daily change in the VVIX index at time ¢, and AVVIX}”
and AVVIX]" denote the changes in average weekly and monthly VVIX levels at

t, respectively E|

3We compare the two regressions, i.e, the regression using VVIX and the regression using
the changes. Interestingly, all the coefficients in the regression using changes are significantly
different from zero at 5%, while only the coefficient of lagged daily VVIX is significant in the
regression using the VVIX index.

4In this study, we use the trading day count convention. Hence the weekly and monthly
VVIX levels are calculated as the average values over the past 5 and 22 days, respectively.
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4.3.4 Forecast combinations

So far, we have three models to forecast the VVIX index. However, it has been
well-known that combinations of individual forecasts often outperform the in-
dividual forecasts, see, for example, Becker and Clements (2008), Patton and
Sheppard (2009), [Wang et al. (2016)), etc. The popular forecast combination

methods include the weighted average approach and the regression approach.

Weighted average approach

The combination forecasts of VVIX using the weighted average method can be
written as:

mt+1 = Zwi,tV/VE(i,tH, (434)
i=1

where V/VRt represents the combination forecast of VVIX at time ¢, n is the
number of individual models and in our case n = 3, w;; is the combining weight
for the i-th individual forecast estimated at time ¢, and W/\IXM is the forecast of
VVIX value which is produced by the i-th model.

Following Rapach et al. (2010), Zhu and Zhu| (2013)), and Hsiao and Wan

(2014), among others, we consider the following four popular weighting methods:

e Mean combination. The mean combination refers to the simple average of
all forecasting models, i.e., w;; = =

g.

e Median combination. The median combination employs the median of all
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individual forecasts.

e Discount mean square prediction error (DMSPE) combining method. The
DMSPE method allocates greater weights to the forecasting models which
have better forecasting performance. The combining weight of the i-th

individual predictive model is defined as:

Wiy = _ G (4.3.5)
it — n ) L.
Zj:l QSJtI
where
t
Gip= Yy O (VVIX, — WIX,,)?, (4.3.6)
s=m-+1

m is the number of observations in-sample, VVIX, is the market price of
VVIX at time s, VV/\IXLS is the VVIX forecast from the ¢-th model at time

s, 0 is a discount factor for which we consider two values, 1 and 0.9.

e Bayesian averaging method. In this method, the combining weight is based

on the BIC value of the in-sample period:

exp (—3ABIC;)
wi,t = 3

ijl exp (—%AB[C]-)’

(4.3.7)

where BIC; is the BIC value for the i-th model and ABIC; = BIC; —
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Regression approach

Granger and Ramanathan (1984)) propose three regression approaches to combine

forecasts:

n 3
W]Xt = ZinFi’t + Uy s.t. ij =1

i—1 j=1

=1

VVIX; = wo + Y w;VFiy + uy,

=1

where w; is the unknown parameter for the i-th model, VF;; is the VVIX forecasts
for time ¢ using the i-th individual model. In this chapter, the three regression
models are referred as REG1, REG2 and REG3, respectively. REG1 and REG2

can be considered as constrained regression models of REG3.

4.3.5 LASSO regressions

The least absolute shrinkage and selection operator (LASSO) regression has been
introduced by [Tibshirani (1996). It is a regression analysis that penalizes the
coefficients of the independent variables to shrink some of them to zero. The goal
of LASSO regression is to identify the most important variables associated with

the response variable. The LASSO forecast is defined as:

P
WIX iy = Bo + Z Bixi,tu (4.3.9)
i=1
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and the LASSO estimate is given by:

2
) 1 t—1 P
B = arggmn 5 Z (WIXj+1 — By — Z ﬁzx”> 5
j=1 =1

N (4.3.10)
=1

where z;, is the i-th predictor available at time ¢, P is the total number of the
predictors which are all the predictors included in the individual models. Zil |Bi
denotes the L; LASSO penalty which makes the solutions nonlinear in the VVIX
forecasts. 1 is a pre-specified parameter that determines the degree of shrinkage.
When 1 is sufficiently small, some of the coefficients may become zero which leads
to the selection of a subset of the variables.

We can also write the LASSO in the so-called Lagrangian form:

t—1

P 2 P
6 = argﬁmin Z (W]Xj+1 - BO - Z Bixi,j> + A Z |BZ| s (4311)
j=1 i=1 i=1

where A\ controls the amount of L, regularization and serves a similar role as ).
Apart from the original LASSO method, we also consider another popular
LASSO approach which is the elastic net proposed by Zou and Hastie (2005). The

elastic net forecast is the same as Equation (4.3.9), whereas the corresponding
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estimate is:

t—

P 2 P

B = argﬁmin Z (ijrl — Bo — Zﬁzl’zg> + )\Z (0451-2 +(1—a) \@’) ;

"~ o B (4.3.12)

where a € [0,1], and when « = 0 the elastic net method turns into the original
LASSO.

In order to forecast the VVIX index for time ¢+ 1 using the LASSO and elastic

net regressions, we need to decide the optimal value of A and « ex ante with all

the information up to t. In this chapter, we employ the split cross-validation to

identify the optimal A and «. The detailed procedure is as follows:

1. To avoid unfair penalty on the predictors with a small range, we standardise
the features before fitting the model, i.e., we subtract the mean of the feature

and then divide it by the standard deviation of the featurd’}

2. Determine a minimum number of observations for fitting the model, denoted
as m. In this chapter, we use the number of observations during 2007-2014
as the minimum number. At the first iteration, we train the model on
the data VVIX,, VVIX,, .. VVIX,, and forecast the price for the next day,

mm+1. Then the forecast error is e, = VVIX,,,11 — W/\D(m+1.

3. For the second iteration, fit the model to the data VVIX,, VVIX,, .. VVIX,, 11

5We also perform the max-min normalisation to scale the features; the results are similar
and available on request.
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and calculate the forecast error e, o, and so on, up to time t.

4. Compute the MSE as Lm S e?. Identify the optimal A and/or «

t— i=m+1 7"

which yield the lowest MSE.

5. Fit the model to VVIX;, VVIX,, ...VVIX,; with the optimal estimates of A

and/or « from the last step. Then the model parameters B in the equation

(4.3.11)) and (4.3.12)) can be obtained.

6. Once the model parameters B and shrinkage factors A and/or a are known,

we can forecast VVIX,;,; with all the predictors up to time t.

4.3.6 Model evaluation

To quantitatively evaluate the forecasting accuracy of different models, we follow

the literature and use the three popular loss functionf]:

N
1 —
MAE — — ‘ IX; — VVIX, || 431
NZZI 1% (4.3.13)
N
1 _—\2
RMSE = | ; (VVIXi - VV[X,) , (4.3.14)
N
1 IX, IX,
QUEKE = — > VVIX, _ log WIX: , (4.3.15)
N~ \ WIX, VVIX;

6See Patton (2011a) for a range of loss functions which are employed in the literature of
volatility forecast evaluation.
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where NN is the number of total observations out-of-sample, VVIX; is the market
value of the VVIX index at time ¢, and V/VE(Z denotes the VVIX forecast of a
given model. Since the difference between the highest VVIX value and the lowest
one is more than 100, we also report the MAE and RMSE in relative terms, i.e.,

MAE% and RMSE%, respectively.

N —_—
1 VVIX,
MABY = + ;1 o (4.3.16)
N i 2
1 VVIX,
RMSE% = | | +- ;:1 {(W]Xi - 1) ] (4.3.17)

Also, to evaluate the statistical forecast accuracy of the models, we consider
both the Diebold and Mariano (1995) (DM) test and the model confidence set
(MCS) test of Hansen et al| (2011). The DM test is employed to examine the
significance of the differences between two series of forecasts. Specifically, the
difference in errors is defined as: d; = L(é1,) — L(éa;), then the DM statistic is

given by:

) L S (4.3.18)

21 f4(0)/T
where d is the mean of d;, and 27 fd(O) is a consistent estimator of the asymptotic
variance.
The MCS is the subset of models which contains the best models at a given

confidence level. In this chapter, we consider the 75% confidence level and two
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methods, which calculate the test statistics using the sums of absolute values (R

method) and the sums of squared loss differentials (SQ method), respectively.

4.4 Empirical results

4.4.1 Data

The VVIX data is downloaded from the CBOE website. With respect to the pre-
dictors for the individual models of linear regression, LASSO and Elastic net mod-
els, the VIX, the VIX3M and the S&P 500 prices are from www.finance.yahoo.com;
the data on the yield curve is from U.S. Department of the Treasury website.
During the process of model estimation, some of the forecasting methods need
a holdout period to estimate the parameters, for example, the weights in the
weighted average combing method (except the Mean and Median combinations),
the parameters in the model combining regression, A and/or a in LASSO and
Elastic net models. We then consider the 2007-2014 period as the in-sample
period and the year 2015 as the first holdout period. Therefore, for the out-of-
sample evaluation, we examine the pricing performance over 2016-2020 for all
the models on a rolling-window basis. In addition, we divide the whole out-
of-sample period into two sub-periods: 1) a relatively peaceful period covering
2016-2019 which has an overall standard deviation of 11.607; 2) year 2020 which

is more volatile (standard deviation of 19.390) due to the uncertainty related to
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the COVID-19 crisis.

4.4.2 Out-of-sample forecast evaluation

Table 4.4.2: Out-of-sample forecasting errors (1)

Model MAE RMSE QLIKE MAE% RMSE% MCS
Random walk 3.579 5.482 1.263 3.510 5.159 -
Regression 3.551 5.488 1.258 3.477 5.160 -
ARMA 3.486 5.423 1.240 3.441 5.141 -
HAR 3.531 5.453 1.250 3.472 5.144 -
Mean 3.494 5.416 1.235 3.438 5.118 v
Median 3.456 5.409 1.232 3.413 5.130 v
DMSPE1 3.494 5.417 1.235 3.438 5.119 -
DMSPEO0.9 3.495 5.418 1.235 3.438 5.119 -
Bayesian 3.531 5.453 1.250 3.472 5.143

REG1 3.483 5.459 1.242 3.429 5.147 -
REG2 3.565 5.531 1.271 3.504 5.197 -
REG3 3.570 5.571 1.277 3.503 5.207 -
LASSO 3.518 5.432 1.239 3.457 5.120 -
Elastic net 3.516 5.433 1.241 3.455 5.124 -

This table presents the out-of-sample pricing errors for the full sample period
covering 2016-2020. MAE is the average absolute error between the market price
and the model price; RMSE is the square root of the average squared pricing error;
QLIKE is given in equation (4.3.15). MAE% and RMSE% are in relative terms
expressed in percentages with respect to the VVIX. The last column presents
an indicator whether the model is in the MCS at 75% confidence level based on
MSE.

In Table we present the out-of-sample forecast errors for the whole period,
i.e, 2016-2020. Among all the models, the 'Median’ combination model exhibits
the lowest errors when considering the MAE, RMSE and MAE%, and the "Mean’

estimator has the lowest value under RMSE%. The last column of Table
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reports the results of the MCS procedure. Based on MSE, the full sample MCS
contains the 'Mean’ and "Median’ models at 75% confidence level.

Table lists the out-of-sample forecasting errors of different models. In
addition to the models described in Section [4.3] we report the errors obtained
from the random walk. Also, the DM statistics are obtained based on the random
walk model as the benchmark. Panel A covers the period from January 2011 to
December 2019. Similar to the results for the whole sample period, the "Median’
model delivers the lowest values under all the loss functions except for RMSE%,
and the 'Mean’ estimator has the lowest RMSE%. However, when considering the
RMSE and QLIKE only, 'Regression’, 'Mean’, "Median’, 'DMSP1’, 'DMSP0.9’,
'LASSO’ and 'Elastic net’ give similar errord’} It is notable that the DM statistics
of all the models are negative, which indicates that all the models have smaller
average MSE than the random walk in this period. More importantly, for the
seven models we mentioned above, we can reject the null hypothesis of equal
forecast accuracy at 5% significance level. In other words, these seven models
outperform the random walk model for the period 2011-2019.

Panel B of Table presents the out-of-sample performance for the year
2020. The RMSE of all the models increases while RMSE% decreases, which
might be induced by the high average level of VVIX during the pandemic. No-

tably, the random walk model has the lowest RMSE among all the forecasting

TPatton| (2011a)) shows that, among all the loss functions, only MSE and QLIKE are robust
to the noise in the volatility proxy.
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Table 4.4.3: Out-of-sample forecasting errors (2)

Model MAE RMSE QLIKE MAE% RMSE% DM stat
Panel A. Year 2016-2019

Random Walk  3.453 5.331 1.313 3.551 5.263 -
Regression 3.369 5.243 1.278 3.478 5.206 -2.308
ARMA 3.343 5.218 1.274 3.466 5.213 -1.797
HAR 3.379 5.260 1.287 3.491 5.220 -1.738
Mean 3.343 5.219 1.269 3.457 5.192 -2.604
Median 3.315 5.205 1.266 3.438 5.202 -2.017
DMSPE1 3.344 5.219 1.269 3.457 5.192 -2.600
DMSPEO0.9 3.344 5.221 1.269 3.458 5.193 -2.596
Bayesian 3.379 5.260 1.286 3.490 5.219 -1.750
REG1 3.324 5.228 1.269 3.444 5.207 -1.918
REG2 3.402 5.292 1.299 3.520 5.260 -0.739
REG3 3.384 5.303 1.301 3.507 5.271 -0.288
LASSO 3.375 5.240 1.276 3.482 5.197 -2.512
Elastic net 3.372 5.241 1.277 3.479 5.201 -2.507

Panel B. Year 2020

Random Walk  4.085 6.048 1.066 3.349 4.722 -
Regression 4.277 6.371 1.181 3.469 4.973 1.574
ARMA 4.055 6.173 1.106 3.342 4.842 0.597
HAR 4.137 6.164 1.104 3.399 4.827 0.745
Mean 4.096 6.137 1.099 3.361 4.813 0.730
Median 4.018 6.156 1.098 3.313 4.830 0.511
DMSPE1 4.096 6.142 1.100 3.361 4.816 0.760
DMSPEO0.9 4.096 6.143 1.099 3.361 4.814 0.772
Bayesian 4.137 6.164 1.104 3.399 4.827 0.745
REG1 4.116 6.300 1.133 3.371 4.899 1.304
REG2 4.213 6.395 1.160 3.438 4.940 1.682
REG3 4.315 6.528 1.179 3.483 4.942 2.376
LASSO 4.090 6.140 1.095 3.358 4.805 0.510
Elastic net 4.091 6.141 1.095 3.359 4.805 0.502

This table presents the out-of-sample pricing errors. MAE is the average absolute
error between the market price and the model price; RMSE is the square root of
the average squared pricing error; QLIKE is given in equation . MAE%
and RMSE% are in relative terms expressed in percentages with respect to the
VVIX. DM denotes the Diebold-Mariano test statistic based on the MSE with
the null hypothesis of equal accuracy and follows a N(0,1) distribution. The
benchmark model is the random walk.
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models, although it is not significantly different from all the other models (except

'REG3’) in its ability to generate VVIX forecasts as shown by the DM statistics.

Table 4.4.4: Out-of-sample forecasting errors by VIX levels

VIX<15 15<VIX< 20 20<VIX< 35 VIX>35

0bs.=667 0bs.=257 0bs.=282 obs.=51
Model RMSE DM RMSE DM RMSE DM RMSE DM
Random walk  3.727 - 6.106 - 6.273 - 12.394 -
Regression 3.677 -2.781 5.952 -3.421 6.133 -1.301 13.379 2.074
ARMA 3.576 -3.029 5974 -1.799 6.078 -1.357 13.173 1.454
HAR 3.636 -3.338 6.041 -0.997 6.141 -1.479 12.950 1.422
Mean 3.613 -4.130 5.965 -2.821 6.081 -1.953 12.977 1.789
Median 3.561 -3.488 5.953 -2.224 6.047 -1.565 13.215 1.534
DMSPE1 3.613 -4.131 5.965 -2.815 6.081 -1.950 12.989 1.806
DMSPEO0.9 3.614 -4.188 5.965 -2.879 6.080 -1.974 13.002 1.853
Bayesian 3.635 -3.374 6.040 -1.007 6.141 -1.477 12.951 1.424
REG1 3.545 -3.724 5977 -1.735 6.147 -1.281 13.466 2.143
REG2 3.596 -3.323 6.092 -0.162 6.236 -0.371 13.518 2.158
REG3 3.615 -2.343 5.945 -1.551 6.269 -0.034 14.090 2.237
LASSO 3.651 -3.319 5.970 -3.573 6.093 -2.165 12.965 1.600
Elastic net 3.657 -3.260 5.972 -3.736 6.085 -2.231 12.966 1.613

This table presents the out-of-sample RMSE for different levels of the VIX. DM
denotes the Diebold-Mariano test statistic based on the MSE with the null hy-
pothesis of equal accuracy and follows a N(0,1) distribution. The benchmark
model is the random walk. obs. is the number of observations.

To investigate whether the market volatility affects the VVIX forecasting per-

formance, Table reports the out-of-sample errors by VIX levels. When the

VIX level is less than or equal to 15, all the models outperform the random

walk with, surprisingly, the 'REG1’ presenting the lowest MSE. When the value

of the VIX is in the range of (15,20], 'Regression’, "Mean’, "Median’, 'DMSP1’,
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'DMSP0.9’, 'TLASSO’ and "Elastic net’ models have more accurate forecasts com-
pared with the random walk. We find that these seven models are identical with
the models which outperform the random walk for the period 2016-2019. Further-
more, when the VIX falls into (20,35, only 'LASSO’ and 'Elastic net’ exhibit a
significant outperformance over the random walk. However, if the VIX increases
above 35, which accounts for 4% of the total observations, based on the DM
statistics we can conclude that most of the models are not significantly different
from the random walk in terms of VVIX forecasting. Also noteworthy is the fact
as the level of the VIX index rises, the RMSE increases and the number of models

which are superior to the random walk decreases.
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Table 4.4.5: Out-of-sample forecasting comparison: MCS test

Model MSE based QLIKE based
R method SQ method R method SQ method

Random walk 1 1 1 1
Regression 1 1 2 2
ARMA 3 3 2 2
HAR 1 1 1 1
Mean 2 3 3 5)
Median 3 4 5 5
DMSPE1 2 3 2 4
DMSPEO0.9 1 2 1 2
Bayesian 1 1 1 1
REG1 3 4 3 4
REG2 0 0 0 1
REG3 1 1 2 2
LASSO 3 3 3 3
Elastic net 2 3 3 3

This table presents the number of out-of-sample years for which each model is
within the MCS at 75% confidence level; the data sample is from 2016 to 2020.
The MCS test employs two methods: the range method (R Method) and semi-
quadratic method (SQ Method). The loss functions considered are MSE and
QLIKE. The MCS test is based on 10,000 bootstraps.

Apart from the discussion on the forecasting errors and DM test, we also
conduct two additional analysis. The first one is the MCS test which identifies
the best subset out of the entire model family. In addition to Table [4.4.2] which
shows the MCS results for the whole period, Figure illustrates the MCS test
by years. Panel A to Panel D displays the results of MCS using the R method
and SQ method under MSE and QLIKE, respectively. The models selected by

MCS are quite similar across different methods for each year, except that '/REG1’



4.4. Empirical results 131

dominates in 2017 when considering the MSE-based procedure. Overall, the
"Median’ model is most likely to survive in the MCS when considering all the
methods and loss functions used in the test. Also, Table confirms this

finding by presenting the number of years in which each model is in the MCS.

Figure 4.4.3: Out-of-sample comparison: MCS test results

Random walk - [ ) Random walk [ . . [ )
Regression  * . . [ ] . Regression| - . [ ] .
ARMAT @ [ ] o ARMAF @ [ ) . (]
HAR F . . HAR . . . .
Mean | [ ) [ ] Mean| [ ) [ ] [ )
Mediant @ [ ) [ ] Median- @ [ ) [ ] [ )
DMSPE1 [ - [ ] [ ] DMSPE1 [ - [ ] [ ] [ )
DMSPE09 | o DMSPE09 . () )
Bayesian| - . . . [ ) Bayesianf - . . [ ]
REGIF @ [ ) . [ ) . REGIF @ [ ) [ ] [ )
REG2 F . . . . . REGZ + . . . .
REG3 F . . . . . REG3 . . . . .
LASSO[ - . [ ) [ ) [ ] LASSOF - . [ ] [ ] [ ]
Elastic netf  * . [ ) . [ ) Elastic netf -+ . [ ] [ ] [ )
2016 2017 2018 2019 2020 2016 2017 2018 2019 2020
(a) R Method based on MSE (b) SQ Method based on MSE
Random walk ~ * . . : [ ) Random walk - . . . [ ]
Regression| - [ ) . o . Regressiont  * [ ) . [ ] .
ARVAL @ : : : (] ARVAF @ : : : (
HARf (] HARF - - . - o
Meanf - [ } [ } [ ) Mean| @ () () ) o
Median| @ o o o o Median| @ ) ) ) )
DMSPE1f - : ® ® DMSPE1 | @ () ) o
DMSPEO9 | ] DMSPE09| - . (] [ )
Bayesiant  * . . . [ ] Bayesian[  * . . ()
REGI @ o : o : REGI| @ () o )
REG2 | . . . . . REG2 - . . . .
REG3t @ [ ] - : - REG3| @ [ ) . .
LASSOf - . [ ] [ ] [ ] LASSO| - . [ ] [ ] [ ]
Elasticnet| - . [ ] [ ] [ ] Elastic netf - . [ ] [ ] [ )
2016 2017 2018 2019 2020 2016 2017 2018 2019 2020
(c) R Method based on QLIKE (d) SQ Method based on QLIKE

Notes: This chart illustrates the MCS test results by years. The bubble signifies that the
corresponding model is within the MCS at 75% confidence level for a given year. The data
ranges from 2016 to 2020. The MCS test employs two methods: the range method (R Method)
and semi-quadratic method (SQ Method). The loss functions considered are MSE and QLIKE.
The MCS test is based on 10,000 bootstraps.

Following Rapach et al.| (2010), we plot the time series of the difference be-

tween the cumulative squared error (CSE) of the random walk and the cumulative
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squared error of each model over the whole period, as shown in Figure[4.4.4] This
gives a simple visual impression of how each forecasting model differs from the
random walk during the out-of-sample period. All the models (except 'REG2’
and 'REG3’) display an upward trend before the year 2020, which indicates that
those models consistently outperform the random walk during 2016-2019. How-
ever, the line in each panel drops dramatically in March 2020, which means that
all forecasting models fail to capture the spikes in the VVIX index. Furthermore,
we compare the height of the curve at the end of the period: the high endpoint
in Panel (e) demonstrates that the 'Median’ model has a lower MSE than the
other models. This is consistent with our earlier findings. Also, ’ARMA’, "Mean’,
'DMSPE1’, ’'DMSPE0.9’, 'LASSO’ and ’Elastic net’ are shown to outperform the

random walk over the whole sample.

4.4.3 Variable selection

Although the Median” model combination provides the best out-of-sample per-
formance considering the overall period, 'LASSO’ and ’Elastic net’ also deliver
more accurate forecasts than the random walk. Considering that these models,
i.e., 'LASSO’ and "Elastic net’, are able to offer model selection among a number
of feasible variables, it is of interest to examine the importance of the various
predictors for VVIX forecasting. We consider the following 17 variables from

the individual models, which also include all the candidates for 'Regression’: the
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Figure 4.4.5: Variable selection for 2016-2020

2016 2017 2018 2019 2020 2021
(a) LASSO

|\HI- nu \II IJI”
H I HIHII i 'III [l IIH‘II I\

H L] m

-.;"ﬂ'm'-E !

| Ih\ 1. —

2016 2017 2018 2019 2020 2021
(b) Elastic net

Notes: This chart shows the variables selected for forecasting the VVIX index over the period
January 2016 to December 2020. The y-axis is the 17 variables which are potentially related
to the daily changes of VVIX. The dark-red blocks indicate that the variable is selected by the

predictive regression on a given day.
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lagged daily changes in VVIX (AVVIX), the daily changes in the VIX (AVIX),
daily changes in the average weekly VVIX (AVVIX™), the daily changes in the
average monthly VVIX (AVVIX™), the difference between the VIX3M and the
VIX index (VX%/7) the log-returns of the S&P 500 index (ret), the squared
returns (ret?), the difference between the 3-month treasury bill rate and the 1-
month treasury bill rate (TBgf?{f ), the difference between the 6-month treasury
bill rate and the 1-month treasury bill rate (TBS/7), and their absolute values
(except the squared returns).

Figure [4.4.5 shows the variable selection results of the 'LASSO’ and ’Elas-
tic net’” methods, respectively. An impressive finding is that, compared with
"Elastic net’, the 'LASSO’ method tends to select less variables and thus have
more 'blocks’ predictors over time. In 'LASSQO’, the top five variables selected are
AVIX, AVVIX™ |AVVIX®|, |AVVIX™| and |[VX9//| respectively; while the top
five selected by ’Elastic net’ are AVVIX™, |AVVIX™|, ret, AVVIX and TBS/7.
It is notable that the changes in the average monthly VVIX and its absolute value

appear more often in the selected predictors of VVIX for both methods.

4.5 Conclusions

In the financial market, VVIX is an important indicator of how rapidly market

volatility changes rather than of the volatility itself. Motivated by the success of
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forecast combinations and LASSO-type shrinkage methods, this chapter seeks to
answer the question: is there an optimal forecasting method for the VVIX index.

In this chapter, we examine the forecasting performance of three individual
models, eight combination methods and two LASSO-type models out-of-sample
over the period 2016-2020. We find that the simple 'Median’ method yields the
lowest MSE across years. Moreover, the results of the MCS procedure shows
that both the 'Mean’ and "Median’ methods outperform the other models for the
overall period. Furthermore, the model selection results of both 'LASSO’ and
"Elastic net” methods suggest that, instead of daily changes in the VVIX index,

the changes in the monthly VVIX are of vital importance in predicting the VVIX.



Chapter 5

Conclusions and Further

Research

5.1 Summary of the Findings and Contributions

of the Thesis

This thesis makes original contributions to the volatility forecasting literature,
specifically regarding the uses of volatility indices. Thus, it benefits both academi-
cians and financial practitioners because it provides valuable lessons regarding the
information contained in the volatility indices.

In Chapter [2, we propose a new VIX forecasting method employing the fil-
tered historical simulations put forward in Barone-Adesi et al.| (2008)) and the

information on the VIX term structure. This approach provides estimates us-
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ing the empirical innovation density that can capture the non-normal features of
returns, such as negative skewness and positive excess kurtosis. Different from
the traditional methods that use a cross-section of options data, we calibrate
the model by applying four well-established volatility indices, i.e., VIX9D, VIX,
VIX3M and VIX6M. We find that this method outperforms, both in-sample and
out-of-sample, the benchmark model which only uses the VIX index and assumes
a normal distribution. Additionally, the NAGARCH model based on the new
method is superior to all the other competing models for long-term volatility
forecasts, while the GJR model under the proposed estimation approach outper-
forms all the other models for short-run volatility forecasts. Also, we perform
statistical tests and several robustness checks that confirm our results. More im-
portantly, we provide evidence that our proposed estimation method significantly
reduces the computational time.

In Chapter |3] we explore the usefulness of adding the VIX term structure to
VIX futures pricing models. Similarly to Chapter [2, the estimation assumes the
empirical innovation density to accommodate for the non-normality of returns.
The parameters of the GJR model are then calibrated from the historical futures
data, or the information on the VIX term structure, or their combinations. Our
analysis of the out-of-sample forecasting performance suggests that, for most of
the years, the performance of the models that use both the VIX term structure

and the futures prices is not significantly different from the performance of the
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models that only include data on the futures. Also, we examine the forecasting
performance of different models during the recent 2020 COVID-19 crisis. Our
empirical results show that the use of the VIX term structure leads to the lower
pricing errors. Moreover, we investigate the model performance when using dif-
ferent maturities and VIX levels. Our findings are that, compared to the model
that uses only futures data, models that incorporate information on the VIX term
structure into VIX futures pricing models can provide better forecasts when 1)
the future’s maturity is longer than 120 days; or 2) the VIX level is higher than
15.

In Chapter [4] we analyse VVIX forecasting methods. Motivated by the success
of forecast combinations and the LASSO-type shrinkage methods, we attempt to
answer the following question: is there an optimal VVIX forecasting method? If
yes, then is this based on forecast combinations or LASSO? We find that forecast
combinations perform best. We compare the forecasting performance of three
individual models, eight combining methods and two LASSO-type models out-
of-sample. The results show that the simple median combining method delivers
the lowest forecasting errors across the years. However, we find that both the
mean and median combining methods end up in the model confidence set at
75% confidence level for the full sample period. In addition, we discuss the
model selection results of two shrinkage methods, i.e., LASSO and elastic net.

Interestingly, instead of daily changes in the VVIX, the changes in monthly VVIX
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are key to predict the VVIX.

5.2 Suggestions for Future Research

Although this thesis has important implications for volatility forecasting, there
are still many gaps. In this section, we address future research directions based
on the findings of this thesis.

Forecasting VIX Chapter [2| estimate a volatility model that assumes an
empirical innovation density which captures the non-normality of returns. First,
we briefly discuss the variance risk premium in Section with a focus on
forecasting the VIX index. As suggested by Bollerslev et al.| (2009)), an estimate of
the variance risk premium predicts stock returns. Therefore, given the estimated
variance under the physical measure and the risk-neutral estimated variance, our
analysis may be extended to include more details on the variance risk premium.
For example, one can compare the value of variance risk premium captured by the
new methods proposed compared to models introduced in the recent literature.

Second, this model may be extended to include a jump component in order to
capture the spikes of the volatility dynamics. In the table that reports results on
the out-of-sample comparison (Table 2.3.3), the GARCH-type models that use
the proposed method exhibit the highest pricing errors in 2011, the year in which
the VIX is quite volatile, compared to the results for the other years. Therefore,

it is worth to investigate whether a jump component improves the forecasting
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performance during turbulent markets.

Third, the proposed model is calibrated from the VIX term structure, which
are calculated using out-of-the-money options. It would be interesting to examine
the option pricing performance of the new method.

VIX futures Chapter 3| explores the effects of the VIX term structure on the
one-day-ahead VIX futures forecasts. First, a promising extension would be con-
sidering longer forecasting horizons, i.e., one-week-ahead and one-month-ahead
forecasts. Also, it is not rare in the VIX futures pricing literature to evaluate the
model performance by basis, which is defined as the difference between the VIX
level and the VIX futures prices.

Second, inspired by the VVIX forecasting results in Chapter[d] another feasible
extension would enhance the VVIX term structure forecasts using combination
methods in order to improve on the VIX futures pricing model.

VVIX forecasts In Chapter [d, we employ a traditional split cross validation
method for time series to estimate a and A ex ante in a LASSO-type regression.
However, recent literature, for example, Zhang et al. (2019a)), propose a new
algorithm to identify a and A, which delivers a better forecasting performance.
It may be worth combining LASSO with the new algorithm.

Finally, with respect to the combining methods, one may examine the newly
proposed ’'partially egalitarian LASSO’ (peLLASSO) method of Diebold and Shin

(2019), which discards some forecasts and shrinks the survivors toward equal-
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ity. The peLASSO, which is shown to outperform simple average and median

forecasts, would be an interesting extension to attempt.
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